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A known feature of electrically charged Reissner–Nordström–anti-de Sitter planar black holes is that
they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for
this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black
holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon.
In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different
from the anti–de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA
clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter
Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in
five-dimensional asymptotically flat spacetime. In the first case, we augment the usual SUð3Þ Yang-Mills
Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons
density to the SOð6Þ Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously
broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to
these two examples, we review the corresponding picture for anti–de Sitter black holes. All these solutions
are studied both analytically and numerically, existence proofs being provided for nA clouds in the
background of RN black holes. The proofs use shooting techniques which are suggested by and in turn
offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate
electric charge values are required to ensure the existence of solutions interpolating desired boundary
behavior at the horizons and spatial infinity.
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I. INTRODUCTION

The branching off of a family of solutions of a model into
a new family of solutions at the onset of an instability
is a recurrent situation in physics. Starting with the vacuum
Einstein theory of gravity, an earlier example is the
Gregory-Laflamme instability [1] of black strings, which
branch off into a family of nonuniform string solutions at
the onset of the instability [2]. A more recent example is the
set of bumpy black holes (BHs), which branch off the
family of Myers-Perry vacuum BHs in d ≥ 6 spacetime
dimensions [3,4].
The same pattern occurs, however, for some field theory

models in a flat spacetime background, the best-known
example being perhaps the bisphalerons in the electroweak
sector of the Standard Model of particle physics [5,6]. As
expected, even more complicated solutions are found when
considering gravitating matter fields, with new features
introduced by the possible existence of an event horizon. A
recent example in this direction is found for a complex
massive scalar field in the background of a Kerr BH. As
discussed in Refs. [7–9], the Klein-Gordon equation
possesses bound-state solutions (i.e. scalar clouds) around

Kerr BHs. This leads to the existence of a family of hairy
BHs which branch off from the Kerr metric at the threshold
of the super-radiant instability [8] (the existence of these
scalar clouds at the nonlinear level has been proven recently
in Ref. [10]).
An important example which has recently received a

considerable amount of interest concerns the instability of
the (electrically charged) Reissner-Nordström (RN) BH
with a negative cosmological constant when considered as
a solution of the gravitating Uð1Þ-gauged complex scalar
field theory [11], or of the Einstein-Yang-Mills (EYM)
theory [12]. In both cases, the branching towards a set of
solutions in the more general theory occurs for a particular
set of Reissner–Nordström–anti-de Sitter (RNAdS) BHs
which form a line in the parameter space. The hairy BHs are
the nonlinear realization of those marginally stable modes.
This has led to the discovery of a remarkable connection
between condensed matter and gravitational physics, the
hairy black hole solutions in the aforementioned theories
being interpreted as holographic superconductors, via the
gauge/gravity duality [13].
The main purpose of the present work is to show that the

mechanism resulting in the spontaneous breaking of an
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Abelian gauge symmetry near a black hole horizon, with
the appearance of a condensate of a magnetic non-Abelian
(nA) gauge field, also occurs for gravitating nA fields in the
absence of a cosmological constant.1 Following the termi-
nology for scalar fields [7–9], these configurations with
infinitesimally small magnetic fields are dubbed here non-
Abelian clouds. Moreover, the corresponding bifurcating
Reissner-Nordström (RN) BHs will correspond to an
existence line in the parameter space of solutions.
There is, however, a price to be paid in this case. First,

the gauge group must be larger than SOðd − 1Þ (with d the
spacetime dimension), and second, a suitable YM addi-
tional interaction term, with its corresponding dimensional
constant, must be employed. There are two candidates
for this, the nonlinear densities constructed from the nA
fields and connections, namely (i) as many higher-order
curvature terms as are allowed in the given dimension, and
(ii) the allowed Chern-Simons (CS) density in that (odd)
dimension.
For economy of presentation, we have chosen to dem-

onstrate this effect for two typical examples, in four and
five spacetime dimensions, respectively. In the d ¼ 4 case,
we do not have the option of employing a CS term, and
the only higher-order curvature term available there is the
quartic kinetic YM term F4 ¼ TrfFμνρσFμνρσg. As for
gauge group, we have chosen SUð3Þ, which is the smallest
group larger than SOð4Þ or SUð2Þ. In five dimensions,
however, where we have available the CS density, we have
eschewed the use of the F4 form for simplicity, and have
chosen to employ the CS term for diversity. In that case, we
have chosen to work with the gauge group SOð6Þ for
convenience.
With these two examples, we aim to illustrate this

mechanism for generic cases. Let us also mention that
our study uses a combination of analytical and numerical
methods, which is enough for most purposes. In particular,
we have given analytic proofs of existence in addition to
numerical constructions.
The methods of proofs are based on shooting arguments,

utilizing the black hole electric charge as a shooting
parameter which gives rise to the boundary slope of the
gauge field profile function at the horizon. In order to
obtain correct values of the charge, two steps of shooting
processes are conducted. These methods are hinted at by,
and useful to, the numerical approaches employed in
this study.
Our work is organized as follows: Before considering the

case of main interest of solutions in a Minkowski spacetime
background, we start in Sec. II by reviewing the mechanism
unveiled in Ref. [12] for the occurrence of nA clouds in
the gravitating SUð2Þ YM system with a negative

cosmological constant. In Secs. III and IV, we discuss
two specific examples for the instability of asymptotically
flat RN BHs with nA fields, in four and five dimensions. In
the first case, one supplements the usual Yang-Mills
Lagrangian with higher-order curvature terms of the gauge
field, while for the latter case, one considers the Yang-
Mills-Chern-Simons theory. The numerical results there are
underpinned by rigorous existence proofs for the solutions
of the corresponding linearized (generalized) Yang-Mills
equations. We end with Sec. V, where the results are
summarized and discussed. The Appendix contains essen-
tially the equations for the full nonlinear systems discussed
in Secs. II–IV, put, however, in a more general context.

