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We present cosmological-scale numerical simulations of an evolving universe in full general relativity
and introduce a new numerical tool, COSMOGRAPH, which employs the Baumgarte-Shapiro-Shibata-
Nakamura formalism on a three-dimensional grid. Using COSMOGRAPH, we calculate the effect of an
inhomogeneous matter distribution on the evolution of a spacetime. We also present the results of a set of
standard stability tests to demonstrate the robustness of our simulations.
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I. INTRODUCTION

Current cosmological work typically relies on a pertur-
bative approach or a Newtonian-gravity approximation [1,2].
Although such approximate methods have led to very precise
simulations, as we acquire and anticipate subpercent-level
precision measurements of the structure in and of the
present-day Universe, more accurate simulations and there-
fore more accurate methods are needed. This is not only to
provide more accurate results, but also to yield insights into
physical processes not previously appreciated.
In this paper we present a numerical implementation of

the fully general-relativistic Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism for studying gravitational
systems [3,4]. This formalism is most often applied in
regimes of strong gravity—compact object dynamics.
However, it has also been applied to cosmological prob-
lems in the early Universe, such as critical collapse in a
radiation fluid [5,6], black hole lattices (e.g. Ref. [7]), and
more (for a recent review, see Ref. [8]). Here we examine
the performance of the BSSN formalism in the context of a
matter-dominated cosmological spacetime, and draw com-
parisons between Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetimes and perturbed FLRW spacetimes.
The equations we evolve are fully nonlinear parametri-

zations of general relativity (GR), and therefore formidable
to work with analytically—one reason approximations are
commonly made. Nevertheless, the nonlinear terms are
few enough that, depending on gauge choice, numerically
integrating the full unconstrained Einstein equations does
not require significantly more computational resources than
working in a linearized gravity regime. In this paper we
make the case that nonlinear gravitational effects can be
taken into account in cosmological simulations using such
a formalism, studying whether a fully unconstrained,
general-relativistic model of a matter-dominated inhomo-
geneous universe is consistent with FLRWapproximations.

Although the system that we study does not depend on
an averaging scheme or background solution, there are
several assumptions we make in order to simplify numeri-
cal integration. The most significant of these are that we use
a pressureless fluid with zero initial coordinate velocity,
limiting the dynamics we can probe in the matter sector;
the simulation contains a short-wavelength cutoff due to
finite available resolution; and the system contains a long-
wavelength cutoff due to periodic boundary conditions.
Here we examine a numerical spacetime beyond the FLRW
approximation in synchronous gauge subject to these
constraints, obtaining a full nonlinear solution in a cos-
mological context. To our knowledge, this is the first time
that such a formalism has been applied to an unconstrained,
inhomogeneous, 3þ 1-dimensional cosmological space-
time with a pressureless fluid.
In this work we first describe a simple way to determine

initial conditions for a universe containing matter and a
cosmological constant term. We then numerically evolve
a system described by these initial conditions, using a
mildly modified version of the standard BSSN equations.
We discuss the subsequent evolution of the system,
limitations we encounter, and some potential directions
for future work.

A. The BSSN formalism

The BSSN equations are derived from the original
Arnowitt-Deser-Misner formalism [9] of GR, and provide
a numerically stable scheme for evolving Einstein’s equa-
tions. (For a full textbook treatment, see Ref. [10].)
In this formulation, the metric is written as

gμν ¼
�−α2 þ γlkβ

lβk βi

βj γij

�
; ð1Þ

where α and βi are referred to as the “lapse” and the “shift”
respectively. The BSSN equations evolve the 3-metric for a
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particular gauge choice, along with the extrinsic curvature
Kij. The metric is rescaled by a conformal factor,
γij ≡ e4ϕγ̄ij, with detðγ̄ijÞ ¼ 1. The extrinsic curvature is
decomposed into a trace, K, and a conformally related
trace-free part, Āij, whose indices are raised and lowered by
the conformal metric γ̄ij:

