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Horndeski’s theory of gravity is the most general scalar-tensor theory with a single scalar whose
equations of motion contain at most second-order derivatives. A subsector of Horndeski’s theory known as
“Fab Four” gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has
received particular attention in cosmology as a possible alternative to the ΛCDM model. Here we study
compact stars in Fab Four gravity, which includes as special cases general relativity (“George”), Einstein-
dilaton-Gauss-Bonnet gravity (“Ringo”), theories with a nonminimal coupling with the Einstein tensor
(“John”), and theories involving the double-dual of the Riemann tensor (“Paul”). We generalize and extend
previous results in theories of the John class and were not able to find realistic compact stars in theories
involving the Paul class.
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I. INTRODUCTION

The most recent cosmological observations are consis-
tent with standard cosmological models built on general
relativity (GR), but they imply the presence of a mysterious
late-time acceleration phase. The late-time acceleration can
be interpreted as due to the existence of new particle sectors
beyond the Standard Model, or explained by assuming that
GR itself is modified on cosmological scales. Modified
gravity models differ widely in their physical motivations,
but many of them can be reformulated in terms of
scalar-tensor theories of gravitation; i.e., they are math-
ematically equivalent to a gravitational theory whose
degrees of freedom are the metric gμν and one or more
scalar fields ϕ. Many of the simplest dark energy or
modified gravity models—including the standard ΛCDM
model—are plagued by the cosmological constant problem
(i.e., the problem of fine-tuning the potentially huge
quantum vacuum energy against the small value of the
observed cosmological constant). However some scalar-
tensor theories allow for a “dynamical self-tuning mecha-
nism” in which the effects of the cosmological constant
may be compensated within the scalar field sector,
so that they do not appear in the metric, by relaxing the
assumptions of Weinberg’s no-go theorem [1]. Here we
will focus on one such model, called “Fab Four” gravity
in the literature, which is a special case of Horndeski’s
theory.

A. Horndeski’s theory

Realistic models of dark energy or modified gravity must
at the very least pass the stringent experimental constraints
on deviations from GR [2,3] and be theoretically viable. In
particular, they must be free of the so-called “Ostrogradski
ghost” [4]. Several studies led to the conclusion that the
most general models with a single additional scalar degree
of freedom compatible with these requirements correspond
to the scalar-tensor theory formulated by Horndeski about
40 years ago, whose equations of motion contain at most
second-order derivatives [5]. It was shown [6] that
Horndeski’s theory is equivalent to the generalization of
a scalar field theory with Galilean shift symmetry in flat
spacetime to curved spacetime [7], whose action reads

S ¼
X5
i¼2

Z
d4x

ffiffiffiffiffiffi
−g

p
Li; ð1Þ

where

L2 ¼ G2; ð2aÞ

L3 ¼ −G3□ϕ; ð2bÞ

L4 ¼ G4Rþ G4X½ð□ϕÞ2 − ϕ2
μν�; ð2cÞ

L5 ¼ G5Gμνϕ
μν −

G5X

6
½ð□ϕÞ3 þ 2ϕ3

μν − 3ϕ2
μν□ϕ�: ð2dÞ

Here gμν is the metric tensor and g≡ detðgμνÞ its determi-
nant. The Ricci scalar and Einstein tensor associated with
gμν are denoted by R and Gμν, respectively. The functions
Gi ¼ Giðϕ; XÞ depend only on the scalar field ϕ and its
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kinetic energy X ¼ −∂μϕ∂μϕ=2. We also introduced the
shorthand notations ϕμ…ν ≡∇μ…∇νϕ, ϕ2

μν ≡ ϕμνϕ
μν,

ϕ3
μν ≡ ϕμνϕ

ναϕμ
α, and □ϕ≡ gμνϕμν.

Special cases of Horndeski’s theory correspond to well-
studied models of dark energy and modified gravity,
including quintessence [8,9], k-essence [10], the Dvali-
Gabadadze-Porrati (DGP) model [11,12], and fðRÞ gravity
[13–16]. However it is desirable to restrict the large number
of functional degrees of freedom of the action (1) by
additional theoretical or phenomenological requirements.
For example, it is desirable to restrict the Horndeski action
to models that allow for dynamical self-tuning of the
quantum vacuum energy. This requirement leads to the
Fab Four theory.

B. Fab Four theory

Starting from the Horndeski action (1), Charmousis et al.
[17,18] considered homogeneous isotropic cosmological
models satisfying the following requirements:
(1) The theory admits the Minkowski vacuum for any

value of the vacuum energy.
(2) The Minkowski vacuum persists across any phase

transition where the vacuum energy changes instan-
taneously by a finite amount.

(3) The theory admits nontrivial cosmological evolution
in the presence of matter.

These requirements lead to the Fab Four action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLG½gμν;ϕ� þ LM½gμν;Ψ�Þ; ð3Þ

where LM½gμν;Ψ� is the Lagrangian for matter fields,
collectively represented by Ψ, and

LG½gμν;ϕ� ¼ Lgeorge þ Lringo þ Ljohn þ Lpaul; ð4Þ

where

Lgeorge ¼ VgeorgeðϕÞR; ð5aÞ

Lringo ¼ VringoðϕÞRGB; ð5bÞ

Ljohn ¼ V johnðϕÞGμν∇μϕ∇νϕ; ð5cÞ

Lpaul ¼ VpaulðϕÞPμναβ∇μϕ∇αϕ∇ν∇βϕ: ð5dÞ

Here

RGB ≡ RαβμνRαβμν − 4RμνRμν þ R2 ð6Þ

is the Gauss-Bonnet (GB) invariant, and the four potentials
VgeorgeðϕÞ, VringoðϕÞ, V johnðϕÞ, and VpaulðϕÞ are functions
of the scalar field. The quantity