II. NON-ABELIAN CLOUDS AROUND d = 4
REISSNER–NORDSTRÖM–ANTI-DE

SITTER BLACK HOLES

A. The setting

We consider the usual EYM action supplemented with a
cosmological term Λ ¼ −3=L2:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

4

�
Rþ 6

L2

�
−
1

2
TrfF2g

�
; ð1Þ

where the field-strength tensor Fμν ¼ 1
2
τaFa

μν is Fμν ¼
∂μAν − ∂νAμ þ i½Aμ; Aν�, and the gauge field is Aμ ¼
1
2
τaAa

μ, with τa an SUð2Þ basis written in terms of Pauli
matrices.
The RNAdS BH with a planar horizon is a solution of

this model and has a line element

ds2 ¼ dr2

NðrÞ þ r2ðdθ2 þ θ2dφ2Þ − NðrÞdt2; with

NðrÞ ¼ −
2M
r

þQ2

r2
þ r2

L2
ð2Þ

(withM,Q as the two constants fixing the mass and electric
charge of the BH) and a purely electric gauge field

A ¼ VðrÞ 1
2
τ3dt; with VðrÞ ¼

�
Q
rH

−
Q
r

�
; ð3Þ

where rH is the largest root of the equation NðrHÞ ¼ 0. In
the above relations, r and t are the radial and time
coordinates, respectively, while θ and φ are coordinates
on the two-plane, with 0 ≤ θ < ∞, 0 ≤ φ < 2π.
The genuine nA solutions are found when exciting

the magnetic degrees of freedom of the SUð2Þ potential,
with [15,16]

A ¼ VðrÞ 1
2
τ3dtþ

1

2
fwðrÞτ1dθ þ ðτ3 þ wðrÞτ2θÞdφg;

ð4Þ
1Note that the (asymptotically flat, magnetically charged) RN

BH is known to be unstable when viewed as a solution of the
Einstein-Yang-Mills-Higgs theory [14].
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and would describe dyonic nA BHs (the corresponding
equations of the model are given in Sec. I of the Appendix).
Here we are interested in the case when wðrÞ is an
infinitesimally small function

wðrÞ ¼ ϵWðrÞ; ð5Þ

such that the backreaction induced by the magnetic field on
the spacetime geometry (2) can be neglected, and the
RNAdS BH remains a solution of the model. Then the
function WðrÞ solves the linearized YM equation

W00 þ N0

N
W0 þ

ðQrH −
Q
rÞ2

N2
W ¼ 0; ð6Þ

where a prime denotes a derivative with respect to the
coordinate r.

B. The parameter dependence of solutions

The above equation does not seem to possess a closed-
form solution. One can construct, however, approximate
solutions valid for r → rH and r → ∞, respectively. In the
vicinity of the event horizon, the regular solution has

WðrÞ ¼ bþ L4Q2r2Hw0

4ðL2Q2 − 3r4HÞ2
ðr − rHÞ2 þ � � � ð7Þ

(with b ≠ 0 arbitrary), the corresponding expression for
large r being

WðrÞ ¼ J
r
−
L4Q2J
6r2H

1

r3
þ � � � : ð8Þ

In what follows, we investigate the existence of a smooth
solution connecting these asymptotics. Since Eq. (6) is
linear and homogeneous, we may set b ¼ 1 without loss of
generality and look for a solution satisfying Wð∞Þ ¼ 0.
For this purpose, we rewrite NðrÞ as

NðrÞ ¼ 1

r2

�
1

L2
r4 − 2MrþQ2

�
≡ 1

r2
fðrÞ; r > 0

and locate rH first. It is seen that the only root of f0ðrÞ is
r0 ¼ 2−

1
3M

1
3L

2
3. In order forNðrÞ to have a positive root, it is

necessary and sufficient to require fðr0Þ ≤ 0, which leads
to the condition

Q2 ≥ 2
4
3M

4
3L

2
3ð1 − 2−

8
3Þ≡Q2

0; Q0 > 0: ð9Þ

If Q ¼ Q0, NðrÞ will have a double root at r ¼ r0; if
Q > Q0, NðrÞ will have two positive simple roots which
both depend onQ and may be denoted as r1ðQÞ and r2ðQÞ,
with r1ðQÞ < r2ðQÞ. Thus, in our notation rH ¼ r2ðQÞ.
Since fðrÞ > −2MrþQ2, we have

Q2

2M
< r1ðQÞ < r2ðQÞ ¼ rHðQÞ:

Suggested by the asymptotic expression (7), we are to
obtain a positive solution of (6) subject to the boundary
condition

WðrHÞ ¼ 1; Wð∞Þ ¼ 0; ð10Þ

following from (7) and (8). With this, we may begin by
integrating (6) to represent the unique local solution with
the initial condition WðrHÞ ¼ 1, W0ðrHÞ ¼ 0 as

W0ðrÞ ¼ −
1

NðrÞ
Z

r

rH

Q2

NðρÞr2Hρ2
ðρ− rHÞ2WðρÞdρ; r > rH:

ð11Þ

Integrating (11), we formally arrive at

WðrÞ ¼ 1 −
Z

r

rH

1

NðsÞ
Z

s

rH

Q2

NðρÞr2Hρ2
ðρ − rHÞ2WðρÞdρds;

r > rH: ð12Þ

The parameter dependence of the solution is demonstrated
in (11) and (12), which allows us to obtain desired solution
profiles by parameter adjustment.

C. The numerical results

In practice, the solution interpolating between the
asymptotics (7) and (8) is found numerically, a typical
profile being shown in Fig. 1. Note that we restrict here
to configurations withWðrÞ everywhere positive; however,
there are also excited solutions in which WðrÞ has
nodes [12].
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FIG. 1. The profile of a typical solution of Eq. (6). The
parameters of the corresponding RNAdS background are
M ¼ 0.0453, Q ¼ 0.1465, and L ¼ 10.
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The results of the numerical integration are shown in
Fig. 2, where we exhibit the existence line in the ðM;QÞ
parameter space of RNAdS solutions (note that there we
set L ¼ 1). One can see that, given a value of the electric
charge Q, the (nodeless) solution of (6) is found for a
critical RNAdS BH only.
As discussed in Ref. [12], when taking into account the

backreaction at the nonlinear level, this results in the
occurrence of a branch of EYM hairy black hole solutions
which bifurcate from the RNAdS configurations precisely
at the existence line. Moreover, the solutions with a
nonzero magnetic potential are thermodynamically favored
over the magnetically neutral ones (i.e., they maximize the
entropy for given M, Q).

