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We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric
gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field.
The work represents a direct continuation of our previous general-relativistic studies of electrically
charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-
Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed
in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity
charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations.
Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the
existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary.
We focus on orbiting structures with constant specific angular momentum and on those in permanent
rigid rotation. We stress that the general analytical treatment developed in our previous works is
enriched here by the integrated form of the pressure equations. To put our work into an astrophysical
context, we identify the central object with an idealization of a nonrotating magnetic neutron star.
Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible
relevance of the studied toroidal structures, presenting along with their topology also pressure, density,
temperature and charge profiles.
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I. INTRODUCTION

Investigation of astrophysical fluids represents one of the
most challenging and important tasks in astrophysics.
Encircling compact objects, the fluids manifest themselves
in the compressible (gaseous-like) phase predominantly, in
different regimes and scenarios: as a pure neutral or ionized
gas—plasma (satisfying the typical quasi-neutrality and
high-conductivity conditions), as a pure neutral or charged
dust, and very often as a dispersed medium, such as dusty
(grain) gas, dusty plasma, etc. The gaseous fluid can range
from an extremely diluted case (represented as separated
particles, well described within a test-particle approach
[1–5]), through a diluted one (described within a kinetic
approach [6–9]), up to the dense fluid (conveniently studied
within a magnetohydrodynamic approach [10–12]). From
another point of view, the fluid can be in dynamical
situations (falling down onto the compact objects or being
launched in the form of winds and jets) or settled down in
an equilibrium configuration.
This paper deals with the last scenario, summarizing

our results concerning a general-relativistic magnetohy-
drodynamic description of charged fluid equilibrium

configurations. We consider the perfect fluid approxima-
tion (no internal viscosity and friction—typical features of
gaseous matter) and the dielectric (fully nonconductive)
approximation of the fluid enhanced with a global nonzero
electric charge. This approximation is directly opposite of
the infinite-conductivity one, often applied in the standard,
the so-called ideal, magnetohydrodynamic studies of
plasma being typically highly conductive and with zero
global charge. Our conception of the perfect dielectric fluid
was introduced in the paper [13] for the first time, there
being performed on the background of a Reissner-
Nordström black hole.
Let us emphasize that we explore situations where both

gravitational and electromagnetic effects play roles in their
mutual interaction. While the strong gravity of a central
body and the ambient electromagnetic field exert torques
on the matter because of its moderate specific charge
(typically like in the case of pressureless matter consisting
of electrically charged and relatively extensive dust grains),
also pressure terms are taken into account (like in the
typical fluid approach). Such a matter corresponds to a
charged dusty fluid, within the general astrophysical
conception corresponding to a matter consisting of very
tiny dust particles or multiple atomic-molecular clusters
(see Sec. V for more details).*jiri.kovar@fpf.slu.cz
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Circling around a compact object, under the influence of
gravitational and electromagnetic actions of the central
body and ambient fields, the considered charged fluid takes
the toroidal-like form. As shown many times, for a purely
neutral fluid [14–23], the effects of gravity are crucial for
the toroidal configurations. However, we have shown that
distribution of even small charges in the fluid interacting
with an external electromagnetic field strongly influences
its geometrical configuration, providing us with new
interesting classes of toroidal topology.
Within the considered model, we have recently per-

formed studies of the electrically charged perfect fluid
encircling a charged black hole immersed into an asymp-
totically uniform magnetic field, imposing the assumption
of rigid (constant angular velocity) rotation of the structures
[24]. We focused on regular toroidal structures centered in
the equatorial plane (θ ¼ π=2) and also on unique struc-
tures referred to as polar clouds located around polar axis
(θ ¼ 0) of the black hole. Here, moreover, we pay attention
to the third class of the structures. These are represented by
the off-equatorial “levitating” tori, i.e. the tori centered in
latitudes 0 < θ < π=2. As we have shown within our
Newtonian studies [25], such structures can exist within
a weak-field approximation, requiring, however, the gravi-
tational field to be accompanied by a dipole magnetic field.
Now, along with the equatorial tori, we reveal the existence
and basic properties of the off-equatorial tori within the
relativistic generalization; rotating with constant specific
angular momentum and also in permanent rigid rotation,
the tori are studied in a spherically symmetric gravitational
field described by the Schwarzschild metric and pervaded
with a test dipole magnetic field.
Our work is of theoretical scope essentially, being