Kij ¼ e4ϕĀij þ
1

3
γijK: ð2Þ

The full dynamical system is

∂tϕ ¼ −
1

6
αK þ βi∂iϕþ 1

6
∂iβ

i; ð3Þ

∂tγ̄ij ¼ −2αĀij þ βk∂kγ̄ij

þ γ̄ik∂jβ
k þ γ̄kj∂iβ

k −
2

3
γ̄ij∂kβ

k; ð4Þ

∂tK ¼ −γijDjDiαþ α

�
ĀijĀij þ 1

3
K2

�

þ 4παðρþ SÞ þ βi∂iK; ð5Þ

∂tĀij ¼ e−4ϕð−ðDiDjαÞ þ αðRij − 8πSijÞÞTF
þ αðKĀij − 2ĀilĀl

jÞ þ βk∂kĀij

þ Āik∂jβ
k þ Ākj∂iβ

k −
2

3
Āij∂kβ

k: ð6Þ

The source terms written in terms of the stress-energy
tensor Tμν are

ρ ¼ nμnνTμν; ð7Þ

Si ¼ −γiμnνTμν; ð8Þ

Sij ¼ γiμγjνTμν; ð9Þ

where nμ ¼ ð−α; ~0Þ and S ¼ γijSij.
Our software, the Cosmological General Relativistic and

Perfect-Fluid Hydrodynamics (COSMOGRAPH) code, allows
for an arbitrary lapse and shift. However, the work we
present here largely makes use of synchronous gauge, or
geodesic slicing. In this gauge, the lapse is a fixed constant
(α ¼ 1) and there is no shift (βi ¼ 0). With this choice, the
evolution equations for the metric reduce to

∂tϕ ¼ −
1

6
K; ð10Þ

∂tγ̄ij ¼ −2Āij; ð11Þ

∂tK ¼ ĀijĀij þ 1

3
K2 þ 4πðρþ SÞ þ βi∂iK; ð12Þ

∂tĀij ¼ e−4ϕðRij − 8πSijÞTF þ KĀij − 2ĀilĀl
j: ð13Þ

For a flat FLRW solution to Einstein’s equations, the
BSSN variables can be directly translated to the FLRW
metric functions. The FLRW spatial metric is γij ¼ a2δij,
meaning γ ¼ det γij ¼ a6. Inserting this relationship into
the BSSN equations and applying the gauge choice will
give us a translation between BSSN and FLRW parameters:
H ∼ − 1

3
K and a ∼ γ1=6 ¼ e2ϕ. These will be useful for

computing initial conditions, and for making comparisons
with standard results.
In the BSSN formalism, auxiliary conformal connection

variables,

Γ̄i ≡ γ̄jkΓ̄i
jk; ð14Þ

with Γ̄ijk ¼ γ̄ilΓ̄l
jk, are evolved simultaneously with the

metric functions. These are used to eliminate terms with
mixed derivatives when calculating the Ricci tensor. One
writes

Rij ¼ R̄ij þ Rϕ
ij ð15Þ

where

R̄ij ≡ −
1

2
γ̄lm∂m∂lγ̄ij þ γ̄kði∂jÞΓ̄k þ Γ̄kΓ̄ðijÞk

þ γ̄lmð2Γ̄k
lðiΓ̄jÞkm þ Γ̄k

imΓ̄kljÞ ð16Þ

and

Rϕ
ij ≡ −2D̄iD̄jϕ − 2γ̄ijD̄2ϕþ 4D̄iϕD̄jϕ − 4γ̄ijðD̄ϕÞ2;

ð17Þ
where D̄ is the covariant derivative associated with γ̄ij.
The equation of motion for Γ̄i is

∂tΓ̄i ¼ 2

�
Γ̄i
jkĀ

jk −
2

3
γ̄ij∂jK − 8πγ̄ijSj þ 6Āij∂jϕ

�
: ð18Þ

While it might seem odd that we evolve so many (seem-
ingly redundant) parameters, this strategy helps provide
numerical stability in the BSSN framework. By evolving
the metric coefficients, extrinsic curvature and connections
separately, we can check for consistency throughout
the simulations. These constraints are referred to as the
Hamiltonian and momentum constraints, and should be
obeyed on spacetime slices both initially and throughout
the simulation. In terms of BSSN variables the Hamiltonian
and momentum constraints are respectively

