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Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of
astrophysical scenarios suggest that binaries might have small but non-negligible orbital eccentricities
when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors. If not
accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the
mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101 (2014)]. Gravitational-
wave search templates typically rely on the quasicircular approximation, which provides relatively simple
expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. Damour, Gopakumar, Iyer,
and others have developed an elegant but complex quasi-Keplerian formalism for describing the post-
Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here, we
specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit, the nonperiodic
contribution to the gravitational-wave phasing can be expressed explicitly as simple functions of frequency
or time, with little additional complexity beyond the well-known formulas for circular binaries. These
eccentric phase corrections are computed to 3PN order and to leading order in the eccentricity for the
standard PN approximants. For a variety of systems, these eccentricity corrections cause significant
corrections to the number of gravitational-wave cycles that sweep through a detector’s frequency band.
This is evaluated using several measures, including a modification of the useful cycles. By comparing to
numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up to e0 ≲ 0.1 for
comparable-mass systems, where e0 is the eccentricity when the source enters the detector band. We also
evaluate the role of periodic terms that enter the phasing and discuss how they can be incorporated into
some of the PN approximants. While the eccentric extension of the PN approximants is our main objective,
this work collects a variety of results that may be of interest to others modeling eccentric relativistic
binaries. This includes a consistent eccentricity expansion of the Newtonian-order polarizations and a
comparison of quasi-Keplerian results with numerical simulations. In addition to applications in
gravitational-wave data analysis, the formulas derived here could be of use in comparing PN theory
with numerical relativity or self-force calculations of eccentric binaries. They could also be useful in the
construction of phenomenological inspiral-merger-ringdown waveforms that include eccentricity effects.
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I. INTRODUCTION, MOTIVATION,
AND SUMMARY

Shortly following the initial operations of a second
generation of gravitational-wave (GW) interferometers
[1–4], LIGO made the first direct detection of gravitational
waves from a coalescing compact-object binary [5]. The

detected waves were from a binary black hole merger, and
the signal was consistent with black holes moving in circular
orbits [6,7] as predicted by General Relativity [8]. The
standard expectation is that future detections will be from
binaries that have very small orbital eccentricities when
they enter the LIGO frequency band (flow ≳ 10 Hz). This is
due to the circularizing effect of gravitational radiation.1
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1Note that test-particle calculations show that strong-gravity
effects near the last stable orbit can cause the eccentricity to
increase slightly before plunge [9,10].
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However, one must be prepared for violations of standard
expectations (as is often the case in science). As discussed
in Sec. I A below, there are some astrophysical scenarios
that could produce binaries with eccentricities that are
observationally relevant for ground-based detectors.
Favata [11] has also shown that even very small eccentricities
(e0 ≳ 6 × 10−3) can cause detectable systematic parameter
biases in binary neutron stars (NSs) if eccentric corrections
are not incorporated in waveform templates.
Post-Newtonian waveform models for circular, nonspin-

ning binaries admit simple analytic expressions in the
frequency domain, allowing computationally efficient data
analysis. However, eccentric waveforms are much more
complex, especially at high post-Newtonian (PN) orders.
These waveforms are computed via a quasi-Keplerian
formalism [12–17] that provides a semianalytic description
of conservative PN eccentric orbits supplemented by a set
of ordinary differential equations (ODEs) describing the
radiative evolution of the orbital elements. For arbitrarily
eccentric orbits, these waveforms must be computed by
numerical evaluation of the ODEs supplemented with a
root-finding procedure to solve the 3PN extension of

Kepler’s equation.2 Fully analytic waveforms for eccentric
binaries can be derived if one either ignores radiation
reaction or other PN effects, or assumes that the eccentricity
is small (see Sec. I B for further discussion). The primary
purpose of this paper is to provide a simple extension
of the standard circular PN approximants that consistently
incorporate the leading-order effects of eccentricity. (PN
approximants provide different but related approaches
for computing the phase and frequency evolution of a
gravitational-wave signal.) This simple extension is
possible because one can analytically solve for the evolu-
tion of the eccentricity as a function of frequency [eðfÞ] to
3PN order if one assumes that the eccentricity is small.
The most important results of this paper are explicit

formulas for the post-Newtonian approximants presented in
Sec. VI. In the waveform phasing, these formulas are
accurate to 3PN order [i.e., including relative corrections of
Oðv6Þ where v is the relative orbital velocity] and to Oðe20Þ
(where e0 is the eccentricity at a reference frequency f0).
For example, the orbital phase of the binary can be
expanded as
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where v ¼ ðπMfÞ1=3, v0 ¼ ðπMf0Þ1=3, f is the observed
GW frequency,M ¼ m1 þm2 is the total binary mass, η ¼
m1m2=M2 is the reduced mass ratio, and ϕc is the phase at
coalescence. The above formula (and the other related PN
approximants) are known to 3.5PN order [Oðv7Þ] in the
circular terms (first line above). The low-eccentricity
corrections (our main results) are listed schematically on
the second line. The leading-order (Newtonian) term was
computed in Ref. [18] and extended to 2PN order in
Refs. [11,19]. Here, we extend those derivations to 3PN
order and to all the standard PN approximants (TaylorT1,
TaylorT2, TaylorT3, TaylorT4, and TaylorF2). Readers
wishing to get immediately to the main results can skip
to Sec. VI. Of particular interest is the TaylorF2 approx-
imant [Eq. (6.26)], which provides a fully analytic repre-
sentation of the Fourier transform of the GW signal in the
stationary phase approximation (SPA). Because there is no
need to numerically solve ODEs or compute a Fourier

transform, this formula is particularly useful for computa-
tionally intensive data analysis applications. In Sec. VIII,
we compare our leading-order eccentricity phasing with a
numerical calculation of the phase evolution that does not
assume small eccentricity. We estimate that our analytic
formulas are valid for e0 ≲ 0.1 for comparable-mass
binaries and e0 ≲ 0.01 for extreme-mass-ratio binaries.
(The precise limits depend on the system masses. Note
that for extreme-mass-ratio systems, the PN series con-
verges slowly.)
To quantify the relative importance of the different PN

correction terms, we compute in Sec. VII several variants of
the number of cycles contributed from each PN term for
different binary systems. For example, Table I displays the
contribution to the number of GW cycles ΔNcyc from
circular and eccentric PN terms for a binary neutron-star
system in the LIGO band (assuming e0 ¼ 0.1 at 10 Hz).
Using the crude criterion that contributions ΔNcyc ∼Oð1Þ
are potentially significant, we see that eccentric corrections
through 2PN order are significant for this system, while
those at 2.5PN and 3PN orders are not. Other measures,
such as the number of “useful” cycles or the contribution to
the phase of the Fourier transform are discussed in more
detail in Sec. VII.

2Note that, while we use the term “eccentric” throughout this
paper, we consider only elliptical binaries in this work (e < 1).
The formulas here are not applicable to hyperbolic or parabolic
binaries (e ≥ 1). We also note that by “elliptical” we refer to
orbits that undergo periastron advance (which are not true ellipses
in the context of Newtonian theory).
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Our objective is to provide waveforms that are only
marginally more complex than circular ones yet consis-
tently incorporate the effects of eccentricity. It is therefore
important to understand the approximations that enter our
analysis. Our approximants incorporate only the secular
contribution to the phasing; there are also oscillatory
contributions to the phasing that we do not include.
These oscillatory contributions arise from two sources:
(i) Even Newtonian elliptical orbits have an instantaneous
orbital frequency _ϕ that varies along an orbit. This is simply
the statement that the binary phase angle evolves faster
close to periastron and slower near apastron. (ii) In addition
to slow secular changes of the orbital elements, the
radiation reaction force also induces periodic oscillations
in the orbital elements. We show in Sec. V that ii does not
affect the phasing until 5PN order. While (i) affects the
phasing at 0PN order, we show in Sec. V that it does not
contribute more than ∼Oð1Þ cycle to the GW phase. We
also briefly discuss how these oscillatory terms can be
incorporated into the PN approximants. A more detailed
treatment of this effect will be discussed in future work.
Aside from these oscillatory terms (which we have
shown to be small), all other PN effects are consistently

incorporated into our phasing formulas at 3PN order and
Oðe20Þ in eccentricity.
Another important approximation arises from our

treatment of the GW polarization amplitudes. Our ampli-
tudes are accurate only to leading order in v=c; i.e., they are
Newtonian-order accurate and contain no relative PN ampli-
tude corrections. Furthermore, they contain no eccentric
corrections to the amplitude. In other words, our polar-
izations have the form hþ;× ¼ Aþ;×v2 cos 2ðϕ − Φþ;×Þ,
where Φþ ¼ 0, Φ× ¼ π=4, and Aþ;× are constants depend-
ing on the masses, orbit inclination, and source distance. Our
eccentric corrections only enter the waveform in the phasing
ϕðtÞ and the evolution of vðtÞ; our waveforms only oscillate
at twice the azimuthal orbital frequency ωϕ. In Appendix A,
we provide a detailed derivation of how eccentricity affects
the polarization amplitude at Newtonian order (but including
the effects of periastron precession). In addition to Oðe2Þ
corrections to the functions Aþ;×, eccentricity also introdu-
ces terms of order OðeÞ that oscillate at multiples of the
radial orbit frequency ωr and at frequencies 2ωϕ � jωr,
where j ¼ 1; 2; 3;…. In the context of our analysis, these
eccentric amplitude corrections will be unimportant because
our waveforms are already restricted to small eccentricities
(e0 ≲ 0.1), and small corrections to the waveform amplitude
are known to be much less important than small corrections
to the phasing.
We emphasize that our objective is to obtain wave-

forms which are only marginally more complex than
circular waveforms, while incorporating eccentricity
effects to the highest PN order available. We are further
motivated to focus on the small-eccentricity limit for the
following reasons: (i) Because GW emission tends to
circularize binaries, it seems more likely than not that
any class of GW sources will have more detectable
events that are closer to very small eccentricities than to
moderate or large eccentricities; (ii) while other studies
have computed waveform corrections to higher orders in
eccentricity than we provide, these calculations were not
fully consistent in the PN approximation or did not
include effects like periastron precession [20,21].
Considering our limitation to binaries with small eccen-
tricity, we envision our results as being applicable to the
following situations:
(a) Studies that examine the systematic parameter bias of

ignoring a small residual eccentricity (e.g., Ref. [11])
or that wish to otherwise quantify (in a computation-
ally efficient manner) the effect of small orbital
eccentricity. While we are primarily concerned with
applications to ground-based GW detection (LIGO/
Virgo/Kagra/ET), our results could also be applied to
studies concerned with sources for the Laser Interfer-
ometer Space Antenna (LISA, [22]) or Pulsar Timing
Arrays (PTAs, [23]).

(b) To set limits on the orbital eccentricity of future
candidate GW signals from nearly circularized binaries.

TABLE I. Post-Newtonian contributions to the number of
gravitational-wave cycles ΔNcyc for a NS/NS binary in the LIGO
frequency band. This is computed from the orbital phase via
ΔNcyc ¼ ½ϕðf2Þ − ϕðf1Þ�=π. The first column lists the post-
Newtonian order and the type of term: “circ” refers to the
quasicircular contributions at that PN order, while “ecc” refers
to the leading-order eccentric terms that are computed here. The
binary enters the LIGO band at f1 ¼ 10 Hz. We truncate the
signal at f2 ¼ 1000 Hz. The NS masses are m1 ¼ m2 ¼ 1.4M⊙.
We assume an initial eccentricity of e0 ¼ 0.1 at a reference
frequency f0 ¼ f1 ¼ 10 Hz. These values can be scaled to other
eccentricities by multiplying by ðenew0 =0.1Þ2. All numbers are
rounded to at least three significant digits.

PN order ΔNcyc

0PN(circ) 16 031
0PN(ecc) −463
1PN(circ) 439
1PN(ecc) −15.8
1.5PN(circ) −208
1.5PN(ecc) 1.67
2PN(circ) 9.54
2PN(ecc) −0.215
2.5PN(circ) −10.6
2.5PN(ecc) 0.0443
3PN(circ) 2.02
3PN(ecc) 0.002 00
3.5PN(circ) −0.662

Total 15 785
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(c) As a tool to help reduce orbital eccentricity in
numerical relativity (NR) simulations.

(d) To provide formulas that may be of use in studies that
compare NR or gravitational self-force (GSF) [24–30]
calculations to analogous post-Newtonian results.

(e) To extend phenomenological inspiral-merger-ringdown
models [31–37] to incorporate eccentricity effects.

In addition to the primary results summarized above, this
paper also has the following secondary objectives and results:
(1) While our focus is the low-eccentricity limit, we

provide a clear discussion of how to apply the full
quasi-Keplerian formalism to generate waveforms
for arbitrary eccentricity. While some of this is
discussed elsewhere in the literature, we feel that
the transparency of our presentation will be useful to
researchers and students who need to model PN
corrections to eccentric orbits. By showing how the
small-eccentricity limit arises from the full quasi-
Keplerian formalism, the approximations implicit in
our analysis are made more clear. Our presentation
also provides a guide for extending our results to
higher order. In particular, Sec. II and Appendix A
discuss our notation and derive the waveform polar-
izations at Newtonian order and to Oðe3Þ in the
eccentricity (properly accounting for precessing
orbits which display two fundamental orbital
frequencies). Via a 3PN accurate inversion of
Kepler’s equation, we show how the polarizations
can be expressed as explicit functions of time in an
expansion in eccentricity [see e.g., Eqs. (A2) and
(A4)]. A detailed description of the orbital motion
and phasing (in the absence of radiation reaction) is
discussed in Sec. III. This includes a reduction to the
Newtonian case (Sec. III A), which helps elucidate
the meaning of many of the quantities that enter the
quasi-Keplerian formalism. Section IV extends this
to the case where radiation reaction is present,
including an explicit evaluation of the periodic
oscillations that are induced in the orbital elements
(Sec. IVA) along with their secular variations (see
Appendix B for the general eccentricity case and
Sec. IV B for the low-eccentricity limit). These
equations are then used to analytically determine
how the eccentricity secularly evolves with fre-
quency in the small-eccentricity limit (Sec. IV C).
This result is used to derive (in Sec. IV D) several
explicit formulas for the secular orbital phase and
time to coalescence as a function of frequency, along
with explicit functions of time for the frequency and
eccentricity evolution. Most of the PN approximants
can be read off of the results in that section (or
independently derived from the orbital energy and
GW luminosity as in Sec. VI). We also show in
Sec. VIII and Appendix D how the secular piece
of the orbital phasing as a function of the orbit

frequency can be computed for arbitrary eccentricity
via the numerical solution of two coupled ODEs.

(2) Section III D provides a discussion of the region of
validity of the quasi-Keplerian formalism. Earlier
work [15] (before the NR era) provided an argument
for setting a particular upper frequency limit (or a
minimum orbital separation) for which the formal-
ism should be valid. By comparing with more
recent NR and GSF calculations in Ref. [38], we
argue that the bound in Ref. [15] is too conservative.
At least in the low-eccentricity limit, the quasi-
Keplerian formalism should be valid over nearly the
same range in dimensionless frequency (Mf) as
circular waveforms.

(3) Although they do not enter our final results, we pay
particular attention to the role of periodic terms in the
waveform phasing. These terms are often neglected in
other works. While the radiation-reaction induced
oscillations in the orbital elements are shown in
Sec. IVA to enter at 5PN order (and are hence
negligible for our purposes), we derive in Sec. V
an explicit frequency-domain expression for the
conservative oscillatory piece of the orbital phasing.
We numerically evaluate its effect and find that, while
small (≲0.07 GW cycles), it is comparable to the
2.5PN and 3PN-order eccentric secular corrections.
We also briefly discuss in Sec. VI how this oscillatory
correction can be added to the PN approximants. This
will be explored in more detail in a future work.

In the remainder of this Introduction, we first review the
astrophysical expectations regarding binary eccentricity
(with an emphasis on LIGO sources, Sec. I A). Of par-
ticular note is an updated table of known NS/NS systems
and their expected eccentricities when they enter the LIGO
or LISA frequency band. In Sec. I B, we summarize the
literature on modeling eccentric waveforms, emphasizing
where our work differs from previous results. Throughout,
we use units where G ¼ c ¼ 1 and follow the conventions
of Refs. [15,17].

A. Astrophysical expectations for eccentric binaries
and implications for GW detection

Since the early work of Peters and Mathews [39,40], it
has been understood that GW emission causes the eccen-
tricity of a binary to decay. At Newtonian order, the orbital
eccentricity et of a binary emitting GWs at frequency fgw is
related to its earlier eccentricity ei (when the binary was
wider and emitting GWs at frequency fgw;i) via

3

3This formula follows from Eq. (5.11) of Ref. [40] where the
semimajor axis a is related to the “fundamental” GW frequency
via πfgw ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=a3

p
for a binary with total mass M. Here, fgw

refers only to the frequency component of the GW signal that is
emitted at twice the orbital frequency. This is the dominant
frequency component when the eccentricity is small.
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To illustrate the circularizing efficiency of GWs, we consider
the eccentricity evolution of double neutron-star systems.
Table II lists all such systems currently known. Using
Eq. (1.2), we calculate the eccentricities of these binaries
when they enter the LIGO and eLISA bands. The largest
eccentricity at 10 Hz is≈7 × 10−6. This produces an entirely
negligible correction to the GW phase in the frequency band
of ground-based detectors. (For space-based detectors, the
eccentricities are negligibly small in most cases, but poten-
tially within the realm of detectability in others.)
Despite the fact that these projected eccentricities are small,

there are still several reasons why the consideration of
eccentric gravitational waveforms might be important:
(i) while orbits have time to circularize before they enter
the frequency band of ground-based detectors, detectors that
operate at lower frequencies (such as eLISA [22] or pulsar
timing arrays [45–47]) can observe sources that have not yet
circularized (wide stellar-mass binaries, supermassive black
hole (BH) binaries, extreme-mass-ratio inspirals); (ii) while
not observed, astrophysical arguments suggest that theremay
be compact binaries in the frequency band of ground-based
detectors (≳10 Hz) that have not yet circularized. (These
scenarios are discussed below.); (iii) lastly, it is possible that
eccentric binaries are produced by formation channels that
have not yet been considered, so it is prudent to use the most
general waveforms possible when analyzing GW data.

Dense stellar environments such as galactic nuclei and
globular clusters are suspected to create binaries with
significant eccentricities. This is partly due to hierarchical
three-body interactions where the Kozai-Lidov mechanism
can drive oscillations in the eccentricity of the inner binary
of the triplet [48].4 In globular clusters, around 30%–50%
[50] of coalescing BH binaries driven by the Kozai-Lidov
mechanism will have e≳ 0.1 when entering the LIGO
frequency band at 10 Hz.5 Recent work in Ref. [55] (which
does not rely on orbit-averaged equations) indicates that
∼20% of merging BHs formed via dynamical interactions
in globular clusters will have eccentricities greater than 0.1
when they enter the LIGO band at 10 Hz. They estimate
that mergers with eccentricities greater than this value will
be detected by LIGO at rates between 0.05=yr to 3=yr,
with a “realistic” estimate of 0.4=yr. More recent work in
Ref. [56] indicates that ∼1% of binary black holes formed
in globular clusters will have eccentricities at 10 Hz that
exceed 10−3. Reference [57] also found that some NS/NS
binaries can be dynamically formed in the LIGO band with
high eccentricity.
Galactic nuclei are another potentially significant source

of eccentric compact-object mergers. Reference [58] showed
that BH/BH binaries in dense galactic nuclei can be formed

TABLE II. Eccentricity evolution for confirmed or likely double neutron-star binaries. The columns indicate the source’s name, orbital
period Porb (in days), current fundamental gravitational-wave frequency (fgw;i ¼ 2=Porb) in mHz, current eccentricity ei, eccentricity at
5 mHz (eLISA band), and eccentricity at 10 Hz (LIGO band). The eccentricities etðfgwÞ are computed using Eq. (1.2). Most values for
Porb and ei are taken from the Australia Telescope National Facility (ATNF) pulsar catalog [41]. The values for J0453þ 1559 are from
Refs. [42,43]; those for J1807-2500B are from Ref. [44]. There is some uncertainty as to whether the systems denoted with an asterisk
are double neutron-star binaries [43].

Source Porb (days) fgw;i (mHz) ei et (5 mHz) et (10 Hz)

J0737 − 3039 0.102 251 562 48 0.226 0.087 777 5 0.003 39 1.11 × 10−6

J1906þ 0746� 0.165 993 046 83 0.139 0.085 302 8 0.001 98 6.48 × 10−7

J1756 − 2251 0.319 633 901 43 0.0724 0.180 594 0.002 20 7.20 × 10−7

B1913þ 16 0.322 997 448 911 0.0717 0.617 133 4 0.0162 5.32 × 10−6

B2127þ 11C 0.335 282 048 28 0.0690 0.681 395 0.0220 7.23 × 10−6

B1534þ 12 0.420 737 298 879 0.0550 0.273 677 52 0.002 70 8.85 × 10−7

J1829þ 2456 1.176 027 941 0.0197 0.139 141 2 4.17 × 10−4 1.37 × 10−7

J0453þ 1559 4.072 468 58 0.005 68 0.112 518 32 8.98 × 10−5 2.94 × 10−8

J1518þ 4904 8.634 005 096 4 0.002 68 0.249 484 51 9.89 × 10−5 3.24 × 10−8

J1807 − 2500B� 9.956 668 158 8 0.002 32 0.747 033 198 9.32 × 10−4 3.05 × 10−7

J1753 − 2240 13.637 566 8 0.001 70 0.303 582 7.87 × 10−5 2.58 × 10−8

J1811 − 1736 18.779 169 1 0.001 23 0.828 011 9.29 × 10−4 3.04 × 10−7

J1930 − 1852 45.060 000 7 0.005 14 0.398 863 40 3.36 × 10−5 1.10 × 10−8

4Note that Ref. [49] has shown that PN effects can resonantly
enhance eccentricity in hierarchical triples beyond the Newtonian
Kozai-Lidov effect.

5Similar results were also found in Ref. [51]. While earlier
studies [52,53] indicated that globular cluster BH binaries will
have mostly circularized when they enter the LIGO band, those
works relied on orbit-averaged equations of motion (which were
shown to be inaccurate in Refs. [50,54]).

