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We numerically study the scattering coefficients of linear water waves on stationary flows above a
localized obstacle. We compare the scattering on trans- and subcritical flows, and then focus on the latter
which have been used in recent analog gravity experiments. The main difference concerns the magnitude of
the mode amplification: whereas transcritical flows display a large amplification (which is generally in
good agreement with the Hawking prediction), this effect is heavily suppressed in subcritical flows. This is
due to the transmission across the obstacle for frequencies less than some critical value. As a result,
subcritical flows display high- and low-frequency behaviors separated by a narrow band around the critical
frequency. In the low-frequency regime, transmission of long wavelengths is accompanied by nonadiabatic
scattering into short wavelengths, whose spectrum is approximately linear in frequency. By contrast, in the
high-frequency regime, no simple description seems to exist. In particular, for obstacles similar to those
recently used, we observe that the upstream slope still affects the scattering on the downstream side because
of some residual transmission.
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I. INTRODUCTION

In 1981, Unruh pointed out that one might conceive of
experiments where the analog version of black hole
radiation could be observed in a moving medium [1].
Indeed, when the flow is stationary and transcritical, i.e.,
when the flow speed crosses the wave velocity, the
propagation of linear density perturbations is governed
by an equation which has the form of a d’Alembertian in a
black hole geometry. As a result, the scattering coefficients
should be identical to those encoding the Hawking effect.
However, it was then realized that this ceases to be exact
when taking into account the dispersive effects that occur at
short wavelengths in condensed matter media [2,3].
As a result, to be able to predict what should be seen in

experiments, one should compute the scattering coeffi-
cients taking into account the specific dispersive effects
characterizing the medium. It was first understood that the
spectrum is robust [3–8], i.e., that the spectral deviations
from the standard thermal distribution are suppressed by
positive powers of κ=Λ, where κ and Λ are respectively the
analog version of the surface gravity and the dispersive
scale above which dispersion effects are significant. Hence
when κ=Λ ≪ 1, the emitted spectrum closely follows a
Planck distribution with a temperature given by κ=2π in
units ℏ ¼ c ¼ kB ¼ 1. When κ=Λ is not negligible, the
spectrum is no longer Planckian [9,10], yet its main
properties can be understood in terms of two parameters:
κ and a critical high frequency ωmax, which is linearly
related to Λ but which also depends on the parameters

of the background flow [11]. In particular, there is a
smooth transition from the standard relativistic regime
κ=ωmax ≪ 1, to a dispersive regime κ=ωmax ≫ 1 where κ
no longer plays any role. It is fair to say that the scattering
in transcritical flows is now well understood; see [12,13]
for reviews.
When considering the experiments based on surface

waves in water tanks [14–18], one encounters two novel
effects. Firstly, the background flows realized up to now
have been subcritical rather than transcritical. Since there is
no analog Killing horizon in such flows, the link with the
Hawking effect is a priori unclear. In fact, the spectral
properties are not well understood, and have so far received
much less attention than their counterparts in transcritical
flows. Preliminary studies indicate that several regimes are
found, and that various parameters are relevant in each
regime [19–21]. Secondly, downstream from the obstacle,
the free surface is modulated by a zero-frequency undu-
lation with a macroscopic amplitude and a long extension
[22,23]. Typically, the undulation is longer than a meter and
its amplitude is of the order of 1 cm, larger that the typical
amplitude of the waves sent by the wavemaker which is of
the order of a few millimeters. The extra scattering on such
an extended modulation is poorly understood. Numerical
simulations indicate that it might play a significant role in
experiments [18]; see also [24] for a study in the context of
atomic Bose-Einstein condensates.
We shall study these two aspects in turn. In this paper, we

focus on the scattering coefficients in subcritical flows with
no undulation downstream from the obstacle. Our principal
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aim is to complete the description initiated in Ref. [19], and
in particular to study how the main properties of these
coefficients depend on the background flow parameters.
We hope our predictions can be tested in forthcoming
experiments. In a future paper we shall study the scattering
on the undulation itself.
The present work is organized as follows. In Sec. II we

present the simplified wave equation for linear perturba-
tions and the particular parametrization of background
flows over an obstacle used in our analysis. Then, we
identify the four modes involved in the scattering, and
compare the behaviors of the 16 scattering coefficients in
a typical transcritical and a subcritical flow. We end the
section by studying the evolution of the scattering
coefficients when gradually replacing a transcritical flow
by a subcritical one. In Sec. III we focus on sub- and
near-critical flows. We show that the scattering on such
flows should be analyzed separately in three different
frequency regimes, in each of which we identify the
relevant flow parameters. We conclude in Sec. IV. In
Appendix A we show how the three regimes appear when
studying the effective temperature as a function of the
upstream and downstream slopes of the flow, and in
Appendix B we examine more closely the respective
roles played by these two slopes when the flow is
asymmetrical.

II. SCATTERING IN TRANS- AND
SUBCRITICAL FLOWS

A. The simplified wave equation

We shall study linear surface waves propagating in
inhomogeneous flows of an ideal, inviscid, incompressible
fluid. Following [19,25,26] the flows are assumed to be
stationary, irrotational, and laminar. We assume they take
place in an elongated flume and neglect any dependence on
the directions orthogonal to the mean velocity. In addition,
we neglect capillary effects, which means that the wave-
lengths we consider are significantly larger that the typical
capillary length (∼ a few millimeters for water). Finally, we
assume that the inhomogeneity of the flow is due to an
obstacle put on the bottom of the flume.
Under these assumptions and considering waves

which are homogeneous in the transverse direction, the
dispersion relation between the (conserved) angular
frequency ω and the wave number k in the longitudinal
direction is

Ω2 ≡ ðω − vkÞ2 ¼ gk tanhðhkÞ; ð1Þ

where v is the horizontal flow velocity, h the water depth,
and g the gravitational acceleration. In inhomogeneous
flows, v, h, k, and Ω depend on x, the position in the
longitudinal direction. The quantity Ω ¼ ω − vk gives the
frequency in the frame comoving with the fluid.

Although it is not constant, its sign plays a crucial role
in the analysis of the scattering.
Despite the simplicity of Eq. (1), the linear equation

governing the propagation of waves is rather complicated.
The explicit expression can be found in [23,26]. In
particular, because of the term in tanhðhkÞ, it contains
operators with arbitrarily high orders of ∂x. To simplify the
numerical resolution, as in [17,19,20], we consider a
quartic truncation of this equation keeping the ordering
of vðxÞ, hðxÞ and ∂x. Namely, we work with

�
ð∂t þ ∂xvðxÞÞð∂t þ vðxÞ∂xÞ

− g

�
∂xhðxÞ∂x þ

1

3
∂xðhðxÞ∂xÞ3

��
ϕ ¼ 0; ð2Þ

where ϕ is the perturbation of the velocity potential.
It is related to the linear variation of the water depth δh
through

δhðt; xÞ ¼ −
1

g
ð∂t þ v∂xÞϕ: ð3Þ

The truncated dispersion relation associated with
Eq. (2) is

ðω − vkÞ2 ¼ ghk2
�
1 −

ðhkÞ2
3

�
: ð4Þ

In the hydrodynamical limit hk ≪ 1, the (local value of
the) speed of propagation of shallow waves becomes
cðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ghðxÞp
.

When the Froude number F ¼ v=c is close to 1, Eq. (2)
becomes equivalent to the full wave equation in the range
of frequencies we are interested in. It is thus sufficient to
characterize the main properties of the scattering for near-
critical flows. We refer to [13] for an analytical calculation
of the scattering coefficients based on Eq. (2) when the flow
is transcritical. In these flows, the link with the Hawking
effect and the first deviations due to dispersion are both
clear. For the low-frequency behavior in subcritical flows,
we refer to [21] which appeared while wewere finishing the
present work.
Equation (2) has a conserved scalar product with the

same structure as that of the complete equation. It is
given by

ðϕ1jϕ2Þ≡ i
Z

ðϕ�
1ðt; xÞð∂t þ vðxÞ∂xÞϕ2ðt; xÞ

− ϕ2ðt; xÞð∂t þ vðxÞ∂xÞϕ�
1ðt; xÞÞdx; ð5Þ

where ϕ1 and ϕ2 are two complex solutions. We refer to
[23] for the relation between Eq. (5) and the wave energy,
and for the fact that the norm ðϕ1jϕ1Þ is not positive
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definite. In fact, the sign of the norm is that of Ω, the
frequency in the comoving frame [see Eq. (1)].1

B. The parametrization of inhomogeneous flows

Assuming the flow is homogeneous in the vertical
direction, the local low-frequency wave speed and back-
ground flow velocity are respectively given by cðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
ghðxÞp

and vðxÞ ¼ J=hðxÞ, where J is the conserved
water current. The local value of the Froude number is thus