H≡ γ̄ijD̄iD̄jeϕ −
eϕ

8
R̄þ e5ϕ

8
~Aij

~Aij −
e5ϕ

12
K2 þ 2πe5ϕρ

¼ 0 ð19Þ
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and

Mi ≡ D̄jðe6ϕ ~AijÞ − 2

3
e6ϕD̄iK − 8πe10ϕSi ¼ 0: ð20Þ

In order to quantify the amount of constraint violation
relative to the energy scales involved in the problem,
we compare the calculated constraint violation to the root
sum of squares of the individual terms in each respective
constraint equation—the “scale” of the constraint. We label
these two denominators ½H� and ½M�, with M ¼ jMij.
Alongside the metric, we evolve a pressureless fluid

describing the matter content of the universe. Our code was
written to utilize a flux-conservative form of the relativistic
hydrodynamic equations [11]; however, here we are pri-
marily interested in results for a w ¼ 0 cosmological fluid
with rest-mass density ρ0 with no initial velocity compo-
nent. The equation of motion for the matter fluid in the
absence of any initial velocity is then a simple conservation
law, allowing us to optimize the fluid code to model a
static source,

∂t
~D ¼ ∂tðγ1=2ρ0Þ ¼ 0: ð21Þ

The contributions of the matter components to the source
terms are then ρ ¼ ρ0 þ ρΛ, Si ¼ 0, Sij ¼ −γijρΛ, and
S ¼ −3ρΛ.
We fix physical scales by setting our grid side length to

L ¼ nH−1
I ¼ NΔx, where n is an arbitrary fraction and HI

is the Hubble scale of an FLRW solution on the initial slice.
Combining this with the number of points per grid side, N,
allows us to determine the grid spacing Δx. In program-
ming units, we work in units of the Hubble scale of an
analogous FLRW solution at the time the initial slice is set.
This also fixes the density of the FLRW solution to be
ρFLRW ¼ ð3=8πÞðn=NÞ2.
As in almost all simulations, numerical inaccuracies

accumulate over time leading to substantial growth of
constraint violation at late times. In order to alleviate this
problem, we have included a diffusive term in the evolution
equations as suggested in Ref. [12], with varying degrees of
strength. These modifications take the form

∂tϕ ¼ …þ 0.1cHΔtH; ð22Þ

∂tγ̄ij ¼ …þ 0.5cH γ̄ijΔtH; ð23Þ

∂t
~Aij ¼ … − 1.0cH ~AijΔtH: ð24Þ

These additional terms do suppress constraint violation
at some level; however late-time growth remains large,
ostensibly due to the matter coupling. Although we do not
explore this idea thoroughly, we do present some prelimi-
nary analysis in Sec. III B. Because of this instability,
and because we are interested in percent-level effects, we

generally restrict ourselves to time scales on which
H=½H�≲ 10−4, and M=½M�≲ 10−2.
To describe the statistical behavior of fields as

they evolve, we commonly compute volume-weighted
(conformal) averages

f̄ ≡
R
dx

ffiffiffi
γ

p
fR

dx
ffiffiffi
γ

p ≃
P

xie
6ϕifiP

xie
6ϕi

ð25Þ

and volume-weighted standard deviations

σf ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N − 1

P
xie

6ϕðxiÞðfðxiÞ − f̄Þ2P
xi
e6ϕðxiÞ

vuut ð26Þ

of various fields (f) on spatial slices.

II. COSMOLOGICAL INITIAL CONDITIONS

The initial surface from which we evolve should satisfy
the Hamiltonian and momentum constraint equations. In
the case of an FLRW solution, the Hamiltonian equation is
one of the Friedmann equations, and all terms in the
momentum constraint equation are zero. We are interested
in solutions similar to this, but we also wish to examine a
universe with nonuniform matter density. We do not
attempt to specify a matter distribution that is perfectly
analogous to our Universe, but instead restrict ourselves to
initial conditions that are easier to explore in the context of
the BSSN formalism.
The Hamiltonian and momentum constraint equations by