GRAVITATIONAL-WAVE PHASING FOR LOW- … PHYSICAL REVIEW D 93, 124061 (2016)

124061-5



in the LIGO band with high eccentricities (90% with
e > 0.9). Reference [54] found that 10% of BH/BH binaries
merging near supermassive BHs will have e > 0.1 when
they enter the LIGO band, with ∼2% to 5% of binaries
having eccentricities ∼0.05 and ∼10% with e ≈ 0.001 (see
their Fig. 7; see also more recent work in Ref. [59]).
Using a population synthesis code, Ref. [60] computed

the fraction of binaries with eccentricities exceeding e ¼
0.01 at 30 Hz (this is roughly the value where eccentricity
will cause a systematic parameter bias [11]). For BH/BH
binaries, ≲0.3% will exceed this value at 30 Hz. For BH/
NS binaries, this fraction increases slightly to <0.7%. For
NS/NS binaries, this value is <2%. The fraction of binaries
that exceed e ¼ 0.01 at 3 Hz (the ET band) is roughly
double the numbers quoted above (see Table 3 of Ref. [60]).
For supermassive BH (SMBH) binaries that merge in

galactic nuclei, Ref. [61] found that these systems generally
form with high eccentricities. When they enter the LISA
band, a significant fraction of these binaries have eccen-
tricities e ∼ 0.05–0.2. (For a brief review of the literature on
eccentric LISA sources, see Appendix A of Ref. [20].)
While it is well known that extreme-mass-ratio inspirals
(EMRIs) will be highly eccentric in the LISA band (see,
e.g., Ref. [62] for a recent review), intermediate-mass-ratio
inspirals (IMRIs) are likely to be nearly circular when they
enter the LIGO band [63].6

For binaries above a particular eccentricity threshold,
the use of circular search templates results in a potential
decrease in the signal-to-noise ratio (SNR). This issue has
been investigated in a variety of studies [63–68]. The
punch line of these analyses is that circular templates are
sufficient for detecting compact binary inspirals with
initial eccentricities (when entering the band of ground-
based detectors) e≲ 0.02–0.05 (for fitting factors ≳0.95).7
Although the waveform model developed here is not
relevant to binaries with moderate to high eccentricities,
the detectability of such binaries is considered in
Refs. [70–73].
We emphasize that currently understood astrophysical

scenarios relevant for LIGO imply that if binaries enter the
detector band with any eccentricity, the observed eccen-
tricity is more likely to be small than large. This justifies

our focus on the small-eccentricity limit. In addition, our
formulas might be of use for parameter estimation or search
template studies wishing to examine the general behavior
of including eccentricity (sacrificing accuracy in the mod-
erate eccentricity limit in exchange for simplicity and
computational efficiency).

B. Previous work on eccentric waveform models

As circular binaries are thought to be more likely,
circular-orbit waveforms are more developed than elliptical
ones.8 Nonetheless, a significant body of work has explored
eccentric waveform models. Much of this is reviewed in
Sec. 10 of Ref. [74]. Waveform polarizations for elliptical
binaries are implicit in Peters and Mathews [39] (who focus
on computing the radiated power); they were first given
explicitly in Wahlquist [75] and later in Refs. [76–78] to
leading (0PN) order. These elliptical waveforms have since
been extended to 1PN order in amplitude by Junker and
Schäfer [79] (see also Refs. [80,81]), to 1.5PN order in
Blanchet and Schäfer [82], and to 2PN order (neglecting
tails) in Gopakumar and Iyer [83]. The 3PN (nonheredi-
tary) contribution to the waveform was recently computed
in Ref. [84]. The nonlinear memory corrections to the
polarizations (which enter at 0PN order) were computed
in Ref. [85]. Information to compute the GW phasing
for elliptical binaries is currently known to relative 3PN
order in the conservative [12–17] and dissipative parts
[79,82,86–92]. Time-domain waveforms that incorporate
both spin and eccentricity via a direct numerical solution
of the PN equations of motion are discussed in
Refs. [93–96].
Especially useful for GW data analysis applications is

the development of frequency-domain eccentric wave-
forms. References [97,98] express the waveform amplitude
to arbitrary eccentricity at 1PN order in the frequency
domain but do not express the phasing explicitly as a
function of frequency. This is extended to 2PN order in
Ref. [99] with the phasing expressed as a hypergeometric
function of the eccentricity. Explicit eccentric corrections
to the phase of the Fourier transform of the GW signal
(expressed as a function of frequency) were first computed
in the stationary phase approximation (SPA) in Ref. [18].
They expressed the waveform amplitude at Newtonian
order and without any eccentric corrections. The phase
contained leading-order eccentric corrections [Oðe20Þ] at
0PN order. In Refs. [11,19], these Oðe20Þ phase corrections
were extended to 2PNorder. The details of that computation,
along with their extension to 3PN order, are the focus of this
paper. The “postcircular” approximation in Ref. [20] com-
puted the amplitude and SPA phasing to Newtonian order as
an expansion to Oðe8Þ. Post-Newtonian corrections to that

6Reference [63] found that IMRIs that harden via three-body
interactions should have e < 10−4 at 10 Hz, while 10% of those
formed by direct capture will have e > 0.1 at 10 Hz.

7The eccentricity threshold depends on the binary mass. The
range in eccentricity quoted above is most applicable to NS/NS
binaries; for stellar-mass BH binaries, the eccentricity threshold
for detection with circular templates is closer to e ∼ 0.15. We
do not quote precise values because the various studies in
Refs. [64–68] differ in their details. Interestingly, the threshold
for detecting IMRI systems in the LIGO band with circular
templates is also e ≲ 0.05 [63], although estimates suggest there
are not likely to be many IMRIs with eccentricities much higher
than this. The inadequacy of circular templates for supermassive
BH binaries in the LISA band is discussed in Ref. [69].

8Recall that we take the word “eccentric” to refer to elliptical
orbits (e < 1) in this work. We do not review waveforms relevant
to parabolic or hyperbolic binaries in detail.
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workwere recently incorporated inRef. [21]; however, these
were not computed via a fully consistent PN approach but
rather through the choice of a particular ansatz (as acknowl-
edged in that work). For example, their results for theOðe20Þ
corrections to the SPA phasing disagreewith ours beginning
at 1PN order. As this manuscript was nearing completion,
we learned of related work in Ref. [100]. There, the
postcircular approximation of Ref. [20] is extended to
2PN order and Oðe6Þ, with only Newtonian effects
accounted for in the amplitude.
The merger/ringdown portion of eccentric binary coa-

lescence must be treated via numerical relativity. Eccentric
merger simulations have been performed by multiple
groups [101–112]. Comparisons between eccentric post-
Newtonian waveforms and NR simulations were per-
formed in Refs. [113,114]. More recent comparisons
between PN, NR, and gravitational self-force (GSF)
results for the periastron advance rate are discussed in
Refs. [38,115,116]; comparisons between PN and GSF
calculations of the redshift invariant are found in
Refs. [25,26,28,29]. Recent attempts to extend the effec-
tive-one-body (EOB) formalism to handle eccentric orbits
are discussed in Refs. [28,30,117].

II. GRAVITATIONAL WAVE POLARIZATIONS

We begin by defining our conventions and expressions
for the GW polarizations. We work at leading
(Newtonian) order in the amplitude of the polarizations
but initially make no assumptions about the PN order of
the phasing (that will be specified in later sections).
Starting from an expression that is valid for general planar
orbits, we then specialize to elliptical orbits (with the
details relegated to Appendix A). These expressions are
further simplified to the case where eccentricity provides
a negligible correction to the amplitude (but not to the
phasing).
Consider a nonspinning eccentric binary with compo-

nent masses m1 and m2, total mass M ¼ m1 þm2, and
reduced mass μ ¼ m1m2=M. Following Sec. II of Damour,
Gopakumar, and Iyer [15], introduce an orthonormal triad
p, q, N in which p points toward a suitably defined
ascending node, N points from the source to the observer,
and q ¼ N × p. The relative separation vector of the binary
x, which has a magnitude r and makes an angle ϕ with
respect to p, is given by

x ¼ pr cosϕþ ðq cos ιþ N sin ιÞr sinϕ; ð2:1Þ

where ι is the orbit inclination angle (the angle between N
and the orbital angular momentum). The plus (þ) and
cross (×) polarizations of the gravitational-wave field can
be expanded in a post-Newtonian series. The leading
(“Newtonian”)-order piece of that expansion is given in
terms of r, ϕ, and their first time derivatives by Eq. (6) of
Ref. [15],

hNþ ¼ −
ηM
D

�
ð1þ C2Þ

��
M
r
þ r2 _ϕ2 − _r2

�
cos 2ϕ

þ 2_rr _ϕ sin 2ϕ

�
þ S2

�
M
r
− r2 _ϕ2 − _r2

�
þOðvÞ

�
;

ð2:2aÞ

hN× ¼ −2
ηMC
D

��
M
r
þ r2 _ϕ2 − _r2

�
sin 2ϕ

þ 2_rr _ϕ cos 2ϕþOðvÞ
�
; ð2:2bÞ

whereD is the distance to the binary, η≡ μ=M is the reduced
mass ratio, C≡ cos ι, and S≡ sin ι. Corrections to these
polarizations enter at 0.5PN order [OðvÞ, where v is the
relative orbital speed].9 For eccentric binaries, these ampli-
tude corrections have been computed to 2PN-order by
Gopakumar and Iyer [83] and to 3PN order in Ref. [84]
(neglecting hereditary corrections). Nonlinear memory cor-
rections are computed in Ref. [85]. Only leading-order
amplitude corrections are considered here.
To further simplify Eqs. (2.2), we use the quasi-Keplerian

parametrized solution for r and ϕ, which provides an
analytic solution to the conservative part of the PN equations
of motion (Sec. III). Using this quasi-Keplerian solution, we
show in Appendix A how the polarizations can be expressed
in terms of the eccentric anomaly u for arbitrary elliptical
orbits [Eq. (A1)]. Those expressions are further simplified by
writing them as a series expansion in eccentricity [carried
to Oðe3Þ] and in terms of the phase variable ϕ and the
mean anomaly l (which are straightforwardly expressed as
functions of time for conservative orbits). The resulting
expansion [Eqs. (A4)] indicates how different frequency
harmonics enter the waveform. Since we are focused on the
small-eccentricity limit—in which most of the radiated
power is concentrated at a GW frequency equal to twice
the orbital frequency—we take the e → 0 limit of our result
and arrive at

hNþ ¼ −2
ηM
D

�
M
r

�
ð1þ C2Þ cos 2ϕ; ð2:3aÞ

hN× ¼ −4
ηM
D

�
M
r

�
C sin 2ϕ: ð2:3bÞ

These are the expressions that we ultimately use for our
polarizations. Note that this is equivalent to taking the
circular orbit limit (_r ¼ 0 and r2 _ϕ2 ¼ M=r) of Eqs. (2.2).
Eccentricity introduces OðeÞ and higher corrections to these
expressions. However, we ignore them since amplitude
corrections are less important than phase corrections (and

9Throughout, we denote nPN-order relative corrections as
Oðv2nÞ, denoting the appropriate power of v=c.
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sincewe are also assuming that eccentricity is small).We note
that the expressions (2.3) depend on only a single phase
variable while the more general expressions (A4) depend on
two phase variables. There are thus only three initial con-
ditions [rðt0Þ, eðt0Þ, and ϕðt0Þ] associated with the orbital
motion that need to be specified in our waveforms. For
general elliptical orbits, an additional constant associatedwith
a second phase variable—and corresponding to the initial
argument of pericenter ϖðt0Þ—would also need to be
specified. However, because we neglect OðeÞ corrections
to the waveform amplitude and oscillatory contributions to
the waveform phase ϕ, this dependence on a fourth initial
condition drops out of our expressions. The extended dis-
cussion in Appendix A further clarifies this point and the
nature of the approximations leading to Eq. (2.3).

III. QUASI-KEPLERIAN PARAMETRIZATION

First introduced in Refs. [13,14], the quasi-Keplerian
formalism provides an analytic (parametric) solution to the
conservative pieces of the PN equations of motion. It
provides the orbital variables ðr;ϕÞ and their derivatives as
a function of a parametric angle (the eccentric anomaly u).
Combined with a numerical solution of the PN extension of
Kepler’s equation, this formalism allows one to determine
the orbital evolution as a function of time without the need
to solve ODEs. In this section, we first review the more
familiar Newtonian case, expressing the Keplerian solution
in a form that will be similar to its PN generalization
(Sec. III A). We then provide the related generalization to
the PN case (quasi-Keplerian), listing the relevant equations
from the literature that one needs to model eccentric PN
orbits (Sec. III B). In Sec. III C, we perform a change of
variables that more naturally connects with the circular
limit. The overall domain of validity of the quasi-Keplerian
formalism is discussed in Sec. III D. The effects of
incorporating radiation reaction are then discussed in
Sec. IV and the remainder of the paper.

A. Newtonian-order (Keplerian) parametrization

In the Newtonian limit, the radial and angular pieces
of elliptical motion can be expressed via the following
equations:

rN ¼ Sðl; n; eÞ ¼ arð1 − e cos uÞ; ð3:1aÞ

_rN ¼ n
∂S
∂l ðl; n; eÞ ¼

ξ1=3e sin u
ð1 − e cosuÞ ; ð3:1bÞ

ϕN ¼ λN þWNðl; n; eÞ ¼ λN þ v − uþ e sinu; ð3:1cÞ

¼ vþϖ ¼ vþ ðcλ − clÞ; ð3:1dÞ

λN ¼ nðt − t0Þ þ cλ; ð3:1eÞ

_ϕN ¼ nþ n
∂WN

∂l ðl; n; eÞ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ð1 − e cos uÞ2 ; ð3:1fÞ

lN ¼ nðt − t0Þ þ cl ¼ u − e sin u; ð3:1gÞ

v ¼ VNðuÞ≡ 2 arctan

��
1þ e
1 − e

�
2

tan

�
u
2

��
: ð3:1hÞ

The subscript N denotes that these are Newtonian quan-
tities (to distinguish between their PN generalizations
below). The angles u, v, and l are the eccentric, true, and
mean anomalies. Figure 1 discusses their geometrical
interpretation (which carries over to the PN case). The
semimajor axis of the ellipse is ar ¼ ðM=n2Þ1=3, and the
mean motion is n≡ 2π=P, where P is the radial orbital
(periastron to periastron) period. (For Newtonian orbits,
the radial and azimuthal frequencies are identical, but not
for PN orbits). We also define the dimensionless radial
angular orbit frequency ξ ¼ Mn; this dimensionless var-
iable will be used extensively in this work and serves as a

FIG. 1. Angles describing elliptical orbits. The vector x is the
relative separation vector which points from the binary center of
mass to the position of the reduced mass. The reduced mass traces
out a curve, and we show the ellipse which is momentarily
tangent to that curve. The vector x makes an angle ϕ (the orbital
phase angle) from the unit vector p and an angle v (the true
anomaly) from the pericenter point of the ellipse. The pericenter
itself makes an angle ϖ (the argument of pericenter) from the
direction p. The eccentric anomaly u is the angle from the center
of the ellipse to the projection (perpendicular to the major axis) of
the particle’s position on the circle circumscribing the ellipse. The
mean anomaly l (which does not have a geometric interpretation)
is an angular parameter that varies along the orbit at a uniform
rate, completing one cycle in a time 2π=n. Note that u, v, and l are
measured from the pericenter direction.
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PN expansion parameter. The definitions of the functions
S and WN can be read off of the above equations. The
phase angle λN provides the linearly accumulating piece
of the orbital phase. In the Newtonian limit, it is equivalent
(up to a constant shift) to the mean anomaly lN. The
constants cl and cλ provide the values of lN and λN at some
instant t0. They are related to the argument of pericenter
ϖ ¼ cλ − cl, which is the angle the pericenter makes with
respect to p.
Note that a planar orbit requires the specification of

four initial conditions or constants of the motion. For
example, these might be the set ½rðt0Þ;ϕðt0Þ; _rðt0Þ; _ϕðt0Þ�.
Equivalently (and of greater geometrical meaning), one can
specify ½ar; e;ϖ;ϕðt0Þ�. The constant ar could be replaced
by n or a related frequency variable. In Eqs. (3.1) above, the
constants that must be specified are ½n; e; cλ; cl�. Given ϖ
and ϕðt0Þ, cl is determined by first solving for the initial
value of v via ϕðt0Þ ¼ ϖ þ v0 and then inverting Eq. (3.1h)
[v0 ¼ VNðu0Þ] for u0. The value u0 is substituted in
Eq. (3.1g) (with t ¼ t0) to give cl.

B. Quasi-Keplerian parametrization

When post-Newtonian effects are considered, the result-
ing orbits are no longer Keplerian ellipses, but the para-
metric equations for r, ϕ, _r, and _ϕ take a form similar to
Eqs. (3.1) (but are much more complicated). The resulting
solution is thus referred to as quasi-Keplerian. These
explicit analytic expressions can only be obtained for the
conservative contributions to the equations of motion (i.e.,
one ignores the dissipative or radiation-reaction contribu-
tions to the equations of motion at 2.5PN, 3.5PN, and
higher orders). The extension of Eqs. (3.1) is known to 3PN
order [16,17] and has the following form [Eqs. (7–12) of
Ref. [17]]:

r ¼ Sðl; n; etÞ ¼ arð1 − er cos uÞ; ð3:2aÞ

_r ¼ n
∂S
∂l ðl; n; etÞ; ð3:2bÞ

ϕ ¼ λþWðl; n; etÞ; ð3:2cÞ

λ ¼ ð1þ kÞnðt − t0Þ þ cλ; ð3:2dÞ

Wðl; n; etÞ ¼ ð1þ kÞðv − lÞ þ
�
f4ϕ
c4

þ f6ϕ
c6

�
sin 2v

þ
�
g4ϕ
c4

þ g6ϕ
c6

�
sin 3vþ i6ϕ

c6
sin 4v

þ h6ϕ
c6

sin 5v; ð3:2eÞ

_ϕ ¼ ð1þ kÞnþ n
∂W
∂l ðl;n; etÞ; ð3:2fÞ

l ¼ nðt − t0Þ þ cl

¼ u − et sin uþ
�
g4t
c4

þ g6t
c6

�
ðv − uÞ þ

�
f4t
c4

þ f6t
c6

�
sin v

þ i6t
c6

sin 2vþ h6t
c6

sin 3v; ð3:2gÞ

v ¼ VðuÞ≡ 2 arctan

��
1þ eϕ
1 − eϕ

�
2

tan

�
u
2

��
: ð3:2hÞ

The various symbols have the same interpretation as their
Newtonian counterparts, but the function W and the 3PN
analog of Kepler’s equation are significantly more complex.
The functions g4t, g6t, f4t, f6t, i6t, h6t, g4ϕ, g6ϕ, f4ϕ, f6ϕ, i6ϕ,
andh6ϕ aregiven inRef. [16] [in bothArnowitt-Deser-Misner
(ADM) and harmonic gauges],whilemore explicit and useful
expressions for r, _r, ϕ, and _ϕ are given in harmonic gauge in
Ref. [17] (to 3PN order) or in ADM gauge to 2PN order in
Ref. [15]. For brevity, we list here only expressions in
harmonic gauge10 and to 2PN order (we list some results
to 3PN order if they are crucial for later steps in our analysis).
As in the Newtonian case, the functions SðlÞ andWðlÞ are 2π
periodic in l.
Besides the overall increase in complexity, the quasi-

Keplerian case introduces some additional new features.
There now appear three eccentricities et, er, and eϕ instead
of one in the Newtonian case. These eccentricities can be
related to each other or to the orbital energy and angular
momentum (see Refs. [15,16]). The quasi-Keplerian equa-
tions also show the well-known periastron precession, a
secular effect embodied in the constant k ¼ ΔΦ=ð2πÞ,
where ΔΦ is the advance of the periastron angle in the
time interval P. The explicit expression for k is given to
3PN order by Eq. (25d) of Ref. [17]:

k ¼ 3ξ2=3

1 − e2t
þ ½78 − 28ηþ ð51 − 26ηÞe2t �

ξ4=3

4ð1 − e2t Þ2

þ
n
18240 − 25376ηþ 492π2ηþ 896η2

þ ð28128 − 27840ηþ 123π2ηþ 5120η2Þe2t
þ ð2496 − 1760ηþ 1040η2Þe4t
þ ½1920 − 768ηþ ð3840 − 1536ηÞe2t �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q o
×

ξ2

128ð1 − e2t Þ3
: ð3:3Þ

Making the above expressions more explicit requires
choosing an appropriate set of constants of the motion.
Several choices are possible for the principal constants of
motion, including some combination of the orbital energy
E, the magnitude of the reduced angular momentum h, the

10Note that the harmonic and ADM gauge expressions differ
only at 2PN and higher orders; at 1PN order, they are identical.
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mean motion n, the semimajor axis ar, or one of the three
eccentricities ðet; er; eϕÞ. A convenient choice is to choose
the mean motion n and the time eccentricity et [15,17]. In
addition to the principal (intrinsic) constants of motion, two
positional (extrinsic) constants of motion (cl and cλ)
determine the orientation of the orbit and the orbital phase
at a reference time t0. These constants (n; et; cl; cλ) are
fixed for conservative orbits (no radiation reaction). When
radiation reaction is considered, these “constants” now
evolve—their initial values must be chosen, and a scheme
for evolving them must be supplied. This is discussed in

Sec. IV. In the present section, we ignore radiation reaction
effects.
Given this choice of constants, we can now express r, _r,

ϕ, and _ϕ explicitly in terms of n, et, cl, cλ, and the eccentric
anomaly u. The exact expressions are given to 3PN order
and harmonic gauge in Eqs. (23)–(26) of Ref. [17] or to
2PN order and ADM gauge in Eqs. (51)–(54) of Ref. [15].
For reference, we list the complete expressions up to 2PN
order and in harmonic gauge [see Eqs. (23)–(27) in
Ref. [17] for the lengthy 3PN terms]:

r ¼ Mξ−2=3ð1 − et cos uÞ
�
1þ ½−18þ 2η − ð6 − 7ηÞet cos u�

ξ2=3

6ð1 − et cos uÞ
þ
n
−72ð4 − 7ηÞ þ ½72þ 30ηþ 8η2 − ð72 − 231ηþ 35η2Þet cos u�ð1 − e2t Þ