focused on a topological classification of the toroidal
structures. However, for the purpose of a basic physical
discussion we admit the standard, for decades accepted,
astrophysical idealization. It is the concept of the fluid torus
representing the equilibrium state of thick “accretion” discs
that encircle a compact object, generating the assumed
background fields (see Fig. 1). For a basic astrophysical
contextualization, we can relate the compact object to an
idealized magnetic neutron star. In general, investigation of
charged particles motion in neutron stars magnetospheres
ranks in attractive astrophysical applications of electro-
magneto-gravitodynamics; for instance, we can mention
the classical works [26–29]. And, although the general
formalism was developed long time ago, in the early 1970s,
the subject has recently received a new impetus in the
context of accretion disc coronae around compact stars and
black holes in X-ray binaries. While the accretion takes
place predominantly within the orbital plane of the binary
system, diluted plasma occurs also outside the disc, where
it forms a hot medium and a base of the jet near the
symmetry axis. However, the exact mechanism of feeding
this coronal region with charged particles, their transport

from the tenuous accretion disk, and acceleration in a
collimated outflow remain as yet unknown. To this end,
understanding the structure of the regions of stability is of
great relevance.
Throughout the paper, we use the geometrical system of

units [ĉ ¼ Ĝ ¼ k̂B ¼ 1=ð4πε̂0Þ ¼ 1] for quantities denoted
by a bar, x̄, thus expressed through units of length. These
become dimensionless x when being scaled by the mass of
the central black hole M̄. For the direct interpretation, we
express our results also in physical (SI) units denoted as x̂.

II. MODEL OF CHARGED FLUID TORI

The presented investigation of charged fluid circling in
strong gravitational and electromagnetic fields is based on
fundamental magnetohydrodynamic equations, which,
under particular assumptions determining our model, pro-
vide coupled partial differential pressure equations. After
matching the thermodynamical quantities and introduction
of an auxiliary function, these pressure equations, together
with an integrability condition, allow us to find a rich
family of topologically different classes of equipressure
surfaces. These surfaces map possible shapes of equilib-
rium toroidal configurations of the studied fluid, being
dependent on the chosen rotational law and on the so-called
correction function (related to charge distribution), which
must be selected from a class of functions determined
through the integrability condition. Finally, the desired
pressure (density, temperature and charge density) profiles
can be easily expressed by means of the solution for the
auxiliary function.

A. Simplifying assumptions and basic features

In our model, we generally assume fluid immersed
in prescribed axially symmetric gravitational gαβ and
electromagnetic Fαβ ¼ ∇αAβ −∇βAα fields, where, due
to the symmetry, the vector potential has the form Aα ¼
ðAt; Aϕ; 0; 0Þ in the coordinate system ðt;ϕ; r; θÞ. The axial

magnetar

B

M

FIG. 1. Scheme of the considered situation—compact object
endowed with dipole-type magnetic field accompanied by cir-
cling equatorial and off-equatorial “levitating” tori.
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symmetry of the background represents the first simplify-
ing assumption of the model, being physically very
realistic. As the second simplifying assumption, we con-
sider a test charge fluid only, i.e. nongravitating (rarefied)
and slightly charged, thus without any contribution to the
spacetime metric and the electromagnetic potential.
Within the magnetohydrodynamic approach, our con-

ception of the charged fluid model is characterized by three
basic features. Firstly, it is the zero electric conductivity of
the fluid; secondly, it is the zero viscosity of the fluid. Such
an idea represents a scenario of charges adherent to
the moving single-component dielectric perfect fluid.
The third basic feature of the model is that the fluid rotates
in the purely ϕ-direction around the central compact object,
i.e. with the 4-velocity Uα ¼ ðUt; Uϕ; 0; 0Þ, specific angu-
lar momentum l ¼ −Uϕ=Ut and angular velocity (with
respect to distant observers) ω ¼ Uϕ=Ut; all related by the
formulas