themselves do not uniquely specify a metric; more degrees
of freedom exist than can be specified by the constraint
equations. Additionally, even when using choices that
simplify the equations (such as in the conformal trans-
verse-traceless decomposition) the equations can still be
difficult to solve. To this end, we relax the requirement that
we need to specify an exact matter source for initial
conditions, instead specifying the conformal factor ϕ itself.
We specify a slice with constant extrinsic curvature whose
value is approximately determined by the average matter
density, and fluctuations in density and ϕ set by a power
spectrum. At large scales (small k) we allow the power
spectrum to scale as Pk ∼ k1, and at small scales (large k) as
Pk ∼ k−3 [13]. Given a peak scale k� and peak amplitude at
this scale P�, we use the power spectrum

Pk ¼
4P�
3

k=k�
1þ 1

3
ðk=k�Þ4

: ð27Þ

In order to set these initial conditions, we decompose ρ
into two pieces, ρK sourcing the trace of the extrinsic
curvature K and ρψ sourcing the conformal factor ψ ≡ eϕ,
so the total density is ρ ¼ ρK þ ρψ . We also impose that the
matter is at rest, so Si ¼ 0. We use a conformally flat metric
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and set the trace-free part of the extrinsic curvature to zero,
leaving us to solve two simpler equations:

∇2ψ ¼ −2πψ5ρψ ; ð28Þ
K ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
24πρK

p
: ð29Þ

The nonlinear ψ equation is difficult to solve for a fixed
matter source ρψ , with attempted relaxation and iterative
solution methods tending to find the ψ ¼ 0 solution. We
instead opt to specify initial conditions by setting ψ
directly, with a power spectrum Pψ

k ¼ k−4Pk. We set the
monopole term to unity, and subsequently set
ρψ ¼ ∇2ψ=ð−2πψ5Þ. A power spectrum realization can
be seen in Fig. 1.
We note that because we cannot directly specify that ρψ

has zero mean, the extrinsic curvature K will not neces-
sarily be set by the average of the total density ρ̄.
We generate a Gaussian random field using the matter

power spectrum in Eq. (27), specifying a unitary monopole.
The field ρψ is then calculated using finite differencing
from Eq. (28). When the Hamiltonian constraint is sub-
sequently calculated, this means the predominant error
should only be due to finite precision. The matter field is
constructed as ρ ¼ ψ5ρψ þ ρK þ ρΛ. Last, the trace of the

extrinsic curvature is set to K ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πðρK þ ρΛÞ

p
.

III. NUMERICAL METHOD

A. Code structure

Here we present details of the code used to evolve the
BSSN equations. The engine of the code is written in C++

and employs several C++11 standard features, along with
OPENMP [14] for parallelization, FFTW [15] for calculating
power spectra and creating initial conditions, and the HDF5
file format [16] for storing samples of data. The simulations
presented here are performed on resources available
at Kenyon College [17] and the High Performance

Computing System at Case Western Reserve, on single
nodes that range between 8–64 cores and 64–512 GB
of RAM.
The code is divided into different classes each of which

evolves a different component. There are two main classes:
one that solves the gravitational equations and one that
evolves the hydrodynamical equations that define the
matter content. There are three additional classes that
implement the static w ¼ 0 perfect fluid examined here,
a class that defines a cosmological constant, and another
that can integrate the pure Friedmann equations for a
perfect fluid.
The most important of these is the class that evolves

the gravitational equations; this “BSSN class” provides
functionality to evolve the BSSN fields in the presence of
an arbitrary matter source using a standard fourth-order
Runge-Kutta integrator, with four memory registers per
gravitational field and an additional register for storing
source terms. We informally note that this code runs at a
speed comparable to ETK/CACTUS [18,19], but seems
to consume roughly an order of magnitude less memory.
The BSSN class also includes routines for performing
computations such as calculating average momentum and
Hamiltonian constraint violation. The results we present are
almost exclusively in synchronous gauge, and as such the
code has been optimized to take advantage of its simplicity.
However, the BSSN class is still capable of evolving the
metric in an arbitrary gauge.
The other major class is the “Hydrodynamics class,”

which allows us to evolve a perfect fluid with a cosmo-
logical equation of state. This class has been simplified for
a static w ¼ 0 fluid, with further work needed to implement
an arbitrary equation of state. As either an N-body code or
special lattice methods are required to evolve a pressureless
fluid with a nonzero velocity component, we constrain
ourselves to work with initial conditions where the fluid is
static. In the chosen gauge, the equations of motion
simplify such that the conserved fluid density does not
evolve, ∂t