III. NON-ABELIAN CLOUDS AROUND d = 4
REISSNER-NORDSTRÖM BLACK HOLES WITH

MINKOWSKI SPACETIME ASYMPTOTICS

A. The setting

It is worth inquiring to which extent the features unveiled
above are specific to AdS spacetime, and whether they can
be recovered (at least to some extent) also by asymptoti-
cally flat configurations. The first observation is that in this
case the BHs necessarily possess a spherical horizon
topology [17,18]. Second, for Λ ¼ 0, the static configura-
tions with a gauge group SUð2Þ and a nontrivial magnetic
potential necessarily have At ≡ 0 as found by a number of
classic no-go “baldness” theorems [19]. This immediately
excludes the existence of SUð2Þ clouds around electrically
charged Reissner-Nordström black holes.
One may hope that the situation changes when consid-

ering instead a larger gauge group. The minimal gauge
group for which the superposition of a Coulomb field and
non-Abelian hair is not forbidden by the “baldness”

theorems is SUð3Þ. In this case, a spherically symmetric
ansatz for the gauge field reads2 [20]

A ¼ wðrÞT1dθ þ ðwðrÞT2 sin θ þ cos θT3Þdφþ VðrÞT8dt;

ð13Þ

where Ti are the standard generators of the SUð3Þ Lie
algebra. The electrically charged RN BH remains a solution
of the EYM-SUð3Þ model, with a line element

ds2 ¼ dr2

NðrÞ þ r2ðdθ2 þ sin2θ2dφ2Þ − NðrÞdt2; with

NðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð14Þ

(withM andQ the mass and electric charge of BHs) and an
embedded Abelian connection

wðrÞ ¼ �1; VðrÞ ¼
�
Q
rH

−
Q
r

�
; ð15Þ

where rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
> 0 is an input parameter—

the outer event horizon [with NðrHÞ ¼ 0].
Apart from that, there are also genuinely nA solutions

which possess a nontrivial magnetic potential wðrÞ. As
discussed in Ref. [20], these configurations can be thought
of as nonlinear superpositions of the (electric) RN and the
(purely magnetic) SUð2Þ black holes [21]. In particular,
they do not emerge as perturbations of the electrically
charged BHs, the overall picture being very different from
that in the AdS case.
These results are found for a usual YM action which

contains the usual quadratic term FμνFμν only. However, as
discussed in Ref. [22], the situation changes when the nA
action is augmented with higher-order curvature terms of
the gauge field. In the simplest case, the Lagrangian for the
SUð3Þ fields reads

L ¼ −
1

2
TrfFμνFμνg þ Ls; with

Ls ¼
3τ

2
TrfðFμν

~FμνÞ2g; ð16Þ

where a tilde denotes the Hodge dual and τ is an input
parameter of the theory. One can see that Ls features only
the second power of any “velocity field” and is a causal
density just like the Gauss-Bonnet term in gravity [23] or
the Skyrme [24] term of the Oð4Þ sigma model. Also, Ls
can be viewed as the second member of the YM hierarchy
[25], providing a natural generalization of the usual YM

 0

 0.004

 0.008

 0.012

 0  0.004  0.008  0.012

M

Q

Λ=−3

RN-AdS black holes

existence line

extremal BHs

FIG. 2. Mass M vs charge Q for RNAdS black holes in d ¼ 4
dimensions. The dotted blue curve corresponds to extremal BHs
[RN BHs exist above it (shaded region)]. The non-Abelian clouds
exist along the red line.

2Note that Eq. (13) corresponds in fact to an SUð2Þ × Uð1Þ
ansatz, the magnetic and electric potential interacting only via the
spacetime geometry.
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model. Such terms were extensively considered in the
literature for Abelian solutions; however, the nA case is
considerably less studied.
The equations of motion for a spherically symmetric

system are displayed in Sec. II of the Appendix. An
important observation is that the (electrically charged)
RN BH is still a solution of this model with the extra
Ls term. We are interested in the configurations with w2ðrÞ
infinitesimally close to 1, such that the magnetic part of the
nA field is too small to backreact significantly upon the
geometry,

wðrÞ ¼ −1þ ϵWðrÞ; ð17Þ

in which case the geometry is still described by the metric
functions in (14), sourced by a purely electric YM field.
Then the linearized YM equations in Sec. II of the

Appendix imply that WðrÞ solves the equation

ðNW0Þ0 ¼ 2W
r2

�
1 −

2Q2τ

r4

�
: ð18Þ

B. The existence of solutions

We are interested in the smooth solutions of (18) with the
following form as r → rH:

WðrÞ ¼ bþ w1ðr − rHÞ þOðr − rHÞ2; ð19Þ

where

w1 ¼
2bðr4H − 2Q2τÞ
r3Hðr2H −Q2Þ ;

with b ≠ 0 an arbitrary parameter. Also, since Eq. (18) is
linear, we set b ¼ 1 without any loss of generality. The
corresponding expression for large r reads

WðrÞ ¼ J
r
þ 3JðQ2 þ r2HÞ

4rH

1

r2
þOð1=r3Þ; ð20Þ

with J a constant.
The existence of a smooth solution interpolating between

these asymptotics can be shown as follows. First, we fix the
length scale of the problem by taking rH ¼ 1, such that

NðrÞ ¼
�
1 −

1

r

��
1 −

Q2

r

�
; 0 < Q < 1; r ≥ 1:

ð21Þ

From (19) and (20), the solutions of (18) are subject to the
boundary condition

Wð1Þ ¼ 1; Wð∞Þ ¼ 0: ð22Þ

It is easy to see that (18) has a unique local solution
satisfying the initial condition

Wð1Þ ¼ 1; W0ð1Þ ¼ a; a ∈ R: ð23Þ

For convenience, we denote such a solution asWðr; aÞ and
define the set

Sþ ¼ fa ∈ RjW0ðr; aÞ ¼ Wrðr; aÞ > 0 for some r > 1g:

It is clear that Sþ is open. It is trivial that ð0;∞Þ ⊂ Sþ.
We recast (18) into

W0ðr; aÞ ¼ 1

ðr − 1Þ
r2

ðr −Q2Þ
Z

r

1

2

ρ2

�
1 −

2Q2τ

ρ4

�
Wðρ;aÞdρ;

r > 1: ð24Þ

Letting r → 1 in (24) and applying l’Hôpital’s rule, we find

a ¼ lim
r→1

W0ðr; aÞ ¼ 2ð1 − 2Q2τÞ
ð1 −Q2Þ : ð25Þ

So we may adjust Q in the interval (0,1) to make a > 0
or a ∈ Sþ.
In order to have a solution with a < 0, we need to

request

2Q2τ > 1; ð26Þ

which will be observed in the sequel.
We next consider the interval

I0 ¼ ½1; r0�≡ ½1; ð2Q2τÞ14�: ð27Þ

From (24) we see that W0 < 0, provided that r ∈ I0 and W
stays non-negative for r ∈ I0. With this condition, we have

W0ðr; aÞ > r2

ðr − 1Þðr −Q2Þ
Z

r

1

2

ρ2

�
1 −

r40
ρ4

�
dρ

>
2r20

5ðr0 −Q2Þ ðr
4 − r40Þ; r ∈ I0 ¼ ½1; r0�:

ð28Þ

Integrating the above, we get the lower bound

Wðr; aÞ > 1þ 2r20
5ðr0 −Q2Þ

�
1

5
½r5 − 1� − r40½r − 1�

�

≥ 1þ 2r20
5ðr0 −Q2Þ

�
1

5
½r50 − 1� − r40½r0 − 1�

�
;

r ∈ I0; ð29Þ

NON-ABELIAN CLOUDS AROUND REISSNER-NORDSTRÖM … PHYSICAL REVIEW D 93, 124069 (2016)

124069-5



which may be made positive by adjusting Q in the interval
(26) suitably.
Similarly, we can find a suitably such that Wðr; aÞ < 0

for some r ∈ ð1; r0Þ. We set

Aþ ¼ fajWðr; aÞ > 0 for all r ∈ I0g;
A− ¼ fajWðr; aÞ < 0 for some r ∈ I0g:

Then Aþ and A− are open sets which may be restricted to an
open interval, say I, forQ satisfying the condition (26). The
connectedness of I implies A0 ¼ InðAþ∪A−Þ ≠ ∅.
Take a ∈ A0. Then Wðr; aÞ ≥ 0 for all r ∈ I0 and

Wðr1; aÞ ¼ 0 for some r1 ∈ I0. It is clear that r1 ¼ r0;
otherwise, r1 would be an interior minimum of W over
I0, resulting in W0ðr1; aÞ ¼ 0; thus W ≡ 0 by the unique-
ness theorem of the initial-value problem of ordinary
differential equations, which contradicts the initial con-
dition Wð1;aÞ¼1. Thus, we have

Wðr; aÞ > 0 for r ∈ ½1; r0Þ; Wðr0; aÞ ¼ 0: ð30Þ

Inserting (30) into (24), we obtain

W0ðr; aÞ < 0; r ∈ I0: ð31Þ

We claim W0ðr; aÞ < 0 for all r > 1. In fact, for r near
and above r0, we have from (24)

W0ðr; aÞ ¼ 1

ðr − 1Þ
r2

ðr −Q2Þ
�Z

r0

1

þ
Z

r

r0

�

×

�
2

ρ2

�
1 −

2Q2τ

ρ4

�
Wðρ; aÞ

�
dρ; ð32Þ

which will continue to stay negative for all r > r0, sinceW
becomes negative beyond r0.
Therefore, we have shown that the set

S− ¼ fa ∈ RjW0ðr; aÞ < 0 for all r > 1 and

Wðr; aÞ < 0 for some r > 1g

is not empty. This set is clearly open.
Using the connectedness of R, we see that

S0 ¼ RnðSþ∪S−Þ ≠ ∅. For a ∈ S0, we have

W0ðr; aÞ ≤ 0; Wðr; aÞ ≥ 0; r > 1: ð33Þ

Applying the uniqueness theorem of the initial-value
problem of ordinary differential equations again, we
get W > 0.
We claim W0 < 0 for all r > 1. In fact, we have

W0ðr; aÞ < 0 for r ∈ I0, since Wðr;aÞ > 0 for r ∈ I0.
Assume otherwise that W0 has at least 1 zero and set

r1 ¼ inffW0ðr; aÞ ¼ 0jr > r0g:

Then r1 > r0 and

Z
r1

1

�
2

ρ2

�
1 −

2Q2τ

ρ4

�
Wðρ; aÞ

�
dρ

¼ W0ðr1; aÞ
ðr1 − 1Þðr1 −Q2Þ

r21
¼ 0:

Using this result in the decomposition (32) while setting
r0 ¼ r1 and applying W > 0, we have

W0ðr;aÞ¼ 1

ðr−1Þ
r2

ðr−Q2Þ
Z

r

r1

2

ρ2

�
1−

r0
ρ4

�
Wðρ;aÞdρ>0;

ð34Þ

which is false. Thus, we have strengthened (33) into

W0ðr; aÞ < 0; Wðr; aÞ > 0; ∀ r > 1: ð35Þ

With the properties of W stated in (35), we now establish
the limit

lim
r→∞

Wðr;aÞ≡W∞ ¼ 0: ð36Þ

In fact, if W∞ ≠ 0, then

Wðr; aÞ > W∞ > 0; ∀ r > 1: ð37Þ

From (24) we see that

W1 ≡ lim
r→∞

W0ðr;aÞ ð38Þ

exists. Since (36) exists, we see thatW1 ¼ 0 in (38). Hence,
by l’Hôpital’s rule and (18), we have

lim
r→∞

NW0ðr; aÞ
ð− 1

rÞ
¼ lim

r→∞
r2ðNW0ðr;aÞÞ0 ¼ 2W∞: ð39Þ

Since W∞ > 0, we can find some r2 > 0 sufficiently large
so that

NW0

ð− 1
rÞ
> W∞; r > r2:

That is,

W0 < NW0 < −
W∞

r
; r > r2; ð40Þ

since N < 1 for r > r0. Integrating (40) leads to

Wðr; aÞ < Wðr2; aÞ −W∞ ln
r
r2

; r > r2;
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so thatW fails to stay positive when r is large enough. This
contradiction shows that W∞ can only be zero.
In summary, we have established that the initial-value

problem consisting of (18) and (23) has a solution W
satisfying the boundary condition (22) when (26) is
fulfilled and the initial slope parameter a is suitably chosen
in the range

a ¼ 2ð1 − 2Q2τÞ
ð1 −Q2Þ < 0: ð41Þ

Moreover, W enjoys the properties stated in (35).

C. The numerical results

The solutions of (18) interpolating between the asymp-
totics (19) and (20) are again constructed numerically. In
our numerical approach, we fix rH ¼ 1 and τ ¼ 1 as input
parameters and look for nodeless solutions. Then (18)
becomes an eigenvalue problem in terms of Q. The
corresponding value of Q is found by using a (numerical)
shooting procedure, being uniquely fixed under these
assumptions.
The profile of the solution for a typical RN background

is shown in Fig. 3. In Fig. 4 we show the existence line of
solutions in the ðM;QÞ parameter space. This corresponds
to the critical RN solutions which bifurcate into a branch of
BHs with nA hair. The hairy solutions are found when
promoting the nA cloud to a nonlinear level and taking into
account the backreaction [22].