ω ¼ −
lgtt þ gtϕ
lgtϕ þ gϕϕ

; ð1Þ

ðUtÞ2 ¼
g2tϕ − gttgϕϕ

l2gtt þ 2lgtϕ þ gϕϕ
: ð2Þ

Consequently, the 4-current density Jα of the fluid must
have the only nonvanishing spatial component correspond-
ing to the azimuthal flow of the charge density qρ,

Jϕ ¼ qρUϕ; ð3Þ

as it follows from the general expression of Ohm’s law:

Jα ¼ qρUα þ σFαβUβ: ð4Þ

Note that the zero conductivity σ ¼ 0 of the fluid is a
necessary condition for the self-consistency of the model.
Really, if there was a nonzero conductivity σ ≠ 0, the
second term on the right-hand side of Ohm’s law (4) would
give rise to a radial electric current, unless there was a
significant self-field, which is contradicting our assumption
of self-fields omission. Thus, a radial electric current would
imply the existence of a charge (electrons, ions) radial
motion. This is, however, contradicting the basic feature of
our model: the one requiring the azimuthal motion only
since the charges are fixed (or directly forms) to moving
matter.

B. Pressure equations

The rotating fluid with profiles of charge density qρ and
energy density ϵ forms a torus determined by its iso-
surfaces of the pressure p (equipressure surfaces), which
can be determined from coupled “pressure” equations

∂rp ¼ −ðpþ ϵÞR1 þ qρR2 ≡R;

∂θp ¼ −ðpþ ϵÞT 1 þ qρT2 ≡ T ; ð5Þ

where R ¼ Rðr; θÞ and T ¼ Tðr; θÞ denote the right-hand
sides of these equations, and

R1 ¼ ∂r ln jUtj −
ω∂rl
1 − ωl

; ð6Þ

R2 ¼ Ut∂rAt þ Uϕ∂rAϕ; ð7Þ

T 1 ¼ ∂θ ln jUtj −
ω∂θl
1 − ωl

; ð8Þ

T2 ¼ Ut∂θAt þ Uϕ∂θAϕ: ð9Þ

For better understanding, the pressure equations can
be derived from the conservation laws and Maxwell’s
equations,

∇βTαβ ¼ 0; ð10Þ

∇βFαβ ¼ 4πJα; ð11Þ

∇ðγFαβÞ ¼ 0: ð12Þ

Here, the electromagnetic tensor Fαβ describes the com-
position of the vacuum external electromagnetic field
pervading the fluid, and the internal electromagnetic
self-field of the fluid, i.e.

Fαβ ¼ Fαβ
EXT þ Fαβ

INT: ð13Þ

Similarly, the stress-energy tensor Tαβ can be split into two
parts: the matter and electromagnetic parts as

Tαβ ¼ Tαβ
MAT þ Tαβ

EM; ð14Þ

where

Tαβ
MAT ¼ ðϵþ pÞUαUβ þ pgαβ; ð15Þ

Tαβ
EM ¼ 1

4π

�
Fα

γFβγ −
1

4
FγδFγδgαβ

�
: ð16Þ

Assuming the stress-energy tensor decomposition (14)
and appreciating that due to Maxwell’s equations (11) and
(12) we have [30]

∇βT
αβ
EM ¼ −FαβJβ; ð17Þ

we obtain the equation
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∇βT
αβ
MAT ¼ FαβJβ; ð18Þ

following directly from the conservation laws (10).
The basic assumption of our model is to consider the

test tori only, i.e. we have Fαβ
INT ≪ Fαβ

EXT, and can put
Fαβ ¼ Fαβ

EXT. Then, the Eq. (18) implies the final “master”
formula

∇βT
αβ
MAT ¼ Fαβ

EXTJβ: ð19Þ

Now, taking into account our first simplifying assumption
(the background axial symmetry) and the third basic feature
of the model (matter azimuthal circulation), we directly get
the pressure equations (5).