− 36ð5 − 2ηÞð2þ et cos uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q o ξ4=3

72ð1 − e2t Þð1 − et cos uÞ
þOðξ2Þ

�
; ð3:4aÞ

_r ¼ ξ1=3

ð1 − et cos uÞ
et sin u

�
1þ ð6 − 7ηÞ ξ

2=3

6
þ
�
−468 − 15ηþ 35η2 þ ð135η − 9η2Þe2t þ ð324þ 342η − 96η2Þet cos u

þ ð216 − 693ηþ 105η2Þðet cos uÞ2 − ð72 − 231ηþ 35η2Þðet cos uÞ3

þ 36ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p ð1 − et cos uÞ2ð4 − et cos uÞð5 − 2ηÞ
�

ξ4=3

72ð1 − et cos uÞ3
þOðξ2Þ

�
; ð3:4bÞ

ϕðλ; lÞ ¼ λþWðlÞ; ð3:4cÞ

WðlÞ ¼ ðv − uþ et sin uÞ þ ðv − uþ et sinuÞ
3ξ2=3

1 − e2t

þ
	
8½78 − 28ηþ ð51 − 26ηÞe2t − 6ð5 − 2ηÞð1 − e2t Þ3=2�ðv − uÞð1 − et cosuÞ3

þ f624 − 284ηþ 4η2 þ ð408 − 88η − 8η2Þe2t − ð60η − 4η2Þe4t þ ½−1872þ 792η

− 8η2 − ð1224 − 384η − 16η2Þe2t þ ð120η − 8η2Þe4t �et cos uþ ½1872 − 732ηþ 4η2 þ ð1224 − 504η − 8η2Þe2t
− ð60η − 4η2Þe4t �ðet cosuÞ2 þ ½−624þ 224η − ð408 − 208ηÞe2t �ðet cosuÞ3get sin u
þ f−ð8þ 153η − 27η2Þe2t þ ð4η − 12η2Þe4t þ ½8þ 152η − 24η2 þ ð8þ 146η − 6η2Þe2t �et cos u

þ ½−8 − 148ηþ 12η2 − ðη − 3η2Þe2t �ðet cos uÞ2get sin u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q 
 ξ4=3

32ð1 − e2t Þ2ð1 − et cosuÞ3
þOðξ2Þ; ð3:4dÞ

_ϕ ¼ ðξ=MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ð1 − et cos uÞ2

�
1þ ½3 − ð4 − ηÞe2t þ ð1 − ηÞet cosu�

ξ2=3

ð1 − e2t Þð1 − et cosuÞ
þ f144 − 48η − ð162þ 68η − 2η2Þe2t þ ð60þ 26η − 20η2Þe4t þ ð18ηþ 12η2Þe6t þ ½−216þ 125ηþ η2

þ ð102þ 188ηþ 16η2Þe2t − ð12þ 97η − η2Þe4t �et cos uþ ½108 − 97η − 5η2 þ ð66 − 136ηþ 4η2Þe2t
− ð48 − 17ηþ 17η2Þe4t �ðet cosuÞ2 þ ½−36þ 2η − 8η2 − ð6 − 70η − 14η2Þe2t �ðet cosuÞ3

þ 18ð1 − et cosuÞ2ð1 − 2e2t þ et cos uÞð5 − 2ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
g ξ4=3

12ð1 − e2t Þ2ð1 − et cos uÞ3
þOðξ2Þ

�
: ð3:4eÞ

Some of these equations dependon the true anomalyv in the combinationv − u. Rather than using the discontinuous function in
Eq. (3.2h), this combination is more easily described by the smooth function [15,17]
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v − u ¼ 2 tan−1
�

βϕ sin u

1 − βϕ cosu

�
; ð3:5Þ

where βϕ ¼ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2ϕ

q
Þ=eϕ. An explicit expression for eϕ in terms of et and n is not listed in the literature, but it can be

derived by combining Eq. (25r) of Ref. [16] with Eqs. (21) of Ref. [17]. The result to (3PN order and harmonic gauge) is

eϕ
et

¼ 1þ ξ2=3ð4 − ηÞ þ
h
2016 − 260η − 4η2 − ð1152 − 659ηþ 41η2Þe2t þ ð720 − 288ηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q i ξ4=3

96ð1 − e2t Þ
þ
n
2553600 − 2719360ηþ 17220π2ηþ 268800η2 − ð3494400 − 3203200ηþ 17220π2ηþ 255360η2Þe2t

þ ð940800 − 483840η − 13440η2Þe4t þ ½4139520 − 3574960ηþ 17220π2η − 155680η2

− ð2419200 − 1290048ηþ 4305π2ηþ 483420η2 − 18900η3Þe2t
þ ð860160 − 786310ηþ 134050η2 − 1050η3Þe4t �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q o ξ2

26880ð1 − e2t Þ5=2
: ð3:6Þ

The above equations allow one to determine the func-
tions r, _r, ϕ, _ϕ, and the waveform polarizations hþ;×

entirely in terms of the eccentric anomaly u and the chosen
constants et, n, cl, and cλ [see Eq. (A1)]. With the addition
of the 3PN extension of Kepler’s equation [Eq. (27) of
Ref. [17]],

l¼ u− et sinuþ
h
ð15η− η2Þet sinu

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q
þ 12ð5− 2ηÞ

× ðv− uÞð1− et cosuÞ
i ξ4=3

8
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

p
ð1− et cosuÞ

þOðξ2Þ; ð3:7Þ

one can parametrically obtain the orbit and waveform as a
function of the mean motion angle or time. To do this,
Eq. (3.7) must be inverted. Techniques for doing this
numerically are given in celestial mechanics texts (see,
e.g., Sec. 6.6 of Danby [118]) and are discussed more
recently in the context of eccentric compact binaries in
Ref. [80]. For Newtonian binaries, Bessel derived a series
expansion that solves Kepler’s equation (e.g., Appendix D
of Ref. [118]):

u ¼ lþ 2
X∞
n¼1

1

n
JnðnetÞ sinðnlÞ: ð3:8Þ

Since PN corrections to Kepler’s equation do not enter until
2PN order, the above equation can also be applied to
binaries at 1PN order. In Appendix A, we analytically
invert the 3PN version of Eq. (3.7), obtaining uðlÞ as a
series expansion to orderOðe3t Þ. This expansion can then be
plugged into expressions for r, _r, ϕ, _ϕ, and hþ;×, yielding
explicit functions of time [e.g., Eqs. (A3)–(A4)].

C. Converting between radial and azimuthal
frequencies

In the quasi-Keplerian formalism, PN expansions of
elliptical orbit quantities are most naturally expressed in
terms of the radial orbit angular frequency ωr ≡ n≡ ξ=M
(i.e., the mean motion or periastron to periastron angular
frequency). However, circular orbit quantities are more
naturally expanded in terms of the azimuthal or ϕ-angular
frequency ωϕ ≡ ξϕ=M (this is related to the time to return
to the same azimuthal angular position in the orbit). The
relation between ωr and the instantaneous azimuthal
angular frequency _ϕ is given by Eq. (3.2f). However, since
we are often more concerned with secular variations, it is
useful to derive the relationship between the orbit-averaged
azimuthal frequency ωϕ ≡ h _ϕi and the radial frequency.
Upon orbit averaging Eq. (3.2f), the periodic dW=dl term
vanishes, and we have

ξϕ¼Mh _ϕi¼M
dλ
dt

¼ð1þkÞξ

¼ξ

�
1þ 3ξ2=3

1−e2t
þ½78−28ηþð51−26ηÞe2t �

ξ4=3

4ð1−e2t Þ2
þ
n
18240−ð25376−492π2Þηþ896η2þ½28128−ð27840−123π2Þη

þ5120η2�e2t þð2496−1760ηþ1040η2Þe4t þ½1920−768ηþð3840−1536ηÞe2t �
ffiffiffiffiffiffiffiffiffiffiffi
1−e2t

q o ξ2

128ð1−e2t Þ3
�
: ð3:9Þ
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This equation can be inverted to give

ξ ¼ ξϕ

�
1 −

3ξ2=3ϕ

1 − e2t
− ½18 − 28ηþ ð51 − 26ηÞe2t �

ξ4=3ϕ

4ð1 − e2t Þ2
−
n
−192 − ð14624 − 492π2Þηþ 896η2

þ ½8544 − ð17856 − 123π2Þηþ 5120η2�e2t þ ð2496 − 1760ηþ 1040η2Þe4t

þ ½1920 − 768ηþ ð3840 − 1536ηÞe2t �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q o ξ2ϕ
128ð1 − e2t Þ3

�
: ð3:10Þ

This relation allows us to replace the constant of the motion ξ ¼ Mn in the quasi-Keplerian formalism with the equivalent
constant ξϕ ¼ M_λ. The advantage in doing so is that ξϕ is directly related to the standard PN expansion parameters x and v
that appear in PN expansions for quasicircular orbits. Specifically, we make the following identifications between the
various PN expansion parameters:

ξϕ ¼ Mωϕ ¼ x3=2 ¼ v3: ð3:11Þ

In the eccentric case, x and v are defined by the above relation and reduce to their standard meanings in the circular limit. As
an application of these relations, it will be useful (in the next section) to express k in terms of ξϕ via substitution of (3.10)
into (3.3) and expanding to 3PN order:

kðξϕÞ ¼
3ξ2=3ϕ

1 − e2t
þ ½54 − 28ηþ ð51 − 26ηÞe2t �

ξ4=3ϕ

4ð1 − e2t Þ2
þ
n
6720 − ð20000 − 492π2Þηþ 896η2

þ ½18336 − ð22848 − 123π2Þηþ 5120η2�e2t þ ð2496 − 1760ηþ 1040η2Þe4t

þ ½1920 − 768ηþ ð3840 − 1536ηÞe2t �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q o ξ2ϕ
128ð1 − e2t Þ3

: ð3:12Þ

Note that in the et → 0 limit the frequency variables ξ
and ξϕ do not agree. This arises from the fact that the well-
known formula for the periastron advance angle is inde-
pendent of eccentricity in the et → 0 limit. Readers should
keep in mind that it is the quantity ξϕ that is equivalent to
the circular orbit frequency in the et → 0 limit. When PN
quantities for eccentric orbits are specialized to the et → 0
limit, they generally will reduce to the standard circular
expressions only if they are expressed in terms of ξϕ (not ξ).
This is an important point and motivates much of the
approach that we follow throughout this paper.

D. Domain of validity of the
quasi-Keplerian formalism

In Sec. III of Ref. [15], an estimate was provided for the
range of validity of the quasi-Keplerian formalism. We
review this constraint here, illustrate its problems, and then
argue that recent comparisons with numerical relativity and
gravitational self-force calculations suggest that the con-
straint (in the small et limit) should be relaxed.
Reference [15] argues that the parameters of elliptical

motion in the quasi-Keplerian formalism should be chosen
such that i) orbits are not plunging and ii) rapid periastron
precession is avoided. Section III of Ref. [15] adequately
discusses the first point. In the small et limit, this constraint

is simply that one stays outside the last stable orbit, which
we will take to be the innermost stable circular orbit (ISCO;
there are eccentric corrections to this, but they will be
negligible for our purposes as any small eccentricity will
have rapidly decayed at frequencies near plunge). The
second point is a more conservative constraint—effectively
requiring the binary separation (for a given eccentricity) to
be sufficiently far from the plunge boundary that the
periastron advance rate is “slow.” (This also eliminates
the possibility of zoom-whirl orbits.) Using a particular
(and somewhat arbitrary) choice for specifying the small-
ness of the periastron advance rate in the Schwarzschild
spacetime, Ref. [15] proposes that the following condition
be satisfied:

ξ

ð1 − e2t Þ3=2
< 0.0030: ð3:13Þ

Rearranging the above and approximating (at Newtonian
order) ξ ≈ πMf yields the following constraint on the
eccentricity parameter,

et <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
πMf
α

�
2=3

s
; ð3:14Þ

MOORE, FAVATA, ARUN, and MISHRA PHYSICAL REVIEW D 93, 124061 (2016)

124061-12



where f is the GW frequency of the fundamental harmonic
(twice the orbital frequency) and α ¼ 0.0030. This equa-
tion implies that (for the quasi-Keplerian formalism to be
valid) a NS/NS system should have et ≲ 0.85 at 10 Hz,
while a M ¼ 10M⊙ BH/BH binary should have et ≲ 0.6.
Similarly a BH/BH binary with M ≳ 19.3M⊙ is con-
strained to be fully circularized before entering the
LIGO band.
An immediate problem arises when one considers the

decay of eccentricity with frequency, etðfÞ ≈ e0ðf0=fÞ19=18
for small et. Substituting this relation into Eq. (3.14)
implies that the GW frequency must satisfy the following
inequality throughout the inspiral:

e20

�
f0
f

�
19=9

þ
�
πMf
α

�
2=3

< 1: ð3:15Þ

If a binary enters the LIGO band (f0 ¼ 10 Hz) with
e0 ¼ 0.1, this implies that the formalism is valid only
for f ≲ 69 Hz for a NS/NS binary or f ≲ 19 Hz for a
M ¼ 10M⊙ BH/BH binary. For e0 ≲ 0.1, the first term in
(3.15) hardly affects the result, and one can simplify the
criterion to

f <
α

πM
¼ 194 Hz

�
α

0.0030

��
1M⊙
M

�
: ð3:16Þ

In comparison, the Schwarzschild ISCO frequency is

fisco ¼
6−3=2

πM
¼ 4397 Hz

�
1 M⊙
M

�
: ð3:17Þ

Equation (3.16) is vastly more constraining than the ISCO
limit and suggests that quasi-Keplerian waveforms would
be essentially useless for LIGO data analysis. This is
surprising. While circular PN waveforms certainly break-
down before the ISCO limit above, they can often be
pushed much closer to the ISCO frequency than Eq. (3.16)
would imply (especially in the comparable-mass limit). In
the low-eccentricity limit, the quasi-Keplerian waveforms
we derive here smoothly approach the circular limit, so we
would expect that they would have a similar range of
validity. For example, for circular binaries, _ξϕ agrees with
equal-mass NR calculations to within a few percent at
ξϕ ¼ 0.1 (see Fig. 13 of Ref. [119]). We therefore expect
our low-eccentricity expressions to remain accurate to
comparable frequencies.
Independently of the approach in Sec. III of Ref. [15],

the constraint (3.13) can be derived by specifying a
condition for the slowness of the periastron advance rate.
Recall that the angular frequency ωp ≡ dΦ=dt of the
periastron angle Φ ¼ ϖ is given by ωp ¼ ωϕ − ωr, where

ωϕ ¼ h _ϕi is the orbit averaged azimuthal orbit frequency
and ωr ¼ n is the radial orbital frequency (mean motion).

Since ωϕ ¼ ð1þ kÞωr, ωp ¼ kωr. Let us phrase our
constraint on the “slowness” of the periastron advance
rate in the following terms: we require that the periastron
advance angle not exceed one cycle (ΔΦ < 2π) in N radial
orbital periods. This implies the constraint k < 1=N or,
using the leading-order expression for k [cf., Eq. (3.3)],

ξ

ð1 − e2t Þ3=2
<

�
1

3N

�
3=2

: ð3:18Þ

One may then attempt to set a constraint by choosing an
appropriate value for N that assures that k is sufficiently
small. For example, the criterion in Ref. [15] for “slowness”
(3.13) corresponds to N > 16 radial cycles for every cycle
of the periastron [i.e., using α → ð3NÞ−3=2 and α ¼ 0.003].
Zoom-whirl behavior corresponds to the condition N < 1
(i.e., k < 1 is required to forbid zoom-whirl orbits).
However, “sufficiently small” is an arbitrary criterion on
which reasonable people can differ. (E.g., is N > 1 suffi-
cient? Or N > 10? Or N > 100?) Unfortunately, the
precise choice is important as the upper bound on the
frequency of validity depends sensitively on the chosen
value of N [or equivalently, the chosen α in Eq. (3.16)].
We argue that this is not the appropriate way to

determine the constraint. A better constraint comes from
requiring that a specified PN quantity agrees with an
exact (or at least “better”) calculation to within a specified
accuracy (e.g., within ∼1% to 10%).11 As a proxy for an
“exact” calculation, we use the relationship between the
periastron advance parameter and orbital frequency given
in Eq. (7) of [38],12

kηGSF ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 6x
p

�
1 −

η

2

ρðxÞ
ð1 − 6xÞ þOðη2Þ

�
− 1; ð3:19Þ

where

ρðxÞ ¼ 14x2ð1þ 12.9906xÞ
1þ 4.57724x − 10.3124x2

ð3:20Þ

and x ¼ ξ2=3ϕ ¼ ðMωϕÞ2=3 ¼ ðπMfÞ2=3 is the standard
circular PN expansion parameter. This equation arises from
an EOB calculation of k in the et → 0 limit [120]. The
resulting expression automatically incorporates the
Schwarzschild et → 0 result and additionally incorporates
an OðqÞ correction to the Schwarzschild limit, where q ¼
m1=m2 ≤ 1 is the binary mass ratio. This correction arises

11This accuracy level and the particular quantity that one
chooses to constrain are also subjective elements, but we
argue that the approach here provides a more natural way to
set an appropriate constraint on the domain of validity of the
quasi-Keplerian formalism.

12Note that the notation here is related to that in Ref. [38] via
k ¼ K − 1. That reference also uses ν for the reduced mass ratio
(η here).
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from the first-order GSF and is determined by fitting the
function ρðxÞ to accurate GSF calculations. The resulting
linear-in-q expression (kqGSF) can then be “improved” by
replacing q → η, resulting in Eq. (3.19) above. This
replacement of the mass ratio q with η has the following
remarkable effect: while the q dependent expression kqGSF
agrees with low-eccentricity NR simulations at small q (as
expected), the expression kηGSF agrees exceptionally well
with NR simulations at all mass ratios, essentially lying
within (or close to) the error bars of the NR simulations for
the frequency range analyzed (see Figs. 1–3 of Ref. [38]).
The figures there also clearly indicate good agreement
between NR calculations of k and the 3PN result we use
here (e.g., less than 1% error up to ξϕ ¼ 0.03).
Considering the importance of understanding the realm

of validity of the quasi-Keplerian formalism (and hence the
results of this study), we further quantify the bounds on our
PN expressions. Since it exhibits excellent agreement with
NR results for all mass ratios, we take Eq. (3.19) as our
“exact” result and compare it with the 3PN expression for k
expressed in terms of x ¼ ξ2=3ϕ [Eqs. (3.12)] and specialized
to the et → 0 limit. This reduces to

kðet → 0Þ ¼ 3ξ2=3ϕ þ ð13.5 − 7ηÞξ4=3ϕ

þ ð67.5 − 124.3137ηþ 7η2Þξ2ϕ: ð3:21Þ
In Fig. 2, we see the behavior of these two functions as well
as the fractional error between the 3PN formula and the
“exact” result. The 3PN periastron advance constant shows
good agreement with Eq. (3.19) for nearly all mass ratios.
Depending on the acceptable level of accuracy required and

the mass ratio of the system, Fig. 2 determines the
frequency where the required accuracy threshold is vio-
lated. For example, if we require that the 3PN expression
agrees with kηGSF to within 10%, then this implies that ξϕ <
0.0274 for η ¼ 0. This is a significantly larger upper limit
than the≈0.003 value required by Eq. (3.13). For η ¼ 0 and
ξϕ ¼ 0.003, the fractional error from kηGSF is 0.1%, a value
that we argue is unnecessarily conservative. Furthermore,
for larger mass ratios, the 3PN expression agrees even more
closely with the NR/GSF result. A < 10% error is achieved
for η ¼ 0.25 so long as ξϕ < 0.0458. This upper bound
increases to ξϕ < 0.0511 for η ¼ 0.2.
In summary, we believe that the constraint (3.13)

suggested by Ref. [15] is too conservative, as it implies
that the quasi-Keplerian formalism is not applicable to
binaries in the frequency band of ground-based interfer-
ometers. Instead, more recent comparisons with NR and
GSF simulations (summarized in Ref. [38] and discussed
above) suggest that a more appropriate constraint for
comparable-mass binaries is ξϕ ≲ 0.04 or

f ≲ α

πM
¼ 2585 Hz

�
α

0.04

��
1 M⊙
M

�
: ð3:22Þ

This limit is nearly 60% of the frequency of the
Schwarzschild ISCO. This implies that our formalism
should be accurate up to f ≈ 920 Hz for NS/NS binaries
or f ≈ 260 Hz for a M ¼ 10M⊙ BH/BH binary.