IV. HIGHER-DIMENSIONAL GENERALIZATIONS
IN MINKOWSKIAN BACKGROUNDS: d = 5

A. The setting

It is of interest to see if the pattern discussed in the
previous two sections occurs also in more than four

dimensions, d > 4. As discussed in Ref. [26], the
higher-dimensional (planar) RNAdS black holes are also
unstable when considered as solutions of EYM theory with
a negative cosmological constant. This results as well in the
occurrence of a set of critical (embedded Abelian) BH
solutions possessing nA clouds.
We expect that this is also the case for the solutions in a

Minkowski spacetime background like that discussed in
Sec. III. Indeed, at least in d ¼ 5 and d ¼ 6 dimensions, this
pattern repeats for the Lagrangian (16) with gauge group
SOðdþ 1Þ, the general setup being presented in Sec. II of
the Appendix. By solving the linearized YM equation (A12),
we have verified that nA clouds around RN black holes exist
in those cases. The overall picture is similar to that discussed
in the previous section, and it will be reported elsewhere
[27]. Also, the existence proof given in the previous section
can be adapted to the higher-dimensional case.
In what follows, we shall not exercise the option of using

higher-order YM terms, but rather will employ a Chern-
Simons (CS) term in the YM action (16) in lieu of the Fð4Þ2
in (16) as the simpler, or less nonlinear alternative.3

Moreover, this option has a good justification, since a
CS term appears in various supersymmetric theories, the
N ¼ 8, D ¼ 5 gauged supergravity model [29,30] being
perhaps the best-known case, due to its role in the
conjectured AdS=CFT correspondence.
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FIG. 3. The profile of a typical solution of Eq. (18). The
parameters of the corresponding RN background are
M ¼ 0.8465, Q ¼ 0.8324, and τ ¼ 1.385.
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FIG. 4. Mass M vs charge Q for RN black holes in d ¼ 4
dimensions. The dotted blue curve corresponds to extremal BHs
[RN BHs exist above it (shaded region)]. The non-Abelian clouds
exist along the red line.

3The Chern-Simons terms can be employed in all (higher) odd
dimensions, but finite-energy solutions exist only for Lagran-
gians in which the lowest-order YM term Fð2pÞ2 is of higher
order than the p ¼ 2 case in (16). Of course, the Reissner-
Nordström solutions in that case would be those of the higher-
order gravities studied in Ref. [28]. In that case, one might also
replace the usual Einstein gravity with its higher-order versions
employed there.
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In d ¼ 5 dimensions, the CS Lagrangian reads

Ls ¼ κϵI1…I6

�
FI1I2∧FI3I4∧AI5I6 − FI1I2∧AI3I4∧AI5J∧AJI6

þ 2

5
AI1I2∧AI3J∧AJI4∧AI5K∧AKI6

�
; ð42Þ

where AIJ are the SOð6Þ gauge fields, FIJ ¼ dAIJþ
AIK∧AKJ, and κ is the CS coefficient. The gauge field
ansatz contains only two functions—a magnetic gauge
potential w, and a Uð1Þ electric one, V:

A¼ wðrÞ þ 1

r
γij

xi

r
dxj þVðrÞγ56dt; with i; j¼ 1;…;4;

ð43Þ

with γij being the representation matrices of SOð4Þ, and γ56
those of the SOð2Þ, which are subalgebras of SOð6Þ. The
Cartesian coordinates xi are related to the spherical coor-
dinates in (45) as in flat space.
The CS term (42) is added to the usual EYM Lagrangian,

the resulting equations being displayed in Sec. III of the
Appendix. The electrically charged RN BH is a solution of
this model, with

wðrÞ≡ −1; VðrÞ ¼ Q
r2

−
Q
r2H

; ð44Þ

and a line element

ds2 ¼ dr2

NðrÞ þ r2dΩ2
3 − NðrÞdt2; with

NðrÞ ¼ 1 −
M
r2

þQ2

r4
; ð45Þ

where M, Q are two parameters fixing the mass and
electric charge of BH, respectively. Also, the outer BH

horizon is located at r ¼ rH ¼ ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4Q2

p
Þ=2 > 0,

where NðrHÞ¼0.
Restricting again to an infinitesimally small magnetic

field, one takes again

wðrÞ ¼ −1þ ϵWðrÞ; ð46Þ

with WðrÞ a solution of the equation [which results from
linearizing the w equation in (A15)]

rðrNW0Þ0 ¼ 4

�
1þ 4Qκ

r2

�
W: ð47Þ

B. The existence of solutions

We are interested in smooth solutions of the above
equation which interpolate between the following boundary
values:

WðrHÞ ¼ b; Wð∞Þ ¼ 0: ð48Þ

An approximate solution compatible with (48) can also be
constructed; for r → rH, one finds

WðrÞ ¼ bþ 2brHð4κQþ r2HÞ
r4H −Q2

ðr − rHÞ þOðr − rHÞ2;

ð49Þ

with b ≠ 0 an arbitrary parameter. Since Eq. (47) is linear,
we set b ¼ 1 without any loss of generality. The corre-
sponding expression for large r reads

WðrÞ ¼ J
r2

þ 2JðQ2 þ 2κr2H þ r4HÞ
3r2H

1

r4
þOð1=r6Þ; ð50Þ

with J a constant.
To simplify notation, we set rH ¼ 1. Hence,

NðrÞ ¼ 1 −
Q2 þ 1

r2
þQ2

r4
¼ 1

r4
ðr2 − 1Þðr2 −Q2Þ; ð51Þ

and Q satisfies

−1 < Q < 0; 1þ 4Qκ < 0;

which may be combined into the compressed condition

−1 < Q < −
1

4κ
; 0 < κ <

1

2
:

On the other hand, from (47) we have

W0ðrÞ ¼ 4r3

ðr2 − 1Þðr2 −Q2Þ
Z

r

1

1

ρ

�
1þ 4Qκ

ρ2

�
WðρÞdρ;

r > 1: ð52Þ

Using l’Hôpital’s rule, we find

bðQÞ≡W0ð1Þ ¼ lim
r→1

W0ðrÞ ¼ 2

1 −Q2
ð1þ 4QκÞ < 0:

We note that

lim
Q→− 1

4κ

bðQÞ ¼ 0; lim
Q→−1

bðQÞ ¼ −∞; ð53Þ

and

b0ðQÞ ¼ 4

ð1 −Q2Þ2 ð2κQ
2 þQþ 2κÞ; ð54Þ

which is positive if κ satisfies the additional condition
κ > 1

4
. Hence, we collect our condition on κ here:
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1

4
< κ <

1

2
: ð55Þ

Under this condition, the function bðQÞ strictly increases in
the interval ð−1;− 1

4κÞ with values from −∞ to zero. Such a
property is essential for the construction of our solution to
follow.
In (52), the weight function changes its sign at ρ ¼ r0,

where

r0 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
−Qκ

p
> 1: ð56Þ

So we first study the properties of the local solution of (52)
in I0 ¼ ½1; r0�.
We note that WðrÞ > 0 when r > 1 and r is close to 1.