C. Thermodynamical setup

Along with the considered simplifications and features
characterizing the model (axial symmetry, negligible self-
fields, zero conductivity and viscosity, and the pure
azimuthal motion), we further introduce a couple of
optional, but still very physical, simplifications. They allow
us to clearly and relatively simply solve the pressure
equations (5) in a pure analytical way. The first of such
simplifications concerns adjustment of thermodynamical
relations necessary for any further investigation.
In reality, intending to treat all the relevant phenomena,

the thermodynamical description of accretion discs repre-
sents a very delicate problem. Especially, generation of heat
and radiation makes the situation very complex. Here, for
the purpose of a basic theoretical investigation, we restrict
to low temperature adiabatic tori, i.e. we neglect the
influence of radiation [31]. We consider a perfect fluid
under an adiabatic polytropic relation

p ¼ κρΓ; ð20Þ
with κ and Γ being polytropic coefficient and exponent,
respectively, and ρ is the rest-mass density. Neglecting the
radiation, especially the radiation pressure, we can assume
that in the first approximation the pressure is of thermal
nature only and determined by the ideal gas relation

p ¼ 1

hmimu
ρT; ð21Þ

where mu is the dimensionless atomic mass unit and hmi is
the mean molecular weight [32]. For the following rough
temperature estimations and discussions, we fix hmi ∼ 1,
corresponding to simple atoms or molecules. In the
considered case (no radiation), the energy density is given
by the relation

ϵ ¼ ρþ 1

Γ − 1
p; ð22Þ

then we have ϵ ¼ ϵðpÞ.

Finally, note that in extreme astrophysical scenarios, we
are often faced with the degenerated gas phase, with the
pressure being temperature independent and related to the
density only. In the case of ideal degenerate gas, we have
the polytropic relation

p ¼ κdρ
Γ; ð23Þ

where κd is the polytropic coefficient of the degenerated
matter.

D. Rotation and charge distribution

Looking at the pressure equations (5), we realize
that they are not integrable, in general; the integrability
condition

∂θRþ T∂pR ¼ ∂rT þR∂pT ð24Þ

must be also satisfied. Regardless of this integrability
condition, the existence of a solution of the pressure
equations (5) is guaranteed for the zero charged density
qρ ¼ 0 only. This is when the last terms in equations (5)
vanish, and we get the Euler equations describing a rotating
electrically neutral (uncharged) perfect fluid [15,16].
In the case qρ ≠ 0, the situation is more complicated

since equations (5) are no longer integrable for arbitrary
qρ ¼ qρðr; θÞ and arbitrarily chosen l ¼ lðr; θÞ. It is
necessary to specify l ¼ lðr; θÞ (even with simplifications
l ¼ const or ω ¼ const being allowed) and find an
appropriate distribution qρ ¼ qρðr; θÞ, which is consistent
with that. Or, vice versa, we can specify qρ ¼ qρðr; θÞ (with
even qρ ¼ const being possible) and find an appropriate
l ¼ lðr; θÞ; the charged tori must clearly have distribu-
tions of charge and angular momentum satisfying the
integrability condition (24). This is, however, strictly
“necessary” only if the equation of state is prescribed.
Otherwise, one could absorb this constraint into it.

E. Background description

The dipole magnetic field considered here is represented
by the only nonvanishing azimuthal component of the
vector potential [33]

Aϕ ¼ −
3

8
Mf0sin2θ ¼ MAϕ; ð25Þ

where

f0 ¼ 2þ 2rþ r2 ln ð1 − 2=rÞ; ð26Þ

for a better transparency, we distinguish its variable partAϕ

and the constant dipole magnetic moment M given by the
relation [34]
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M ¼ 4R3=2ðR − 2Þ1=2
6ðR − 1Þ þ 3RðR − 2Þ ln ð1 − 2R−1ÞB: ð27Þ