IV. QUASI-KEPLERIAN PHASING
FOR EVOLVING BINARIES

In the previous section, we described the quasi-Keplerian
formalism, which provides a parametric solution to the
conservative pieces of the PN equations of motion. This
analytic solution follows from the fact that conservative
quasielliptical orbits admit four constants of motion: the
principal (intrinsic) constants n and et which determine the
shape of the orbit, plus two positional (extrinsic) constants
(here taken to be cl and cλ) that determine the orientation of
the orbit and the initial binary configuration. We now
consider the inclusion of radiation reaction, both generally
[15,17] and in the low-eccentricity limit. When dissipative
terms are included, these four constants will generally
evolve with time. A scheme for evolving the constants of
the motion for nonspinning eccentric binaries has been
detailed in Refs. [15,17]. Here, we briefly summarize
their results and then specialize them to low-eccentricity
orbits.
As in the conservative case, the essential problem is to

determine the functions rðtÞ, ϕðtÞ and their derivatives as
solutions to the full PN equations of motion. Rather than
numerically solving the PN equations of motion (at say
3.5PN order), Ref. [15] employs a method of variation of
constants in which the functional form of the 3PN
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FIG. 2. Comparison of 3PN and “exact” calculations of the
periastron advance constant k. We plot kηGSF [Eq. (3.19)] and
kðet → 0Þ [Eq. (3.21)] vs ξϕ ¼ Mωϕ. The inset shows the
fractional error between the quantities for different values of
the reduced mass ratio η. As expected, agreement is better for
comparable-mass binaries.
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conservative solution [Eqs. (3.2)] is used as a leading-order
solution. The 2.5PN and 3.5PN radiative pieces of the
equations of motion then act as a perturbation that causes
the constants of the motion in Eqs. (3.2) to vary with time.
Specifically, the mean motion and time eccentricity now
vary with time, n ¼ nðtÞ, et ¼ etðtÞ, and the angles l and λ
are now given by

l≡
Z

t

t0

nðt0Þdt0 þ clðtÞ; ð4:1aÞ

λ≡
Z

t

t0

½1þ kðt0Þ�nðt0Þdt0 þ cλðtÞ; ð4:1bÞ

where the positional constants cl ¼ clðtÞ and cλ ¼ cλðtÞ also
vary with time. Instead of solving a first-order system of
differential equations involving rðtÞ, ϕðtÞ, _rðtÞ, and _ϕðtÞ, a
new first-order system is solved in which the dynamical
variables are cαðtÞ ¼ ½c1ðtÞ; c2ðtÞ; clðtÞ; cλðtÞ�. In this sys-
tem the “constants” c1 and c2 could be the energy and angular
momentum of the binary, but—as indicated earlier—they are
more conveniently chosen to be the mean motion n and the
time eccentricity et (which can be related to the energy and
angular momentum).
To arrive at a first-order system for the cα, one proceeds

as follows (see Ref. [15] for details): Begin with the PN
equations of motion in first-order form,

_x ¼ v; ð4:2aÞ

_v ¼ A0ðx; vÞ þA 0ðx; vÞ; ð4:2bÞ

where the motion is planar and A0 and A 0 represent the
conservative and dissipative pieces of the equations of
motion (respectively). These equations are first solved
neglecting the A 0 term, resulting in the parametric quasi-
Keplerian solution described in Sec. III B, x ¼ x0ðt; cαÞ.
The solution to the full equations (including the dis-
sipative term A 0) is written such that it has the same
functional form as the conservative system, but with the
constants cα now as functions of time, x ¼ x0½t; cαðtÞ�.
This exact form for the solution, combined with the full
equations of motion (4.2), yields a new first-order system
for the cαðtÞ,

dcα
dt

¼ Fαðl; cβÞ; α; β ¼ 1; 2; l; λ; ð4:3Þ

where Fα is linear in A 0. This is then recast in the form

dcα
dl

¼ Gαðl; caÞ; α ¼ 1; 2; l; λ; a ¼ 1; 2; ð4:4Þ

where Gα ∝ A 0 and is periodic in l. Since Gα contains
both fast, periodic oscillations as well as slowly varying
pieces [since radiation reaction causes a slow variation of

the caðtÞ], the solution is split into a slowly varying piece
c̄αðlÞ and a rapidly varying piece ~cαðlÞ,

cαðlÞ ¼ c̄αðlÞ þ ~cαðlÞ: ð4:5Þ

For sufficiently long times, the rapidly oscillating terms
~cαðlÞ will always be smaller than the slowly varying ones
c̄αðlÞ. Using this splitting, Refs. [15,17] then show how to
solve for the quantities n̄; ēt; c̄l; c̄λ; ~n; ~et; ~cl; ~cλ, which are
expressed as functions of l, u, or t. The differential
equations for each piece of the cα have the form

dc̄α
dl

¼ Ḡαðc̄αÞ; ð4:6aÞ

d~cα
dl

¼ ~Gαðc̄αÞ; ð4:6bÞ

where Ḡα and ~Gα are theorbit-averaged andoscillatorypieces
of Gα. The time evolution of the angles lðtÞ and λðtÞ can be
similarly split into secular and oscillatory pieces [by virtue of
their definition in Eqs. (4.1)]:

lðtÞ ¼ l̄ðtÞ þ ~l½l; c̄aðtÞ�; ð4:7aÞ

λðtÞ ¼ λ̄ðtÞ þ ~λ½l; c̄aðtÞ�: ð4:7bÞ

The next subsections discuss separately the solutions to the
oscillatory and secular equations in (4.6).

A. Periodic variation of the constants

As shown in Ref. [15], Eq. (4.6b) can be integrated
analytically, yielding closed-form expressions for
~nðu; n̄; ētÞ, ~etðu; n̄; ētÞ, ~clðu; n̄; ētÞ, and ~cλðu; n̄; ētÞ.
These are then used in constructing expressions for
~lðu; n̄; ētÞ and ~λðu; n̄; ētÞ. The full expressions are given
by Eqs. (64) and (67) of Ref. [15] (at 2PN order in ADM
gauge) and Eqs. (36) and (40) of Ref. [17] (at 3PN order in
harmonic gauge). Those expressions are seen to have the
following form when 3.5PN-order reactive effects are
included,

~Cγ ¼ ½~ξ=ξ̄; ~et; ~cl; ~cλ; ~l; ~λ�
¼ ηξ̄5=3½fð2.5Þγ ½uðl̄Þ; ēt� þ ξ̄2=3fð3.5Þγ ½uðl̄Þ; ēt��; ð4:8Þ

where the fγ label the various expressions listed in
Refs. [15,17], and the index γ takes on labels corresponding
to the six variables listed on the left-hand side of the
equation. The ~Cγ are periodic functions of l and have the

leading-order scaling ~Cγ ∼Oðηξ̄5=3Þ. This indicates that
these terms will generally be small, especially in compari-
son with the secular pieces that we consider in the next
section.
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In the low-eccentricity limit, we can simplify the expressions given in Ref. [17] by using Eq. (A2) to express u in terms of
l. At leading PN order, the constants ~Cγ reduce to the following when we expand about ēt ¼ 0:

~ξðl̄; ξ̄; ētÞ ¼ ηξ̄8=3ēt

�
120 sin l̄þ 718

5
ēt sin 2l̄þ

�
2269

5
sin l̄þ 3011

15
sin 3l̄

�
ē2t þOðē3t Þ

�
þOðξ̄10=3Þ; ð4:9aÞ

~etðl̄; ξ̄; ētÞ ¼ −ηξ̄5=3
�
64

5
sin l̄þ 352

15
ēt sin 2l̄þ

�
1138

15
sin l̄þ 358

9
sin 3l̄

�
ē2t þOðē3t Þ

�
þOðξ̄7=3Þ; ð4:9bÞ

~cλðl̄; ξ̄; ētÞ ¼ ηξ̄5=3ēt

�
64

3
cos l̄þ

�
cos 2l̄ −

1

3

�
32ēt þ

�
81

5
cos l̄þ 2131

45
cos 3l̄

�
ē2t þOðē3t Þ

�
þOðξ̄7=3Þ; ð4:9cÞ

~clðl̄; ξ̄; ētÞ ¼
ηξ̄5=3

ēt

�
−
64

5
cos l̄þ

�
32

5
−
352

15
cos 2l̄

�
ēt þ

�
146

15
cos l̄ −

358

9
cos 3l̄

�
ē2t

þ
�
91

15
þ 383

15
cos 2l̄ −

1289

20
cos 4l̄

�
e3t þOðē4t Þ

�
þOðξ̄7=3Þ; ð4:9dÞ

~lðl̄; ξ̄; ētÞ ¼ −
ηξ̄5=3

ēt

�
64

5
cos l̄þ ð107þ 352 cos 2l̄Þ 1

15
ēt þ

�
1654

15
cos l̄þ 358

9
cos 3l̄

�
ē2t

þ
�
−
644

15
þ 694

15
cos 2l̄þ 1289

20
cos 4l̄

�
ē3t þOðē4t Þ

�
þOðξ̄7=3Þ; ð4:9eÞ

~λðl̄; ξ̄; ētÞ ¼ −ηξ̄5=3
�
203

15
þ 296

3
ēt cos l̄þ

�
−
131

5
þ 199

5
cos 2l̄

�
ē2t þOðē3t Þ

�
þOðξ̄7=3Þ: ð4:9fÞ

To derive the last two equations, we had to evaluate the
integrals appearing in Eqs. (40a) and (40b) of Ref. [17].
This was done by first expanding the integrands in the
small-et limit and then computing the indefinite integral,
neglecting the constant of integration. Equation (A2) was
then substituted, and the result was expanded in the small-
et limit. Note also that at leading order in ξ̄, ~λ ¼ ~l − ~cl þ ~cλ.
The expressions (4.9) are listed for completeness. As we
will discuss in more detail in Sec. V, they will be negligible
for our purposes.

B. Secular variation of the constants

We now focus on computing the secular evolution of the
constants of the motion (which will eventually lead to the

main results of this paper). The primary expressions that are
needed to compute the various PN approximants are the
differential equations governing the secular time evolution
of n̄ ¼ ξ̄=M and ēt. (The positional constants of the motion
are found to have no secular variations, i.e., _̄cl ¼ _̄cλ ¼ 0
[15].) These are given to 2PN order in ADM or harmonic
gauge in Refs. [15,17]; the harmonic gauge versions are
reproduced in Appendix B. Here, we are more interested in
the pair ðω̄ϕ ¼ ξ̄ϕ=M; ētÞ for reasons discussed above.
Expressions for _̄ωϕ and _̄et have been computed to 3PN
order in ADM gauge in Ref. [92].13 Since we work in
modified harmonic (MH) gauge here, we must convert
those results from ADM to MH gauge. The explicit relation
between the two gauges is given by Eq. (8.21) of Ref. [91],

eADMt ¼ eMH
t

�
1þ

�
1

4
þ 17

4
η

�
ξ4=3ϕ

1 − e2t
þ
�
1

2
þ
�
16739

1680
−
21

16
π2
�
η −

83

24
η2 þ

�
1

2
þ 249

16
η −

241

24
η2
�
e2t

�
ξ2ϕ

ð1 − e2t Þ2
�
;

ð4:10Þ

13Reference [92] includes modified harmonic gauge expressions in an appendix, but Eqs. (C10)–(C11) there were found to contain an
error. This is addressed in a forthcoming erratum. Also note that there are important notational differences between this paper and
Ref. [92]. Specifically, Ref. [92] uses ζ ≡Mn in place of our ξ. Their ω is labeled ωϕ here. They also do not use bars to denote orbit-
averaged quantities.
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where et ¼ eMH
t on the right-hand side. Note that the difference between ADM and MH gauges enters at 2PN and higher

orders. For reference, we also include the inverse transformation,

eMH
t ¼ eADM

�
1 −

�
1

4
þ 17

4
η

�
ξ4=3ϕ

ð1 − e2t Þ
−
�
1

2
þ
�
16739

1680
−
21

16
π2
�
η −

83

24
η2 þ

�
1

2
þ 249

16
η −

241

24
η2
�
e2t

�
ξ2ϕ

ð1 − e2t Þ2
�
;

ð4:11Þ

where et ¼ eADMt on the right-hand side. (Everywhere else in this document, et ¼ eMH
t .)

Arun et al. [92] provide expressions for dωϕ=dt and det=dt for arbitrary eccentricity (et < 1).14 They also specialize their
results to leading order in et and in ADM gauge [see their Eqs. (7.6c) and (7.6e)]. Using Eq. (4.10) to convert their
Eq. (7.6c) to harmonic gauge gives

dξϕ
dt

¼M
dωϕ

dt
¼ 96ηξ11=3ϕ

5M

�
1−

�
743

336
þ 11

4
η

�
ξ2=3ϕ þ 4πξϕ þ

�
34103

18144
þ 13661

2016
ηþ 59

18
η2
�
ξ4=3ϕ −

�
4159

672
þ 189

8
η

�
πξ5=3ϕ

þ
�
16447322263

139708800
−
1712

105
γE þ

16

3
π2 þ

�
−
56198689

217728
þ 451

48
π2
�
ηþ 541

896
η2 −

5605

2592
η3 −

856

105
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

þ e2t

�
157

24
þ
�
713

112
−
673

16
η

�
ξ2=3ϕ þ 2335

48
πξϕ þ

�
−
479959

12096
þ 80425

4032
ηþ 213539

1728
η2
�
ξ4=3ϕ þ

�
7885

96
−
27645

56
η

�
πξ5=3ϕ

þ
�
277391496167

139708800
−
106144

315
γE þ

992

9
π2 þ

�
−
280153957

120960
þ 188231

2304
π2
�
η−

73109

448
η2 −

6874115

31104
η3 þ 18832

45
ln2

−
234009

560
ln3−

53072

315
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

��
; ð4:12Þ

where γE ¼ 0.5772156649… is the Euler-Mascheroni constant. In the above (and henceforth), we drop overbars where it is
clear that we refer to a secular (orbit-averaged) quantity.
To compute det=dt in harmonic gauge, one first takes the time derivative of Eq. (4.11) and then substitutes Eqs. (7.6c)

and (7.6e) of Ref. [92] for dξϕ=dt and deADMt =dt. Next, the gauge transformation in Eq. (4.10) is substituted, and the result
is expanded to 3PN order yielding the harmonic gauge expression

det
dt

¼−
304etηξ

8=3
ϕ

15M

�
1−

�
2817

2128
þ1021

228
η

�
ξ2=3ϕ þ985

152
πξϕþ

�
−
108197

38304
þ56407

4256
ηþ141

19
η2
�
ξ4=3ϕ −

�
55691

4256
þ19067

399
η

�
πξ5=3ϕ

þ
�
246060953209

884822400
−
82283

1995
γEþ

769

57
π2þ

�
−
613139897

2298240
þ22345

3648
π2
�
η−

1046329

51072
η2

−
305005

49248
η3þ4601

105
ln2−

234009

5320
ln3−

82283

3990
lnð16ξ2=3ϕ Þ

�
ξ2ϕþe2t

�
881

304
þ
�
40115

4256
−
51847

1824
η

�
ξ2=3ϕ

þ21729

608
πξϕþ

�
−
1368625

51072
−
288209

17024
ηþ274515

2432
η2
�
ξ4=3ϕ þ

�
286789

3584
−
7810371

17024
η

�
πξ5=3ϕ þ

�
1316189396351

589881600

−
1500461

3990
γEþ

14023

114
π2þ

�
−
5882746699

4596480
þ46453

1536
π2
�
η−

554719

4788
η2−

100330729

393984
η3

−
3813587

3990
ln2þ6318243

21280
ln3−

1500461

7980
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

��
: ð4:13Þ

For reference and later use in Sec. VIII, we provide in Appendix B 2PN-order equations for dn=dt and det=dt in terms of
n and et and valid for arbitrary et < 1.

14Note that the tail contributions to the expressions for dωϕ=dt and det=dt in Ref. [92] are expressed as infinite series and require
careful consideration when used in actual computations. This is discussed further in Sec. VIII below. In the low-eccentricity limit, these
tail terms can be expanded as a power series in et.
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C. Analytic eccentricity evolution as a function of frequency

At Newtonian (0PN) order, the equations for dξϕ=dt and det=dt can be analytically solved for arbitrary et to determine

ξϕðetÞ. Computing dξϕ=det ¼ _ξϕ=_et and integrating using the initial condition that ξϕ ¼ ξϕ;0 when et ¼ e0 gives

ξϕðetÞ
ξϕ;0

¼
�
e0
et

�
18=19

�
1 − e2t
1 − e20

�
3=2

�
304þ 121e20
304þ 121e2t

�
1305=2299

: ð4:14Þ

An analogous result in terms of the semimajor axis was first derived by Peters [40].
At higher PN orders, the differential equation for dξϕ=det is not separable, so an exact solution valid for arbitrary

eccentricities is not easily found. However, an analytic result can be found if we only include the leading-order eccentricity
terms. Expanding the low-eccentricity limit of det=dξϕ in ξϕ gives

det
dξϕ

¼ −
19

18

et
ξϕ

�
1þ

�
2833

3192
−
197

114
η

�
ξ2=3ϕ þ 377

152
πξϕ þ

�
−
1392851

508032
þ 32537

6384
η −

833

1368
η2
�
ξ4=3ϕ

þ
�
−
253409

51072
−
133157

12768
η

�
πξ5=3ϕ þ

�
27226918334431

178380195840
−
3317

133
γE −

67

38
π2

þ
�
−
26105879

3386880
−
3977

1216
π2
�
ηþ 58057

153216
η2 −

25

608
η3 þ 4601

105
ln 2 −

234009

5320
ln 3 −

3317

266
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

�
: ð4:15Þ

Separating variables and integrating gives

et ¼ C1ξ
−19=18
ϕ exp

��
−
2833

2016
þ 197

72
η

�
ξ2=3ϕ −

377

144
πξϕ þ

�
26464169

12192768
−
32537

8064
ηþ 833

1728
η2
�
ξ4=3ϕ

þ
�
253409

80640
þ 133157

20160
η

�
πξ5=3ϕ þ

�
−
27968380877791

377983528960
þ 3317

252
γE þ 67

72
π2 þ

�
496011701

121927680
þ 3977

2304
π2
�
η

−
58057

290304
η2 þ 25

1152
η3 −

87419

3780
ln 2þ 26001

1120
ln 3þ 3317

504
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

�
: ð4:16Þ

Expanding the above equation in ξϕ then yields

et ¼ e0

�
ξϕ;0
ξϕ

�
19=18 EðξϕÞ

Eðξϕ;0Þ
; ð4:17aÞ

where

EðξϕÞ ¼
�
1þ

�
−
2833

2016
þ 197

72
η

�
ξ2=3ϕ −

377

144
πξϕ þ

�
77006005

24385536
−
1143767

145152
ηþ 43807

10368
η2
�
ξ4=3ϕ

þ
�
9901567

1451520
−
202589

362880
η

�
πξ5=3ϕ þ

�
−
33320661414619

386266890240
þ 3317

252
γE þ

180721

41472
π2 þ

�
161339510737

8778792960
þ 3977

2304
π2
�
η

−
359037739

20901888
η2 þ 10647791

2239488
η3 −

87419

3780
ln2þ 26001

1120
ln3þ 3317

504
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

�
: ð4:17bÞ

The constant C1 was determined by the initial condition
etðξϕ;0Þ ¼ e0.
To gauge the accuracy of the low-eccentricity approxi-

mation, we can compare the 0PN expression (4.14) with its
low-eccentricity version, ξϕ=ξϕ;0 ¼ ðe0=etÞ18=19. For
e0 ≲ 0.2ð0.1Þ, these agree to within 7%ð2%Þ. The PN
corrections have the effect of decreasing the eccentricity
more rapidly as the frequency increases.

D. Explicit evolution equations as a function
of frequency or time

Using the results of the previous subsection, we can
determine dξϕ=dt explicitly as a function of ξϕ only
(eliminating the frequency dependence in et) and then
solve for ξϕ and et explicitly as functions of time. This also
allows us to determine the evolution of the phase variables λ
and l as functions of time or the frequency variable ξϕ.
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Substituting Eq. (4.17) for ētðξϕÞ into Eq. (4.12) and series expanding yields15

dξϕ
dt

¼ 96ηξ11=3ϕ

5M

�
1 −

�
743

336
þ 11

4
η

�
ξ2=3ϕ þ 4πξϕ þ

�
34103

18144
þ 13661

2016
ηþ 59

18
η2
�
ξ4=3ϕ −

�
4159

672
þ 189

8
η

�
πξ5=3ϕ

þ
�
16447322263

139708800
−
1712

105
γE þ 16

3
π2 þ

�
−
56198689

217728
þ 451

48
π2
�
ηþ 541

896
η2 −

5605

2592
η3 −

856

105
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

þ 157

24
e20

�
ξϕ;0
ξϕ

�
19=9

�
1 −

�
41539

22608
þ 5413

5652
η

�
ξ2=3ϕ þ

�
2833

1008
−
197

36
η

�
ξ2=3ϕ;0 þ

24871

11304
πξϕ þ

377

72
πξϕ;0

þ
�
−
122085949

239283072
þ 2133953

712152
η −

36497

101736
η2
�
ξ4=3ϕ þ

�
−
117679987

22788864
þ 10486813

1424304
ηþ 1066361

203472
η2
�
ξ2=3ϕ ξ2=3ϕ;0

þ
�
−
1193251

3048192
−
66317

9072
ηþ 18155

1296
η2
�
ξ4=3ϕ;0 þ

�
215395661

28486080
−
8416733

508680
η

�
πξ5=3ϕ þ

�
10065649

1627776

−
4899587

406944
η

�
πξϕξ

2=3
ϕ;0 −

�
15660203

1627776
þ 2040701

406944
η

�
πξ2=3ϕ ξϕ;0 þ

�
764881

90720
−
949457

22680
η

�
πξ5=3ϕ;0

þ
�
−
345869493517

241197336576
þ 96596798141

8614190592
η −

9444185

542592
η2 þ 7189909

3662496
η3
�
ξ4=3ϕ ξ2=3ϕ;0 þ

9376367

813888
π2ξϕξϕ;0

þ
�
49566453289

68913524736
þ 237857384155

17228381184
η −

1281029377

68366592
η2 −

98273015

7324992
η3
�
ξ2=3ϕ ξ4=3ϕ;0

þ
�
9765600648106487

66329267558400
−
2491067

98910
γE −

10610699

1627776
π2 þ

�
−
3409129936301

8614190592
þ 2883161

180864
π2
�
η

þ 1598264033

102549888
η2 −

2773315

10987488
η3 þ 5257873

296730
ln 2 −

1534059

87920
ln 3 −

2491067

197820
lnð16ξ2=3ϕ Þ

�
ξ2ϕ

þ
�
26531900578691

168991764480
−
3317

126
γE þ 122833

10368
π2 þ

�
9155185261

548674560
−
3977

1152
π2
�
η

−
5732473

1306368
η2 −

3090307

139968
η3 þ 87419

1890
ln 2 −

26001

560
ln 3 −

3317

252
lnð16ξ2=3ϕ;0Þ

�
ξ2ϕ;0

��
: ð4:18Þ

This is the key equation that allows us to determine explicit functions for the frequency and phase evolution in the small-
eccentricity limit. We illustrate how these results follow from this equation in the remainder of this section, deferring some
of the full 3PN expressions to Sec. VI where they are derived via an equivalent approach that generalizes the quasicircular
PN approximants.
The time to coalescence is computed by integrating dt ¼ dξϕ=ðdξϕ=dtÞ. To compute this, we first invert Eq. (4.18),

expand the terms in fg-brackets to leading order in e0, and then expand the entire expression to 3PN order [relative Oðε6Þ].
Integrating the result with respect to ξϕ yields

tc − t≡ 5M
η

τ ¼ 5M

256ηξ8=3ϕ

T ðξϕ; ξϕ;0; e0Þ; ð4:19aÞ

T ðξϕ; ξϕ;0; e0Þ ¼
�
1þ

�
743

252
þ 11

3
η

�
ξ2=3ϕ þ � � � þOðξ2ϕÞ

−
157

43
e20

�
ξϕ;0
ξϕ

�
19=9

�
1þ

�
17592719

5855472
þ 1103939

209124
η

�
ξ2=3ϕ þ

�
2833

1008
−
197

36
η

�
ξ2=3ϕ;0 þ � � � þOðξ2ϕÞ

��
;