FðxÞ ¼ J

g1=2hðxÞ3=2 : ð6Þ

In this paper, we work with J > 0; that is, the flow goes
from left to right. We phenomenologically describe the
properties of the flow on top of a localized obstacle using
the following parametrization2 of FðxÞ:

FðxÞ ¼ Fas þ ðFmax − FasÞfðxÞ; ð7Þ

where

fðxÞ ¼ N ½1 − tanh ðaLðxþ L=2ÞÞ tanh ðaRðx − L=2ÞÞ�:
ð8Þ

The constantN is chosen so that maxx∈R fðxÞ ¼ 1, and the
parameters aL, aR, and L are strictly positive. Fmax is the
maximum value of FðxÞ reached on top of the obstacle; see
Fig. 1. Fas is its asymptotic value, and is smaller than 1 so
that the flows we consider are all asymptotically subcritical.
By analogy with the transcritical case where F crosses 1,
we will often refer to the upstream slope (x ≈ −L=2) as the
black hole, and to the downstream slope (x ≈ L=2) as the
white hole (even though there is no analog Killing horizon
if Fmax < 1).
When L is smaller than or of the same order as 1=aLþ

1=aR, L, aL, and aR do not individually give accurate
estimations of the length and slopes of the obstacle. It will
thus be convenient to define effective values in the
following way. We call xR (respectively, xL) the value of
x where −∂xfðxÞ (respectively, ∂xfðxÞ) is largest. For large
values of L, one obtains xR ≈ −xL ≈ L=2, but these can
differ significantly for smaller lengths; see Fig. 1. We thus
define the effective length Leff and slopes σR=L by

Leff ≡ xR − xL;

σR=L ≡ j∂xfðxR=LÞj: ð9Þ

It should be noticed that Eqs. (7) and (8) involve
only dimensionless quantities when expressing x, L, aL,
and aR in units of the asymptotic water depth has. As a
result, each set of parameters effectively corresponds to a
one-parameter family of water depth profiles hðxÞ related to

FIG. 1. Profiles of FðxÞ, vðxÞ, and cðxÞ for two subcritical flows with the same values of Fas ¼ 0.4 and Fmax ¼ 0.8; see Eq. (8). The
continuous curves describe a narrow symmetrical obstacle with aLhas ¼ aRhas ¼ 0.5 and L=has ¼ 1, whereas the dotted lines show a
long asymmetric obstacle with aLhas ¼ 4aRhas ¼ 1 and L=has ¼ 20. The horizontal axis gives the distance from the center of the narrow
obstacle, in the adimensional unit x=has. On the right plot, c is in orange and v in blue in units of cas ¼

ffiffiffiffiffiffiffiffi
ghas

p
, the asymptotic value of c.

For the narrow obstacle, the effective values of Eq. (9) are Leff=has ≈ 2.8, σRhas ¼ σLhas ≈ 0.38. For the long obstacle, as expected, one
gets Leff ≈ L, σR ≈ aR=2, and σL ≈ aL=2.

1The conservation of the norm should not be confused with
that of the wave action [27], although these notions are closely
related. While the former is exact, the conservation of the wave
action is an approximate (adiabatic) law which only applies to
flows with low temporal and spatial gradients. The link is clear
when restricting attention to stationary inhomogeneous flows. In
this case, the validity of the WKB approximation of Eq. (2) (see
[23]) guarantees that the wave action is constant. Considering a
stationary mode φω ¼ e−iωtϕωðxÞ solution of Eq. (2), the wave
action is given by W ¼ jΩvgjjϕωj2 ¼ g2jvgjjδhωj2=jΩj where
Ω ¼ ω − vkω, vg ¼ dω=dk ¼ dΩ=dkþ v, and gδhω ¼ iΩϕω

[see Eq. (3)]. The scattering coefficients we shall compute
encode nonadiabatic effects [21,28], i.e., violations of the
conservation of the wave action.

2An alternative approach would be to consider background
flows that are solutions of the hydrodynamical equations over
known obstacles. This approach has been presented in Appendix
A of [19]. We verified that the behavior of the scattering
coefficients is similar to that presented here.
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each other by a rescaling of all lengths. Moreover, this
transformation does not change the behavior of the scatter-
ing coefficients. Indeed, the nonlinear fluid equations
[23,26] contain only one dimensionful parameter when
surface tension and viscosity are neglected: the gravita-
tional acceleration g. They are thus invariant under multi-
plication of all lengths by a positive number η and all times
by

ffiffiffi
η

p
. This implies that the scattering coefficients

extracted from the linear wave equation (2) are also left
invariant.

C. The 4 × 4 S-matrix

Since Eq. (2) does not depend explicitly on time, one can
decompose any solution in terms of modes with fixed
angular frequency ω. Moreover, in the asymptotic regions
where h is constant, these stationary modes are super-
positions of plane waves ϕω ∝ eiðkx−ωtÞ, where k is related
to ω by Eq. (4). In the present work, we only consider
frequencies in the interval 0 < ω < ωmax, where ωmax is the
frequency at which two roots in the upper left quadrant of
Fig. 2 merge (at Froude number F equal to its asymptotic
value Fas). Using the quartic dispersion relation of Eq. (4),
and cas ¼

ffiffiffiffiffiffiffiffi
ghas

p
, it is given by

ωmax ¼
cas
has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

Fas þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
as þ 8

p
ð3Fas þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
as þ 8

p
Þ3
ð1 − F2

asÞ3
s

;

≃ cas
3has

ð1 − F2
asÞ3=2; ð10Þ

where the second equation is valid for 1 − Fas ≪ 1; for
more details we refer to Eqs. (9) and (10) of [19]. In the
domain 0 < ω < ωmax, there are four real roots of Eq. (4),
and thus four plane waves satisfying Eq. (2). Explicitly,
these are the following:

(i) ϕ←
ω is hydrodynamic (in that its wave vector

vanishes as ω → 0) and left-moving. This is the
mode sent by a wavemaker against the flow from the
right side [14,16–18]; see Fig. 3.

(ii) ϕ→;d
ω is a dispersive mode (in that its wave vector

does not vanish when ω → 0) and right-moving.
(iii) ðϕ→;d

−ω Þ� is also dispersive and right-moving.
(iv) ϕ→

ω is hydrodynamic and right-moving.
The third mode has been complex-conjugated because its
norm is negative [see Eq. (5)], while the other three modes
have positive norms. We adopt the standard notation such
that all modes without complex conjugation have scalar
product δðω − ω0Þ, and hence, according to the definition
(5), the complex conjugated modes have scalar product
−δðω − ω0Þ. It should be noticed that ϕ→;d

−ω carries a
negative energy. Hence, when increasing the amplitude
of this mode, the wave energy is reduced; see [23] for more
details. The arrow in the superscript gives the sign of the
group velocity in the laboratory frame, i.e., the sign of ∂ωk.
The first three modes are counterpropagating with respect
to the fluid. In transcritical flows, their mixing through
scattering on the obstacle encodes the analog Hawking
effect [3,4]. The last mode instead is copropagating (with
respect to the fluid) and plays no significant role in this
regard. In fact, to obtain a good analogy with the standard

FIG. 2. Dispersion relation Eq. (4) for a subcritical flow with
F ¼ 0.5. k is expressed in units of h−1as , and ω in units of

ffiffiffiffiffiffiffiffiffiffiffi
g=has

p
.

The blue, continuous curve shows roots with Ω ¼ ω − vk > 0,
whereas Ω is negative along the orange, dashed curve. The green,
dotted line shows ω ¼ 0.2. It is smaller than ωmax ≈ 0.32 where
the two roots on the upper left quadrant merge. Large dots show
the four wave vectors for ω ¼ 0.2. The symbols are the same as
those carried by the corresponding asymptotic modes which are
listed in the text. Notice that the root −k→;d

−ω , for which Ω < 0, is
the opposite of that represented by a cross which has conserved
frequency −ω < 0 but comoving frequency −Ω > 0.