Pμν
αβ ≡ −

1

4
δμνγδσλαβR

σλ
γδ; ð7Þ

where

δμαργνβσδ ¼

�����������

δμα δμβ δμγ δμδ
δνα δνβ δνγ δνδ

δρα δρβ δργ δρδ
δσα δσβ δσγ δσδ

�����������
; ð8Þ

is the double-dual of the Riemann tensor, which shares
the symmetries of the Riemann tensor and satisfies
∇μPμανβ ¼ 0. We assume that gμν is the Jordan frame
metric, so that the matter fields Ψ do not couple directly to
the scalar field ϕ.
“George” reduces to GR and “Ringo”—the Einstein-

dilaton-Gauss-Bonnet (EdGB) term—becomes trivial in
four dimensions when the respective potentials are con-
stant. Compact objects in these theories (George and
Ringo) have been studied in detail in the existing literature.
The “John” and “Paul” terms are more crucial for self-
tuning and will be the main focus of this paper.
The correspondence between the Horndeski Lagrangians

(2) and the Fab Four Lagrangians (5) was presented in [18],
and we report it here for completeness:

G2 ¼ 2V 00
johnðϕÞX2 − Vð3Þ

PaulðϕÞX3 þ 6V 00
georgeðϕÞX

þ 8Vð3Þ
ringoðϕÞX2ð3 − lnðjXjÞÞ; ð9aÞ

G3 ¼ 3V 0
johnðϕÞX −

5

2
V 00
paulðϕÞX2 þ 3V 0

georgeðϕÞ

þ 4Vð3Þ
ringoðϕÞXð7 − 3 lnðjXjÞÞ; ð9bÞ

G4 ¼ V johnðϕÞX − V 0
paulðϕÞX2 þ VgeorgeðϕÞ

þ 4V 00
ringoðϕÞXð2 − lnðjXjÞÞ; ð9cÞ

G5 ¼ −3VpaulðϕÞX − 4V 0
ringoðϕÞ lnðjXjÞ: ð9dÞ

C. Cosmology and black holes in Fab Four theory

Cosmological evolution in Fab Four gravity in the
presence of ordinary matter and radiation has been exhaus-
tively investigated by Copeland et al. [19]. They demon-
strated that for a specific choice of the Fab Four potentials
in Eq. (5), even if the source is dominated by the vacuum
energy and there is no explicit matter fluid, the cosmo-
logical evolution toward the self-tuned Minkowski attractor
can mimic the matter-dominated evolution corresponding
to dark matter. Moreover, Refs. [20,21] demonstrated the
existence of a self-tuned de Sitter (dS) attractor for a certain
nonlinear combination of the canonical kinetic term to
the Fab Four. References [22,23] presented a systematic
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derivation of the most general subclass of Horndeski’s
theory that can allow for a spatially flat self-tuned dS
vacuum. This new subclass of Horndeski’s theory is
expected to have a deep connection to the Fab Four theory,
but it was derived in an independent way and their relation
remains unclear. A specific form of John and Paul also
appears in a proxy theory to nonlinear massive gravity [24],
but a close inspection of cosmological dynamics revealed
that there is no de Sitter attractor in this model [25].
A challenge to the Fab Four model is that self-tuning has

been verified only for homogeneous, isotropic cosmologi-
cal backgrounds. The presence of stars and black holes
(BHs) in the Universe implies that self-tuning should
still occur in the presence of local inhomogeneities of
the spacetime, such as point masses or extended self-
gravitating bodies. Whether self-tuning occurs in inhomo-
geneous spacetimes is a nontrivial question.
A first step towards answering this question is the

investigation of BH solutions in Fab Four theory. Most
studies of BH solutions in Horndeski’s theory and Fab Four
gravity have focused on the shift-symmetric subclass of the
theories. An influential work by Hui and Nicolis [26]
proved a BH no-hair theorem in Horndeski gravity. The
theorem makes the following assumptions: (i) the space-
time is static and spherically symmetric; (ii) the scalar
field shares the same symmetries as the spacetime, i.e.,
ϕ ¼ ϕðrÞ, where r is the radial coordinate; (iii) the theory is
shift-symmetric (i.e., it is invariant under the transformation
ϕ → ϕþ c, where c is a constant); and (iv) the spacetime is
asymptotically flat.
Searches for hairy BH solutions followed two main

routes: they either looked for loopholes in the Hui-Nicolis
theorem, or relaxed the assumptions behind the theorem.
All BH solutions found so far in Horndeski’s theory have
secondary hair; i.e., the scalar charge is not independent of
other charges, such as the mass (see, e.g., [27] for a review
of BH solutions with scalar hair).
Sotiriou and Zhou found a loophole in the Hui-Nicolis

no-hair theorem [28,29]. In our language, they considered
the combination Georgeþ Ringo with Vgeorge ¼ constant
and Vringo ∝ ϕ in Eq. (5b). Other authors relaxed
assumption (iv), finding asymptotically anti–de Sitter
(AdS) BH solutions for actions of the John type (non-
minimal coupling to the Einstein tensor) with V john ¼
constant [30–32] (see [33,34] for a stability analysis of
BH solutions in theories of the John subclass). BH
solutions that may be more relevant for astrophysics were
found by Babichev and Charmousis [35] for theories of the
Georgeþ John type, with Vgeorge and V john both constant,
relaxing assumption (ii). Babichev and Charmousis intro-
duced a linear time dependence in the scalar field that
therefore does not possess the same symmetries as the
metric. However the effective energy-momentum tensor
remains static because of the shift symmetry. A particularly
important asymptotically flat BH solution emerging from

this analysis is a “stealth” solution in the Georgeþ John
class: a Schwarzschild BH metric supports a nontrivial,
regular scalar field configuration which does not backreact
on the spacetime. By adding the canonical kinetic term for
the scalar field and the cosmological constant Λ, Babichev
and Charmousis also obtained a Schwarzschild-(A)dS
solution. Interestingly, the effective cosmological constant
one can read off from the Schwarzschild-(A)dS metric does
not depend on Λ, and the Λ dependence appears only in the
scalar field. Therefore this solution may be interpreted
as an extension of the self-tuned dS vacuum to an
inhomogeneous spacetime.
In Ref. [36], all of the above static, spherically sym-

metric BH solutions were generalized to slow rotation at
leading order in the Hartle-Thorne approximation [37,38].
For all of these solutions, first-order corrections due to
rotation were shown to be identical to GR. The Hui-Nicolis
no-hair theorem was extended to slowly rotating BHs for
which the scalar field is allowed to have a linear time
dependence. Moreover, all the spherically symmetric sol-
utions obtained for the John class can be naturally
extended to the shift- and reflection-symmetric subclass
of Horndeski’s theory, namely theories with G2 ¼ G2ðXÞ,
G4 ¼ G4ðXÞ, and G3 ¼ G5 ¼ 0 [39].
In summary, nontrivial BH solutions in Fab Four gravity