Here, B is the magnetic field strength measured at the
radiusR in the equatorial plane; for simplicity, but without
a remarkable influence on the precision, we assume it to be
sufficiently low to satisfy the test-field approximation, thus
not contributing to the spacetime geometry. That is for its
unique simplicity but still sufficient relevance considered
with the metric of the Schwarzschild type,

ds2 ¼ −
�
1 −

2

r

�
dt2 þ

�
1 −

2

r

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð28Þ

F. Transformation of pressure equations
and correction function

Having the thermodynamical relations ϵ ¼ ϵðpÞ and ρ ¼
ρðpÞ set, and the specific angular momentum profile
chosen, we can now determine the charge density distri-
bution from the integrability condition (24) and calculate
the final pressure profile from the pressure equations (5).
To avoid a direct numerical integration, we can, however,

transform the nonlinear pressure equations (5) to linear
ones. For this purpose, it is convenient to define the
function

K ¼ qρ
ϵþ p

; ð29Þ

which implies the system of equations

∂rp ¼ −ðpþ ϵÞðR1 − KR2Þ;
∂θp ¼ −ðpþ ϵÞðT 1 − KT 2Þ: ð30Þ

We address the function K as the “correction” function,
mathematically ensuring the integrability of Eqs. (30),
physically determining the charge density distribution
according to relation (29). Along with the setting param-
eters, such as l or ω, M, κ and Γ, the correction function
represents another degree of freedom in the model, which
we set a priori.
In our approach, we conveniently introduce the

auxiliary function hðr; θÞ satisfying coupled transformation
equations

∂rh ¼ ∂rp
ðpþ ϵÞ ;

∂θh ¼ ∂θp
ðpþ ϵÞ ; ð31Þ

in the united form written as dh ¼ dp
ðpþϵÞ. Then, we get the

final system of linear differential equations

∂rh ¼ −ðR1 − KR2Þ;
∂θh ¼ −ðT1 − KT2Þ; ð32Þ

which is accompanied by the integrability condition

∂θðR1 − KR2Þ ¼ ∂rðT1 − KT2Þ: ð33Þ

Under the assumption ϵ ¼ ϵðpÞ, guaranteed by the
chosen thermodynamical setup (22), the transformation
function can be explicitly expressed as

h ¼
Z

h

0

dh ¼
Z

p

0

dp
pþ ϵ

¼ ln

�
1þ Γκ1

Γp
Γ−1
Γ

Γ − 1

�
: ð34Þ

In general, the auxiliary function hðpÞ simplifies not only
the integration of the pressure equation, but the whole
following investigation as well. Starting with a topology of
considered toroidal structures, it is fully determined
through equipressure p ¼ const (or equienergy density
ϵ ¼ const) surfaces; the outside surface (edge) of the torus
corresponds to the zero surface p ¼ 0, the center to the
pressure maximum. However, as we can see from relation
(34), for the physically relevant values p > 0, it follows
that hðpÞ > 0, being monotonously increasing; moreover,
there is hðpÞ ¼ 0 for p ¼ 0. Consequently, positions of
maxima and zero surfaces of the pressure p correspond to
positions of extrema and zero surfaces of the h-function.
Thus, we equivalently manage with the investigation of the
h-function for the topological survey. Proceeding to an
investigation of physical characteristics, as we show in the
following paragraph, profiles of the pressure, mass density,
temperature, specific charge, etc. can be easily recovered
from the h-function as well.
In the considered background with the only nonvanish-

ing magnetic field component Aϕ, reducing second parts of
the pressure equations to

R2 ¼ Uϕ∂rAϕ; ð35Þ
T 2 ¼ Uϕ∂θAϕ; ð36Þ

it is, moreover, very convenient to rescale the correction
function as

K ¼ UϕK: ð37Þ

Then, our final system of differential equations (32) can be
written in the form

∂rh ¼ −
�
∂r ln jUtj −

ω∂rl
1 − ωl

−MK∂rAϕ

�
;

∂θh ¼ −
�
∂θ ln jUtj −

ω∂θl
1 − ωl

−MK∂θAϕ

�
; ð38Þ

indicating a possible unification.