FIG. 3. Bottom and free surface of the flows associated with the
two profiles of Fig. 1, shown schematically. The thick, black
arrow shows the direction of the current. The eight wavy arrows
indicate the asymptotic incoming and outgoing modes entering in
the 4 × 4 S-matrix discussed in the text. Dispersive short wave-
length modes are indicated by rapid oscillations, while long
wavelength modes are represented by longer oscillations. Dashed
arrows indicate negative-energy waves. The incoming mode sent
by a wavemaker in the experiments is ϕ←;in

ω , top right side. When
scattered on the obstacle, it produces the four outward-pointing
arrows.
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Hawking prediction, one should minimize the coefficients
governing its mixing with the three other modes [9,29].
We now consider two bases of globally defined modes,

that is, solutions of Eq. (2) defined for all x. The in basis
contains four modes with only one incoming wave, i.e., one
asymptotic wave with group velocity oriented towards the
horizon. Similarly, the out basis comprises those modes
with only one outgoing wave. The aim of the present work
is to determine numerically the properties of the scattering
matrix relating these two bases. We shall denote by a
superscript “in” (respectively “out”) the in (respectively
out) modes, so that, for instance, ϕ←;in

ω is the (global) mode
which asymptotically contains only ϕ←

ω as an incom-
ing wave.
Generalizing the notation used for the 3 × 3 S-matrix of

Ref. [9], we write the relationship between the two bases as0
BBBBB@

ϕ←;in
ω

ϕ→;d;in
ω

ðϕ→;d;in
−ω Þ�
ϕ→;in
ω

1
CCCCCA ¼

0
BBBBB@

~Aω αω βω AðvÞ
ω

ᾱω Aω Bω αðvÞω

β̄ω B̄ω Āω βðvÞω

ĀðvÞ
ω ᾱðvÞω β̄ðvÞω AðvvÞ

ω

1
CCCCCA

×

0
BBBBB@

ϕ←;out
ω

ϕ→;d;out
ω

ðϕ→;d;out
−ω Þ�
ϕ→;out
ω

1
CCCCCA: ð11Þ

The superscript ðvÞ has been added to ease the identifica-
tion of the coefficients involving the copropagating mode
ϕ→
ω . The S-matrix is an element of Uð3; 1Þ. This is a direct

consequence of the fact that the scalar product of Eq. (5) is
conserved, and that the norm of ðϕ→;d

−ω Þ� is the opposite of
that of the three other modes. As a result, the squared
absolute values of the coefficients of the first line satisfy

j ~Aωj2 þ jαωj2 − jβωj2 þ jAðvÞ
ω j2 ¼ 1: ð12Þ

[When the transmission j ~Aωj2 and the reflection jAðvÞ
ω j2

channels can be neglected, one recovers the standard 2 × 2

mode mixing which gives jαωj2 − jβωj2 ¼ 1.] Similar
equations apply to the other lines and to the columns. In
these eight relations, the squared absolute values of the four
β coefficients and the two B coefficients are all multiplied
by a minus sign. These six coefficients encode some mode
amplification compensated for by excitation of the negative
energy mode.

D. The behavior of the 16 scattering coefficients

1. Transcritical flows

To prepare the analysis of the scattering in subcritical
flows, we first show how the 16 coefficients of Eq. (11)

behave in a transcritical flow with Fmax ¼ 1.4 and
Fas ¼ 0.6. For simplicity, we choose a symmetric flow.
We also choose to work with a narrow obstacle, as this
eases the observation of the transmission occurring at very
low frequency. Explicitly, we work with aRhas ¼ aLhas ¼
2 and L=has ¼ 2. Since the flow is transcritical it has
two analog horizons where F ¼ 1. The analog Hawking
temperature TH ¼ j∂xðv − cÞj=2π ¼ jc∂xFj=2π evaluated
on the horizons is TH ≈ 0.111

ffiffiffiffiffiffiffiffiffiffiffi
g=has

p
. To give an example,

if one chooses has ¼ 0.140 m, the white (black) hole
horizon is at x ≈ ð−Þ0.142 m, TH ≈ 0.93 Hz and
ωmax ≈ 1.93 Hz.
In each panel of Fig. 4, as a function of ω=ωmax, we

represent in log-log plots the squared absolute values of the
four coefficients when sending each of the incoming waves
of the left-hand side of Eq. (11). The symbol of the
incoming mode is given on top of the panel, while each
color always indicates the same outgoing mode, namely
blue for ϕ→;d;out

ω , orange for ðϕ→;d;out
−ω Þ�, green for the

copropagating mode ϕ→;out
ω , and red for ϕ←;out

ω .
The most important observation is that the absolute

values of some scattering coefficients are significantly
larger than 1. This indicates that the mode amplification
(pair creation in quantum terms) induced by the scattering
on this transcritical flow is large. Since the Hawking
prediction is jβωj2 ¼ 1=ðeω=TH − 1Þ, one should look for
curves which grow like TH=ω for ω → 0.
In the first panel, when sending ϕ←;in

ω from the
downstream right side, this growth characterizes the
modes ϕ→;d;out

ω and ðϕ→;d;out
−ω Þ�. This is to be expected from

the Hawking radiation taking place in a white hole flow: in
this case, the outgoing radiation is carried by the two
dispersive modes emitted on the same side of the horizon.
To show the quality of the agreement between the numeri-
cal outcome and the Hawking spectrum, the dotted black
line follows the Planck law with the temperature TH
evaluated on the white hole horizon. We can see that the
agreement is excellent in a wide domain of frequencies
containing ω ¼ TH even though we work in a rather
dispersive regime since TH=ωmax ∼ 0.48 [11]. The upper
limit of the domain is near ωmax, while its lower limit where
the growth stops is here ωc ∼ 6 × 10−3ωmax. This is due to
the transmission across the obstacle of ultra-low-frequency
modes. In fact, in the ultra-low-frequency regime, we
notice that jαωj2 and jβωj2 agree with each other, and
decrease linearly in ω for ω → 0. As a result, the zero-
frequency limit is fully characterized by the frequency σβ
defined by

jβωj2 ∼
ω

σβ
; ω → 0: ð13Þ

The critical frequency ωc is then given by ωc ¼ ðTHσβÞ1=2.
This simple relation follows from matching the two

SCATTERING OF GRAVITY WAVES IN SUBCRITICAL … PHYSICAL REVIEW D 93, 124060 (2016)

124060-5



behaviors of jβωj2 above and below ωc, namely jβωj2 ∼
TH=ω and jβωj2 ∼ ω=σβ, respectively. When working in the
limit of steep slopes, an approximate expression for ωc is

ωcffiffiffiffiffiffiffiffiffiffiffi
g=has

p ∼

ffiffiffiffiffiffiffiffiffi
has
hmin

s
ðFmax − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðF2

max − 1Þ
q

e−kdecL; ð14Þ

see Eq. (20) of [19]. Here kdec is the imaginary part
of the root of the dispersion relation at ω ¼ 0 in the upper
complex plane. In the present flow, one gets kdechas ¼ 3.0.
Equation (14) gives a reliable estimation of ωc for suffi-
ciently long obstacles, i.e. for kdecL ≫ 1. We shall see in
Sec. III that the damping of the evanescent mode also plays
a crucial role in the characterization of subcritical flows.
In the second panel, when sending the short wavelength

mode ϕ→;d;in
ω from the left side, one observes that the

growth in 1=ω characterizes the mode ϕ←;out
ω in red, as

expected from the Hawking effect taking place on the
black hole side. To underline the agreement the dashed
black line here follows the theoretical prediction
jᾱωj2 ≈ jβωj2 þ 1 ¼ 1=ð1 − e−ω=THÞ. Again the agreement
is excellent down to the low-frequency cutoff ∼ωc where
the growth stops. We also notice the presence of two curves
which grow like ð1=ωÞ2. This behavior is indicated by a
dotted straight line which gives ðTH=ωÞ2. This growth is
due to the fact that these modes have been scattered on both
horizons. As a result their scattering coefficients essentially
grow like the product of the amplification associated with

each horizon, as was discussed in [30]. The same obser-
vations apply to the first two coefficients of the third plot
which are obtained when sending the dispersive negative
norm mode from the left. In the third panel, we also see that
the mode ϕ←;out

ω in red closely follows the Planck law
indicated by a dashed line.
In the last panel, irrespective of the frequency, we see

that the copropagating mode ϕ→
ω is essentially transmitted.

This indicates that the mode ϕ→
ω nearly decouples from the

three other modes, which are counterpropagating with
respect to the fluid. In addition, when considering the
green curves in the three other panels, one verifies that their
values are always subdominant. These observations estab-
lish that (in transcritical flows at least) the scattering
coefficients involving the copropagating mode can be
neglected, to a good approximation.