ð4:19bÞ

15When performing the series expansions, we introduce a PN expansion parameter ε ∼ 1=c via ξϕ → ε3ξϕ and ξϕ;0 → ε3ξϕ;0. This
parameter ε is set to 1 at the end of the calculation.
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where tc is the coalescence time and the full 3PN expression
can be inferred from Eq. (6.7b) via the substitutions
T ðv ¼ ξ1=3ϕ ; v0 ¼ ξ1=3ϕ;0 ; e0Þ.
Note the general structure of the series expansion in

Eq. (4.19b). The first line shows the quasicircular result.16

The second line shows the leading order in eccentricity
corrections. Since ξϕ;0=ξϕ ∼Oð1Þ, the first term on the
second line is equivalent to a 0PN-order effect. The
remainder of the second line schematically shows correc-
tions which we have computed to relative 3PN order [see
Eq. (6.7b)]. Note that starting at 2PN order, there are terms
with the structure ξaϕξ

b
ϕ;0 where aþ b ¼ 2n=3 for terms at

nPN order. The other PN series expansions in this section
have a similar structure. Note also that the difference
between the time of coalescence and the reference time
t0 when etðt0Þ ¼ e0 is given by

tc − t0 ≡ 5M
η

τ0 ¼
5M

256ηξ8=3ϕ;0

T ðξϕ;0; ξϕ;0; e0Þ: ð4:20Þ

The time evolution of the frequency variable ξϕ can now
be obtained by performing a series reversion on Eq. (4.19).
This is done by expanding ξϕ as a PN series in τ and τ0
with the coefficients undetermined.17 This series is then
substituted into Eq. (4.19) and expanded in ϵ and to Oðe20Þ.
The unknown coefficients are determined by requiring that
each term vanish at the appropriate orders in ϵ and e0. The
result is

ξϕðtÞ ¼
1

8τ3=8
Ξðτ; τ0; e0Þ; ð4:21aÞ

Ξðτ; τ0; e0Þ ¼
�
1þ

�
743

2688
þ 11

32
η

�
τ−1=4 þ � � � þOðτ−3=4Þ

−
471

344
e20

�
τ

τ0

�
19=24

�
1þ

�
−

7647061

70265664
þ 209353

836496
η

�
τ−1=4 þ

�
4445

3456
−
185

288
η

�
τ−1=40 þ � � � þOðτ−3=4Þ

��
;

ð4:21bÞ

where the full 3PN-order expression can be inferred from
Eq. (6.8b) (replacing θ ¼ τ−1=8 and θ0 ¼ τ−1=80 as appropri-
ate). Similar to Eq. (4.19), there are also cross-terms of the
form τcτd0 appearing at 2PNandhigher orders. Thevalue of ξϕ
at the reference time [where etðt0Þ ¼ e0] is determined from

ξϕ;0ðt0Þ ¼
1

8τ3=80

Ξðτ0; τ0; e0Þ: ð4:22Þ

Although we do not use this later in our analysis, the
evolution of the orbital eccentricitywith time canbe computed
by substituting Eqs. (4.21) and (4.22) into Eq. (4.17) and
expanding to 3PN order. The result has the form

etðtÞ ¼ e0

�
τ

τ0

�
19=48

�
1þ

�
−
4445

6912
þ 185

576
η

�
ðτ−1=4 − τ−1=40 Þ

þ � � � þOðτ−3=4Þ
�
; ð4:23Þ

where the full 3PN expression is given in Appendix C.

We can also compute the secular evolution of the angular
variables λ and l. (We consider the oscillatory piece of λ in
the next section.) The secular evolution of λ is governed by

dλ
dt

¼ ξð1þ kÞ
M

¼ ξϕ
M

; ð4:24Þ

which can be integrated to give

λ − cλ ¼
1

M

Z
ξϕ

ðdξϕ=dtÞ
dξϕ: ð4:25Þ

Series expanding the integrand, evaluating the integral, and
simplifying yields

λðξϕÞ − cλ ¼ −
1

32ηξ5=3ϕ

Λfðξϕ; ξϕ;0; e0Þ; ð4:26aÞ

Λfðξϕ;ξϕ;0; e0Þ ¼
�
1þ

�
3715

1008
þ 55

12
η

�
ξ2=3ϕ þ � � � þOðξ2ϕÞ

−
785

272
e20

�
ξϕ;0
ξϕ

�
19=9

×

�
1þ

�
6955261

2215584
þ 436441

79128
η

�
ξ2=3ϕ

þ
�
2833

1008
−
197

36
η

�
ξ2=3ϕ;0 þ � � � þOðξ2ϕÞ

��
;

ð4:26bÞ

17In otherwords, one canusePNpower counting to infer the form
of the series shown in the solution (4.21). The series expansions are
more easily performed by introducing a dimensionless parameter
ϵ ∼Oð1=cÞ and substituting τ → τ=ϵ8 and τ0 → τ0=ϵ8. The ϵ
parameter is then set to 1 at the end of the calculation.

16The quasicircular results are all known to relative 3.5PN
order, but as our starting expressions for eccentric orbits are only
known to 3PN order, we restrict to purely 3PN results in this
section. The full expressions, listed in Sec. VI, include the 3.5PN
quasicircular terms.

MOORE, FAVATA, ARUN, and MISHRA PHYSICAL REVIEW D 93, 124061 (2016)

124061-20



where the additional terms to 3PNorder can be read off of Eq. (6.6b). PluggingEqs. (4.21) and (4.22) into the above equation and
expanding to 3PN order allows us to determine the time-dependent function λðtÞ,

λðτÞ − c̄λ ¼ −
1

η
τ5=8Λtðτ; τ0; e0Þ; ð4:27aÞ

Λtðτ;τ0;e0Þ¼
�
1þ

�
3715

8064
þ55

96
η

�
τ−1=4þ���þOðτ−3=4Þ

−
7065

11696
e20

�
τ

τ0

�
19=24

�
1þ

�
−
130000037

983719296
þ 3559001

11710944
η

�
τ−1=4þ

�
4445

3456
−
185

288
η

�
τ−1=40 þ���þOðτ−3=4Þ

��
;

ð4:27bÞ

with the full 3PN expression given in Eq. (6.9b).
Lastly, the secular evolution of l is determined by

dl
dt

¼ ξ

M
¼ ξðξϕÞ

M
; ð4:28Þ

where ξðξϕÞ is given by Eq. (3.10). As was the case for λ, this is straightforwardly integrated via

l − cl ¼
1

M

Z
ξðξϕÞ
dξϕ=dt

dξϕ: ð4:29Þ

Evaluating the integral using the same techniques as above gives

lðξϕÞ − cl ¼ −
1

32ηξ5=3ϕ

�
1þ

�
−
1325

1008
þ 55

12
η

�
ξ2=3ϕ þ � � � þOðξ2ϕÞ

−
785

272
e20

�
ξϕ;0
ξϕ

�
19=9

�
1þ

�
117997

2215584
þ 436441

79128
η

�
ξ2=3ϕ þ

�
2833

1008
−
197

36
η

�
ξ2=3ϕ;0 þ � � � þOðξ2ϕÞ

��
; ð4:30Þ

where the full 3PN expression is in Eq. (C2). A function of
time lðtÞ analogous to Eq. (4.27) can also be derived and is
given in Eq. (C3).
In this section, we have expressed the secular evolution of

the intrinsic constants ξϕ and et and the phase functions λ and
l. Resultswere expressed as functions of timeor the frequency
variable ξϕ. These results could also have been derived
directly in terms of the radial frequency variable ξ. They
can be converted to functions of ξ via substitution ofEq. (3.9).

V. EFFECT OF OSCILLATORY TERMS
IN THE PHASING

While the main goal of this work is to analytically
compute the secular corrections to the waveform phasing, it
is important to also consider the relative sizes of the
oscillatory contributions to the phasing. The Newtonian-
order GW polarizations in the low-et limit depend on the
orbital phase ϕ via hþ;× ∝ ðcos 2ϕ; sin 2ϕÞ. Recall that the
complete orbital phasing is the sum of three terms,

ϕ ¼ λþ ~λþWðet; ξ; lÞ; ð5:1Þ

where λ ¼ λ̄ is the secularly growing part of the phase
[Eq. (4.26)], ~λ is the radiation-reaction induced oscillatory
contribution to λ [Eq. (4.9f)], and Wðet; ξ; lÞ is the eccen-
tricity-induced oscillatory piece of the phase [cf., Eq. (A3d);
recall that we have dropped overbars on secularly varying
quantities]. Notice that ~λ andW both oscillate at multiples of
the radial orbital period, with amplitudes that vary on the
radiation-reaction time scale. Since ~λ ∼Oðξ5=3Þ ∼Oðξ5=3ϕ Þ
while λ ∼Oð1=ξ5=3ϕ Þ, this implies that ~λ represents a 5PN

relative correction [∼Oðξ10=3ϕ Þ ∼Oðv10Þ] to ϕ. Since our
phasing is only accurate to 3PN order, we can safely ignore
~λ. The W contribution to the phasing has a leading-order
termW ∼ 2et sin l; this is potentially of order unity (for large
et) and is not obviously ignorable. However, as we argue
below, this order unity contribution is oscillatory, decays
with time, and is vastly dominated by the secularly increas-
ing contribution λ to the total phase.
To better understand its contribution to the phasing, we

can explicitly evaluate theW term as a function of frequency.
Restricting for simplicity to 2PN order, W is expressed in
AppendixA as a function of themean anomaly l and a series
expansion in et:
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WðlÞ ≈ et sin l

�
2þ ð10 − ηÞξ2=3 þ

�
72 −

259

12
ηþ 1

12
η2
�
ξ4=3

�

þ e2t sin 2l

�
5

4
þ
�
31

4
− η

�
ξ2=3 þ

�
447

8
−
187

12
ηþ 1

12
η2
�
ξ4=3

�
þOðe3t Þ þOðξ2Þ; ð5:2Þ

where l ¼ l̄ and et ¼ ēt in the above expression. [As with ~λ, ~l and ~et represent relative 5PN corrections and can be ignored.]
An explicit expression in terms of the frequency variable ξϕ can be obtained by substituting Eqs. (3.10), (4.17), and (4.30) to
2PN order into (5.2); PN expanding then yields

WðξϕÞ ¼ e0

�
ξϕ;0
ξϕ

�
19=18

sin l

�
2þ

�
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1008
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36
η
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þ
�
−
28850671

12192768
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72576
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�
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þ e20
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�
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�
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þ
�
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4032
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144
η

�
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þ
�
14165

4032
−
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144
η

�
ξ2=3ϕ;0 þ
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288
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�
176530423

6096384
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72576
ηþ 37667

2592
η2
�
ξ4=3ϕ

þ
�
48396139

4064256
−
491399

72576
η −

165677

5184
η2
�
ξ2=3ϕ;0ξ

2=3
ϕ þ

�
−

5966255

12192768
−
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36288
ηþ 90775

5184
η2
�
ξ4=3ϕ;0

�
: ð5:3Þ

To estimate the magnitude ofW, we can inspect theOðe0Þ
Newtonian-order result, WNðfÞ¼2e0ðf0=fÞ19=18sinl,
where we have used ξϕ¼πMf and ξϕ;0 ¼ πMf0.
Clearly, this expression has a maximum value when
f ¼ f0 and scales linearly with e0. Section VIII below
demonstrates that e0 ≈ 0.1 is the maximum eccentricity to
which our low-eccentricity expressions are valid. We can
then estimate that the maximum error δϕ in the orbital
phasing due to the oscillatory terms is δϕ ≈WNðe0 ¼
0.1; f ¼ f0Þ ≈ 0.2 rad. Figure 3 shows an evaluation of
the full 2PN expression [Eq. (5.3)] for a NS/NS binary that
evolves through the LIGO band with e0 ¼ 0.1 at f0 ¼
10 Hz (and choosing cl ¼ 0). We can see that the amplitude
of the periodic term decreases sharply with increasing
frequency. Changing the binary masses of the system (which
does not affect the Newtonian-order expressionWN) leads to
a slight change in the amplitude; however, the qualitative
behavior of the curve remains unchanged. The maximum
values of Eq. (5.3) for NS/NS, BH/BH, and NS/BH binaries
with e0 ¼ 0.1 are 0.207, 0.224, and 0.217 rad, respectively.
This corresponds to a correction to the number of GW cycles
of δNcyc;W ∼ 0.2=π ≲ 0.07. Since this effect is small and
decays rapidly, we ignore it when computing corrections to
the PN approximants in the next section. However, we note
that this oscillatory contribution is comparable (for some
systems) to the 2.5PN and 3PN secular eccentric corrections
that we compute (see Sec. VII and the tables presented
there). We also note that when eccentricities are large (in
which case our formalism is not valid), these oscillatory

terms will contribute phase errors ∼Oð1Þ and should not be
ignored.

VI. POST-NEWTONIAN APPROXIMANTS

For quasicircular inspiralling binaries, the GW signal at
leading PN order takes the form given in Eq. (2.3).

0 100 200 300 400 500 600 700 800 900 1000

-0.2

-0.1

0.0

0.1

0.2

W
 (

 f 
)

f  (Hz)

m
1
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2
 = 1.4 M

e
0
 = 0.1 at 10 Hz

FIG. 3. Oscillatory contribution to the orbital phasingWðfÞ for a
NS/NS binarywith e0 ¼ 0.1 at 10Hz. The function has amaximum
amplitude of ∼0.2 (with little dependence on the binary masses)
which decays along with the binary eccentricity. The resulting
contribution to the GW phasing is small for low eccentricity.
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Neglecting corrections to the waveform amplitude that scale
as OðetÞ and higher [cf. Eq. (A4)], our low-eccentricity
waveforms take the same (quasicircular) form.What remains
is a determination of the orbital phase ϕðtÞ. In the quasi-
circular limit (and in the adiabatic approximation—i.e., the
assumption that the orbital time scale is much shorter than
the radiation reaction time scale), the phase evolution is
governed by the following differential equations,

dϕ
dt

¼ ξϕ
M

¼ v3

M
; ð6:1aÞ

dv
dt

¼ −
F ðvÞ

dEðvÞ=dv ; ð6:1bÞ

where in this section we express quantities in terms of the
relative orbital velocity parameter v ¼ ξ1=3ϕ ¼ ðπMfÞ1=3. In
the above, F ðvÞ is the gravitational-wave luminosity (often
referred to as the energy flux), and EðvÞ is the orbit energy.
Different approaches for solving these differential equations
are referred to as different PN approximants (see e.g.,
Ref. [121] and references therein, which we follow in this
section).18

For eccentric orbits, the orbital phase includes the
oscillatory terms in Eq. (5.1) above. However, as we have
argued in Sec. V, the oscillatory terms contribute ≲0.2 rad
for e0 ≲ 0.1. Assuming this is an acceptably small error, we
can ignore these oscillatory terms. In this limit, Eqs. (6.1)
carry over unchanged to the case of small-eccentricity
binaries if we take ϕ → hϕi ¼ λ (recall that we are
dropping overbars on secularly varying quantities). The
oscillatory effects encapsulated inW could be incorporated
into the PN approximants by adding terms equal to dW=dt
and M

3v2
d2W
dt2 to the right-hand sides of Eqs. (6.1a) and (6.1b),

respectively. This will be considered in future work.
We note that the above equations imply that two initial

conditions must be supplied: ϕðt0Þ and vðt0Þ [or equiv-
alently fðt0Þ], along with the binary masses and the
eccentricity e0 at a reference frequency f0. However, for
arbitrarily elliptical orbits, one must specify an additional

parameter—equivalent to the argument of pericenter ϖ—
which determines the orientation of the ellipse that is
momentarily tangent to the orbit. Toward the end of
Appendix A, we discuss how a parameter like ϖ enters
the waveform and how it relates to the constants cl and cλ.
This parameter does not enter our approximants for two
reasons: (i) since we ignoreOðetÞ and higher corrections to
the polarization amplitudes, we need only to evolve the
phase variable ϕðtÞ [and can ignore the other phase variable
lðtÞ]; (ii) furthermore, because we ignore the oscillatory
corrections to ϕðtÞ that arise fromWðlÞ, the dependence on
the initial orientation of the ellipse (which enters via cl)
drops out of our waveforms completely.
In the remainder of this section, we derive the small-

eccentricity extensions to the standard PN approximants to
3PN order, starting with appropriate expressions for the
orbital energy and GW luminosity. Most of these approx-
imants can also be derived following the procedure outlined
in Sec. IVD. The approximants presented here were derived
via both approaches and cross-checked by at least two of the
authors. In this section, our goal is to provide a derivation
that does not require understanding a significant amount of
the “context” provided by the quasi-Keplerian formalism.
The 3.5PN-order circular terms were not derived here nor in
Sec. IVD but can be found in Ref. [121]; for completeness,
we added those terms to our expressions below.

A. 3PN energy, energy flux, and TaylorT1

The TaylorT1 approximant is obtained by numerically
solving Eqs. (6.1) without expanding the ratio in Eq. (6.1b).
To compute this (and the other approximants), we require
expressions for the orbital energy and GW luminosity
(energy flux). These are given in ADM gauge in Eqs. (6.5a)
and (7.4a) of Ref. [92]. Taking those expressions to Oðe2t Þ,
expressing them in MH gauge [via Eq. (4.10)], substituting
etðvÞ [Eq. (4.17)], and simultaneously expanding in v and
v0 yields the low-eccentricity limit of the orbital energy and
flux functions (expressed explicitly as functions of v):

EðvÞ ¼ −
1

2
ηMv2

�
1 −

�
3

4
þ 1

12
η

�
v2 þ

�
−
27

8
þ 19

8
η −

1

24
η2
�
v4 þ

�
−
675

64
þ
�
34445

576
−
205

96
π2
�
η −

155

96
η2

−
35

5184
η3
�
v6 þ e20

�
v0
v

�
19=3

�
−2v2 þ

�
−
6743

504
þ 37

18
η

�
v4 þ

�
−
2833

504
þ 197

18
η

�
v2v20 þ

377

36
πv5

−
377

36
πv2v30þ

�
1193251

1524096
þ 66317

4536
η −

18155

648
η2
�
v2v40 þ

�
−
19102919

508032
þ 179149

2268
η −

7289

648
η2
�
v4v20

þ
�
−
68531831

762048
þ
�
1093055

4536
−
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16
π2
�
ηþ 1751

324
η2
�
v6
�
þOðv8Þ

�
; ð6:2Þ

18Note that our notation differs slightly from Ref. [121] in that we take E to be the orbital energy; Ref. [121] uses that symbol to
denote the orbital energy divided by M. This leads to different factors of M appearing in our Eqs. (6.1) and (6.5) as compared with the
equations in Ref. [121].
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F ðvÞ ¼ 32
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η2v10
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As it is explicitly needed to compute the TaylorT1 approximant, we also list here the derivative dE=dv:
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B. TaylorT2

The TaylorT2 approximant is obtained by series expanding the ratio in Eq. (6.1b) to the appropriate PN order. One then
analytically obtains a parametric solution for the phase ½hϕiðvÞ; tðvÞ� by integrating

dhϕi
dv

¼ dhϕi
dt

dt
dv

¼ −
v3

M
dEðvÞ=dv
F ðvÞ ; ð6:5aÞ

dt
dv

¼ −
dEðvÞ=dv
F ðvÞ : ð6:5bÞ

Expanding to 3PN order and Oðe20Þ, the resulting solutions are

hϕi − ϕc ¼ −
1

32v5η
Λfðv; v0; e0Þ; ð6:6aÞ
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tc − t ¼ 5
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T ðv; v0; e0Þ; ð6:7aÞ
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C. TaylorT3

The TaylorT3 approximant is obtained by performing a series reversion of tðvÞ to obtain vðtÞ. This is then used to
compute the phase as an explicit function of time, hϕiðtÞ ¼ hϕi½v ¼ vðtÞ�. This procedure is equivalent to the derivation of
Eqs. (4.21) and (4.27). Here, we express the result in terms of the notation used in Ref. [121]. They introduce a parameter θ
which is related to our τ by θ ¼ τ−1=8 ¼ ½ηðtc − tÞ=ð5MÞ�−1=8. Our low-eccentricity equations for the time evolution of the
fundamental gravitational-wave frequency F≡ ξϕ=ðπMÞ ¼ f and the secular piece of the orbital phase hϕi then become

F ¼ 1

8πM
θ3Ξðθ; θ0; e0Þ; ð6:8aÞ

Ξðθ;θ0; e0Þ ¼
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þ 56975

258048
ηþ 371

2048
η2
�
θ4þ

�
−

7729

21504
þ 13

256
η

�
πθ5

þ
�
−
720817631400877

288412611379200
þ 107

280
γE þ

53

200
π2þ

�
25302017977

4161798144
−

451

2048
π2
�
η−

30913

1835008
η2 þ 235925

1769472
η3

þ 107

280
lnð2θÞ

�
θ6þ

�
−
188516689

433520640
−

97765

258048
ηþ 141769

1290240
η2
�
πθ7

−
471

344
e20

�
θ0
θ

�
19=3

�
1þ

�
−

7647061

70265664
þ 209353

836496
η

�
θ2 þ

�
4445

3456
−
185

288
η

�
θ20 −

256883

3074688
πθ3þ 61

2880
πθ30

þ
�
−
1172375466061

6586984406016
þ 439689491

8477457408
ηþ 91590343

1867059072
η2
�
θ4 þ

�
1024948915

1170505728
−
1026871

6967296
ηþ 14971

165888
η2
�
θ40

þ
�
−

4855883735

34691162112
þ 495545305

1264781952
η−

1046765

6511104
η2
�
θ2θ20þ

�
49653615200993

96325793464320
−

449103385817

1146735636480
η

�
πθ5

þ
�
−
12410299

17418240
þ 576391

1451520
η

�
πθ50þ

�
−

1141844935

10626121728
þ 47523355

885510144
η

�
πθ3θ20

þ
�
−

466470721

202365112320
þ 12770533

2409108480
η

�
πθ2θ30 þ

�
−

744458420948735

3252088301027328
þ 12376149277895

68362216538112
η

MOORE, FAVATA, ARUN, and MISHRA PHYSICAL REVIEW D 93, 124061 (2016)