~D ¼ 0.
Finite-difference stencils are implemented up to

eighth order, as numerical stability and accuracy is highly
dependent on structure at smaller scales, as demonstrated
below. Unless otherwise specified, the stencils used are
generally OðΔx6Þ.
The simulations have periodic boundary conditions,

imposed at the level of an array indexing function.
However, alternate boundary conditions can be imple-
mented. With our code we expect to be able to run for an
arbitrarily large grid—although it is currently limited to
single-node operation. We have been able to run at reso-
lutions up to N3 ¼ 7683 on a single 512 GB RAM node.

B. Standard code tests: Analytic cases

We present several code tests where we evaluate several
known, analytic solutions, intended to examine the

FIG. 1. Initial matter power spectrum (solid) for an N3 ¼ 1283

grid, including lines (dashed) indicating k and k−3 scalings. The
power spectrum is cut at k ¼ 50Δk.
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behavior of fields that will dominate the dynamics in
cosmological scenarios. The intention is to examine the
validity of results presented, and to explore in what regimes
the code will produce accurate and interesting results.
We begin with two standard “Apples with Apples” tests

[20], the robust stability test and linearized wave test.

1. Robust stability test

The robust stability test examines the growth of small
amounts of numerical error by looking at the evolution of
noise around a Minkowski background in a simulation with
no matter content. Figure 2 displays this deviation from
Minkowski space with different resolutions. In this test, we
use an asymmetric box in which there are only six points in
the y and z directions and a variable number of points in the
x direction. In Ref. [20], the number of points in the x
direction was parametrized by ρAwA (the subscript here is

added to avoid confusion with the density parameter)
such that the number of points in the x direction is
Nx ¼ 50ρAwA.

2. Linearized wave test

The linearized wave test examines the behavior of
linear metric fluctuations after a large number of box
light-crossing times. Since we have a plane wave, we work
with the asymmetric box of the previous section, where
Ny ¼ Nz ¼ 6 and Nx ¼ 50ρAwA. Spacetime is initialized
with a plane wave traveling in the x direction—the
direction with the largest resolution—with an amplitude
small enough that nonlinear effects are at the level of
roundoff error. Figure 3 shows the difference between the
numerical result of this wave compared to the expectation
from linearized gravity.

3. Black hole profile

To verify the validity of the code for fluctuations in the
conformal field ϕ and gauge fields, we examine an analytic
black hole solution with a “trumpet” geometry [21] in the
“1þ log” slicing. The solution is stable at remarkably
low resolution, N3 ¼ 323, and with second-order finite-
derivative stencils. After initializing our grid with the

FIG. 2. The top panel shows deviation from Minkowski space
vs time for varying ρAwA for one box crossing time. Blue and
orange curves (topmost) correspond to ρAwA ¼ 1, green (middle)
to ρAwA ¼ 2, and red (bottom) to ρAwA ¼ 4. Dashed lines include
random fluctuations around ~D ¼ 0. The orange curves include
damping with cH ¼ 1. At later times, the growth of deviations
from Minkowski can be seen when noise in the matter sector is
included. The bottom panel shows the maximum constraint
violation vs time, with colors as in the top figure. The matter
coupling can be seen to introduce a growing mode; the fixed error
present in the static ~D field will source the metric continuously.
The constraint damping term helps diminish constraint violation
in the short term.

FIG. 3. The top panel shows the analytic (blue, solid) and
numerical (red, dashed) solutions for the linear wave test after
1000 box crossing times for ρAwA ¼ 4. The bottom panel shows
the difference between the two curves in the top panel, scaled so
differences are noticeable.
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solution, we see it relax slightly, and subsequently remain
stable. This solution is run in vacuum, using a time-
independent maximal slicing gauge condition for the lapse,
and hyperbolic Gamma driver shift condition [22]. At the
outer boundary we naively apply fixed boundary condi-
tions. In the interior of the black hole the lapse approaches
zero, so the value of the conformal field ϕ is set such that
the derivatives of ϕ at nearby points will be calculated to a
good approximation. We plot the conformal field, ϕ, in the
simulation and compare it to the analytic black hole
solution in Fig. 4.