2. Subcritical flows

We now consider the scattering coefficients in a sub-
critical flow with Fmax ¼ 0.8, Fas ¼ 0.4, aRhas ¼
4aLhas ¼ 2 and L=has ¼ 4. The effective values of
Eq. (9) are σLhas ≈ 0.27, σRhas ≈ 1.03, and Leff=has ≈ 4.
In the four panels of Fig. 5, as a function of ω=ωmax, we
show the log-log plots representing the squared absolute
values of the same scattering coefficients as in Fig. 4,
following the same notational conventions.
The main difference one immediately sees is that the

scattering coefficients are suppressed with respect to the

FIG. 4. The squared absolute values of the four scattering coefficients associated with the incoming mode indicated above the plot. All
are plotted as functions of ω=ωmax, and are shown on a log-log scale. We work with a transcritical flow given by Eq. (7) with Fas ¼ 0.6,
Fmax ¼ 1.4, aR ¼ aL ¼ 2h−1as , L ¼ 2has, hmin ≈ 0.57has. The dashed lines show the Planck spectrum 1=ðeω=TH − 1Þ (top left and bottom
left), 1=ð1 − e−ω=TH Þ (top right), and TH=ð144ωÞ (bottom right), where TH is the analog Hawking temperature; see text. Dotted straight
lines show ðTH=ωÞ2 (top right and bottom left) and ðTH=ð1200ωÞÞ2 (top left). One clearly sees that these thermal curves are no longer
followed for ω=ωmax ≲ 6.10−3.

ROBERTSON, MICHEL, and PARENTANI PHYSICAL REVIEW D 93, 124060 (2016)

124060-6



transcritical case, never becoming appreciably larger than
1. This reveals that in subcritical flows there is no
significant mode amplification. In other words, the six
anomalous coefficients which mix modes with opposite
norms all remain much smaller than 1. For instance, in the
first panel, the squared norm of the βω coefficient (encoding
the scattering on the “white hole” side) is always smaller
than 0.04. The same observation applies to the β̄ω coef-
ficient encoding the scattering on the “black hole” side; see
the red curve of the third panel. The lesson here is very
clear: when the Froude number remains smaller than 1, the
typical growth of the jβωj2 coefficients in ω−1 is no longer
found. This could be understood from the absence of any
Killing horizon in the associated effective metric ds2 ¼
−c2dt2 þ ðdx − vdtÞ2 [1].
The absence of horizons in subcritical flows introduces a

new critical frequency, which we shall call ωmin, and which
is indicated by a vertical line in the four panels of Fig. 5. It
is the frequency at which the dispersion relation has a
double root for F ¼ Fmax, vanishing as Fmax → 1. In the
quartic approximation of Eq. (4), it is thus given by the
same expression of Eq. (10) but now evaluated on top of
the obstacle where h and c reach their minimal values:

ωmin ≃ cmin

3hmin
ð1 − F2

maxÞ3=2: ð15Þ

For ω > ωmin, the two upper panels show that the
hydrodynamical mode is blocked and reflected onto the

dispersive mode, and vice versa; see the red and blue
curves. This can be understood from the fact that the
corresponding characteristics have a turning point for ω >
ωmin [19]. Similarly, the absence of significant scattering
experienced by the negative norm mode and the copropa-
gating modes (see the two lower panels) can also be
understood from the validity of the WKB approximation
for the propagation of both of these modes.
For ω < ωmin, the situation is even simpler as the four

incident modes are essentially transmitted above the
obstacle. In fact, the mode mixing coefficients are all
small, as can be understood from the fact that they encode
nonadiabatic corrections in a domain where the WKB
approximation is reliable [21]. In the limit ω → 0, the
squared norms of the coefficients relating a dispersive
mode and a hydrodynamic one go to zero as OðωÞ [19],
while those relating the two hydrodynamic modes decrease
faster, as Oðω2Þ. Notice however that Bω and B̄ω go to
nonvanishing values. This behavior is similar to the one
found at very low frequency in transcritical flows, although
the nonvanishing values are much smaller in subcritical
flows because the growth jB̄ωj2 ∼ jBωj2 ∼ 1=ω2 found in
Fig. 4 is no longer present.

E. Evolution of the scattering coefficients
of ϕ←;in

ω when varying Fmax

We observed in the previous subsection that the behavior
of the coefficients critically depends on whether the flow is
sub- or transcritical. To display the transition between these

FIG. 5. The squared absolute values of the 16 scattering coefficients for a subcritical flow with Fas ¼ 0.4, Fmax ¼ 0.8, and
aR ¼ 4aL ¼ 2h−1as , L ¼ 4has. All are plotted as functions of ω=ωmax, and are shown on a log-log scale. The dotted vertical line shows
ωmin ¼ 0.28ωmax. In the two upper plots, the large transmission for frequencies lower than ωmin is clearly visible. In the left upper plot,
one also sees that jαωj2 and jβωj2 go to 0 as ω for ω → 0.
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two behaviors, we gradually lower Fmax from 1.2 to 0.8,
focusing on the left-moving incoming mode ϕ←;in

ω , which is
most relevant for the experiments performed in Nice,
Vancouver, and Poitiers [14,16–18]. Explicitly, the first
line of Eq. (11) gives

ϕ←;in
ω ¼ ~Aωϕ

←;out
ω þ αωϕ

→;d;out
ω þ βωðϕ→;d;out

−ω Þ�

þ AðvÞ
ω ϕ→;out

ω ; ð16Þ

where the four scattering coefficients satisfy Eq. (12).
The precise evolution of the scattering coefficients when

decreasing Fmax depends on the variations of the other flow
parameters. Here, we work with fixed values of Fas ¼ 0.4
and L=has ¼ 4, which are the same as those used in Fig. 5,
while we vary the parameters aR=L of Eq. (8) so that the
generalized surface gravities,

κR=L ≡ j∂xðv − cÞjxR=L j; ð17Þ

differ by less than 10% when varying Fmax from 1.2 to 0.8.
Explicitly, the values of aR and aL used in Fig. 6 are derived

from those of Fig. 5 by dividing by ððFmax − FasÞ=0.4Þ2=3,
so that Fmax ¼ 0.8 corresponds to exactly the same flow in
both figures.
The upper left plot of Fig. 6 shows the squared absolute

value of the transmission coefficient ~Aω for seven flows:
three subcritical, one critical (Fmax ¼ 1) and three tran-
scritical. For the three subcritical flows (dotted curves), for
ω smaller than the corresponding values of ωmin which are
indicated by three dotted vertical lines, the transmission
coefficient is close to 1; i.e., there is no blocking of incident
waves. For the critical flow (dotted line), one sees that j ~Aωj2
approaches 1 for low frequency. Instead, for the three
transcritical flows, it remains smaller than 0.1 for the whole
frequency range shown in the figure. (Because of the finite
size of the obstacle, it nevertheless tends to 1 in the limit
ω → 0.) Interestingly, when increasing Fmax at fixed ω,
j ~Aωj2 decreases nearly exponentially in the region where it
is small. Correspondingly, the critical frequency ωc of
Eq. (14) at which transmission becomes significant
increases and becomes of the order ofωmax when Fmax ¼ 1.
The dichotomy between trans- and subcritical flows is

more pronounced when considering the coefficients αω and

FIG. 6. The squared absolute values of the four scattering coefficients of the mode ϕ←;in
ω for flows with seven different values of Fmax

but the same values of Fas and κR=L of Eq. (17) as those used in Fig. 5. Fmax takes equally spaced values from 1.2 (red curves) to 0.8 (blue
curves). The green dashed curve corresponds to the critical case Fmax ¼ 1. It separates the three subcritical flows (dotted lines) from the
three transcritical ones (continuous lines). The three dotted vertical lines give the values of the critical frequency ωmin of Eq. (15) below
which the incident waves are essentially transmitted, i.e., j ~Aωj2 ≈ 1−. The most interesting panel is that of jβωj2 representing the
anomalous mode mixing. When decreasing Fmax, one clearly sees the replacement of the low-frequency behavior in 1=ω, by a behavior
linear in ω. For the critical flow, one sees that jβωj2 ∼ 1 at low frequency.
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βω. When the flow is significantly transcritical, i.e.
Fmax > 1.1, there is a wide frequency domain between
ωc and ωmax where jαωj2 and jβωj2 are proportional to 1=ω.
This interval shrinks when decreasingFmax and vanishes on
reaching the critical case Fmax ¼ 1. For all subcritical
flows, one clearly sees that jαωj2 and jβωj2 go to zero
linearly as ω → 0 [19]. As a result, in subcritical flows the
maximal value of jβωj2 is reached near ωmin, and steadily
decreases as Fmax is decreased further.
In the lower right panel, for subcritical flows, we notice

that jAðvÞ
ω j2 decreases asω2 for ω → 0. In transcritical flows,

this decrease can only be seen for frequencies close to or

smaller than ωc, leaving a wide interval where jAðvÞ
ω j2 is

nearly constant, but not significant because jAðvÞ
ω j2 ≲ 0.03.