were found for the Ringo and John subclasses. In particular,
the Schwarzschild-dS solution found in the case of non-
minimal coupling with the Einstein tensor (John) can be
seen as a self-tuned BH solution. On the other hand, to our
knowledge, no analytic or numerical BH solutions have
been reported for the Paul subclass. Because of the
similarity between John and Paul, one may naively expect
that Paul should also allow for self-tuned, inhomogeneous
vacuum solutions. This question was partially addressed by
Appleby [40], who claimed that self-tuned BH solutions
would not exist in the Paul case. This is because in a
Schwarzschild-dS spacetime theWeyl components of Pμν

αβ

and RGB terms in the scalar field equation of motion contain
an explicit dependence on the radial coordinate, and leave
no redundancy in the scalar field equation of motion. This
is in contrast to the case of “John,” where the scalar field
equation of motion contains no Weyl component that
could make it redundant for a Schwarzschild-dS metric.
This also hints at the absence of similar BH solutions
in the non-reflection-symmetric subclass of the shift-
symmetric Horndeski theory with nonzero G3ðXÞ and
G5ðXÞ, although there are no detailed studies of this issue.

D. Plan of the paper

The next natural step to test whether the Fab Four model
is compatible with local inhomogeneities is to consider
self-gravitating matter configurations, and in particular
static or rotating neutron stars (NSs). The main goal of
this paper is precisely to investigate the existence and
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properties of slowly rotating NS solutions in Fab Four
gravity.
The structure and stability of rotating NSs in GR

(George) is, of course, textbook material [41–43]. In the
past few years there has been significant progress in our
understanding of slowly [44] and rapidly rotating [45,46]
NSs in Einstein-dilaton-Gauss-Bonnet gravity (Ringo), and
there are also studies of stellar stability under odd-parity
(axial) perturbations in this theory [47]. Recent investiga-
tions turned to theories with nonminimal coupling to the
Einstein tensor (John) [48–50]. Here we complete and
extend the analysis of NSs in the John subclass, and we
look for solutions in theories containing the Paul term. We
were unable to obtain NS solutions in theories involving the
Paul term. Apparently, Paul does not want to be a star.
This paper is organized as follows. In Sec. II we derive

the stellar structure equations at first order in a slow-
rotation expansion in generic shift-symmetric Horndeski
theories. In Sec. III we specialize our analysis to each of the
Fab Four subcases. In Sec. IV we summarize our findings
and point out possible directions for future research. The
appendix discusses the relation between the moment of
inertia and the stellar compactness in theories of the Ringo
and John subclasses. Throughout the paper, unless speci-
fied otherwise, we will use geometrical units (G ¼ c ¼ 1).

II. SLOWLY ROTATING STARS
IN FAB FOUR THEORY

In this section we will consider the shift-symmetric
subclass of Horndeski’s theory that is invariant under the
transformation

ϕ → ϕþ c; ð10Þ

where c is a constant. From Eqs. (9), this assumption
implies that V john, Vpaul, and Vgeorge must be constant, while
the Ringo (EdGB) term Vringo can be a linear function of ϕ.
For EdGB, a constant shift in ϕ only adds a trivial
topological invariant to the action, and therefore it does
not affect the field equations. Equations (4) and (5)
represent the basic building blocks of our theory, which
will be described by the general action

S ¼ SG þ SM; ð11Þ

where SM is the ordinary action for fluid matter and SG is a
combination of the Lagrangians (5c)–(5b).
To investigate slowly rotating solutions we follow the

approach described by Hartle and Thorne [37,38], in which
spin corrections are considered as small perturbations on an
otherwise static, spherically symmetric background. In
particular, at first order in the star’s angular velocity Ω
the metric can be written as

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2dθ2 þ r2sin2θdφ2

− 2½Ω − ~ωðrÞ�sin2θdtdφ; ð12Þ

where ~ωðrÞ is the angular velocity of the fluid as measured
by a freely falling observer.
Varying the action (11) with respect to the metric and the

scalar field we obtain the equations of motion for gαβ and ϕ,
respectively:

Eαβ ¼ Tαβ; Eϕ ¼ 0; ð13Þ

where

Tαβ ¼ ðϵþ pÞuαuβ þ pgαβ ð14Þ

is the energy-momentum tensor of a perfect fluid. Here ϵ
and p are the energy density and pressure of a fluid
element with four-velocity uμ ¼ u0ð1; 0; 0;ΩÞ. The time
component u0 follows directly from the normalization
condition uμuμ ¼ −1, which leads for the metric (12) to

u0 ¼ 1=
ffiffiffiffi
A

p
. The explicit form of Eαβ and Eϕ can be found

in the Appendix of [36] (see [34] for a particular study in
the case of John).
Moreover, in the Jordan frame, the energy-momentum

tensor is conserved:

∇μTμν ¼ 0: ð15Þ

To close the system of equations we need to specify the
equation of state (EOS) for the NS, i.e., a relation between
the pressure and energy density:

p ¼ pðϵÞ: ð16Þ

Taken together, Eqs. (13), (15), and (16) provide the full
description of a slowly rotating star.
In this work we will consider three realistic EOSs,

namely, APR [51], SLy4 [52] and GNH3 [53] in decreasing
order of stiffness. To facilitate comparisons with [48,50] we
will also consider a polytropic EOS of the form p ¼ KρΓ,
with K ¼ 123M2⊙ and Γ ¼ 2. Here ρ is the mass density,
related to the energy density by

ϵ ¼
�
p
K

�
1=Γ

þ p
Γ − 1

: ð17Þ

In Table I we show the radius R and compactness C≡M=R
of nonrotating models, as well as the moment of inertia I,
for NSs with the “canonical” mass M ¼ 1.4 M⊙ con-
structed using different EOS models in GR. At fixed mass,
the realistic EOSs APR, SLy4, and GNH3 (in this order)
yield configurations with decreasing compactness, and
therefore larger moment of inertia.
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III. FAB FOUR NEUTRON STARS

In this section we discuss NSs in the four subclasses of
Fab Four gravity, starting from the simplest Lagrangians.