Thus, as long as W stays non-negative and r ∈ I0, we have
W0ðrÞ < 0. Thus, in this interval, we have 0 ≤ WðrÞ < 1,
and so

W0ðrÞ > 4r3

ðr2 − 1Þðr2 −Q2Þ
Z

r

1

1

ρ

�
1þ 4Qκ

ρ2

�
dρ

¼ 4r3

ðr2 − 1Þðr2 −Q2Þ
�
ln rþ r20

2

�
1

r2
− 1

��

>
2r3r20

ðr2 − 1Þðr2 −Q2Þ
�
1

r2
− 1

�

> −
2r20

rð1 −Q2Þ ; r ∈ I0: ð57Þ

Integrating (57) and applying the condition Wð1Þ ¼ 1, we
obtain

WðrÞ > 1 −
2r0

1 −Q2
ln r0

¼ 1 −
2

ffiffiffiffiffiffiffiffiffiffi
−Qκ

p
1 −Q2

ln ð−4QκÞ; r ∈ I0: ð58Þ

It is clear that whenQ is close to − 1
4κ, the right-hand side of

(58) stays positive. This proves that the set

Bþ ¼
�
Q ∈

�
−1;−

1

4κ

�����WðrÞ > 0 for all r ∈ I0

	
;

where W solves the initial-value problem

W satisfies ð47Þ and the initial conditionWð1Þ ¼ 1;

W0ð1Þ ¼ bðQÞ;
ð59Þ

is nonempty. The continuous dependence of the solution on
the initial condition and the parameters in the differential
equation then indicates that Bþ is open.

Similarly, it may be shown that the set

B− ¼
�
Q ∈

�
−1;−

1

4κ

�����WðrÞ < 0 for somel r ∈ I0

	

is nonempty, whereW solves the initial-value problem (59).
To see this, we may choose Q to be close to −1, which
makes W start with a sufficiently negative slope in view of
(53) and drives W to the negative value range quickly. Of
course, B− is also open.
By the connectedness of the interval ð−1;− 1

4κÞ, we see
that

B0 ¼
�
−1;−

1

4κ

�
nðBþ∪B−Þ ≠ ∅:

For Q ∈ B0, we see that WðrÞ ≥ 0 for all r ∈ I0. Since
W0ðrÞ < 0 for r ∈ I0, we must have Wðr0Þ ¼ 0.
In summary, we have obtained some Q ∈ ð−1;− 1

4κÞ so
that the solution of (59) satisfies

WðrÞ > 0 for r0 ∈ ½1; r0Þ; Wðr0Þ ¼ 0;

W0ðrÞ < 0; r ∈ ½1; r0�: ð60Þ

Let W be a solution of (59) satisfying (60).
Then WðrÞ < 0 for r > r0, but r is close to r0, since
Wðr0Þ ¼ 0 and W0ðr0Þ < 0. For r > r0, we rewrite (52) as

W0ðrÞ¼ 4r3

ðr2−1Þðr2−Q2Þ
�Z

r0

1

þ
Z

r

r0

�
1

ρ

�
1−

r20
ρ2

�
WðρÞdρ;

r>r0:

We see thatW0ðrÞ for all r > r0 in the interval of existence,
since WðrÞ < 0 beyond r0. In particular, we have estab-
lished that the set

Q− ¼ fQ ∈ ð−1; 0�jW0ðrÞ < 0 for all

r > 1 and WðrÞ < 0 for some r > 1g

is not empty. This set is readily seen to be open.
To proceed further, we define

Qþ ¼ fQ ∈ ð−1; 0�jW0ðrÞ > 0 for some r > 1g:

Then Qþ ≠ ∅. In fact, we may formally rewrite the local
solution of (47) in the form (52) and use l’Hôpital’s rule to
find W0ð1Þ again as before. In particular, for Q < 0 and
close to Q ¼ 0, we haveW0ð1Þ > 0. Thus, W0ðrÞ > 0 for r
near r ¼ 1 and r > 1. It is obvious that Qþ is also open.
Now the connectedness of ð−1; 0� shows that

Q0 ¼ ð−1; 0�nðQþ∪Q−Þ ≠ ∅:
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Take Q ∈ Q0. Then Q < 0. For such Q, let W be the
corresponding solution of (59) where we no longer require
Q to be confined within the interval ð−1;− 1

4κÞ but within
ð−1; 0Þ. For such W, we have the properties

W0ðrÞ ≤ 0; WðrÞ ≥ 0; r > 1: ð61Þ

It is clear that in factWðrÞ > 0 for all r > 1. Indeed, if there
is some r1 > 1 such that Wðr1Þ ¼ 0, then W attains its
interior minimum at r1 such thatW0ðr1Þ ¼ 0. Applying the
uniqueness theorem of the initial-value problem of ordinary
differential equations, we derive W ≡ 0, which is false.
We claim W0ðrÞ < 0 for all r > 1. In fact, since

WðrÞ > 0, we have W0ðrÞ < 0 for r ∈ I0 in view of
(52). Assume otherwise that W0ðr1Þ ¼ 0 at some r1 > r0
and that r1 is the leftmost such point. Then (52) gives us

Z
r1

1

1

ρ

�
1þ 4Qκ

ρ2

�
WðρÞdρ ¼ 0:

Hence, we have

W0ðrÞ¼ 4r3

ðr2−1Þðr2−Q2Þ
�Z

r1

1

þ
Z

r

r1

�
1

ρ

�
1−

r20
ρ2

�
WðρÞdρ

¼ 4r3

ðr2−1Þðr2−Q2Þ
Z

r

r1

1

ρ

�
1−

r20
ρ2

�
WðρÞdρ>0; r>r1;

ð62Þ

since WðrÞ > 0. This is false. Therefore, we arrive at the
following slightly strengthened version of (61):

W0ðrÞ < 0; WðrÞ > 0; r > 1: ð63Þ

With the properties ofW established, we see in particular
that

W∞ ≡ lim
r→∞

WðrÞ ð64Þ

exists andW∞½0; 1Þ. We further claimW∞ ¼ 0. Otherwise,
if W∞ > 0, then we have

0 < W∞ < WðrÞ < 1; r > 1:

Inserting this into (52), we see that there are constants
C0; C1; C2 > 0 such that

W0ðrÞ > C0

r
ðC1 ln r − C2Þ; r > r2

where r2 > 1 is sufficiently large. In particular, W0ðrÞ > 0
when r is large enough, which is false again.
In summary, we have shown the existence of a solution

W of (47) which enjoys the properties

Wð1Þ ¼ 1; W0ðrÞ < 0; WðrÞ > 0;

1 < r < ∞; Wð∞Þ ¼ 0; ð65Þ

provided that Q ∈ ð−1; 0Þ is suitably chosen and κ stays in
the interval ð1

4
; 1
2
Þ.