To complete this comparison, it is interesting to study the
behaviors of two effective temperatures which have been
used to characterize the spectrum. The first one is defined
by jβωj2 ¼ 1=ðeω=Teff

ω − 1Þ, i.e.,

ln
jβωj2

1þ jβωj2
¼ −

ω

Teff
ω

: ð18Þ

Constancy of Teff
ω is equivalent to jβωj2 following the

Planck law with temperature Teff
ω ; see [9–11]. The second

one is defined by [16]

ln

���� βωαω
����2 ¼ −

ω

TV
ω
: ð19Þ

These coincide whenever jαωj2 − jβωj2 ¼ 1. In Fig. 7, they
are shown as functions of ω for the same flows as those of
Fig. 6. In transcritical flows and for ωc ≪ ω ≪ ωmax, they
are both nearly constant and very close to each other, as
can be understood from the fact that the transmission j ~Aωj2

and the “gray body” factor jAðvÞ
ω j2 are both negligible. In

this case, jαωj2 − jβωj2 ¼ 1 follows from unitarity;
see Eq. (12).
However, they strongly differ in subcritical and near-

critical flows. (In fact they also differ in transcritical flows
but only at very low frequencies, for ω < ωc.) In these
cases, Teff

ω goes to zero linearly when ω → 0 because of the
aforementioned behavior of jβωj2, i.e., the suppression of
the amplification mechanism at low frequencies due to
transmission. On the other hand, TV

ω approaches a finite
value in that limit. This is because jαωj2 and jβωj2 both go
to zero linearly, so that their ratio goes to a finite,
nonvanishing constant. Interestingly, we notice that this
constant value increases when decreasing Fmax, as can be
seen in the crossing of the dotted lines occurring for
ω=ωmax ∼ 0.2 in the right plot of Fig. 7. Our numerical
simulations suggest that it goes to infinity in the limit
Fmax → Fas, i.e., when approaching a homogeneous flow
without obstacle.

III. INFLUENCE OF THE BACKGROUND
FLOW PARAMETERS

Let us now focus our attention on subcritical and near-
critical flows. As in Sec. II E, we again restrict our attention
to the left-moving incoming mode of Eq. (16). Our aim is to
identify the relevant parameters determining the spectral
properties of the scattering coefficients. To this end, we
consider three different phenomena characterized by the
value of the frequency:

(i) When increasing ω near ωmin, the scattering of ϕ
←;in
ω

varies from near-total transmission across the ob-
stacle to an essential reflection from the obstacle.
More precisely, the transmission coefficient j ~Aωj2
varies from near 1 to near 0, while jαωj2 varies in the

FIG. 7. Effective temperatures for the same seven flows of Fig. 6. In the left panel is shown Teff
ω =ωmax of Eq. (18). Except near ωmax, at

fixed ω, Teff
ω monotonically decreases when reducing Fmax. One also observes that Teff

ω ceases to be a (nonvanishing) constant at low
frequency for critical and subcritical flows. The right panel shows TV

ω=ωmax of Eq. (19). For the three transcritical flows, TV
ω closely

agrees with Teff
ω for all ω. Instead, for the critical and subcritical flows, its low-frequency behavior radically differs from that of Teff

ω . In
particular, the constant value reached by TV

ω for ω → 0 increases when reducing Fmax < 1.
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opposite manner. The sharpness of the transition will
be quantified by the derivative of j ~Aωj2 at ωmin.

(ii) Below ωmin, jαωj2 and jβωj2, the squared absolute
values of the coefficients multiplying the dispersive
modes in Eq. (16) become close to each other, and
both vanish linearly in ω for ω → 0.

(iii) Above ωmin, so long as the obstacle is sufficiently
long that tunneling effects are negligible, we expect
only the flow properties in the downstream (white
hole) region to be relevant, just as if the flow were
transcritical. It is in this frequency domain that one
could hope to obtain a close relationship with the
Hawking predictions. For narrow obstacles, however,
the behavior in this regime can be rather complicated.

In Appendix A, it can be seen that these three behaviors
are clearly present when considering the effective temper-
ature of Eq. (18) in the ðκR; κLÞ-plane. Here, we shall look
separately at the three scenarios delineated above, picking
out the relevant parameters of the flow which determine the
main behavior of the scattering coefficients in each case.

A. Transition near ωmin

For ω > ωmin, the characteristics for the left-moving
incident mode k←ω are blocked: there is a turning point they
cannot pass, instead continuously evolving into right-mov-
ing characteristics of the outgoing dispersive mode k→;d

ω

[19]. An entirely analogous blocking occurs for the right-
moving incident mode k→;d

ω from the left side, which
continuously evolves into the left-moving outgoing mode
k←ω . By contrast, for ω < ωmin, no such blocking occurs, and
the characteristics of both modes traverse the obstacle. There
is thus a significant change in behavior at ωmin, quite
independent of the analog Hawking effect, involving only
the scattering coefficients jαωj2 and j ~Aωj2 of Eq. (16). We
shall consider j ~Aωj2, and define the dimensionless parameter

S≡ −
dj ~Aωj2
dðlnωÞ

����
ωmin

¼ −ωmin
dj ~Aωj2
dω

����
ωmin

: ð20Þ

In Fig. 8 is shown the transmission coefficient j ~Aωmin
j2

evaluated at ωmin for a variety of flows, with particular
emphasis on how it depends on the adimensionalized
effective length Leff=has of the obstacle. For obstacles
which are narrow enough, j ~Aωmin

j2 is approximately con-
stant and close to 0.5, so that ωmin marks the midpoint of
the transition. However, for longer obstacles, j ~Aωmin

j2 scales
as ðLeff=hasÞ−2. We can make sense of this by noting that, in
the limit where Leff=has becomes infinite and we are left
with a single horizon, there can be no transmission at all for
ω > ωmin, so to maintain continuity of the scattering
coefficients we must have j ~Aωmin

j2 going to zero in this
limit. Figure 8 also indicates that the effects of the slope can
be approximately accounted for by using ðaR þ aLÞLeff as
the variable rather than Leff=has. [See Eq. (8) for the
definition of aR=L.] Finally, Fig. 8 shows that Fmax has

little bearing on j ~Aωmin
j2, as was observed in Ref. [17].

In Fig. 9 are shown plots of the adimensionalized
derivative S of Eq. (20) for several different values of
Fmax. In the left panel, κR is varied while Fas is fixed at
0.16, the adimensionalized effective length Leff=has is
fixed at 3.5, and κL=ωmax is fixed at 0.4. We see that,
while there is a dependence on the slope κR, this is not as
important as the dependence on Fmax, with S being
systematically reduced as Fmax is increased. In the right
panel, Leff is varied while Fas ¼ 0.16, κR=ωmax ¼ 0.4 and
κL=ωmax ¼ 0.7. We see there that Leff=has is an important
quantity in determining S when both are relatively small.
Indeed, when increasing Leff=has from 4 to 15, S is seen to
increase by a factor of between 2 and 5, depending on the
value of Fmax. At large Leff=has, however, S shows only
small oscillations around some Fmax-dependent limiting

2 5 10 20 50 100

Leff

has

0.01

0.1

1
A 2

5 10 20 50 100
aR aL Leff

0.01

0.1

1
A 2

FIG. 8. The transmission coefficient j ~Aωj2 at ωmin plotted for a variety of flows, in log-log scale as a function of the adimensionalized
effective length Leff=has. The different colors correspond to different slopes in the profile: blue represents aRhas ¼ 0.5 and aLhas ¼ 1.6
(close to those of the obstacle used in Refs. [16,17]), while red represents the symmetric obstacle with aRhas ¼ aLhas ¼ 1.6. The
different styles of curve correspond to different values of Fmax: 0.6 (solid) and 0.9 (dotted). The thick dashed curves indicate the
behavior j ~Aωj2 ∝ ðLeff=hasÞ−2. In the right plot, we attempt to account for the effect of the slopes by using ðaR þ aLÞLeff as a variable
(rather than Leff=has). It is clear that, unlike Leff=has, the value of Fmax does not play a crucial role.
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value. Notice also that, unlike at small Leff=has, the
dependence on Fmax is nonmonotonic at large Leff=has.
There is a clear lesson here in the case of relatively narrow

obstacles (i.e. Leff=has ≲ 5). According to Fig. 8, the critical
frequency ωmin corresponds more or less to the midpoint of
the transition region, and hence S (which is defined at ωmin)
serves as a good indication of the sharpness of the transition.
Turning to Fig. 9, we find that in this regime, the sharpness
of the transition increases with increasing Leff and decreases
with increasing Fmax, while it is essentially independent of
κR. The dependence on Leff is particularly intuitive: the
narrower the obstacle, the higher will be the rate of tunneling
across it, and so we need higher frequencies with more
rapidly decaying evanescent modes in order to find a mode

which is truly blocked. It is less clear how to interpret the
results for large Leff=has, for then S is no longer measured at
the midpoint of the transition.