CHARGED PERFECT FLUID TORI IN STRONG CENTRAL … PHYSICAL REVIEW D 93, 124055 (2016)

124055-5



G. Existence conditions

Before proceeding to the full topological and physical
survey, we can start with the discussion of the tori
existence, despite having no solution of the pressure
equations (5), or (30) and (32) at hand.
At first, note that since gtt < 0 (r > 2 in the considered

metric), the condition l2gtt þ gϕϕ > 0 must be satisfied, as
we can see from relation (2). Since l ¼ −ωgϕϕ=gtt, that can
be rewritten in two equivalent forms

l2 <
r3sin2θ
r − 2

≡ l2
ph or ω2 <

r − 2

r3sin2θ
≡ ω2

ph; ð39Þ

as a matter of fact, equivalent expressions of the
natural condition for the azimuthal velocity of the circling
matter

v2 ¼ −
gϕϕ
gtt

ω2 ¼ −
gtt
gϕϕ

l2 < 1: ð40Þ

The function l2
phðrÞ plays the role of an effective potential

governing the photon motion in the equatorial plane. The
function l2

ph has one local extremum (minimum) l2
ph;c ¼ 27

located at rph;c ¼ 3, corresponding to the circular photon
orbit (see Fig. 3).
If we index the position of the torus center as ðrc; θcÞ,

the necessary conditions for the torus (center) existence
can be written within the considered transformation (34) in
the form

∂rhjr¼rc
θ¼θc

¼ 0; ∂θhjr¼rc
θ¼θc

¼ 0; ð41Þ

or Rjr¼rc;θ¼θc
¼ 0, T jr¼rc;θ¼θc

¼ 0, equivalently.
Clearly, the above conditions do not guarantee the

existence of the desired local maximum of h. For this
purpose, we have to construct the Hessian matrix

H ¼
� ∂2

rrh ∂2
rθh

∂2
θrh ∂2

θθh

�
; ð42Þ

whereas in the points of local maxima, conditions

∂2
θθhjr¼rc

θ¼θc
< 0; detHjr¼rc

θ¼θc
> 0 ð43Þ

must be fulfilled. Note that due to the background and tori
symmetries, the mixed partial derivatives in the equatorial
plane automatically vanish; the conditions for maxima in
the equatorial plane reduce to

∂2
rrhjr¼rc

θ¼θc
< 0; ∂2

θθhjr¼rc
θ¼θc

< 0: ð44Þ

Along the positions of tori centers, we are also interested
in the so-called cusps of the tori. They correspond to the
saddle points in the pressure (h-function) profiles, and the
necessary conditions (41) must be satisfied for them
as well.

H. Physical characteristics profiles

Having the polytropic equation of state (20) and the
correction function (37) chosen, the pressure pðr; θÞ, mass
density ρðr; θÞ, temperature Tðr; θÞ and specific (per unit
mass) charge qðr; θÞ profiles of the tori can be determined
through the h-function (34) as

p ¼
�
eh − 1

κ1=Γ
Γ − 1

Γ

� Γ
Γ−1
; ð45Þ

ρ ¼
�
p
κ

�1
Γ ¼

�
eh − 1

κ

Γ − 1

Γ

� 1
Γ−1
; ð46Þ

T ¼ mu
p
ρ
¼ muðeh − 1ÞΓ − 1

Γ
; ð47Þ

q ¼ qρ
ρ
¼ K

Uϕ

�
ϵþ p
ρ

�
¼ K

Uϕ e
h: ð48Þ

For completeness, we note that unlike the considered
fluid with ideal gas features, for the degenerate gas limit,
the temperature assignment (47) looses its reliability
completely; the other relations from the set remain valid
for κ ¼ κd.
Along with the physical limitation on the profiles

(45)–(48) discussed later, we must be aware of the
simplifying assumption in the model—the test tori require-
ments. For this purpose, we must check mass and charge of
the torus, determined by the volume integrals