C. The numerical results

The smooth solution interpolating between (49) and (50)
is constructed again by numerical integration. Not com-
pletely unexpected, the picture here is similar to that found
for the model in Sec. III. In Fig. 5 we show the existence
line found for κ ¼ 0.6. The profile of a typical solution of
(47) is similar to that in Fig. 3 and we shall not display here.
As discussed in Refs. [31,32], these nA clouds may be

continuedpast thepointwhere theyare an infinitesimally small
perturbationofRNBHs.This results inasetofblackholeswith
magnetic nA hair, which possess also a finitemass and electric
charge. Remarkably, some of these nA configurations are
stable under linear, spherically symmetric perturbations.

V. CONCLUSIONS

One of the most interesting developments in the physics
of AdS spacetime was the discovery in 2008 by Gubser of
the p-wave “holographic superconductors.” The starting
point there was the observation that RNAdS BH becomes
unstable when considered as a solution of the Einstein-
Yang-Mills theory, with the appearance of a magnetic nA
cloud close to the horizon. This feature occurs for a
particular set of RNAdS configurations which form a line
in the parameter space, the hairy BHs being the nonlinear
realization of those marginally stable solutions.
The main purpose of this work was to show that, despite

the different asymptotic structure of spacetime and the
different horizon topology, the asymptotically flat RN black
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FIG. 5. Mass M vs charge Q for RN black holes in d ¼ 5
dimensions. The dotted blue curve corresponds to extremal BHs
[RN BHs exist above it (shaded region)]. The non-Abelian clouds
exists along the red line.
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holes can also become unstable in the presence of nA gauge
fields, with the occurrence of nA clouds around the horizon.
We provided two examples of this, for d ¼ 4 and d ¼ 5
spacetime dimensions, in Secs. III and IV, respectively.
In contrast to the case of an AdS background, where one

finds EYM solutions supporting the electric component of
the nA SUð2Þ connection At in d ¼ 4 spacetime, the
existence of such nA hairy solutions in the case of a flat
background requires two crucial ingredients. The first one
is that the gauge group should be large enough [at least
SOðdþ 1Þ for our models, with d the spacetime dimen-
sion]. The second ingredient is the presence of some
nonlinear terms in the nA connection and curvature, of
higher order than the usual (quadratic) F2 one. The higher-
order terms used here are variously the (quartic) F4 and the
Chern-Simons terms. In both these two (flat background)
cases, analytic proofs for the existence of the perturbed
solutions were given in addition to numerical construction.
The general mechanism appears to be the following: in all

cases, theRNBH remains a(n embeddedAbelian) solution of
the fullmodel.However, for some rangeof theparameters, the
extra terms mentioned above give a tachyonic mass for
the vacuum perturbations of the nA magnetic fields around
the Abelian solutions, with the appearance of a nA con-
densate. Similar to the AdS case, this implies the occurrence
of a branch of fully nA BHs, which are generically thermo-
dynamically favored over the Abelian configurations.
It would be interesting to further pursue the unveiled

similarity of the Minkowskian case here with the AdS case,
and to investigate the possible relevance of these aspects in
providing analogies to phenomena observed in condensed
matter physics.
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APPENDIX: THE NONLINEAR PROBLEMS

1. The EYM-AdS system in d = 4 dimensions

We consider a general class of EYM-AdS solutions with
a line element

ds2 ¼ dr2

NðrÞ þ r2ðdθ2 þ f2kðθÞdφ2Þ−NðrÞσ2ðrÞdt2; with

NðrÞ ¼ k−
2mðrÞ

r
þ r2

L2
; ðA1Þ

where k ¼ 0;�1 and

fkðθÞ ¼
8<
:

sin θ; for k ¼ 1

θ; for k ¼ 0

sinh θ; for k ¼ −1:
ðA2Þ

For any value of k, themetric (A1) possesses the sameamount
of symmetries, since dθ2 þ f2kðθÞdφ2 is the line element on a
two-dimensional surface of constant curvature 2k. The
spherically symmetric solutions have k ¼ 1, in which case
one can find both solitons and black hole solutions [33]; for
k ¼ 0;−1, one finds only “topological” black holes (see
Ref. [34] for recent results on such configurations).
The SUð2Þ-YM Ansatz compatible with the symmetries

of the line element (A1) has been proposed in Refs. [15,16],
and reads

A ¼ 1

2

�
VðrÞτ3dtþ wðrÞτ1dθ

þ
�
dfkðθÞ
dθ

τ3 þ fkðθÞwðrÞτ2
�
dφ

�
: ðA3Þ

The gauge potentials wðrÞ, VðrÞ and the metric functions
mðrÞ, σðrÞ solve the EYM equations

m0 ¼ Nw02 þ r2V 02

2σ2
þ ðw2 − kÞ2

2r2
þ w2V2

Nσ2
;

σ0 ¼ 2σ

r

�
w02 þ w2V2

N2σ2

�
;

w00 þ
�
N0

N
þ σ0

σ

�
w0 þ wðk − w2Þ

r2N
þ wV2

N2σ2
¼ 0;

V 00 þ
�
2

r
−
σ0

σ

�
V 0 −

2V
r2N

w2 ¼ 0: ðA4Þ

One can easily see that k ¼ 0 is special, since the RN black
hole with a nonzero electric field and a vanishing magnetic
flux is a solution in that case only. For k ¼ 1, the magnetic
field trivializes for wðrÞ ¼ �1. However, from the w
equation, this is not consistent with keeping a nonzero
electric potential VðrÞ. Moreover, the solutions with
k ¼ −1 do not possess a vacuum, since one cannot find
a real value of wðrÞ which gives a vanishing magnetic field
[even for VðrÞ≡ 0].