B. Low-frequency regime

For ω < ωmin, there are no turning points according to
geometrical optics, so that the incident wave is essentially
transmitted, i.e., j ~Aωj2 ≈ 1. This is clearly seen in the top
left panel of Fig. 5. Furthermore, the same panel reveals
that jαωj2 ≈ jβωj2 ∼ ω=σβ for ω → 0, in accordance
with Eq. (13).
To characterize the zero-frequency limit, we study how

the frequency σβ depends on the flow parameters. In
Fig. 10 is plotted σβ as a function of the downstream
slope κR, with fixed values of Fas ¼ 0.16, Leff=has ¼ 3.5
and κL=ωmax ¼ 0.4. The various curves correspond to
different values of Fmax, which we allow to vary from a
subcritical to a supercritical value. We note that, although
there is a clear dependence on the slope κR, this is
subdominant with respect to the dependence on Fmax,
whose effect is much greater.3 The rapid decrease of σβ
with increasing Fmax can be understood from the results
presented in Fig. 4: when the flow is transcritical, the
scattering coefficients jαωj2 and jβωj2 first increase as 1=ω
in some interval, in stark contrast to the linear behavior seen
in the subcritical case. Interpolating between these two
different behaviors requires that σβ decrease when increas-
ing Fmax, and indeed the window of validity of the linear
behavior of Eq. (13) must shrink accordingly. It does not
vanish when Fmax reaches 1, however; we recall from Fig. 4
that there exists an ultra-low-frequency regime where
tunneling across the obstacle is significant, and where
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FIG. 9. Left: S of Eq. (20) plotted as a function of the downstream slope κR, defined in Eq. (17). We have taken Fas ¼ 0.16,
Leff=has ¼ 3.5, and κL=ωmax ¼ 0.4. Right: S plotted as a function of the adimensionalized effective length Leff=has, with Fas ¼ 0.16,
κL=ωmax ¼ 0.7 and κR=ωmax ¼ 0.4. The different curves correspond to different values of Fmax: 0.6 (solid), 0.7 (dashed), 0.8 (dotted-
dashed) and 0.9 (dotted).
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FIG. 10. σβ=ωmax [see Eq. (13)] plotted as a function of the
downstream slope κR adimensionalized by ωmax. We have fixed
Fas ¼ 0.16, Leff=has ¼ 3.5 and κL=ωmax ¼ 0.4. The various
curves correspond to different values of Fmax: the subcritical
cases Fmax ¼ 0.6 (solid) and 0.8 (dashed), the critical case
Fmax ¼ 1 (dotted-dashed) and the transcritical case Fmax ¼ 1.2
(dotted). Note that the latter curve does not extend below
κR=ωmax ≈ 0.4, since this is the lowest value compatible with
the fixed values of κL and Leff . It is clear that the slope κR plays a
much weaker role than the value of Fmax.

3An exception to this is the peak in the Fmax ¼ 0.6 curve
centered around κR ≈ 0.4ωmax ¼ κL. This is a resonant behavior
in σβ due to the symmetry of the flow profile.
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jβωj2 ≈ ω=σβ even for transcritical flows. This allows σβ to
be well defined even when Fmax > 1.
To further investigate the behavior of σβ with Fmax as the

latter approaches 1, we fixed the values of aRhas and aLhas at
0.5 and 1.6, respectively, and plotted σβ for varyingFmax and
L. The results are shown in Fig. 11. Firstly, we notice that σβ
does not vanish as Fmax → 1 but approaches a finite value,
which decreases with increasing L. In this regime, L has
taken over as the relevant parameter. Secondly, there is an
interesting change of behavior at 1 − F2

max ∼ 0.1, a change-
over point which is seemingly independent of L. For 1 −
F2
max larger than this value, the curves converge to onewhich

is proportional to ð1 − F2
maxÞ3 ∝ ω2

min, with only the curve
for the smallest value of L showing significant deviations
from the others. In this regime, then, and so long as L is not
too small, ωmin is the only relevant parameter in determining
σβ. Finally, we note that there is also an intermediate regime
where both L and ωmin are relevant parameters. In this third
regime, there are significant oscillations in σβ with a period
that depends on L. Interestingly, the troughs of these
oscillations all follow a curve which is proportional to
ð1 − F2

maxÞ2 [or ω4=3
min, according to Eq. (15)].4

From an experimental perspective, however, it is quite
unlikely for Fmax to be so close to 1 that we find ourselves
in the region of Fig. 11 where L plays a significant role.
Generally speaking, then, and up to the possibility of
resonant effects, Fmax is by far the most relevant quantity in
the determination of σβ, the latter decreasing rapidly as
Fmax approaches 1. Sufficiently narrow obstacles constitute
an exception, as we can begin to see from the L=has ¼ 5
(dotted) curve of Fig. 11. But this effect is subdominant
relative to the dependence on Fmax.

C. High-frequency regime

It turns out that the high-frequency regime is the most
complicated to describe. For, while we might naively
expect the spectrum here to be approximately thermal
(since the wave is blocked much as in the transcritical case),
it appears that this is only sometimes true. As we shall see,
the difficulties come in part from the residual transmission
across the obstacle. To get a flavor of the behavior in this
regime, we shall study here the spectrum on a series of
flows obtained by fixing one of the two slopes and letting
the other vary. We shall examine the behavior of both Teff

ω ,
the effective temperature at the midpoint of the high-
frequency regime, i.e., at ω ¼ ðωmin þ ωmaxÞ=2, and of
its derivative dTeff

ω =dω evaluated at the same frequency.
The latter quantity is very important in that it quantifies (at
least approximately) the variation of the effective temper-
ature, and thus the Planckianity of the spectrum;
see Eq. (18).
Illustrative examples of these two quantities are shown in

Fig. 12. Note that Teff
ω has been normalized by κR=2π, a

generalized version of the Hawking temperature, so that
what is plotted in all but the upper right plot is in effect the
“Hawkingness” of the spectrum at the midpoint frequency.
In the top row, κL=ωmax is held fixed at 0.25 and κR is
varied, so that the flow has a small upstream slope. The
normalized effective temperature is shown on the left and
the derivative of the temperature is shown on the right. In
the bottom row, the normalized effective temperature is
shown for two series of flows which exhibit significant
deviations from the Hawking-like prediction. In all plots,
the parameter L=has is held fixed at 2.5, a value close to that
of the obstacle used in the Vancouver experiment [16] and
which allows the upstream slope to affect the scattering.5

The variously styled curves correspond to different values
of Fmax, ranging from 0.6 to 1.2 and hence crossing the
criticality condition.
When examining the upper left plot, we first note that,

independently of the value of Fmax, κR=2π can generally be

10 4 0.001 0.01 0.1 1
1 Fmax

210 7

10 5

0.001

0.1
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FIG. 11. σβ=ωmax plotted as a function of 1 − F2
max on a

logarithmic scale. The parameters aRhas and aLhas are fixed at
0.5 and 1.6, respectively. The various curves correspond to
different values of L=has: 5 (dotted), 10 (dotted-dashed), 20
(dashed) and 40 (solid). The thick line shows the limiting
behavior: for large 1 − F2

max it is proportional to ð1 − F2
maxÞ3

and is seen to coincide with the σβ curves of larger L in this
regime, whereas for small 1 − F2

max it is proportional to
ð1 − F2

maxÞ2 and follows the bottom of the oscillations in σβ.

4While completing our numerical analysis, we became aware
of [21] in which the low-frequency regime is investigated in
analytical terms. We performed a few extra simulations which
indicate good agreement with numerical integration of their
Eq (B10). On the other hand, it is presently unclear to us if
the various behaviors displayed in our Fig. 11 can be recovered
from their Eq. (B14). We are thankful to Antonin Coutant for
explanations about the expected validity domain of the equations
of [21].