4. FRW universe

We also examine the case of a homogeneous flat FLRW
universe. For this we simply choose geodesic slicing, or
synchronous gauge, with periodic boundary conditions on
a very small (N3 ¼ 83) grid. Since there are no spatial
inhomogeneities in the simulation, spatial resolution should
not play a role in its validity. Indeed, Fig. 5 shows that
the software can reproduce FLRW cosmology to high
accuracy.

C. Cosmological code tests: Variation of parameters

To test our code in a cosmological regime, we define a
fiducial model and then vary physical and numerical
parameters to test the stability and reliability of
our simulations. The fiducial model has N3 ¼ 1283 points
on each side; each side of the simulation is half
the corresponding FLRW Hubble scale, L ¼ H−1

I =2. We
employOðΔx6Þ finite-derivative stencils, andΔt ¼ Δx=10.
The initial conditions have a power spectrum cut at
kcutoff ¼ 10=128Δk, peak frequency of k ∼ 7=128Δk,
and peak amplitude such that σρ=ρ ∼ 0.04. We note
that the resolution we have chosen corresponds to
Δx ∼ 16 MPc, somewhat close to the 11.5 MPc σ8 scale.
However, even without the cut, the amplitude corresponds
to σρ=ρ ∼ 0.1. Thus a combination of the spectrum cutoff

and smaller spectrum amplitude results in relatively small
amplitude fluctuations compared to the measured value
σ8 ∼ 0.8 today [23]; thus we are studying a smoother
universe.
So that we have a method of comparison, we present

some baseline information about our fiducial model.
Figure 6 shows how well our fiducial model satisfies the
physical constraints, Eqs. (19) and (20), and Fig. 7 shows
how inhomogeneities of the extrinsic curvature, σK=K̄, are
generated over the course of the simulation.

1. Constraint violation

Here we explore the effect of the constraint damping
terms from Eq. (22). Increasing the magnitude of cH helps
reduce the maximum amount of Hamiltonian constraint
violation, although it does not have much effect on the
overall growing mode. Figure 8 shows the effect of this
term on the level of Hamiltonian constraint violation and
on the generation of inhomogeneities of the extrinsic
curvature, K.

2. Varying the resolution

Here we examine the effects of changing the resolution
while keeping the same initial conditions (picking initial
conditions with identical amplitudes for ~k). We see that the

FIG. 4. A cross section of the conformal field ϕ after a period
of relaxation, analytically (dashed green line) and numerically
(blue dots) for a black hole.

FIG. 5. Deviation of FRW quantities from analytic solutions for
varying time steps, and resulting fractional constraint violation.
The colors red, yellow, and green correspond to time steps
Δt ¼ Δx=10, Δt ¼ Δx=20, and Δt ¼ Δx=40 respectively.
Here Δx ¼ L=N ¼ H−1

I =2N.
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amount of constraint violation diminishes as the resolution
is increased, something expected due to the increasing
smoothness of the fields, making derivatives more accurate.
Figure 9 shows that we see no qualitative difference in
the generation of inhomogeneities and marginally better

satisfaction of the Hamiltonian constraint, Eq. (19), as we
increase the resolution of the simulations.
A more precise test of resolution variation can be

seen in Fig. 10. We should be able to predict how much
better the constraints can be satisfied as we increase
the resolution; specifically, as we double the number of
points on a side, we should see the ratio of errors be
OðΔx6Þ=OðΔx6=26Þ ∼ 26.
We have implemented a number of finite-differencing

stencils, seeing reduced error for higher-order stencils as
expected. The use of Oðdx2Þ stencils in particular leads to
unacceptable growth of constraint violation in our simu-
lations. We also tested changing the time resolution Δt to
check for convergence. The results presented here agree
with runs for Δt an order of magnitude smaller.