124061-26



þ 896664159665

30111928713216
η2 −

457951715

14532784128
η3
�
θ4θ20 −

15669863

8855101440
π2θ3θ30 þ

�
−

7837846874888815

82246362193723392

þ 76760406851419

326374453149696
η −

60493466573

1295136718848
η2 þ 3134223763

138764648448
η3
�
θ2θ40 þ

�
71857244107315089475141

32866417392257433600000

−
75936937

158256000
γE −

9863961577

44275507200
π2 þ

�
−
672050112032567

87421728522240
þ 1214953

3858432
π2
�
ηþ 380720733285643

1129197326745600
η2

−
231474834959

8065695191040
η3 −

53821

14836500
ln 2 −

65964537

140672000
ln 3 −

75936937

158256000
ln θ

�
θ6 þ

�
−
55579234653596057

23361421521715200

þ 15943

40320
γE þ 3968617

16588800
π2 þ

�
21736949245913

1685528248320
−
12751

24576
π2
�
η −

1742350567

4013162496
η2 þ 4790953

143327232
η3

þ 8453

7560
ln 2 −

26001

35840
ln 3þ 15943

40320
ln θ0

�
θ60

��
; ð6:8bÞ

hϕi − ϕc ¼ −
1

ηθ5
Λtðθ; θ0; e0Þ; ð6:9aÞ
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In the above, θ0 is the dimensionless reference time defined by etðθ0Þ ¼ e0 (analogous to τ0 in Sec. IV D).
The TaylorT3 approximant has been shown to behave very differently from the other approximants. It displays a

nonmonotonic frequency evolution (the orbital frequency starts to decrease before the ISCO is reached; see Fig. 1 of
Ref. [121]). It also has worse overlaps with an EOBNR model in comparison to the other approximants [121]. We have
performed our own comparison by examining the frequency evolution as a function of time for TaylorT1, TaylorT3, and
TaylorT4 (defined in the next section). While all three agree well at early times (large orbital separations), as the ISCO is
approached, TaylorT3 deviates substantially from the other two approximants (which remain close to each other). In fact,
TaylorT3 diverges before the Schwarzschild ISCO frequency is reached. This behavior remains when the comparison is
performed by truncating the series at different PN orders; it is present for small and large mass ratios. In contrast, TaylorT1
and TaylorT4 remain relatively close to each other for all PN orders and are finite at the ISCO. We also observe the
nonmonotonic behavior reported in Ref. [121]: for some PN orders, TaylorT3 reaches a peak frequency and decreases
before the ISCO. TaylorT1 and TaylorT4 display a monotonically increasing frequency. For these reasons we recommend
that the TaylorT3 approximant should not be used in practical applications. We include it here only for completeness.

D. TaylorT4

In the TaylorT4 approximant, the right-hand side of Eq. (6.1b) is series expanded; the resulting system (6.1) is then
solved numerically. Our low-eccentricity equation for dv=dt is equivalent to substituting ξϕ → v3 and ξϕ;0 → v30 in
Eq. (4.18):
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E. TaylorF2 (SPA)

Unlike the previous time-domain approximants,
TaylorF2 is a frequency-domain approximant consisting
of the phase of the Fourier transform of the GW signal
evaluated in the SPA. Working at 0PN order and Oðe0t Þ in
the waveform amplitude significantly simplifies the calcu-
lation as one can begin with Eqs. (2.3) (which contain no
harmonics beyond the fundamental GW frequency).
Accounting for the antenna patterns Fþ;× of the detector
allows us to write the GW signal in the form

h ¼ Fþhþ þ F×h×; ð6:11aÞ
¼ AðtÞ cosΦðtÞ ¼ AðtÞ cos½2ϕðtÞ − 2Φ0�; ð6:11bÞ

where

AðtÞ ¼ −
2ηM
D

½vðtÞ�2½ð1þ C2Þ2F2þ þ 4C2F2
×�1=2 and

ð6:12Þ

Φ0 ¼
1

2
arctan

�
2F×C

Fþð1þ C2Þ
�
: ð6:13Þ

(Recall that C ¼ cos ι with ι the inclination angle.)
To compute the Fourier transform

~hðfÞ≡
Z

∞

−∞
hðtÞe2πiftdt ð6:14Þ

via the SPA, we first use cosΦ ¼ ðeiΦ þ e−iΦÞ=2 to split
~hðfÞ into two integrals,

~hðfÞ ¼ 1

2

Z þ∞

−∞
AðtÞ½eifφþðtÞ þ eifφ−ðtÞ�dt; ð6:15Þ

where φ� ¼ 2πt� ΦðtÞ=f. Here, f represents the observed
GW frequency (which for general orbits is not the same as
twice the azimuthal orbital frequency [i.e., in this section,
we initially assume f ≠ ξϕ=ðπMÞ]. The method of sta-
tionary phase can then be used to compute integrals of the
form [122]

IðfÞ ¼
Z

b

a
AðtÞeifφðtÞdt: ð6:16Þ

For large values of the parameter f, the integrand oscillates
rapidly and causes large cancellations when integrated.
[Integration by parts shows that this integral scales like
IðfÞ ¼ Oð1=fÞ if _φ ≠ 0.]
The SPA relies on the fact that the integral (6.15) is

dominated by contributions near times when the φ� are
stationary ( _φ� ¼ 0). This is equivalent to the statement

_λþ _W ¼ ∓ πf: ð6:17Þ

Because _λ > 0, in the quasicircular limit ( _W ¼ 0), it can be
shown that φþ has no real stationary points for positive f,

while φ− has a single stationary point at t ¼ t0 given by
2πf ¼ dΦ=dtðt0Þ. When _W ≠ 0, the condition _φþ ¼ 0 is
satisfied for f > 0 provided that _W < −_λ. A numerical
investigation indicates that this is safely satisfied for low-
eccentricity waveforms (et ≲ 0.3) but not for large eccen-
tricity ones. Because the φþ contribution to the integral has
no stationary points in the low-eccentricity limit, the
rapidly varying phase results in a near perfect cancellation
when that part of the integral is evaluated. For this reason,
the first integral in Eq. (6.15) can be ignored. However, if
φðtÞ is roughly constant over some interval (as is the case
for φ−), then there will be less cancellation, and most of the
value of the integral will come from the region near
t ¼ t0 where _φðt0Þ ¼ 0. Using this fact, the second
integral in (6.15) can be evaluated by Taylor expanding
the phase function φ− about its stationary point: φ−ðtÞ≈
φ−ðt0Þ þ 1

2
φ̈−ðt0Þðt − t0Þ2 þ � � �.

Note that, while φ− has a single stationary point t0 in the
quasicircular case, when eccentricity oscillations are
included φ− acquires multiple stationary points (even for
low values of et). Because of this, eccentric waveforms
cannot be strictly treated in the SPA approximation.
However, when eccentricity is small, the effect of the
oscillatory terms encapsulated in W is to add a rapid but
small oscillation to φ−. These oscillations are on a much
shorter time scale than the evolution ofφ− near the stationary
point, so they are essentially averaged away when the
integral is performed. The quadratic order Taylor expansion
ofφ− given above remains an accurate approximation for the
small eccentricities we consider here. We will explore these
issues inmore detail in a futurework; at the level of accuracy
suitable for our present purposes, we setW → 0 and proceed
as in the quasicircular case.
Substituting the above expansion for φ−, the Fourier

transform then becomes19

~hðfÞ ≈ 1

2
Aðt0Þeifφ−ðt0Þ

Z þ∞

−∞
e
if
2
φ̈−ðt0Þðt−t0Þ2dt; ð6:18Þ

where fφ−ðt0Þ ¼ 2πft0 − Φðt0Þ and fφ̈−ðt0Þ ¼ −Φ̈ðt0Þ.
Since the orbital frequency is monotonically increasing
(when ignoring orbital time scale oscillations due to W),
Φ̈ > 0, and the integral is convergent. The integral can be
evaluated using

19Note also that the function hðtÞ must additionally satisfy the
following conditions [123]: i) its amplitude must vary slowly
compared to the phase, _A=A ≪ _Φ, so that the amplitude can be
approximated as nearly constant near the stationary point, and
ii) the phase must satisfy Φ̈ ≪ _Φ2, which guarantees that the
phase does not vary too quickly and that a real stationary point
exists. These conditions are satisfied provided the eccentricity is
small and the binary is not too close to its last stable orbit.
Detailed discussion of the validity of the SPA and corrections to it
can be found in Refs. [124,125].
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Z þ∞

−∞
e−au

2

du ¼
ffiffiffiffiffiffiffiffi
π=a

p
for a > 0: ð6:19Þ

The Fourier transform then becomes

~hðfÞ ≈ Aðt0ðfÞÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Φ̈ðt0ðfÞÞ

s
ei½2πft0ðfÞ−Φðt0ðfÞÞ−π=4�; ð6:20Þ

where we have used i−1=2 ¼ e−iπ=4. The function t0ðfÞ is
determined by the stationarity condition 2πf ¼ _Φðt0Þ.20
Using

Φ̈½t0ðfÞ� ¼ 2ϕ̈ ≈ 2 ̈λ ¼ 2
_ξϕ
M

≈
192

5

η

M2
ðπMfÞ11=3; ð6:21Þ

A½t0ðfÞ� ¼ −2
ηM
D

ðπMfÞ2=3½ð1þ C2Þ2F2þ þ 4C2F2
×�1=2;
ð6:22Þ

we can write the SPA as

~hðfÞ ¼ AeiΨ; ð6:23Þ

where

A ¼ −M
ffiffiffiffiffiffi
5π

96

r �
M
D

� ffiffiffi
η

p ðπMfÞ−7=6

× ½ð1þ C2Þ2F2þ þ 4C2F2
×�1=2; ð6:24Þ

Ψ ¼ 2πft0ðfÞ − 2ϕ½tðfÞ� þ 2Φ0 −
π

4
; ð6:25Þ

and ϕ ≈ λ in the above equation (i.e., we are ignoring all
oscillatory terms). UsingEqs. (6.7) and (6.6) for t0 andϕ and
simplifying, we arrive at our final result for the SPA phase,

Ψ¼ ψ0þ 2πftcþ
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1296
η2
�
v40−

�
2831492681

118395270
þ 11552066831

270617760
η

�
πv5þ

�
−
7986575459

284860800

þ 555367231

10173600
η

�
πv3v20þ

�
112751736071

5902315776
þ 7075145051

210796992
η

�
πv2v30þ

�
764881

90720
−
949457

22680
η

�
πv50

þ
�
−
43603153867072577087

132658535116800000
þ 536803271

19782000
γEþ

15722503703

325555200
π2þ

�
299172861614477

689135247360
−
15075413

1446912
π2
�
η

þ 3455209264991

41019955200
η2þ 50612671711

878999040
η3þ 3843505163

59346000
ln2−

1121397129

17584000
ln3þ 536803271

39564000
lnð16v2Þ

�
v6

þ
�
46001356684079

3357073133568
þ 253471410141755

5874877983744
η−

1693852244423

23313007872
η2−

307833827417

2497822272
η3
�
v4v20−

1062809371

20347200
π2v3v30

þ
�
−
356873002170973

249880440692736
−
260399751935005

8924301453312
ηþ 150484695827

35413894656
η2þ 340714213265

3794345856
η3
�
v2v40

þ
�
26531900578691

168991764480
−
3317

126
γEþ

122833

10368
π2þ

�
9155185261

548674560
−
3977

1152
π2
�
η−

5732473

1306368
η2−

3090307

139968
η3

þ 87419

1890
ln2−

26001

560
ln3−

3317

252
lnð16v20Þ

�
v60

��
; ð6:26Þ

20If the phase has more than one stationary point, then this procedure can be repeated at each point and the resulting integrals summed.
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where the constant ψ0 ¼ 2Φ0 − 2ϕc − π=4. Recall that tc
and ϕc represent the time and phase of coalescence. Along
with the other PN approximants in this section, Eq. (6.26)
represents one of our main results.

VII. POST-NEWTONIAN CONTRIBUTIONS
TO THE NUMBER OF WAVE CYCLES

With the above results in hand, we can now examine the
significance of the various PN correction terms to the secular
phasing. There are variousways of quantifying this, and here
we choose to examine three easily computable quantities,
applying them to fiducial sources for LIGO and eLISA.
The first quantity we compute is the number of GW

cycles in the time-domain waveform as the signal sweeps
from an initial frequency f1 to a final frequency f2,

ΔNcyc ¼
1

π
½λðf2Þ − λðf1Þ�; ð7:1Þ

where λ ¼ hϕi is given by Eqs. (6.6). Notice that this is
simply twice the number of (azimuthal) orbits. The initial
frequency f1 is taken to be 10 Hz for LIGO (an estimate of
the seismic cutoff for the final design sensitivity) and one
year or one month before the ISCO frequency for eLISA
sources. The latter is computed via

f1ðδtÞ ¼ fiscoð1þ δt=τrr;iscoÞ−3=8; ð7:2Þ

where δt is the time before the ISCO frequency and
τrr;isco ¼ ð5=256Þη−1M−5=3ðπfiscoÞ−8=3. (This 0PN-order
formula for the initial frequency assumes circular orbits
and makes a few percent error in the initial frequency.)
The reference frequency f0 entering all the PN approx-
imants is set equal to f1. The termination frequency f2 is
taken to be 1000 Hz for NS/NS systems (in between the
tidal disruption and last-stable-orbit frequencies) and the
Schwarzschild ISCO fisco ¼ ð63=2πMÞ−1 for all other
sources. These choices are made for simplicity and to
conform with standard practice for comparing the sizes of
different PN terms (see, e.g., Refs. [126,127]). The results
are shown in Tables III, IV, and V for LIGO and eLISA
sources, where each row shows the contribution to ΔNcyc

from each PN order. The eccentric contributions are for an
initial eccentricity e0 ¼ 0.1; those numbers can be scaled to
other values by multiplying by ðe0=0.1Þ2. In computing
these numbers, we made use of the following constants21:

1 km ¼ 3.335640952 × 10−6 s; ð7:3Þ

1 yr ¼ 3.1557600 × 107 s; ð7:4Þ

1 M⊙ ¼ 4.925491025 × 10−6 s; ð7:5Þ

¼ 1.4766225061 km: ð7:6Þ

The quantity ΔNcyc above represents the simplest
approach for assessing the importance of PN phase
corrections. Alternative (but more computationally diffi-
cult) methods include the computation of waveform over-
laps, fitting factors, or systematic parameter estimation
errors (the latter being of greatest observational signifi-
cance). We leave analysis via these methods to future work.
Instead, we investigate two additional methods that are
comparable in simplicity to Eq. (7.1).
The first is the difference ΔNcyc;Ψ in the number of

accumulated GW cycles computed via the SPA phase Ψ of
the waveform’s Fourier transform ~hðfÞ. This quantity
provides a better representation of the importance
of PN corrections thanΔNcyc because it isΨ which directly
enters the inner product between a GW signal and a
template waveform. For example, consider a “true” GW
signal hT with Fourier transform of the form ~hT ¼
A0eiðΨ0þδΨÞ. Suppose an approximate search template
hAP has the Fourier transform ~hAP ¼ A0eiΨ0 . The template
differs from the true signal by an unmodeled PN phase
correction δΨ. A straightforward calculation shows that
the standard noise-weighted inner product between hT and
hAP is

ðhAPjhTÞ ¼ 2

Z
∞

0

~hAP ~h
�
T þ ~h�AP ~hT
SnðfÞ

df

¼ 4

Z
∞

0

jA0j2
SnðfÞ

cos δΨdf; ð7:7Þ

where SnðfÞ is the detector noise spectral density. The
above expression indicates that a phase error δΨ ∼ π rad
will cause a near cancellation in the inner-product integral,
leading to a significant loss in template overlap. It is thus
errors in the SPA phase (not twice the orbital phase 2ϕ) that
more directly impact GW data analysis. One approach to
quantifying these SPA phase errors that is analogous to
Eq. (7.1) is to define the quantity

ΔNcyc;Ψ ¼ 1

2π

�
Ψðf2Þ −Ψðf1Þ þ ðf1 − f2Þ

dΨ
df1

�
; ð7:8Þ

where Ψ is given by Eq. (6.26). The above equation is
constructed by requiring that constants ψ0 and tc are chosen

21The kilometer-second relation comes from the definition c ¼
1 ¼ 299792458 m=s [128]. The year is taken as the Julian year
which is precisely 365.25 days, with one day ¼ 86400 s [129].
The relations involving the solar mass come from the value
GM⊙¼ð1.32712442099×1020�1×1010Þm3=s2 in Barycentric
Coordinate Time (TCB) [129]. This is the value used by the
LIGO Algorithms Library (LAL). Using Barycentric Dynamical
Time (TDB) would cause a difference in the seventh decimal
place of Eq. (7.5).
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such that ΔNcyc;Ψ and dΔNcyc;Ψ

df vanish at f ¼ f1.
22 Any

phase contributions from PN corrections ΔNcyc;Ψ ≳ 1
2
cycle

will negatively impact data analysis. These phase errors are
listed in the tables along with ΔNcyc.
In Ref. [124], an alternative measure called the number

of useful cycles ΔNuseful was introduced.
23 This effectively

weights the number of cycles according to their contribu-
tions to the SNR. To define this quantity, we first note that
Eq. (7.1) can be expressed in the form

ΔNcyc ¼
Z

f2

f1

dNcyc

df
df; ð7:9Þ

where

dNcyc

df
¼ 1

π

dλ
df

¼ 1

π

dλ=dt
df=dt

¼ f
df=dt

: ð7:10Þ

The SNR ρ is defined via

ρ2 ¼ ðhjhÞ ¼ 4

Z
∞

0

j ~hðfÞj2
SnðfÞ

df: ð7:11Þ

This can be expressed in terms of dNcyc=df using the fact

that j ~hðfÞj ¼ A ¼ A½t0ðfÞ�=ð2
ffiffiffiffiffiffiffiffiffiffiffiffi
df=dt

p Þ [see Eq. (6.20)
and the associated discussion]:

ρ2 ¼
Z

∞

0

�
A2

fSn

�
dNcyc

df
df: ð7:12Þ

If we define the weight function

WðfÞ ¼ AðfÞ2
fSnðfÞ

; ð7:13Þ

we see that the SNR ρ is simply
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔNcyc

p
appropriately

weighted by WðfÞ. This leads us to define the number of
useful cycles according to

ΔNuseful ¼
�Z

f2

f1

W
dNcyc

df
df

��Z
f2

f1

W
df
f

�
−1
: ð7:14Þ

While our notation and method of presentation differ from
Sec. IIB of Ref. [124], our Eq. (7.14) for ΔNuseful is
completely equivalent to their Eq. (2.24). Here, we tried to
make clear the connection betweenΔNcyc andΔNuseful. Note
that if the weight function W → 1, then ΔNuseful →
ΔNcyc=½lnðf2=HzÞ − lnðf1=HzÞ�. However, the definition
in Eq. (7.14) is problematic in that it allows the number of
useful cycles to vastly exceed the number of (actual) cycles.
This is especially apparent for EMRI sources. Considering
this, we suggest that a more appropriate definition of the
useful cycles incorporates the following normalization:

TABLE III. Post-Newtonian contributions to the number of gravitational-wave cycles ΔNcyc, ΔNcyc;Ψ, and ΔNnorm
useful for compact-

object binaries in the LIGO band. The first column lists the post-Newtonian order and the type of term: “(circ)” refers to the quasicircular
contributions at that PN order, and “(ecc)” refers to the leading-order eccentric PN terms that are computed here. The initial frequency f1
is the seismic cutoff for Advanced LIGO (10 Hz). The final frequency f2 is the ISCO frequency for systems involving BHs and 1000 Hz
for NS/NS binaries. The numbers in the (ecc) rows assume an initial eccentricity e0 ¼ 0.1 at f0 ¼ f1. These values can be scaled to other
values of e0 by multiplying by ðe0=0.1Þ2. All numbers are rounded to at least three significant digits.

1.4M⊙ þ 1.4M⊙, f2 ¼ 1000 Hz 1.4M⊙ þ 10M⊙, f2 ¼ 386 Hz 10M⊙ þ 10M⊙, f2 ¼ 220 Hz

PN order ΔNcyc ΔNcyc;Ψ ΔNnorm
useful ΔNcyc ΔNcyc;Ψ ΔNnorm

useful ΔNcyc ΔNcyc;Ψ ΔNnorm
useful

0PN(circ) 16 031 986 372 1821 3577 82 853 492 602 7715 101
0PN(ecc) −463 −36 137 −6.37 −103 −3052 −1.77 −17.5 −286 −0.385
1PN(circ) 439 21 743 125 213 4003 69.0 59.3 622 21.8
1PN(ecc) −15.8 −1193 −0.332 −9.00 −258 −0.221 −2.21 −35.0 −0.0743
1.5PN(circ) −208 −8520 −94.8 −181 −2877 −89.3 −51.4 −463 −27.4
1.5PN(ecc) 1.67 103 0.113 1.52 35.2 0.128 0.450 5.75 0.0482
2PN(circ) 9.54 294 6.70 9.79 123 7.08 4.06 30.1 3.04
2PN(ecc) −0.215 −15.4 −0.008 17 −0.285 −7.77 −0.0118 −0.112 −1.67 −0.006 69
2.5PN(circ) −10.6 −218 −10.6 −20.0 −186 −20.0 −7.14 −41.4 −7.14
2.5PN(ecc) 0.0443 2.61 0.004 73 0.106 2.34 0.0130 0.0442 0.539 0.007 25
3PN(circ) 2.02 18.2 2.80 2.30 9.14 3.55 2.18 8.29 2.98
3PN(ecc) 0.002 00 0.119 −0.000 238 0.0173 0.412 −0.000 067 2 0.005 08 0.0719 −0.000 724
3.5PN(circ) −0.662 −4.39 −0.977 −1.82 −7.65 −2.79 −0.818 −2.56 −1.24

Total 15 785 962 445 1843 3488 80 637 458 589 7552 92.6

22The use of this particular metric for waveform errors is less
common in the literature. A version of it was brought to our
attention by É. Flanagan [19,130].