5Note that it is L rather than Leff that is held fixed here, since
holding both Leff and one of the slopes at small values can force
the remaining slope to be large. We thus allow Leff to vary a bit,
though we expect this variation to have a subdominant effect on
the temperature.
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said to give a good indication of the effective temperature.
Indeed, for all values of Fmax, the ratio 2πTeff

ω =κR is of order
1, and stays approximately constant when κR is multiplied
by a factor of 5.6 Considering the upper right plot which
gives the derivative of Teff

ω with respect to frequency for the
same flows, we see that this derivative is always positive,
and that it has the clear tendency to increase when
decreasing Fmax. (Only the transcritical flows display a
small derivative which is less than 0.03 for the series here
considered.) This indicates that the spectrum in subcritical

flows does not follow a Planck law, even approximately.
This is in agreement with [19,20,31,32], where a temper-
ature increasing with ω was observed for flows which are
not symmetric with respect to the position of the horizon.
So, while the effective temperature at any one frequency is
Hawking-like in being approximately proportional to κR,
the constant of proportionality varies with ω so that the
spectrum as a whole is not a thermal one.
Consider now the lower panels of Fig. 12. In the lower

left plot, κL=ωmax is increased to 0.75, while in the lower
right plot, it is κR=ωmax that is fixed at 0.25 while κL is
varied. As expected, we verify that for the critical and
transcritical flows Teff

ω remains largely unaffected by κL. We
also see that, for the transcritical flows, the good agreement
between Teff

ω and κR=2π is well maintained (within 20%
relative deviations here). When considering the subcritical
flows, we notice that Teff

ω significantly increases when κL
becomes significantly larger than κR. This must be due to
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FIG. 12. Effective temperature Teff
ω at the midpoint ðωmin þ ωmaxÞ=2 of the high-frequency regime. In the top row, we have fixed

Fas ¼ 0.16, L=has ¼ 2.5 and κL=ωmax ¼ 0.25, while allowing the downstream slope κR to vary. The various styles of curve correspond
to different values of Fmax: 0.6 (solid), 0.8 (dashed), 1.0 (dotted-dashed) and 1.2 (dotted). The upper left plot shows Teff

ω normalized by
κR=2π, except for the dotted red curve, which shows the temperature of the transcritical flow (Fmax ¼ 1.2) normalized instead by
TH ¼ κ=2π evaluated at the horizon (so this curve being equal to 1 is precisely the Hawking prediction). The upper right plot shows the
derivative of Teff

ω with respect to frequency, thus giving an indication of the deviations from the thermality of the spectrum. In the lower
left plot, we use the same parameters as in the top row except that the value of the upstream slope κL=ωmax has been increased to 0.75, so
that it is the dominant slope for most of the curve. We thus see significant deviations for the subcritical flows when κR is sufficiently
small. In the lower right plot, we instead fix the downstream slope κR=ωmax ¼ 0.25 and vary κL, and once again the subcritical flows
show strong deviations when κL is sufficiently larger than κR.

6It should also be noticed that, when the flow is sufficiently
subcritical (i.e. Fmax ≲ 0.8), increasing Fmax slightly decreases
the effective temperature. Comparing with Fig. 7, we see that this
is indeed possible at the upper end of the high-frequency regime,
but it should be noted that this depends on the choice of frequency
at which Teff

ω is calculated, and that had we chosen a frequency
significantly lower than ðωmin þ ωmaxÞ=2 we may well have
observed the opposite behavior.
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the residual transmission across the obstacle: although the
incoming waves are essentially blocked for ω > ωmin, there
is an evanescent wave on the left of the turning point xrðωÞ
which “probes” the gradient on the upstream slope. We thus
conjecture that the contribution to Teff

ω coming from the
upstream slope should be suppressed by the damping factor

DLðωÞ ¼ exp

�
−
Z

xr

xl

dxjℑðkdωðx0ÞÞjdx0
�
; ð21Þ

where ℑðkdωðxÞÞ < 0 is the imaginary part of the complex
wave vector of the mode decaying to the left of the
downstream turning point xr, and where xl is the would-
be turning point on the upstream side. [For sufficiently long
obstacles, which is the regime of interest to us, the integral
can be approximated by jℑðkdωð0ÞÞjL].
The conjecture is confirmed by results shown in Fig. 13,

where we represent Teff
ω =ðκR=2πÞ for three different values

of the upstream slope aL while holding fixed the down-
stream slope aR. Considering first the case with the lowest
value of aL, and ignoring the small oscillations, we notice
that there is a minimum length (jℑðkdÞjL ≈ 2.5) at
which the effective temperature becomes essentially
L-independent. This can be understood from the fact that,
for L≲ 1=aR, the length affects the typical gradient of the
obstacle, as was discussed in Sec. II. When aL ≥ aR, a
larger value of L is required for the oscillations engendered
by the upstream slope to be significantly reduced. This
larger value of L is such that jℑðkdωð0ÞÞjL ≈ 5, so that the
reduction factor of the evanescent wave on reaching the
upstream slope is around e−5 ≈ 0.01. Analyzing further
the various curves, we verified that the differences in Teff

ω

due to changes of aL (and thus κL) are proportional to
expð−jℑðkdωð0ÞÞjLÞ. Importantly we also verified that this

remains true when considering frequencies other than
ðωmin þ ωmaxÞ=2.7
To complete the analysis, in Fig. 14 we plot how

jℑðkdωð0ÞÞjhas varies with ω=ωmax for the seven flows
considered in Figs. 6 and 7. Considering a fixed frequency,
it is clear that there is a steady increase of jℑðkdωð0ÞÞj with
increasing Fmax. We also note that jℑðkdωð0ÞÞj is fixed at
zero for ω < ωmin in subcritical flows, and only begins to
increase once Fmax has reached a value at which ω ¼ ωmin.
For a given value of jℑðkdωð0ÞÞjhas, there is a frequency
window in the high-ω part of the spectrum where this value
is exceeded, and the lower limit of this window steadily
decreases with Fmax. In fact, there exists some minimum
value of Fmax > 1 above which this frequency window
covers the entire spectrum. Therefore, given the result of
Fig. 13 that there exists a given value of jℑðkdωð0ÞÞjL above
which Teff

ω no longer depends on L, Fig. 14 tells us that this
will be true of high frequencies before low frequencies, and
that above a certain value of Fmax it will be true of the whole
spectrum [except for the very small frequencies ω < ωc of
Eq. (14), where the divergence of some scattering coef-
ficients at the black hole horizon compensates the expo-
nential decay].

FIG. 13. The adimensionalized effective temperature 2πTeff=κR
evaluated at ω̄ ¼ ðωmin þ ωmaxÞ=2 as a function of L for three
different upstream slopes. The common parameters of the flows
are Fas ¼ 0.4, Fmax ¼ 0.8, and aR ¼ 2has. aL=has takes the
values 1 (green curve), 2 (orange), and 4 (blue). We notice that
the amplitude of the oscillations increases with aL, while they are
exponentially damped for increasing jℑðkdωÞjL.

FIG. 14. Plot of jℑðkdωð0ÞÞjhas, the imaginary part of the
evanescent wave vector at F ¼ Fmax. The various curves corre-
spond to the flows used in Figs. 6 and 7; i.e., Fmax takes on seven
equally spaced values between 0.8 (blue curve) and 1.2 (red
curve) while Fmin is held fixed. We see that the critical flow
(dashed curve) clearly separates the transcritical flows for which
jℑðkdωÞj has a finite value at ω ¼ 0 from the subcritical flows
where jℑðkdωÞj differs from zero only for ω > ωmin.

7It is worth pointing out that these results can be qualitatively
understood by analyzing the scattering in standard WKB terms:
when L is sufficiently large, the total scattering coefficient βω can
be written approximately as an interfering sum of the two
coefficients βR=Lω evaluated on each slope separately, as is the
case when studying the black hole laser effect [33]. More
specifically, in the present case, the total coefficient βω is given
by the equivalent of S21 in Eq. (31) of [33], the WKB phase eiS

u
ω

being replaced by the damping factor DLðωÞ of Eq. (21) above.
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In brief, what we learn here is that the emission spectrum
of subcritical flows is more sensitive to the properties of the
flow on its upstream side, since for a given frequency and
length of the obstacle, jℑðkdωð0ÞÞjL is considerably smaller
than in transcritical flows. This sensitivity of the scattering
coefficients is further studied in Appendix B for obstacles
similar to that used in the Vancouver experiment.

IV. CONCLUSION

In this paper, we numerically studied the behavior of the
16 coefficients which enter in the S-matrix governing the
scattering of surface waves on a stationary flow above a
localized obstacle. For simplicity, we assumed that the
downstream flow was subcritical and asymptotically homo-
geneous, i.e., that (unlike most experiments) it was not
modulated by an extended zero-frequency wave.
In the first part of the work, we compared the 16

coefficients of a typical transcritical flow to those of a
subcritical one. The main difference concerns the magni-
tude of the mode amplification: in transcritical flows some
coefficients (relating unit norm modes) are substantially
larger than 1, thereby revealing that the wave energy
measured in the lab frame of some mode is significantly
increased by the scattering. This large increase is made
possible because of a correspondingly large emission of
negative energy waves. In addition, when the flow is
significantly transcritical, i.e., when Fmax (the maximal
value of the Froude number) is larger than 1.2, the
amplification factors closely follow the standard
Hawking predictions. Namely, in a wide frequency regime,
jβωj2 (the squared absolute value of the scattering coef-
ficient mixing modes of opposite energy) follows a Planck
law at a temperature in close agreement with κ=2π, where κ
is the analog surface gravity evaluated where the Froude
number FðxÞ crosses 1. By contrast, for subcritical flows no
coefficient significantly surpasses 1, which means that
there are no significant super-radiant effects.
We then focused on the coefficients which describe the

scattering of counterpropagating long wavelength modes,
when gradually decreasing Fmax from a supercritical to a
subcritical value. The effect on jβωj2 is the most dramatic.
While in transcritical flows it behaves as 1=ω in a wide
domain of low ω, in subcritical flows it behaves as ω in a
similarly large frequency domain. As a result, the maximal
value of jβωj2 stays well below 1 for subcritical flows. Even
in the transcritical case, however, there exists an ultra-low-
frequency regime where jβωj2 is proportional to ω, because
ultra-low-frequency modes are essentially transmitted
across the obstacle. Interestingly, whenever jβωj2 scales
as ω for ω → 0, jαωj2 (the squared absolute value of the
coefficient which relates incoming counterpropagating
long wavelength modes to reflected short wavelength
modes) follows jβωj2. In fact, their ratio goes to 1 for
ω → 0.