3. Varying the spectrum cutoff

As a final technical test, we present results as the
spectrum cutoff is varied. As the cutoff approaches smaller

j~kj, we see that the amplitude of fluctuations is significantly

FIG. 7. The level of inhomogeneity in the extrinsic curvature,
σK=K̄ as a function of the average conformal factor, ϕ̄, for our
fiducial model.

FIG. 6. We show the satisfaction of the constraints, Hamil-
tonian (left panel) and momentum (right panel), for our fiducial
model. The bold lines show the average value of the constraint,
the shaded regions envelop 68% of the points of the grid and the
dashed line shows the worst (most violation) point.

FIG. 8. We vary the value of cH in Eq. (22). The top panel
shows the effect of varying this parameter on the satisfaction of
the Hamiltonian constraint, Eq. (19), over time. The bottom panel
shows the level of Hamiltonian constraint violation as we vary the
same parameter. In both panels we take cH to be 0 (green) and 40
(red). The bold lines show the average value of the constraint, the
shaded regions envelop 68% of the points of the grid and the
dashed line shows the worst (most violation) point.
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diminished, as expected, when modes are removed. The
relative amount of constraint violation also diminishes as
the fields become increasingly smooth. As the cutoff is
raised, we see the opposite happen: structure at increasingly
small (and unresolvable) scales is created, and constraint
violation increases. The amount of constraint violation after
an e-fold is a part in ten when c ¼ 40, and is of the order of
a part in 1011 for c ¼ 2.
This is an important test, specifically when compared to

the resolution test, Sec. III C 2, as it shows that we have
control over the finite differencing scheme; for example,
doubling the value of kcutoff resolves the same physical
modes as would halving the physical size of the box (and
keeping the resolution constant), or doubling the resolution
of the box. While the numerical strategy differs for these
three cases by many factors of Δx, Δt, N, etc. we see
excellent agreement in the results from our code. We have
demonstrated that these three situations produce the same
physical results and show that we are using our software
well within the regime of its validity.

IV. RESULTS

Now that we have demonstrated the stability and
reliability of our simulations, we complement the main
results of these simulations as presented in Ref. [24]. We
are primarily interested in understanding how inhomo-
geneous matter generates local differences in the expansion
rate. We do this in two steps. First, we look at Fig. 11 to see
if we generate fluctuations of the extrinsic curvature, σK=K̄,
which, in our gauge, is the source for the conformal factor,
ϕ. Once this is established, we will run two tests to tell
whether or not this generation is an artifact of our scheme
or has a measure that shows local deviation from FLRW.
We compare the fiducial model to the corresponding

FLRW simulation with the same initial average initial

FIG. 9. We track the generation of inhomogeneities of the
extrinsic curvature, σK=K̄, (top panel) and the satisfaction of the
Hamiltonian constraint, Eq. (19), as we vary the resolution of
the simulation. In both plots the color scheme corresponds to
resolutions 643 (red), 1283 (fiducial, green), and 2563 (yellow).
We see the behavior of σK=K̄ is stable and the amount of
constraint violation diminishes as resolution is increased. The
bold lines show the average value of the constraint, the shaded
regions envelop 68% of the points of the grid and the dashed line
shows the worst (most violation) point.

FIG. 10. Sixth-order convergence can be seen as resolution is
varied. The ratio of errors ∥H∥∞ at two resolutions Δx ¼ L=N
and Δx0 ¼ L=ð2NÞ for an OðΔx6Þ method should be 26 ¼ 64,
plotted as a blue line. Curves for N3 ¼ 643 and N3 ¼ 1283

are shown.