23Shortly before submitting this paper, we learned of an
additional measure called the effective cycles of phase [131].
This is equivalent to the waveform distinguishability criterion of
Ref. [132] and is closely related to ΔNuseful.
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ΔNnorm
useful ¼

�Z
f2

f1

W
dNcyc

df
df

��Z
f2

f1

W
df
f

�
−1

× ½lnðf2=HzÞ − lnðf1=HzÞ�: ð7:15Þ

This normalized useful cycles definition then precisely
reduces to ΔNcyc when the weight function W → 1. Note
that ΔNnorm

useful is a factor ∼3–6 larger than ΔNuseful (for LIGO
band binaries).
Along with the previous measures, we also show

ΔNnorm
useful in Tables III, IV, and V. In evaluating Eq. (7.15),

f1;2 are chosen as before, A ¼ βf2=3 [the value of β can be
inferred from Eq. (6.22) but does not enter ΔNnorm

useful], and
the detector spectral density curves come from Eq. (4.7) of

Ref. [133] for LIGO and Eq. (1) of Ref. [134] for eLISA.24

From examining these tables, we can make the following
observations:

TABLE IV. Same format as Table III, except listing SMBH sources for eLISA. Here, f2 is the Schwarzschild ISCO GW frequency,
and f1 is the GW frequency of the binary 1 month before the ISCO.

106M⊙ þ 106M⊙ 105M⊙ þ 106M⊙ 105M⊙ þ 105M⊙
f1 ¼ 0.000115 Hz, f2 ¼ 0.00220 Hz f1 ¼ 0.000252 Hz, f2 ¼ 0.00400 Hz f1¼0.000483Hz, f2 ¼ 0.0220 Hz

PN order ΔNcyc ΔNcyc;Ψ ΔNnorm
useful ΔNcyc ΔNcyc;Ψ ΔNnorm

useful ΔNcyc ΔNcyc;Ψ ΔNnorm
useful

0PN(circ) 479 5303 27.9 1051 9461 82.9 2030 55 788 120
0PN(ecc) −13.9 −197 −0.0128 −30.6 −353 −0.0632 −58.7 −2052 −0.104
1PN(circ) 51.4 467 10.8 107 793 26.5 126 2796 26.5
1PN(ecc) −1.93 −26.4 −0.004 98 −4.82 −54.0 −0.0212 −4.58 −155 −0.0177
1.5PN(circ) −46.2 −363 −17.4 −120 −778 −50.2 −88.1 −1648 −33.6
1.5PN(ecc) 0.411 4.53 0.006 62 1.09 9.78 0.0300 0.731 20.1 0.0144
2PN(circ) 3.78 24.6 2.40 7.77 42.1 5.17 5.79 85.1 3.74
2PN(ecc) −0.107 −1.38 −0.000 948 −0.271 −2.89 −0.003 13 −0.142 −4.54 −0.001 53
2.5PN(circ) −6.83 −35.2 −6.83 −19.8 −86.6 −19.8 −8.82 −94.0 −8.82
2.5PN(ecc) 0.0441 0.465 0.001 90 0.138 1.18 0.007 68 0.0443 1.16 0.002 02
3PN(circ) 2.14 7.44 3.54 2.18 5.27 4.14 2.37 14.0 3.68
3PN(ecc) 0.005 42 0.0665 −0.000 713 0.0348 0.328 −0.001 50 0.003 60 0.106 −0.004 68
3.5PN(circ) −0.807 −2.34 −1.60 −2.14 −5.56 −4.01 −0.864 −3.95 −1.52

Total 467 5181 18.8 991 9032 44.7 2004 54 747 110

TABLE V. Same as Table IV, except listing EMRI sources for eLISA and with the initial frequency 1 yr before ISCO.

1M⊙ þ 106M⊙ 10M⊙ þ 105M⊙ 10M⊙ þ 106M⊙
f1 ¼ 0.00404 Hz, f2 ¼ 0.00440 Hz f1 ¼ 0.00551 Hz, f2 ¼ 0.0440 Hz f1 ¼ 0.00274 Hz, f2 ¼ 0.00440 Hz

PN order ΔNcyc ΔNcyc;Ψ ΔNnorm
useful ΔNcyc ΔNcyc;Ψ ΔNnorm

useful ΔNcyc ΔNcyc;Ψ ΔNnorm
useful

0PN(circ) 132 844 5920 132 474 270 628 1 116 876 226 651 105 270 33 493 94 979
0PN(ecc) −7975 −366 −7925 −8060 −42 797 −5766 −4637 −1694 −3669
1PN(circ) 47 573 2100 47 494 37 604 131 181 33 805 32 596 9860 30 660
1PN(ecc) −6867 −314 −6827 −2001 −10 344 −1461 −3223 −1154 −2604
1.5PN(circ) −108 805 −4781 −108 684 −56 117 −175 279 −52 344 −69 528 −20 481 −66 760
1.5PN(ecc) 1257 51.8 1265 568 2289 484 1045 289 1042
2PN(circ) 10 491 459 10 485 3662 10 040 3541 6265 1796 6139
2PN(ecc) −1875 −85.0 −1865 −167 −826 −126 −731 −253 −611
2.5PN(circ) −50 686 −2206 −50 686 −12 442 −29 361 −12 442 −28 341 −7899 −28 341
2.5PN(ecc) 974 41.1 977 114 443 98.6 574 162 566
3PN(circ) 4082 175 4090 251 −78.3 306 1839 460 1973
3PN(ecc) 1131 47.7 1136 46.6 198 38.8 534 154 517
3.5PN(circ) −10 838 −467 −10 850 −1481 −2464 −1565 −5345 −1406 −5561

Total 11 308 576 11 083 232 605 999 878 191 219 36 317 13 326 28 332

24Additional information on the design sensitivity curves for
Advanced LIGO can be found in Ref. [135]. For eLISA, we
consider only the instrumental noise and do not include the
galactic white dwarf foreground. We choose the configuration in
Ref. [134] corresponding to noise model N2A1 (optimistic
acceleration noise and 1 million km arm-lengths). This corre-
sponds to the blue-dashed curve in the right panel of their Fig. 1.
Our choices of 1 month and 1 year for the SMBH and EMRI
sources (respectively) is motivated by the time scale for which the
characteristic amplitude of those sources will be above the eLISA
noise (see, e.g., Fig. 13 of Ref. [136]).
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(a) Following standard expectations, the 0PN eccentric
correction is always negative. Eccentricity therefore
reduces the overall number of cycles and causes
binaries to merge faster.

(b) For all cases examined, the circular PN corrections are
non-negligible (even at the highest PN orders known).
This suggests the possibility of systematic parameter
biases if only 3.5PN-order circular templates are used.
This issue was examined in more detail in Ref. [11].25

(c) For LIGO band binaries, the importance of the various
eccentric PN corrections depends on which measure
one uses.ΔNcyc becomes≪ 1 at the level of the 2.5PN
eccentric terms, while ΔNcyc;Ψ is not similarly small
until 3PN order is reached. The same conclusion holds
for SMBH binaries. However, for LIGO band binaries
ΔNnorm

useful becomes clearly negligible for 2PN eccentric
terms, while for SMBH binaries, that measure is
clearly very small even for the 0PN-order eccentric
term. This does not suggest that small initial eccen-
tricities in SMBH binaries are undetectable. Rather,
this is an artifact of the several-orders-of-magnitude
difference between the minimum of the eLISA sensi-
tivity curve and the value of the sensitivity at f1. In
other words, most of the “useful” cycles are accumu-
lated near the minimum of the noise curve; the binary
eccentricity has been significantly reduced before
those frequencies are reached. But this does not mean
that a strong SNR source would not have observable
eccentric effects. Because it does not account for the
overall strength of the signal, the number of cycles
(even when weighted by the detector response as in
ΔNnorm

useful) is an imperfect measure of the detectability
of a particular PN effect. The various δN provide an
indication that an effect is important when δN ≳Oð1Þ,
but ambiguity can be introduced when the different
δN differ significantly. Parameter estimation errors
from neglecting a PN effect provide a more effective
measure (although with some increase in computa-
tional complexity) [11].

(d) For comparable-mass binaries and for eccentricities
e0 ≲ 0.1, the eccentric PN terms indicate convergence
in the sense that higher-order eccentric PN corrections
are smaller than lower-order ones. This suggests that
3PN-order eccentric terms are sufficient to treat low-
eccentricity, comparable-mass systems.

(e) For EMRI systems, it is clear that the PN series has not
converged (as is well known). This holds for both
the circular and eccentric terms for all the measures
indicated. We also note that the tail terms are espe-
cially large for EMRI systems.

(f) The normalized useful cycles for EMRIs is often
comparable to (and in a few cases larger than) the
number of cycles for a given PN term. This is likely
due to the fact that EMRI systems accumulate many
cycles even in regions of frequency space far from the
minimum of the detector noise curve. (In effect, all the
cycles are useful for these systems). We note that if we
had used the standard definition [Eq. (7.14)], ΔNuseful
would far exceed ΔNcyc for the two EMRI systems
involving a 106 M⊙ SMBH.

VIII. COMPARISON WITH
LARGE-ECCENTRICITY FORMULAS

Since the primary results of this work are analytical
expressions for the PN approximants in the low-eccentricity
limit, it is helpful to determine the range of eccentricities for
which these expressions are valid. To do this, we compare
ourOðe20Þ analytic expression for the orbital phase hϕðfÞi ¼
λðfÞ [Eq. (4.26) or (6.6)] against a numerical solution that
is valid for arbitrary e0 < 1. (We neglect oscillatory pieces
of the phasing which were investigated in Sec. IVA.)
For simplicity (and since we only wish to test the low-
eccentricity approximation), we perform the comparison
using only 2PN-order accurate expressions.
The numerical phase evolution for the secular phasing

as a function of frequency is determined by the following
system of ODEs,

dλ
dξϕ

¼ dλ=dt
dξϕ=dt

¼ 1

M

ξϕ
dξϕ=dt

¼ 5

η
ξ−8=3ϕ ðΛN þ Λ1PN þ Λ1.5PN þ Λ2PNÞ; ð8:1aÞ

det
dξϕ

¼ det=dt
dξϕ=dt

¼ et
3ξϕ

ðEt
N þ Et

1PN þ Et
1.5PN þ Et

2PNÞ; ð8:1bÞ

where the detailed expressions on the right-hand side are
given in Appendix D. To derive Eqs. (8.1), first Eq. (3.9)
was differentiated with respect to time to obtain dξϕ=dt

as a function of ξ, et, _ξ, and _et. Equations (B1) (see also
Ref. [17]) were then substituted for _ξ and _et. Lastly, ξ was
replaced with ξϕ via Eq. (3.10), and the result was PN
expanded in ξϕ.
Using the substitutions ξϕ → ðπMfÞ and ξϕ;0→ ðπMf0Þ,

we numerically integrated Eqs. (8.1) over a frequency
interval f ∈ ðf1; f2Þ for various fiducial LIGO and eLISA
sources, using λðf1Þ ¼ 0 as our initial condition and setting
f0 ¼ f1. (Appendix B discusses how we approximated the

25See also Ref. [137] for a recent attempt to address the issue of
unknown PN corrections by fitting higher-order terms in the
orbital energy and energy flux to EOBNR calculations.
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tail terms.) We then calculated the difference in the number
of in-band GW cycles between our numerical solution λnum
and the analytical formula λanl in Eq. (6.6),26

δNgw ¼ 1

π
½λnumðf2Þ − λanlðf2Þ�: ð8:2Þ

The results are plotted in Fig. 4 for the same binary systems
and frequency ranges considered in the previous section.
Using the criterion that phase errors should satisfy
δNgw ≲ 1, the plot indicates that the small-eccentricity
approximation is valid if e0 ≲ 0.06–0.15 for comparable-
mass systems and e0 ≲ 0.005–0.01 for EMRI systems.
In addition to the 2PN-order comparison, we have also

performed the comparison using only 0PN, 1PN, and
1.5PN accurate expressions (in both the analytical and
numerical parts). The resulting phase errors δNgw show the
expected convergence behavior for PN series as the PN
order is increased. For the systems investigated above, the
fractional error between the 2PN and 1.5PN calculation
of δNgw at the value where the 2PN δNgwðe0Þ ≈ 1 varies
from ∼1% (comparable-mass systems) to ∼10% (EMRI
systems). This gives us confidence that including 3PN
corrections (for which the evaluation of the tail terms
becomes difficult) will not significantly change our

assessment of the range of validity in e0 for our low-
eccentricity formulas.

IX. CONCLUSIONS AND DISCUSSION

Our main objective has been to reduce the complexity of
fully eccentric waveforms to a level comparable to that of
the standard circular PN approximants. This is achieved by
working at Oðe20Þ in the secular GW phasing. The resulting
low-eccentricity PN approximants are found in Sec. VI.27

We have clearly illustrated how these results follow from a
more general treatment, starting with fully eccentric for-
mulas for the GW amplitude and phase (Sec. III and
Appendix A). We provided enough detail for the reader
to generate arbitrarily eccentric waveforms including all
effects in the quasi-Keplerian formalism [15,17]. We have
also reexamined previous arguments [15] concerning the
realm of validity of the quasi-Keplerian formalism and
argue that it should be extendable to frequencies compa-
rable to (but less than) circular waveforms, provided the
eccentricity is small (Sec. III D). While all of our results are
expressed in terms of the eccentricity variable et and the
radial or azimuthal dimensionless frequencies ξ or ξϕ, we
show in Appendix E how to replace et in favor of the
gauge-invariant periastron advance constant k.
Although we have focused on computing the secular

contributions to the GW phasing via the various PN
approximants, our work also contains the necessary
formulas to fully describe both secular and oscillatory
contributions to the orbit and waveform in terms of analytic
functions of time or frequency [working to Oðe20Þ;
Sec. IV D and Appendix C]. Using these results, we have
evaluated the relative importance of periodic contributions
to the phasing arising from both (i) Newtonian orbital
effects and (ii) perturbations from the radiation reaction
force, with the latter being negligible (see Secs. IVA and
V). The oscillatory terms in (i) do not exceed 0.07 GW
cycles for e0 ¼ 0.1 at 10 Hz. While these oscillatory terms
are small, they are comparable to the 2.5PN secular
eccentric corrections to the phasing that we compute here.
It is not entirely clear that these oscillatory terms are
completely negligible, and their effect on parameter esti-
mation will be investigated in future work. [For large
eccentricities e0 ∼Oð1Þ, oscillatory terms will contribute
∼Oð1Þ GW cycles.] We have also briefly discussed how
these oscillatory terms can be included in the time-domain
low-eccentricity PN approximants (Sec. VI).
In addition to the secular approximation, our PN

approximants ignore Oðe0Þ corrections to the waveform
amplitude (i.e., we treat the amplitude as circular). Our low-
eccentricity approximation has been tested by comparing
the orbital phase to a numerical calculation valid for any
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FIG. 4. Difference in the number of gravitational-wave cycles
between a numerical evolution of λ (valid for any et) and the
analytical formula (valid for small et); see Eq. (8.2). Different
binaries are labeled according to their masses (in solar mass
units). We show three groups of sources that correspond to those
studied in Tables III, IV, and V (using the same frequency ranges
discussed there). LIGO-band sources are shown in blue, SMBH
binaries in red, and EMRIs in black. δNgw ∼ 1 roughly represents
where the phase error becomes significant and our approximation
breaks down.

26The constant ϕc ¼ cλ was chosen to enforce λðf1Þ ¼ 0.

27The formulas in Sec. VI are available as a Mathematica
notebook [138].
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eccentricity; our analytic expressions are valid up to
e0 ≲ 0.1 (the precise upper limit depends on the specific
system and one’s accuracy threshold).
The relative importance of the low-eccentricity PN

corrections to the secular phasing is quantified in
Sec. VII and Tables III, IV, and V for various compact
binary sources. There, we investigated three measures for
gauging the importance of each PN term, including an
improved version of the useful cycles contribution intro-
duced in Ref. [124]. Except for EMRI systems (for which
the PN series is known to converge very slowly), our 3PN-
order phase corrections are likely to be sufficient for any
low-eccentricity binary with comparable masses.
While compact-object binaries observable by ground-

based detectors are likely to be nearly circular, binaries
with a small eccentricity are more likely than those with a
large one. The low-eccentricity case—despite its obvious
limitations—is thus of compelling interest. Our expressions
also have the advantage of being relatively simple (only
slightly more complex than for circular binaries); they will
thus be useful for situations where computational speed is
a priority (e.g., parameter estimation). While we have
focused on compact binaries relevant to LIGO and
eLISA, these results may be applicable to modeling very
low-frequency SMBH binaries that could be sources for
PTAs. Eccentricity effects will also be important for third-
generation ground-based detectors (such as the Einstein
Telescope [139]), where systematic errors from ignoring
eccentricity can easily swamp statistical errors [11].
Additionally, many of the explicit expressions that

we derive could be useful for NR or GSF calculations.
In both of those areas, it has been fruitful to
compare numerical calculations with PN results (e.g.,
Refs. [24,25,28,30,119,140]). We provide the needed for-
mulas to enable these comparisons (including orbital
variables and waveform phasing as explicit functions of
frequency or time). The conversion of our results to a set of
gauge-invariant variables (Appendix E) might be helpful in
this regard.
In the case of NR, our results could also be useful for

reducing the initial eccentricity in binary merger simula-
tions [104,141–149]. For example, eccentricity removal
typically involves fitting NR data to Newtonian-order
expressions that depend on rðtÞ, ϕðtÞ, or their derivatives.
Small eccentricities in NR simulations might be reduced
more efficiently by instead fitting to some of the explicit
analytic expressions provided here.
Lastly, our work could be useful for attempts to extend

recent phenomenological inspiral-merger-ringdown (IMR)
waveform templates [31–37] to eccentric binaries. Our
extension to the SPA/TaylorF2 approximant could be easily
added on to the existing framework used to treat the inspiral
portion of the analytic IMR models. This may be useful for
parameter estimation of compact binaries that have both
their inspiral and merger in the detector’s frequency band.
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APPENDIX A: WAVEFORM POLARIZATIONS
FOR ECCENTRIC BINARIES

Here, we provide more explicit formulas for the GW
polarizations. We first compute the Newtonian-order polar-
izations in terms of the true anomaly for general elliptical
orbits. We then express the polarizations in terms of the
mean anomaly as an eccentricity expansion to Oðe3t Þ. The
latter expressions more clearly illustrate the time-domain
nature of the waveform and clarify the approximations
made in this work.
Using the Newtonian-order expressions in Eqs. (2.2), the

þ and × polarizations can be written in terms of the
eccentric anomaly (for arbitrary et) using the Newtonian-
order equations for ðr; _r;ϕ; _ϕÞ given in Sec. III A. Plugging
in and simplifying gives

hþ ¼ −
ηM
D

ξ2=3

ð1 − et cos uÞ2
ðð1þ C2Þf½2ð1 − e2t Þ

− et cos uð1 − et cos uÞ� cos 2ϕ

þ 2et

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
sin u sin 2ϕg

− S2et cos uð1 − et cos uÞÞ; ðA1aÞ

h× ¼ −2
ηMC
D

ξ2=3

ð1 − et cos uÞ2
f½2ð1 − e2t Þ

− et cos uð1 − et cos uÞ� sin 2ϕ

þ 2et

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
sin u cos 2ϕg: ðA1bÞ

To evaluate these expressions as a function of time (neglect-
ing radiation-reaction effects), one must numerically invert
Kepler’s equation to determine u½lðtÞ�. While the amplitude
here is at Newtonian order, the PN order of the waveform
phasing depends on the expressions used for ϕ and Kepler’s
equation [e.g., Eqs. (3.4c), (3.4d), and (3.7)].
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In the limit of small eccentricity, Kepler’s equation
[Eq. (3.7)] can be solved as a series expansion in
both et and the PN expansion parameter ξ. This is done
by first expanding the 3PN-order Kepler equation
(Eq. (3.7) or Eq. (27) of Ref. [17]) for small et, then
writing a similar expansion for the inverted series,

u ¼ lþ c1ðlÞet þ c2ðlÞe2t þ � � �. The unknown coefficients
ciðlÞ are determined by substituting one series into
the other, requiring that the resulting coefficients of the
appropriate powers of et vanish. After expanding in the
PN variable ξ, the Oðe3t Þ solution to the 3PN Kepler
equation is

u ¼ lþ
�
1þ

�
−
15

2
þ 9

8
ηþ 1

8
η2
�
ξ4=3 þ

�
−85þ 112153

1680
ηþ 5

4
η2 þ 1

24
η3
�
ξ2
�
et sin l

þ
�
1þ

�
−
75

4
þ 15

8
ηþ 3

8
η2
�
ξ4=3 þ

�
−
465

2
þ
�
241819

1680
þ 41

128
π2
�
ηþ 59

4
η2 −

3

8
η3
�
ξ2
�
1

2
e2t sin 2l

þ
�
ð3 sin 3l − sin lÞ þ

�
−ð15 sin lþ 95 sin 3lÞ þ 1

8
ð93 sin lþ 49 sin 3lÞηþ 1

8
ð−3 sin lþ 17 sin 3lÞη2

�
ξ4=3

þ
�
−ð770 sin lþ 1250 sin 3lÞ þ

��
310967

336
−
205

64
π2
�
sin lþ

�
3106493

5040
þ 533

192
π2
�
sin 3l

�
η

þ
�
−
775

8
sin lþ 3143

24
sin 3l

�
η2 þ

�
1

2
sin l −

29

6
sin 3l

�
η3
�
ξ2
�
1

8
e3t : ðA2Þ

Using this expansion, one can then replace u ¼ uðlÞ in the equations for r, _r, ϕ, and _ϕ [Eqs. (3.4)] and expand to the
appropriate order in et. The resulting equations to 2PN order and to Oðe2t Þ are

r≈Mξ−2=3
��

1þ
�
−3þ 1

3
η

�
ξ2=3 þ

�
−8þ 113

12
ηþ 1

9
η2
�
ξ4=3

�
−
�
1þ

�
1−

7

6
η

�
ξ2=3 þ

�
7

2
−
101

24
ηþ 35

72
η2
�
ξ4=3

�
et cos l

þ
�
1

2
ð1− cos2lÞ þ ð1− cos2lÞ

�
1−

7

6
η

�
ξ2=3

2
þ
�
−
17

2
þ 155

24
ηþ 11

36
η2 þ

�
2þ 37

24
η−

11

36
η2
�
cos2l

�
ξ4=3

�
e2t

þOðe3t Þ þOðξ2Þ
�
; ðA3aÞ

_r≈ ξ1=3et sin l

�
1þ

�
1−

7

6
η

�
ξ2=3 þ

�
7

2
−
101

24
ηþ 35

72
η2
�
ξ4=3 þ

�
2þ

�
2−

7

3
η

�
ξ2=3 þ

�
−8−

37

6
ηþ 11

9
η2
�
ξ4=3

�
et cos l

þOðe2t Þ þOðξ2Þ
�
; ðA3bÞ

ϕ ¼ λþWðlÞ; ðA3cÞ

WðlÞ≈
�
2þð10− ηÞξ2=3þ

�
72−

259

12
ηþ 1

12
η2
�
ξ4=3

�
et sin lþ

�
5

4
þ
�
31

4
− η

�
ξ2=3þ

�
447

8
−
187

12
ηþ 1

12
η2
�
ξ4=3

�
e2t sin2l

þOðe3t ÞþOðξ2Þ; ðA3dÞ

_ϕ ≈
ξ

M

�
1þ 3ξ2=3 þ

�
39

2
− 7η

�
ξ4=3 þ

�
2þ ð10 − ηÞξ2=3 þ

�
72 −

259

12
ηþ 1

12
η2
�
ξ4=3

�
et cos l

þ
�
3ξ2=3 þ

�
207

4
−
41

2
η

�
ξ4=3 þ cos 2l

�
5

2
þ
�
31

2
− 2η

�
ξ2=3 þ

�
447

4
−
187

6
ηþ 1

6
η2
�
ξ4=3

��
e2t þOðe3t Þ þOðξ2Þ

�
:

ðA3eÞ
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To express the polarizations in terms of the mean anomaly, one plugs Eq. (A2) into (A1) and expands in et. The result is

hþ ¼ −
ηMξ2=3

D

�
ð1þC2Þ

��
2þ 3et cos lþ ð4 cos2l− 1Þe2t þ ð43 cos3l− 19 cos lÞe

3
t

8

�
cos2ϕ

þ
�
2et sin lþ 3e2t sin2lþ ð17 sin3l− 7 sin lÞe

3
t

4

�
sin2ϕ

�
− S2

�
et cos lþ e2t cos2lþ ð9 cos3l− cos lÞe

3
t

8

�
þOðe4t Þ

�
;

ðA4aÞ

h× ¼ −2
ηMξ2=3C

D

��
2þ 3et cos lþ ð4 cos 2l − 1Þe2t þ ð43 cos 3l − 19 cos lÞ e

3
t

8

�
sin 2ϕ

þ
�
2et sin lþ 3e2t sin 2lþ ð17 sin 3l − 7 sin lÞ e

3
t

4

�
cos 2ϕþOðe4t Þ

�
: ðA4bÞ

Equations (A4) provide the Newtonian-order waveform
as a function of et, ξ, l, and ϕ. (Note that, unlike the
amplitude, the phases l and ϕ are not yet restricted to any
PN order or expansion in et.) Expressed in this way,
the polarizations contain three types of terms proportional
to expressions of the form A1ðetÞ cosð2ϕþ α1Þ,
A2ðetÞ cosðjlþ α2Þ, and A3ðetÞ cosð2ϕ� jlþ α3Þ. Here,
the AiðetÞ represent amplitude terms which depend also on
the orbital inclination and satisfy A2ðet¼0Þ¼A3ðet¼0Þ¼0.
The αi represent phase constants and j ¼ 1; 2; 3…. These
three different terms correspond to components of the
signal with respective frequencies 2ð1þ kÞn, jn, and
½2ð1þ kÞ � j�n. The signal power in these different har-
monics is determined by the functions AiðetÞ.
For nonevolving orbits (no radiation reaction), the

explicit phasing as a function of time is determined by l ¼
nðt − t0Þ þ cl and λ ¼ ð1þ kÞnðt − t0Þ þ cλ. Note that in
addition to the two intrinsic constants of the motion n and
et, one must also specify two extrinsic constants corre-
sponding to the phase variables cl and cλ. Unlike circular
waveforms which contain one phase function (and an
associated reference phase constant), eccentric waveforms
depend on two evolving phase functions lðtÞ and ϕðtÞ; the
constants ðcl; cλÞ set the values of those phases at some
reference time t0. These two extrinsic constants are
equivalent to specifying the argument of periastron ϖ
and the initial orbital phase ϕðt0Þ (see Fig. 1). Given the
constants ½ϖ;ϕðt0Þ�, the constants ðcl; cλÞ are then deter-
mined by numerically solving the equations

ϖ ¼ cλ − ð1þ kÞcl; ðA5Þ

ϕðt0Þ ¼ cλ þWðl ¼ clÞ: ðA6Þ

The above follow from Eqs. (3.2) along with the fact that
the argument of periastron corresponds to the angle ϕ ¼ ϖ
when l ¼ v ¼ u ¼ W ¼ 0. In the Newtonian limit, these
equations simplify slightly because k → 0, but they still
must be solved numerically or via a series expansion. In the

limit of circular (but post-Newtonian) orbits, W → 0, and
one finds that cλ ¼ ϕðt0Þ and cl ¼ ½ϕðt0Þ −ϖ�=ð1þ kÞ.
However, cl becomes irrelevant as any dependence on lðtÞ
drops out of the expressions (A4) in the et → 0 limit.
In this paper, we consider only Oðe0t Þ terms in the

amplitude [but Oðe2t Þ in the phasing]. In that case, any
explicit dependence on lðtÞ (and hence cl) again drops out
of the expressions for hþ;× in (A4), yielding Eqs. (2.3).
However, since ϕðtÞ ¼ λðtÞ þW½lðtÞ�, a dependence on cl
enters the oscillatory piece of the phasing via WðlÞ (see,
e.g., Sec. V). If we ignore those oscillatory contributions to
the phasing (as we do when deriving the PN approximants
in Sec. VI), then dependence on cl drops out completely,
and only one phase constant (equivalent to cλ) enters our
expressions.
In this Appendix, we have so far neglected radiation

reaction. If it is present, then ξ and et will evolve secularly
according to Eqs. (B1), supplemented by (much smaller)
periodic correction terms ~ξ and ~et that vary on multiples of
the orbital time scale (Sec. IVA). The evolution of the
phase variables lðtÞ ¼ l̄ðtÞ þ ~lðtÞ and ϕðtÞ ¼ λ̄ðtÞ þ ~λðtÞ þ
WðtÞ is governed by the ODEs

dl̄
dt

¼ ξ̄ðtÞ
M

; ðA7Þ

dλ̄
dt

¼ ð1þ k̄ðtÞÞξ̄ðtÞ
M

; ðA8Þ

which must be solved numerically along with the secular
evolution equations (B1) and the initial conditions l̄ðt0Þ ¼
c̄l and λ̄ðt0Þ ¼ c̄λ [these are related to ϖ and ϕðt0Þ as
above]. The numeric solutions l̄ðtÞ and λ̄ðtÞ are then
combined with the semianalytic periodic components W,
~λ, ~l, ~cl, and ~cλ (the latter four quantities provide relative
5PN corrections and can be ignored for our purposes). In
the main text, we focus on solving Eqs. (A7) analytically in
terms of ξϕ rather than ξ and including only terms to order

MOORE, FAVATA, ARUN, and MISHRA PHYSICAL REVIEW D 93, 124061 (2016)

124061-38



Oðe2t Þ. The above description clarifies how one could
additionally compute waveforms for arbitrary elliptical
orbits.

APPENDIX B: 2PN-ORDER SECULAR
EVOLUTION EQUATIONS FOR n̄ AND ēt

Here, we list explicit equations for the secular (orbit-
averaged) evolution equations for the mean motion n and
time eccentricity et. Defining ξ̄≡Mn̄, the harmonic gauge
evolution equations for n̄ and ēt to 2PN order are

dξ̄
dt

¼ η

M
ξ̄11=3ð _̄nN þ _̄n1PN þ _̄n1.5PN þ _̄n2PNÞ; ðB1aÞ

dēt
dt

¼ −
η

M
ξ̄8=3ētð _̄eNt þ _̄e1PNt þ _̄e1.5PNt þ _̄e2PNt Þ; ðB1bÞ

where the bars emphasize that these are the orbit-averaged
quantities (the bars are dropped in parts of the main text
where their meaning is clear). The various contributions in
(B1) to 2PN order are [17]

_̄nN ¼ 96þ 292ē2t þ 37ē4t
5ð1 − ē2t Þ7=2

; ðB2aÞ

_̄n1PN ¼ ξ̄2=3

280ð1 − ē2t Þ9=2
½20368 − 14784ηþ ð219880 − 159600ηÞē2t

þ ð197022 − 141708ηÞē4t þ ð11717 − 8288ηÞē6t �; ðB2bÞ

_̄n1.5PN ¼ 384

5
πκEξ̄; ðB2cÞ

_̄n2PN ¼ ξ̄4=3

30240ð1 − ē2t Þ11=2
h
12592864 − 13677408ηþ 1903104η2 þ ð133049696 − 185538528ηþ 61282032η2Þē2t

þ ð284496744 − 411892776ηþ 166506060η2Þē4t þ ð112598442 − 142089066ηþ 64828848η2Þē6t
þ ð3523113 − 3259980ηþ 1964256η2Þē8t þ 3024ð96þ 4268ē2t þ 4386ē4t þ 175ē6t Þð5 − 2ηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ē2t

q i
; ðB2dÞ

_̄eNt ¼ 304þ 121ē2t
15ð1 − ē2t Þ5=2

; ðB2eÞ

_̄e1PNt ¼ ξ̄2=3

2520ð1 − ē2t Þ7=2
½340968 − 228704ηþ ð880632 − 651252ηÞē2t þ ð125361 − 93184ηÞē4t �; ðB2fÞ

_̄e1.5PNt ¼ 128

5

π

ē2t
ξ̄½ð1 − ē2t ÞκE −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ē2t

q
κJ�; ðB2gÞ

_̄e2PNt ¼ ξ̄4=3

30240ð1 − ē2t Þ9=2
h
20815216 − 25375248ηþ 4548096η2 þ ð87568332 − 128909916ηþ 48711348η2Þē2t

þ ð69916862 − 93522570ηþ 42810096η2Þē4t þ ð3786543 − 4344852ηþ 2758560η2Þē6t
þ 1008ð2672þ 6963ē2t þ 565ē4t Þð5 − 2ηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ē2t

q i
: ðB2hÞ

The tail contributions _̄n1.5PN and _̄e1.5PNt were derived in Sec. VI of Ref. [15] using the Keplerian orbital parametrization
and the tail corrections to the orbit-averaged expressions for the far-zone energy and angular momentum fluxes derived in
Refs. [82,88]. The κE and κJ appearing in the tail terms are expressed as infinite sums involving quadratic products of the

Bessel function JpðpētÞ and its derivative J0pðpētÞ≡ dJpðpētÞ
dðpētÞ :
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κE ¼ lim
Emax→þ∞

XEmax

p¼1

p3

4

�
ðJpðpētÞÞ2

�
1

ē4t
−

1

ē2t
þ 1

3
þ p2

�
1

ē4t
−

3

ē2t
þ 3 − ē2t

��

þ p

�
−

4

ē3t
þ 7

ēt
− 3ēt

�
JpðpētÞJ0pðpētÞ þ ðJ0pðpētÞÞ2

�
1

ē2t
− 1þ p2

�
1

ē2t
− 2þ ē2t

���
; ðB3aÞ

κJ ¼ lim
Jmax→þ∞

XJmax

p¼1

p2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ē2t

q �
p

�
3

ē2t
−

2

ē4t
− 1

�
ðJpðpētÞÞ2 þ

�
2

ē3t
−

1

ēt

þ 2p2

�
1

ē3t
−

2

ēt
þ ēt

��
JpðpētÞJ0pðpētÞ þ 2p

�
1 −

1

ē2t

�
ðJ0pðpētÞÞ2

�
: ðB3bÞ

They satisfy κEðēt ¼ 0Þ ¼ κJðēt ¼ 0Þ ¼ 1. Expanding these functions for small ēt gives
28

κE ¼ 1þ 2335

192
ē2t þ

42955

768
ē4t þ

6204647

36864
ē6t þ

352891481

884736
ē8t þOðē10t Þ; ðB4aÞ

κJ ¼ 1þ 209

32
ē2t þ

2415

128
ē4t þ

730751

18432
ē6t þ

10355719

147456
ē8t þOðē10t Þ: ðB4bÞ

Note that the expression for _̄e1.5PNt in (B2g) is convergent in the et → 0 limit. In practical applications, the sums in Eqs. (B3)
must be evaluated to some finite number of terms fEmax; Jmaxg. To maintain a specified level of accuracy for κE;J, the
required number of terms in the sum increases dramatically as the eccentricity approaches 1. In Table VI, we indicate the
values of fEmax; Jmaxg that are needed to keep κE;J accurate to within 0.1%.
The time evolution of n̄ and ēt for arbitrary ēt < 1 is obtained by solving Eqs. (B1) numerically. This evolution is

“adiabatic” in the sense that i) the above equations become invalid when the radiation reaction time scale becomes
comparable to the orbital time scale, and ii) it neglects rapidly varying contributions to n and et that average to zero on an
orbital time scale. These oscillatory contributions ~n and ~et are discussed in Sec. IVA. For simplicity, we have only provided
the 2PN-order secular evolution equations. The 2.5PN- and 3PN-order terms (both instantaneous and hereditary
contributions) can be found in Ref. [92].

APPENDIX C: SECULAR EVOLUTION FOR THE ECCENTRICITY AND MEAN ANOMALY

Here, we collect some additional long expressions which are not essential to the main text. The full 3PN expression for
the time evolution of the eccentricity etðtÞ [see Eq. (4.23)] is given by

TABLE VI. Maximum values fEmax; Jmaxg of the summation index p needed to evaluate the tail corrections κE and κJ [Eqs. (B3)] to a
fractional accuracy of 0.1% for a given eccentricity ēt [i.e., we show the values of fEmax; Jmaxg that satisfy κE;JðEmax; JmaxÞ=κE;JðEmax ¼
Jmax ¼ 500Þ − 1Þ < 0.001 for a given value of ēt]. Note that the number of needed terms rapidly increases for large eccentricities.

ēt Emax Jmax

0.1 4 4
0.3 9 8
0.5 17 15
0.7 42 37
0.9 239 212

28To consistently expand κE and κJ to a given order Oðēnt Þ requires that the infinite sum be expanded to sufficiently high values of
p ¼ fEmax; Jmaxg. For the Oðē8t Þ accurate expressions shown here, Emax ¼ Jmax ¼ 6 is sufficient.

MOORE, FAVATA, ARUN, and MISHRA PHYSICAL REVIEW D 93, 124061 (2016)

124061-40



etðtÞ¼e0
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The full 3PN expression for the secular frequency evolution of the phase variable l [Eq. (4.30)] is given by

lðξϕÞ − cl ¼ −
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Using the same techniques as in deriving Eq. (4.27), the time evolution of lðtÞ to 3PN order is
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APPENDIX D: FREQUENCY EVOLUTION OF et AND λ

Here, we will list the full expressions for dλ=dξϕ and det=dξϕ that were numerically solved in Sec. VIII. The equations
for the frequency derivative of λ and et have the form

dλ
dξϕ

¼ dλ=dt
dξϕ=dt

¼ 1

M

ξϕ
dξϕ=dt

¼ 5

η
ξ−8=3ϕ ðΛN þ Λ1PN þ Λ1.5PN þ Λ2PNÞ; ðD1aÞ

det
dξϕ

¼ det=dt
dξϕ=dt

¼ et
3ξϕ

ðEt
N þ Et

1PN þ Et
1.5PN þ Et

2PNÞ: ðD1bÞ

(Recall that we have dropped overbars; the quantities λ, ξϕ, and et here contain only secular pieces.) Section VIII outlines
how Eqs. (D1) were derived. The various PN contributions to these equations are
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ΛN ¼ ð1 − e2t Þ7=2
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APPENDIX E: GAUGE-INVARIANT
PARAMETRIZATION FOR ECCENTRIC

WAVEFORMS

In this work we have presented our results in terms of a
“frequencylike” variable (ξ or ξϕ) and a particular “eccen-
tricitylike” parameter et. The latter reduces to the Newtonian
definition of eccentricity in the Newtonian limit and allows
us to easily read off the circular 3PN limit of our expressions
when et → 0. However, the choice of et is somewhat
arbitrary: we could have chosen to use the other eccentricity
variables er or eϕ or a definition based on the angular
frequencies at the pericenter and apocenter [150,151]. All of
these eccentricity parameters are gauge dependent. For
example, expressions for et, er, or eϕ in terms of the
conserved energy per reduced mass E and reduced orbital

angular momentum h depend on the choice of gauge [see
Eqs. (345) of Ref. [74] and the subsequent discussion there].
However, the quantities n and k have expressions in terms of
E and h that do not depend on the coordinate system; these
quantities are gauge invariant. Likewise, the related quan-
tities ξ, ξϕ, K ¼ kþ 1, as well as E and h themselves, are
also gauge invariants.
To obtain a gauge-invariant form for the expressions

derived in this paper, it is necessary to eliminate et and to
express our results in terms of k and either ξ or ξϕ. The
relation et ¼ etðk; ξÞ can be derived from Eqs. (25d) and
(28) of Ref. [16].29 These provide e2t ðE; hÞ along with
Eðξ; k=ξ2=3Þ and hðξ; k=ξ2=3Þ. Substituting for E and h into
et (and using the fact that ξ ∼ c−3 and k ∼ c−2) gives the
3PN accurate result:
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Note that terms of order Oðξ2=3=kÞ are formally Newtonian
order (since k ∼ ξ2=3).
To derive et ¼ etðk; ξϕÞ, we use series reversion on

Eq. (3.12), assuming a result of the form (E1) with ξ → ξϕ.
However, because the expansion (3.12) contains only
relative 2PN corrections beyond its leading-order term,
we can only derive relative 2PN corrections to e2t if
we use k as our starting point.30 Specifying a solution
with the form

e2t ¼1−
3ξ2=3ϕ

k
þ
�
AþB

�
ξ2=3ϕ

k

��
ξ2=3ϕ

þ
�
CþD

�
ξ2=3ϕ

k

�
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ffiffiffiffiffiffiffiffi
ξ2=3ϕ

k

s
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ffiffiffiffiffiffiffiffi
k

ξ2=3ϕ

s
þG

�
k

ξ2=3ϕ

��
ξ4=3ϕ

þOðξ2ϕÞ; ðE2Þ

the coefficients A through G are determined by plugging
Eq. (E2) into Eq. (3.12). The result is series expanded.31

Coefficients of the appropriate powers of ξϕ are then
equated to zero, resulting in a system of equations which
is solved for the coefficients A through F. The result is

30Note that the leading-order term in k represents a 1PN effect
in the equations of motion. In the derivation of Eq. (E1), we
started from relative 3PN accurate expressions for etðE; hÞ,
Eðξ; kÞ and a relative 2PN accurate expression for hðξ; kÞ (which
is sufficient as it enters the relevant expressions only in terms of
the combination Eh2).

29Note that the k0 in Ref. [16] is related to k via k0 ¼ k=3. Also,
Ref. [16] uses the notation x to mean ξ2=3.

31This is done by taking ξϕ → ϵ3ξϕ and k → ϵ2k and then
series expanding in the small parameter ϵ (which is then set to 1 at
the end of the calculation). We note that this procedure was also
used to check the derivation of (E1) at the 2PN level starting from
Eq. (3.3).

MOORE, FAVATA, ARUN, and MISHRA PHYSICAL REVIEW D 93, 124061 (2016)

124061-44



e2t ¼ 1 −
3ξ2=3ϕ

k
þ
�
−
35

4
þ 9

2
ηþ

�
51

4
−
13

2
η

��
ξ2=3ϕ

k

��
ξ2=3ϕ þ

�
377

16
þ
�
−
367

12
þ 41

128
π2
�
ηþ 9η2

þ
�
−
39

2
þ 55

4
η −

65

8
η2
��

ξ2=3ϕ

k

�
þ

ffiffiffi
3

p
ð10 − 4ηÞ

ffiffiffiffiffiffiffiffi
ξ2=3ϕ

k

s
þ

ffiffiffi
3

p
ð−5þ 2ηÞ

ffiffiffiffiffiffiffiffi
k

ξ2=3ϕ

s

þ
�
77

48
þ
�
449

36
−
205

384
π2
�
ηþ 5

8
η2
��

k

ξ2=3ϕ

��
ξ4=3ϕ þOðξ2ϕÞ: ðE3Þ

Using the results above, one could eliminate et from our expressions in favor of the gauge-invariant variable k. For
example, our final expressions for the secular PN approximants depend on an eccentricity e0 at a reference frequency
ξϕ;0 ¼ ðπMf0Þ. This constant could be replaced with a value k0 corresponding to the periastron advance rate at the reference
frequency. However, we feel that it is more sensible to parametrize our waveforms in terms of quantities that have simple
physical interpretations in the Newtonian limit.
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