In the second part, we analyzed the detailed properties of
the same set of scattering coefficients in sub- and near-
critical flows. We have shown the existence of high- and
low-frequency behaviors separated by a transitionary regime
around the critical frequency ωmin. Above this frequency the
counterpropagating incoming long wavelength modes are
essentially reflected, while below it they are essentially
transmitted. As expected, the width of the frequency domain
characterizing the transition decreases when increasing the
length of the obstacle (at least for sufficiently narrow
obstacles). We have also shown that this width tends to
increase with increasing Fmax, and that it is largely inde-
pendent of the slopes of the obstacle. In the low-frequency
domain, we observed that jαωj2 ∼ jβωj2 ∼ ω=σβ for ω → 0

both in sub- and transcritical flows. We then showed that σβ
radically diminishes with increasing Fmax; see Fig. 10. In
transcritical flows, this can be understood from the fact that
σβ, through its relationship to ωc of Eq. (14), scales as the
square of the damping factor DL of Eq. (21) associated with
the evanescent mode; see also Fig. 14.
In the high-frequency regime of subcritical flows, the

incoming long wavelength modes are essentially reflected,
as is the case for transcritical flows. We could thus expect
that the high-frequency scattering coefficients in trans- and
subcritical flows behave in the same manner. However, our
numerical observations indicate that this is only partially
true. In particular, the scattering coefficients in subcritical
flows are seen to be more sensitive to the upstream
properties of the flow because there is a larger transmission
across the obstacle. This larger sensitivity can be easily
understood, and rather well characterized, by evaluating the
residual amplitude of the evanescent wave on the upstream
side of the obstacle. In addition, we have shown that the
effective temperature characterizing the emitted flux sig-
nificantly depends on the frequency at which it is measured.
This means that the emitted flux in general does not follow
the Planck law.
In Appendix A, as a function of the upstream and

downstream slopes, we show the behavior of the effective
temperature evaluated in the low-, the intermediate- and the
high-frequency regimes. The existence of three different
patterns demonstrates that the spectral properties radically
differ in each regime. One should thus study each regime
separately. In Appendix B we further study the respective
roles of the upstream and downstream slopes for asym-
metrical obstacles which are similar to those used in
Refs. [16,17]. For such narrow obstacles, i.e., obstacles
such that the ratio of their effective length to the asymptotic
water depth Leff=has ≲ 4, our analysis reveals that the
upstream slope, which is about four times larger than
the downstream slope, plays a dominant role in determining
the scattering coefficients. Therefore, in future experi-
ments, if one wishes to test the scattering on the down-
stream slope, it would be necessary to use either longer
obstacles or obstacles with a lower upstream slope.
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APPENDIX A: THE THREE DIFFERENT
BEHAVIORS OF THE SPECTRUM

As a direct illustration of the existence of three different
regimes, we show in Fig. 15 contour plots of the effective
temperature Teff

ω of Eq. (18) in the ðκR; κLÞ-plane (all

quantities being adimensionalized byωmax), for frequencies
ωmin=2, ωmin and 2ωmin. We clearly see that the shape of the
contours radically differs for each plot. In particular, for
ω ¼ ωmin=2 the contours are symmetric about the diagonal
κR ¼ κL, indicating that in the low-frequency regime the
effective temperature is insensitive to the directionality of
the flow; on the other hand, for ω ¼ 2ωmin the contours are
more parallel to the κL-axis, indicating that the flow
properties on the downstream side are more relevant in
this regime. Much of the residual dependence on κL is due
to our use of a narrow obstacle (we have used L=has ¼ 2.5);
increasing L=has, the contours for 2ωmin are more vertically
aligned. We notice that the contours for ω ¼ ωmin are
somehow in between the two we have just described. What
we learn here is that it is inappropriate to look for a (global)
description of the scattering that would be valid in the three
regimes. This is why we study separately each regime in the
main text.
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FIG. 15. In the ðκR; κLÞ-plane with Fmax ¼ 0.7 and L=has ¼ 2.5, the value of Teff
ω of Eq. (18) (normalized by ωmax) plotted for three

different values of ω: ωmin=2 (top), ωmin (bottom left) and 2ωmin (bottom right). The contour shading is the same for each panel, and
corresponds to that indicated by the color legend. We clearly see that the effective temperature Teff

ω varies a lot with ω, which means that
the spectrum is not Planckian, and also significantly depends on the upstream slope κL.
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APPENDIX B: EFFECTS OF SLOPE AND
ASYMMETRY

When considering asymmetrical obstacles, there arises
the interesting question of the respective roles of the up-
stream and downstream slopes in determining the scattering
coefficients. To address this issue, we consider an obstacle
described by Eq. (8) with properties similar to the one used in
theVancouver experiment. In particular,we take the upstream
slope aLhas ¼ 1.6 to be much larger than the downstream
slope aRhas ¼ 0.5. The length parameter L=has ¼ 2.5, cor-
responding to an effective length Leff=has ¼ 3.5, is relatively
short (comparewith Figs. 8 and 9), a crucial property in that it
allows the upstream slope to affect the scatteringvia tunneling
effects. The maximum and asymptotic Froude numbers are
0.7 and 0.16, respectively.
To illustrate the role of the asymmetry, we first compare the

scattering on this flow to that on the reversed flow,
i.e., the flow obtained by sending x → −x while keeping
the orientation of the flow (from left to right) unchanged. Two
important lessons can be drawn from Fig. 16. For frequencies
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FIG. 16. Two effective temperatures plotted for two different
flows. The red curves correspond to the flow which resembles
that used in the Vancouver experiment, while the blue curves
correspond to the same flow with reversed orientation (i.e. with
κR and κL swapped). The solid curves show Teff

ω of Eq. (18),
determined by jβωj2 only, while the dashed curves plot TV

ω of
Eq. (19), completely determined by the ratio jβω=αωj2. The
vertical dotted line shows the critical frequency ωmin.
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FIG. 17. As in Fig. 16, the two effective temperatures (Teff
ω in solid curve, TV

ω in dashed curve) plotted for two different flows, with the
two flows separated for clarity. The red curves on the left correspond to a flow close to that used in the Vancouver experiment, while the
pink and brown curves correspond, respectively, to an increase and decrease in one of the slopes by 15%. Similarly, the blue curves on
the right correspond to the reversed flow, while the light blue and purple curves correspond, respectively, to an increase and decrease in
one of the slopes by 15%. In the upper plots, it is the smaller of these two slopes (i.e. κR in the left column, κL in the right column) that is
varied, while in the lower plots it is the larger of the two slopes (i.e. κL in the left column, κR in the right column).
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larger than ωmin, the temperatures Teff
ω and TV

ω agree for any
one flow, indicating that the unitarity condition (12) in the
high-frequency domain is jαωj2 − jβωj2 ≈ 1. However, there
is a significant difference between the two orientations of the
flow, as can be seen by comparing the red and blue curves. On
the other hand, for frequencies smaller thanωmin, the situation
is reversed: Teff

ω and TV
ω become independent of the orienta-

tion of the flow, but are now in disagreement with each other.
As already noted, Teff

ω vanishes forω → 0, while TV
ω goes to a

constant in this limit.
To further investigate the respective roles of κL and κR,

we vary these quantities separately around the values given

above. The results are shown in Fig. 17 in terms of the two
temperatures Teff

ω and TV
ω of Eqs. (18) and (19), respec-

tively. For either effective temperature, and irrespective of
the orientation of the flow, one notices that the changes
induced by varying the highest slope by �15%, shown in
the lower plots, are much more significant than those
resulting from a variation of the lowest slope by the same
relative amount, shown in the upper plots. Hence, for
subcritical flows that are sufficiently short and asymmet-
rical, the scattering properties are mostly determined by the
steepest slope, whether it is on the upstream or downstream
side of the flow.
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