A. George (General relativity)

The George Lagrangian for shift-symmetric theories
corresponds to GR, so we refer the reader to standard
treatments of rotating stars [41–43].

B. Ringo (Einstein-dilaton-Gauss-Bonnet gravity)

Nonrotating hairy BH solutions in EdGB gravity with a
dilatonic coupling of the schematic form Vringo ∼ ζeγϕ were
found by Kanti et al. [54]. These solutions were then
extended to slowly and rapidly rotating BHs [44,55]. As
stated in the introduction, Sotiriou and Zhou [28,29]
pointed out that hairy BH solutions exist in shift-symmetric
EdGB theories, in violation of the Hui-Nicolis no-hair
theorem (see [36] for an extension of these results to linear
order in a slow-rotation approximation). Shift-symmetric
EdGB theories can be seen as a small-field Taylor series
expansion of the dilatonic coupling

Vringo ≃ ζ þ ζγϕ; ð18Þ

where the constant term ζ can be neglected since it gives
rise to a topological invariant at the level of the action.
NSs in EdGB gravity with a dilatonic coupling were

studied in [44–46] (see also [47] for axial perturbations). As
it turns out, the bulk properties of NSs depend only on the
combination ζγ; cf. the discussion around Eq. (29) of [44].
This is because the value of the scalar field is typically very
small within the star, and therefore the Taylor expansion
(18) is an excellent approximation. For this reason, the
analysis of NSs in Ref. [44] applies also to the shift-
symmetric case of interest here, and we refer the reader to
the treatment in that paper for calculations of stellar
structure and observational bounds on the product ζγ.

C. John (Nonminimal coupling with the Einstein tensor)

A more interesting case is slowly rotating compact stars
in theories with a nonminimal derivative coupling with the

Einstein tensor, corresponding to the John Lagrangian (5c)
[48–50]. These theories are described by the action

SG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLgeorge þ Ljohn þ LKÞ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κR −

1

2
ðβgμν − ηGμνÞ∂μϕ∂νϕ

�
; ð19Þ

where LK ¼ βX ¼ −ðβ∂μϕ∂μϕÞ=2 is a kinetic term for the
scalar field, β and η are constants, and κ ¼ ð16πÞ−1.
Equation (19) can be obtained from the Horndeski
Lagrangian by choosing

G2 ¼ βX; G4 ¼ κ þ η

2
X; G3 ¼ G5 ¼ 0: ð20Þ

We also consider a real scalar field of the form [35]

ϕðr; tÞ ¼ qtþ ψðrÞ; ð21Þ

where q is a constant scalar charge. With this choice, the
field’s kinetic energy is a function of r only:

X ¼ 1

2

�
q2

AðrÞ − BðrÞψ 0ðrÞ2
�
: ð22Þ

In vacuum, the theory described by the action (19) leads
to asymptotically AdS black hole solutions with a non-
trivial scalar field configuration [30–32,35,39]. However, it
has recently been shown that it is possible to construct
“stealth” NSmodels for which the exterior solution is given
by the Schwarzschild spacetime [48].
For β ¼ 0, the scalar field outside the star (where

Tμν ¼ 0) does not backreact on the metric, leading to
“stealth solutions.”However inside the star (where Tμν ≠ 0)
the scalar field has a nontrivial effect, and the stellar
structure is different from GR.
Hereafter we will focus on these stealth solutions, fixing

β ¼ 0. We recall that the action (19) is invariant under
shift symmetry (ϕ → ϕþ c). This allows us to write the
equation of motion for the scalar field in terms of a
conserved current Jμ:

∇μJμ ¼ 0; ð23Þ

with nonzero components given by

Jt ¼ −
qη
r2κA

ðrB0 þ B − 1Þ; ð24Þ

Jr ¼ ηB
r2κA

½AðB − 1Þ þ rBA0�ϕ0: ð25Þ

We also remark that Eq. (23), using the line element (12),
admits the solution

TABLE I. The radius R, compactness C, and moment of inertia
I for a canonical NS with mass M ¼ 1.4 M⊙, in GR, using
three different nuclear-physics based EOS models and a Γ ¼ 2
polytrope.

EOS R (km) C Ið1045 g cm2Þ
APR 11.33 0.182 1.31
SLy4 11.72 0.176 1.37
GNH3 14.18 0.146 1.81
Polytrope 16.48 0.125 2.28
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Jr ¼
ffiffiffiffi
B
A

r
C1

r2
; ð26Þ

with C1 constant. In the following we will set C1 ¼ 0, as it
has been shown that this choice is consistent with a
vanishing radial energy flux, i.e., Etr ¼ 0 [56].
Combining Eqs. (15), (25), and the ðttÞ and ðrrÞ

components of Eqs. (13), we obtain a set of differential
equations for the spherically symmetric background.
Moreover, at linear order in the angular velocity, the
ðtφÞ equation Etφ − Ttφ ¼ 0 yields a differential equation
for ~ω. In summary, a slowly rotating NS at first order in the
slow-rotation approximation is described by the following
set of equations:

A0 ¼ A
r
1 − B
B

; ð27Þ

B0 ¼ 3q2ηBðB−1Þ−A½r2ϵ−4κþBð4κþ r2ðϵþ6pÞÞ�
r½Að4κþ r2pÞ−3q2ηB� ;