2. The EYM-F4 system in d spacetime dimensions

We consider the following action in d dimensions (with
τ1, τ2 positive constants):

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

4
R −

1

2
τ1TrfFð2Þ2g þ

3

2
τ2TrfFð4Þ2g

�
;

ðA5Þ

describing Einstein gravity coupled with the first two terms
in the Yang-Mills hierarchy,4 considered in Ref. [35]. In the

4Fð2pÞ2 having been proposed as systems supporting instan-
tons on R4p in Ref. [25].
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above relation, Fð2Þ ¼ Fμν denotes the Yang-Mills curva-
ture 2-form, while Fð4Þ ¼ Fμνρσ is the Yang-Mills 4-form
resulting from the total antisymmetrization of Fð2Þ. The
4-form Fμνρσ can be expressed conveniently as

Fμνρσ ¼ fFμ½ν; Fρσ�g; ðA6Þ

where fFμν; Fρσg denotes the anticommutator of Fμν and
Fρσ, while the notation Fμ½νFρσ� implies the cyclic sym-
metry on ðν; ρ; σÞ, i.e. FμνFρσ þ FμρFσν þ FμσFνρ. This
results in

TrfFð4Þ2g ¼ 6Tr½ðFμνFρσÞ2 − 4ðFμρFρνÞ2 þ ðF2
μνÞ2�;

ðA7Þ

which is analogous to the corresponding expression for the
Gauss-Bonnet term in gravity. Unlike the latter, however,
(A7) is not a total divergence and hence does not trivialize
in d ¼ 4 dimensions, as long as the component A0 of the
YM connection is supported, which is achieved by choos-
ing a large enough gauge group. In that case it can be
expressed in the equivalent form displayed in Eq. (16).
A convenient parametrization of a spherically symmetric

line element is

ds2¼ dr2

NðrÞþr2dΩ2
d−2−NðrÞσ2ðrÞdt2; with

NðrÞ¼1−
2mðrÞ
rd−3

; ðA8Þ

with mðrÞ the mass function and dΩ2
d−2 the metric on the

(d − 2)-sphere.
In d spacetime dimensions, the minimal gauge group

allowing a spherically symmetric nA ansatz containing
both electric and magnetic parts is SOðdþ 1Þ. In what
follows, we shall restrict the case to a consistent SOðd −
1Þ × SOð2Þ truncation of the general ansatz, parametrized
by two potentials, a magnetic one wðrÞ and an electric one
VðrÞ:

A ¼ wðrÞ þ 1

r
γij

xi

r
dxj þ VðrÞγd;dþ1dt; with

i; j ¼ 1;…; d − 1; ðA9Þ

γij being the representation matrices of SOðd − 1Þ, and
γd;dþ1 those of the SOð2Þ, with subalgebras in SOðdþ 1Þ.
The Cartesian coordinates xi are related to the spherical
coordinates in (A8) as in flat space. The matrices γi used
here symbolize the (d − 1)-dimensional Dirac gamma
matrices Γi when d is odd, and the chiral matrices
ðΣi; ~ΣiÞ when d is even.
A straightforward computation leads to the following

equations of the model5:

m0 ¼ rd−2
�
τ1

�ðd − 2Þ
2

�
Nw02

r2
þ 1

2
ðd − 3ÞW

�
þ V 02

2σ2

�
þ τ2W

�
V02

σ2
þ 3ðd − 4Þ

�
Nw02

r2
þ 1

4
ðd − 5ÞW

��	
;

σ0 ¼ σ

r
w02ðτ1ðd − 2Þ þ 6τ2ðd − 4ÞWÞ; w00

�
τ1 þ

6ðd − 4Þ
ðd − 2Þ τ2W

�
þ τ1

��
N0

N
þ σ0

σ
þ d − 4

r

�
w0 þ ðd − 3Þ

r2N
wð1 − w2Þ

�

þ τ2
ðd − 2Þ

�
6ðd − 4Þ

r4

�
8wðw2 − 1Þw02 þ

�
N0

N
þ σ0

σ
þ d − 8

r

�
r4Ww0 þ ðd − 5Þ

2r2N
ð1 − w2Þ3

�

þ wð1 − w2Þ 1
r2

�
3ðd − 4Þ

�
ðd − 5ÞW þ 4Nw02

r2

�
−
4V 02

σ2

��
¼ 0;

�
V 0 r

d−2

σ

�
τ1 þ

2τ2ð1 − w2Þ2
r4

��0
¼ 0: ðA10Þ

The equations for the SUð2Þ × Uð1Þ [i.e. SOð3Þ × SOð2Þ] model introduced in Sec. III are found by taking τ1 ¼ 1, τ2 ¼ τ,
d ¼ 4 in the above relations. Also, one can easily verify that the embedded Abelian RN BH in d dimensions as given by

mðrÞ ¼ M −
ðd − 3ÞQ2τ1

3rd−3
; σðrÞ ¼ 1; wðrÞ ¼ �1; VðrÞ ¼ Q

rd−3
þ c0; ðA11Þ

(with M, Q being two constants fixing the mass and electric charge) is a solution.

5Note that, in order to simplify the relations, a factor of d has been absorbed in the expression of τ1, τ2.
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Again, an infinitesimally small magnetic field is turned on by taking wðrÞ ¼ −1þ ϵWðrÞ. To leading order, the equation
satisfied by WðrÞ is

ðrd−4NW0Þ0 ¼ 2ðd − 3ÞW
r6−d

�
τ1 −

4ðd − 3Þτ2
ðd − 2Þr2ðd − 3Þ

�
: ðA12Þ

3. The EYM-CS system in d = 5 dimensions

We consider the following action:

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

4
R −

1

2
TrfFμνFμνg þ κελμνρσTr

�
Aλ

�
FμνFρσ − FμνAρAσ þ

2

5
AμAνAρAσ

�	�
: ðA13Þ

The expression of a d ¼ 5 spherically symmetric line element reads

ds2 ¼ dr2

NðrÞ þ r2dΩ2
3 − NðrÞσ2ðrÞdt2; with NðrÞ ¼ 1 −

mðrÞ
r2

: ðA14Þ

For the gauge group SOð6Þ, the corresponding spherically symmetric, time-independent YM ansatz is given by (43), in
terms of a magnetic potential wðrÞ and an electric one VðrÞ. Then the equations of the model are

m0 ¼ 1

2

�
3r
�
Nw02 þ ðw2 − 1Þ2

r2

�
þ r3

σ2
V 02

�
;

σ0

σ
¼ 3w02

2r
;

ðrσNw0Þ0 ¼ 2σwðw2 − 1Þ
r

þ 8κV 0ðw2 − 1Þ;
�
r3V 0

σ

�0
¼ 24κðw2 − 1Þw0: ðA15Þ
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