FIG. 11. The generation of inhomogeneities in the extrinsic
curvature, σK=K̄ as we vary kcutoff. The color scheme follows
kcut ¼ cΔk, for c ¼ 2, 4, 8, 10, 12, 14, 16, 20, 40, from blue to
red (bottom to top). Note that as we initialize more modes, we are
also increasing σρ=ρ̄.
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density, ρ̄. The results are shown in Fig. 12 and show that
average quantities are very consistent with those in the
corresponding homogeneous FLRW universe. Average
parameters correspond very well with FLRW parameters
for the w ¼ 0 case we study here. However, we do begin to
see small deviations from the FLRWapproximation that are
robust to resolution increase. The significance of this result
is on the order of the constraint violation.
On the other hand, we always generate deviations from

homogeneity in the extrinsic curvature. We already pre-
sented this result for our fiducial model in Fig. 7. As the
simulation progresses we see significant local departures
from constant K.
Of course, we want to explore the relationship between

the growth of inhomogeneities of K with increasingly
inhomogeneous matter sources. Varying the amplitude
has a corresponding effect on the matter over-density (σρ
(analogue of σ8), as shown in Fig. 13).
Now that we have established the existence of spatial

variations of the extrinsic curvature, K, we seek to explore
the behavior of additional measures associated with the
spacetime. The first test is to see if there is a departure from
FLRW predictions for the proper lengths of paths; in pure
FLRW cosmology, the proper length of any path will
depend on its initial length and the scale factor, aFLRW.
Since we use synchronous gauge, it is a good test to chose
arbitrary paths and calculate the ratio of the lengths of these
paths as a function of time; if they vary from the FLRW

prediction, there is a clear departure from the homogeneous
model. We calculate the length of paths by

S ¼
Z

~x2

~x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijdxidxk

q
ð30Þ

between two arbitrary points, ~x1 and ~x2. Figure 14
parametrizes the differences between our simulations
and the FLRW model for a large set of paths; the paths
that we chose are straight coordinate lines. We note
that the departures from FLRW are more significant for
shorter paths.
We also look at the amount of violation of the Killing

equation for translational FLRW Killing vectors. The
Killing equation reads,

Δμν ¼ Dμkν þDνkμ ¼ 0 ð31Þ

and has solutions kμ. In a flat FLRW universe, the Killing
vectors associated with translations are ðkμx; kμy; kμzÞ ¼
ðð0; 1; 0; 0Þ; ð0; 0; 1; 0Þ; ð0; 0; 0; 1ÞÞ. In an inhomogeneous
universe, the Killing equation should not be perfectly

FIG. 12. Here we show how our fiducial model compares to the
numerical FRW models.

FIG. 13. The top panel shows variations in the extrinsic
curvature, σK=K̄, versus variations in σρ=ρ̄ over the course of
many runs. The initial σρ=ρ̄ for these runs were σρ=ρ̄ ¼ 0.009,
0.0133, 0.019, 0.027, 0.038, 0.053, 0.076, and 0.107 from bottom
to top (blue to red). The bottom panel shows the parametric
dependence of σK=K̄ on σρ=ρ̄ at ϕ̄ ¼ 0.5.
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satisfied. In Fig. 15 we look at the contracted Killing
equation associated with translations in the i direction,

Δi ≡ Δμ
μi ¼ 2Dμk

μ
i ¼ 2ðΓ̄j

ij þ 6∂iϕÞ: ð32Þ

We look at the growth of this quantity relative to the time
scale on which the metric evolves, K.

V. DISCUSSION

We have shown that nonlinear GR effects are important
on sub-Hubble scales in the presence of inhomogeneities in
the Universe. Without assuming anything about the
dynamical system (e.g. not using symmetry to simplify
the dynamical GR equations) we have performed a sim-
ulation of the Universe that does not rely on a background
or averaging procedure. Using this method we generated
FLRW behavior for homogeneous cosmologies and see
deviation from this for inhomogeneous ones. We showed
that, even beginning with constant extrinsic curvature, K,
inhomogeneities will generate local fluctuations in this
parameter.
Physical observables need to be addressed independ-

ently. For example, the magnitude of the effect on a Hubble
diagram would require the integration of photon geodesics
during the simulation. We defer this, and other observable
tests, for future work.

As the dominant contribution to the BSSN equations in
an FLRW spacetime is simply the FLRW solution, it is in
principle possible to subtract the FLRW solution from
the BSSN equations, and evolve variables representing
differences between the FLRW solution and an inhomo-
geneous solution. Note that this does not constitute an
approximation: the equations are still fully relativistic under
this procedure. We do not explore this idea here; however
we may in future work.
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