ð28Þ

p0 ¼ −
ϵþ p
2

A0

A
; ð29Þ

~ω00 ¼ 4q2ηB2 − A½4Bð4κ þ r2pÞ − r2ðϵþ pÞ�
rB½Að4κ þ r2pÞ − q2ηB� ~ω0

−
4Aðϵþ pÞ

B½q2ηB − Að4κ þ r2pÞ� ~ω; ð30Þ

ðϕ0Þ2 ¼ r2Ap − q2ηðB − 1Þ
ηAB

: ð31Þ

Note that q and η always appear combined in the factor q2η.
Expanding all variables in a power series around r ¼ 0,

we obtain the initial values for ðA; B; ~ω; p;ϕÞ as

A ¼ Ac −
r2A2

cð3pc þ ϵcÞ
3ð3q2η − 4κAcÞ

þOðr3Þ; ð32aÞ

B ¼ 1þ 2

3

r2Acð3pc þ ϵcÞ
ð3q2η − 4κAcÞ

þOðr3Þ; ð32bÞ

p ¼ pc þ
r2Acðpc þ ϵcÞð3pc þ ϵcÞ

6ð3q2η − 4κAcÞ
þOðr3Þ; ð32cÞ

~ω ¼ ~ωc −
2

5

Acðϵc þ pcÞr2
q2η − 4Acκ

~ωc þOðr3Þ; ð32dÞ

ðϕ0Þ2 ¼ pc

η
r2 −

2q2ð3pc þ ϵcÞ
3ð3q2η − 4κAcÞ

r2 þOðr3Þ; ð32eÞ

where the subscript “c”means that the various variables are
evaluated at the center of the star. Following [48] we set

Ac ¼ 1 and chose ~ωc ¼ 1. Given a choice of EOS, the
central pressure pc uniquely determines a NS model.
From these expansions we can obtain constraints that

must be satisfied by q2η to obtain physically acceptable
solutions. If we demand that p00ðrÞ < 0 [57], we obtain

q2η <
4κ

3
; ð33Þ

which is automatically satisfied when η < 0, but sets an
upper bound on q2η when η > 0. On the other hand, the
requirement that the derivative of the scalar field should be
real, i.e., ðϕ0Þ2 > 0, implies

pc

η
−
2q2ð3pc þ ϵcÞ
3ð3q2η − 4κÞ > 0: ð34Þ

For η > 0 this condition is always satisfied by virtue of
Eq. (33). However, when η < 0we obtain a lower bound on
q2jηj, namely,

q2jηj > 3

4π

pc

2ϵc − 3pc
: ð35Þ

To construct NS models we integrate the system of
equations (27)–(29), supplemented by the boundary con-
ditions (32a)–(32c), from r ¼ 0 up to the star’s radius
r ¼ R, which corresponds to the point where the pressure
vanishes, i.e., pðRÞ ¼ 0. Then we match the interior
solution to the exterior Schwarzschild metric. The NS
mass is obtained by solving the system

AðRÞ ¼ A∞

�
1 −

2M
R

�
; A0ðRÞ ¼ A∞

2M
R2

; ð36Þ

where A∞ is an integration constant. Then we rescale the
time variable (t → t

ffiffiffiffiffiffiffi
A∞

p
) so that it represents the coor-

dinate time measured by an observer at infinity. Because of
the linear dependence of the scalar field on t, we corre-
spondingly rescale q as

q∞ ¼ qffiffiffiffiffiffiffi
A∞

p : ð37Þ

The stellar structure equations depend only on the combi-
nation q2η, so we can set η ¼ �1without loss of generality.
The scalar field is computed from Eq. (31) for families of
solutions with fixed values of q∞. To facilitate comparisons
with [48], here we choose these values to be 0, 0.032, and
0.064. To obtain the solutions we apply a shooting method,
adjusting the value q in each integration until we obtain the
desired value of q∞.
We also integrate Eq. (30) for a given ~ωc and we compute

the star’s angular velocity Ω and its angular momentum J,
requiring that at the surface
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~ωðRÞ ¼ Ω −
2J
R3

; ~ω0ðRÞ ¼ 6J
R4

: ð38Þ

The moment of inertia is computed through I ¼ J=Ω. We
note that rescaling ~ωðrÞ by a constant factor does not
affect Eq. (30). Therefore, once the solution ~ωold has been
found for given initial conditions, yielding a value Ωold,
a new solution ~ωnew can immediately be found via
~ωnew ¼ ~ωoldΩnew=Ωold. The moment of inertia I is inde-
pendent of the star’s angular velocity.
In Fig. 1 we show the mass-radius diagram for all the

EOS models used in this paper. The polytropic case
(bottom-right panel) matches the results in [48], except
for what we believe to be a mislabeling of some curves in
their Fig. 2.
As pointed out in [48], the limit q∞ → 0 does not

correspond to GR, and indeed the corresponding mass-
radius curves are different from those of GR (solid black
lines). For any EOS and fixed q∞, positive (negative)
values of η correspond to more (less) compact configura-
tions. At fixed η, larger values of the scalar charge q∞

correspond to stellar models with larger radii. As a
reference, the horizontal colored band corresponds to the
most massive known NS, PSR J0348+0432, with M ¼
2.01� 0.04 M⊙ [58]. When η > 0, for all values of q∞ and
EOS models considered in this paper, such massive NSs are
not supported.
In Fig. 2 we show the moment of inertia as a function of

mass for the same stellar models and theory parameters as
in Fig. 1. In addition, in Table II we list the values of I for a
canonical NS with mass M ¼ 1.4 M⊙. It is interesting that
some theories with η > 0 cannot support stars with this
value of the mass. As expected, deviations with respect to
GR grow as the scalar charge increases, yielding larger
(smaller) moments of inertia for η < 0 (η > 0). The relative
deviation from GR can be of order 30% for q∞ ¼ 0.064
and η ¼ −1.
In GR, the dimensionless moment of inertia Ī ≡ I=M3

was recently shown to be related to the NS compactness C
by a universal relation which is almost insensitive to the
adopted EOS [59] (see [60–63] for earlier studies):

FIG. 1. Mass-radius curves for different EOS models, selected values of q∞, and η ¼ �1. The various panels correspond to EOS APR
(top left), SLy4 (top right), GNH3 (bottom left), and a polytropic (bottom right). Configurations with radii smaller than that identified by
the orange cross do not satisfy the condition (34). The horizontal colored band corresponds toM ¼ 2.01� 0.04 M⊙, the most massive
NS mass known to date [58]. Note that the various panels have different x-axis ranges.
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Īfit ¼ a1C−1 þ a2C−2 þ a3C−3 þ a4C−4; ð39Þ

where the fitting coefficients ai, i ¼ ð1;…; 4Þ, are listed in
Table II of [59]. This I − C relation reproduces numerical
results with an accuracy better than 3%. The observed
universality is reminiscent of the I-Love-Q relations

between the moment of inertia, tidal deformability (as
encoded in the so-called Love number) and rotational
quadrupole moment Q [64,65]. The extension of these
near-universal relations I − C relations to theories of the
Ringo and John subclasses is discussed in the Appendix.
It is natural to ask whether these stealth NS models are

stable. Vacuum, static, spherically symmetric solutions
where the scalar field has a linear time dependence were
shown to be free from ghost and gradient instabilities under
odd-parity gravitational perturbations as long as the follow-
ing conditions are met [66]:

F > 0; G > 0; H > 0; ð40Þ

where

F ¼ 2

�
G4 −

q2

A
G4X

�
¼ 2

�
κ þ q2∞η

4
−
q2∞ηA∞

2A

�
; ð41Þ

FIG. 2. Moment of inertia I as a function of the mass M. The various panels correspond to EOS APR (top left), SLy4 (top right),
GNH3 (bottom left), and a polytropic (bottom right). Configurations with masses larger than that identified by the orange cross do not
satisfy the condition (34).

TABLE II. Moment of inertia for a NS with M ¼ 1.4 M⊙ for
selected values of q∞ and for nuclear-physics-motivated EOS
models. For q∞ ¼ 0.064 and η ¼ 1, none of the EOS models
considered here supports NSs with M ¼ 1.4 M⊙.

η q∞ IAPR(1045 g cm2) IGNH3(1045 g cm2) ISLy4(1045 g cm2)

� � � GR 1.31 1.81 1.37
� � � 0 1.28 1.80 1.35
−1 0.032 1.39 1.96 1.47
−1 0.064 1.70 2.42 1.81
1 0.032 1.17 1.64 1.22
1 0.064 � � � � � � � � �
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G ¼ 2

�
G4 − 2XG4X þ q2

A
G4X

�

¼ 2

�
κ −

q2∞η
4

þ q2∞ηA∞

2A

�
; ð42Þ

H ¼ 2ðG4 − 2XG4XÞ ¼ 2

�
κ −

q2∞η
4

�
: ð43Þ

Here we have used X ¼ q2=ð2A∞Þ as well as Eq. (37),
which applies to the stealth BH solutions of [35]. For
stealth BH solutions, A → 0 in the vicinity of the event
horizon; therefore the third term on the right-hand side of
Eqs. (41) and (42) is the dominant one. As a consequence
FG < 0, suggesting that these solutions are generically
unstable [66].
A similar argument can be applied to our stealth NS

solutions. In the exterior vacuum spacetime of the star, the
metric function A, which satisfies A < A∞, remains pos-
itive and finite. When η is positive, G is always positive as
well, and the conditions F > 0 and H > 0 everywhere
outside the star translate into

q2∞η < 4κ
AðRÞ

2A∞ − AðRÞ ¼ 4κ

�
1 − 2C
1þ 2C

�
; ð44Þ

q2∞η < 4κ; ð45Þ

respectively, where we have used Eq. (36).
We have numerically confirmed that all NS models

presented in Fig. 1 satisfy the conditions (44) and (45)
for the largest value of q∞ ¼ 0.064 considered in this
paper. For a typical NS the compactness is C ≈ 0.2, and the
right-hand side of Eq. (44) is approximately 0.035, which is
much larger than our choice q20η ¼ 0.0642 ≈ 0.004. The
condition (44) will be violated only for an unrealistically
compact NS with C ≈ 0.45. This suggests that hypothetical
ultracompact objects—such as Lemaitre stars [65,67,68]
and gravastars [69–71]—may be unstable in the presence of
a stealth scalar field.
Similarly, for negative values of η, F and H are always

positive, and the condition G > 0 is satisfied everywhere
outside the star if

q2∞jηj < 4κ
AðRÞ

2A∞ − AðRÞ ¼ 4κ

�
1 − 2C
1þ 2C

�
: ð46Þ

We have also checked that for q∞ ¼ 0.064 and η ¼ −1, all
NS models presented in Fig. 1 satisfy (46). In the
Newtonian limit C ≪ 1, the stealth NS spacetime is stable
for q2∞η < 4κ when η > 0, and for q2∞jηj < 4κ when η < 0.
For NSs with larger values of q2∞jηj the exterior spacetime
becomes unstable everywhere, including the Newtonian
regime.

It is interesting to consider the nonrelativistic limit of
theories of the John class. Introducing the usual mass
function mðrÞ such that BðrÞ ¼ 1 − 2mðrÞ=r, we see that
the pressure equation retains its standard form

dp
dr

¼ −
mρ

r2
; ð47Þ

where ρ is the mass density. However the mass equation is
reduced to

dm
dr

¼ 4πr2ρ
1 − 12πq2η

: ð48Þ

This behavior looks reminiscent of “beyond Horndeski”
theories [72,73], where a partial breakdown of the
Vainshtein mechanism occurs, modifying the Newtonian
limit [74]. In fact, several authors have advocated the use of
this “feature” to constrain beyond Horndeski theories using
Newtonian stars or white dwarfs [75–79]. While those
theories modify the pressure equation (47), leaving the
mass equation unaltered, theories of the John subclass seem
to alter the Newtonian limit in the opposite way.
However, combining Eqs. (47)–(48) and restoring the

gravitational constant G we obtain

1

r2
d
dr

�
r2

ρ

dp
dr

�
¼ −4πGeffρ; ð49Þ

which is equivalent to the ordinary hydrostatic equilibrium
equation in Newtonian gravity with an effective gravita-
tional constant

Geff ≡ G
1 − 12πq2η

: ð50Þ

Therefore the nonrelativistic limit of the “John” theories
considered in this section is equivalent to Newtonian
gravity with an effective gravitational constant Geff .
Incidentally, a similar result was found by Cisterna et al.
[50] in the context of cosmology [cf. their Eq. (38)].

D. Paul (Double-dual of the Riemann tensor)

Let us now turn to NS solutions in theories containing
the Paul Lagrangian (5d). We start with the simplest model,
given by the combination

L ¼ Lgeorge þ Lpaul

¼ R −
1

3
αPμναβ∇μϕ∇αϕ∇ν∇βϕ; ð51Þ

which from Eqs. (19) corresponds to the following choice
of the functions Gi:

G2 ¼ G3 ¼ 0; G4 ¼ 1; G5 ¼ αX; ð52Þ
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where α is a coupling parameter. As in Sec. III C, we
consider a scalar field with linear time dependence of the
form (21). This choice is crucial for ϕðrÞ to have a
nontrivial profile. Indeed, the nonvanishing components
of the scalar current for the action (51) are

Jr ¼ α

2r2
B
A
½q2ðB − 1Þ þ Að1 − 3BÞBϕ02�A

0

A
; ð53Þ

Jt ¼ qα
2r2

B
A

�
ϕ0
�
A0

A
ðB − 1Þ þ B0

B
ð3B − 1Þ

�

þ 2ðB − 1Þϕ00
	
: ð54Þ

From the first equation we conclude that in the limit q → 0
the condition Jr ¼ 0 implies ϕ0 ¼ 0; i.e., the scalar field
must be constant. However for q ≠ 0 we obtain

ðϕ0Þ2 ¼ q2
1 − B

Að1 − 3BÞB : ð55Þ

Replacing this relation into the (tt) and (rr) components of
Eqs. (13), we derive two first-order equations for the metric
variables A and B:

B0 ¼ 1 − B − 8πr2ϵ

r − q3α
ffiffiffiffiffiffiffi
1−B

p ½ABð1−3BÞ�3=2
A3ð1−3BÞ3

; ð56Þ

A0 ¼ A3

B
1 − Bþ 8πr2p

A2r − q3αB
ffiffiffiffiffiffiffi
1−B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1−3BÞ

p
ð1−3BÞ2

: ð57Þ

Equations (55)–(57), together with a choice of EOS and the
energy-momentum conservation equation (15), which gives

p0 ¼ −
ϵþ p
2

A0

A
; ð58Þ

form a closed system of differential equations, which can
be integrated by imposing suitable initial conditions at the
center of the star. These conditions can be found through a
Taylor expansion in r,

AðrÞ ¼ Ac þ
r2

q6α2
A2ðpc; AcÞ þOðr3Þ; ð59aÞ

BðrÞ ¼ 1þ r2

q6α2
B2ðpc; AcÞ þOðr3Þ; ð59bÞ

pðrÞ ¼ pc þ
r2

q6α2
p2ðpc; AcÞ þOðr3Þ; ð59cÞ

ϕ0ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðpc; AcÞ

2Ac

s
r

q2α
þOðr3Þ; ð59dÞ

where A2, B2, and p2 are functions of the constant
parameters Ac and pc. Unlike Eqs. (56) and (57), which
reduce to GR for α → 0 (or q → 0), the initial conditions
for the metric functions, ðϕ0Þ2, and the pressure are ill
defined. Note that such a pathological behavior is not
expected in the naive α → 0 limit of (56) and (57), because
this is a “nonperturbative” effect such that the leading
behavior

ffiffiffiffiffiffiffiffiffiffiffi
1 − B

p
∝ 1=α obtained from (59b) cancels the α

terms in (56) and (57), making the deviation from GR
evident.
To better understand this issue, let us reconsider the

η → 0 limit of the John action. In that case, as we see from
Eqs. (32a)–(32e), the only divergent quantity as η → 0 is
the derivative of the scalar field ϕ0, while all other metric
and matter quantities have a finite limit. Since we work in
the Jordan frame there is no direct coupling between the
scalar field and matter. Furthermore the scalar field does not
backreact on the spacetime in the stealth exterior, and
therefore a singular behavior of the scalar field does not
affect the geodesics of particles outside the star. In contrast,
for the Paul case all physical quantities diverge in the limit
α → 0, indicating a pathological behavior in the NS
interior. Furthermore, at variance with the John case, we
could not find a stealth exterior solution for Paul. Our
results suggest that exterior stealth solutions for Paul do not
exist under the ansatz (21) for the scalar field.
We observed a similar behavior for other Fab Four

theories involving the Paul term. We considered the
following combinations:

Lgeorge þ Lpaul þ LK; ϕðrÞ; ð60Þ

Lgeorge þ Lpaul þ Ljohn þ LK; ϕðt; rÞ; ð61Þ

Lgeorge þ Lpaul þ Lringo þ LK; ϕðt; rÞ; ð62Þ

Lgeorge þ Lpaul þ Ljohn þ Lringo þ LK; ϕðt; rÞ: ð63Þ

In all of these cases the physical variables suffer from the
same divergence when the coupling parameter α of the Paul
term vanishes.
Appleby [40] found that the self-tuning mechanism is

not applicable for spherically symmetric black hole space-
times in theories of the Paul class. Our results strengthen his
conclusions, suggesting that the Paul term does not allow
for physically well-behaved compact object solutions.

IV. CONCLUSIONS

We have presented an exhaustive study of slowly rotating
NS solutions in the shift-symmetric class of Fab Four gravity,
namely, the subclass of Horndeski’s gravity that may allow
for dynamical self-tuning of the quantum vacuum energy,
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and for this reason has been the subject of intense scrutiny in a
cosmological context. Our main goal was to investigate
whether Fab Four gravity is compatible with the existence of
relativistic stars, such as NSs.
Among the nonminimal couplings in Fab Four gravity

listed in Eqs. (5c)–(5b), we especially focused on the John
(nonminimal derivative coupling to the Einstein tensor) and
Paul (nonminimal derivative coupling to the double dual of
the Riemann tensor) subclasses. This is both because
George (GR) and Ringo (EdGB gravity) have been exten-
sively studied in the past and because John and Paul are the
crucial terms allowing for self-tuning of the quantum
vacuum energy in cosmological scenarios.
In the case of John, if we make the assumption that the

scalar field has a linear time dependence of the form (21),
there is a stealth solution such that the scalar field does not
backreact on the metric in the exterior, while it introduces
nontrivial modifications of the interior stellar structure with
respect to GR in the stellar interior. Our results on spheri-
cally symmetric NSs agree with previous work [48] and
extend it to slowly rotating solutions. As pointed out in
[48], in the limit of vanishing scalar charge (q∞ → 0) the
mass-radius curves differ from GR. Irrespective of the
chosen EOS, positive (negative) values of the coupling
constant η in (19) yield more (less) compact stellar
configurations. For positive values of η this fact can be
used to put mild (EOS-dependent) constraints on the
maximum value of q∞; cf. Ref. [50].
We have also shown that the approximately EOS-

independent relations between the moment of inertia I
and compactness C within GR break down in this theory.
Therefore, in principle, future measurements of I could
potentially constrain the value of q∞ [80]. We also obtained
improved I − C relations that depend of the value of q∞ and
are accurate within ∼5%.
Based on stability studies in the context of BH solutions

[66], we have argued that the NS models studied here are
generically stable under odd-parity gravitational perturba-
tions. A systematic study of stellar perturbations within
theories of the John subclass is desirable, and it could
follow in the footsteps of similar studies for scalar-tensor
theory [81–84] and EdGB gravity [47].
Surprisingly, we also found that in all subclasses of the

Fab Four and its minimal extensions that involve Paul, not
only the scalar field, but also all metric functions and the
pressure diverge at the center of the star in the small-
coupling limit. Therefore “healthy” BH and stellar sol-
utions do not seem to exist in the shift-symmetric Paul
subclass. It will be interesting to determine whether this
conclusion still holds in the absence of shift symmetry.
As a straightforward generalization of the present work,

one could search for NS solutions in Fab Four theories
where the potentials (5c)–(5b) have nontrivial functional
forms, as well as in more general (non-shift-symmetric)
versions of Horndeski’s theory. The general formalism

developed in [36] can be straightforwardly applied to
these cases.
Barausse and Yagi [85] have recently shown that the so-

called sensitivities of compact objects [86] vanish in shift-
symmetric Horndeski gravity, which includes the Fab Four
class. Consequently the dynamics of binaries involving
NSs is, to leading post-Newtonian order, the same as in GR.
It would be interesting to determine whether these con-
clusions hold at higher post-Newtonian orders, and whether
gravitational waves can be used at all to constrain these
theories.
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Note added.—Recently, a similar study of slowly rotating
stars appeared on the arXiv [50]. Their work focuses on
theories of the John class and deals also with their
cosmological interpretation. Where our works overlap,
they agree with our main conclusions.

APPENDIX: I − C RELATIONS

In this appendix we discuss the relation between the
moment of inertia and the compactness for NSs in theories
of the John and Ringo subclasses.

1. John (Nonminimal coupling with the Einstein tensor)

The behavior of I as function of q∞ can be accurately
described by a simple quadratic fit of the form

I ¼ p0 þ p1q∞ þ p2q2∞; ðA1Þ

where (p0, p1, p2) are constants. In the top panel of Fig. 3
we compare this relation with numerical data for η ¼ −1
(note that for this figure we have computed models with
additional values of q∞ that were not displayed in Figs. 1
and 2 to avoid cluttering). The bottom panel of Fig. 3 shows
that the relative errors between the numerical data and the
fit are typically of order 0.1% or smaller.
To understand whether these relations hold also for

theories of the John subclass, we have compared our
numerical data against Eq. (39), computing the relative error
ΔĪ=Ī ¼ j1 − Īfit=Īj. The results are shown in the bottom
panel of Fig. 4. Errors are always larger than in GR, and they

NEUTRON STARS IN HORNDESKI GRAVITY PHYSICAL REVIEW D 93, 124056 (2016)

124056-11



can be as high as 40% for low-compactness configurations.A
similar trend is observed for the I-Love-Q relations in GR in
[87]. Deviations from the GR relation are due to the strong
dependence of the star’s bulk properties on the scalar charge
q∞, which spoils the (approximate) EOS universality of the
relation proposed in [59]. Therefore we conclude that a
theory-independent fit would perform poorly.

It is still possible to introduce approximately EOS-
independent relations for I − C at fixed values of the theory
parameters q∞ and η using the functional form given in
Eq. (39). The relative errors between the numerical data and
these fits are shown in Fig. 5, and the corresponding fitting
coefficients are listed in Table III. For almost all configu-
rations the new relations perform better than Eq. (39), with
relative errors that can be an order of magnitude smaller.

2. Ringo (Einstein-dilaton-Gauss-Bonnet gravity)

We have also investigated the I − C relations for theories
of the Ringo subclass (EdGB gravity) using the numerical
data from [44]. We found that the fit proposed in [59] works
remarkably well for EdGB, with relative percentage errors
≲10% for a wide range of compactness. This result is
complementary to the I −Q relations in EdGB obtained
in [45]. We recall, however, that our calculations are limited
to slow rotation. The question of whether or not rapidly
rotating NSs in EdGB satisfy the same I − C relations
of [59] could be addressed following the analysis
of [45,46].

FIG. 3. Top panel: The moment of inertia I versus charge q∞
for a canonical NS with M ¼ 1.4 M⊙ and η ¼ −1, and the
realistic EOSs APR, GNH3, and SLy4. Bottom panel: Relative
percentage errors between the numerical data and the
relation (A1).

FIG. 4. Top panel: Ī − C relation for different values of the
scalar charge q∞ and the realistic EOS APR (blue), GNH3 (red),
SLy4 (green). The solid curve represents the fit given by Eq. (39),
obtained in [59]. Bottom panel: Relative errors between the
numerical data and the analytic relation. For illustrative purposes,
we show the cases q∞ ¼ 0 and q∞ ¼ 0.064. For the latter,
deviations from GR are more dramatic.

FIG. 5. Relative errors between the improved fits and the
numerical data. Top panel: q∞ ¼ 0. Middle panel: q∞ ¼ 0.064
and η ¼ 1. Lower panel: q∞ ¼ 0.064 and η ¼ −1.

TABLE III. Numerical coefficients of the new universal I − C
relations, for fixed values of q∞ and η.

q∞ η a1 a2 a3 a4

0 � � � 0.684 0.265 −0.0062 6.87 × 10−5

0.032 1 0.666 0.240 −0.00364 −2.01 × 10−6

0.032 −1 0.776 0.273 −0.00809 1.64 × 10−4

0.064 1 0.0654 0.348 −0.0125 1.81 × 10−4

0.064 −1 0.872 0.276 −0.00574 4.53 × 10−5
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