M ¼
Z
V
ρdV; Q ¼

Z
V
qρdV; ð49Þ

in the case of the torus centered in the equatorial plane, we
have

M ¼ 4π

Z
rout

rin

Z π
2

θρ0

ρ
ffiffiffiffiffiffi
−g

p
dθ dr; ð50Þ

Q ¼ 4π

Z
rout

rin

Z π
2

θρ0

qρ
ffiffiffiffiffiffi
−g

p
dθ dr; ð51Þ

where rin and rout denote positions of the inner and outer
edges of the structures in the equatorial plane, and θρ0 is the
function determining the upper half of the cross section of
the outside surface of the torus with the poloidal plane
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(r × θ), given numerically from the equation ρ ¼ 0; g ¼
−r4sin2θ is the determinant of the metric tensor reflected in
the line element (28).
To compare the strength of the ambient dominant

magnetic field with the one generated by the charged
rotating torus, we can roughly estimate order of its strength
close to edge of the torus by the following simplification.
Assuming a torus, resembling the ideal mathematical
regular torus with its cross-section radius ðrout − rinÞ=2,
and “shrinking” it figuratively to the infinitely thin charged
ring at the torus center r ¼ rc, we can estimate the order of
the generated magnetic field strength as

B̂ ∼
4π10−7Î

2πðr̂out − r̂cÞ
; ð52Þ

in the distance rout − rc from this center. Here, the constant
4π10−7 represents the vacuum permeability in SI units, and
Î ∼ Q̂ω̂=ð2πÞ is the estimation of the order of the total
current through the cross section of the original torus.

I. Unique h-solution

The transformed pressure equations (38), following
directly from Eqs. (32), provide a general system of
equations for the unknown function hðr; θÞ. This can be
determined from the system if the rotational law and charge
distribution are chosen through the functions lðr; θÞ and
Kðr; θÞ satisfying the integrability condition (33).
Under the assumptions ω ¼ ωðlÞ and K ¼ KðAϕÞ

(restricting degrees of freedom in the model, but still
providing realistic physical scenarios), however, we can
join the system of Eqs. (38) into the integral form

Z
h

0

dh¼− ln

���� Ut

Utin

����þ
Z

l

lin

ωdl
1−ωl

þM
Z

Aϕ

Aϕin

KdAϕ; ð53Þ

with the solution briefly written as

h ¼ −H þHin: ð54Þ

Here, after integration, the function −Hðr; θÞ represents
the variable part in the right-hand side of Eq. (53), and
the subscript “in” refers to the inner edge of the torus at
r ¼ rin, θ ¼ θin, determining the joined constants of
integration Hin.
The united integral form of the pressure equations (53)

is extremely convenient, allowing us to avoid a standard
general treatment of coupled partial differential
equations. As we show in the following paragraph, its
noncharged limit is very useful for investigation of the
neutral fluid [35].

J. “Polish doughnut” limit

Polish doughnuts represent electrically neutral
perfect-fluid polytropic toroidal structures circling close
to compact objects, originally constructed around
Schwarzschild and Kerr black holes, and reflecting the
corner stone contributions of the Polish school in their
name [15,16]. In our model, we get such tori in the
nonelectromagnetic limiting cases q → 0 (K → 0), or
M → 0. Then, in the case ϵ ¼ ϵðpÞ, the pressure profiles
can be determined from the behavior of the uncharged
limit of the auxiliary function h (54), here denoted as ~h
and satisfying equations

∂r
~h ¼ −

�
∂r ln jUtj −

ω∂rl
1 − ωl

�
;

∂θ
~h ¼ −

�
∂θ ln jUtj −

ω∂θl
1 − ωl

�
; ð55Þ

under the additional assumptions ω ¼ ωðlÞ, we can also
conveniently use the integral form of these equations, i.e.
the formula

Z ~h

0

d ~h ¼ − ln

���� Ut

Utin

����þ
Z

l

lin

ωdl
1 − ωl

≡ − ~H þ ~Hin: ð56Þ

After the substitution ~h ¼ R p
0

dp
pþϵ, formula (56) is referred

to as Boyer’s condition [16].

K. Magnetic field lines and equations projection

Considering more general scenarios of behavior of
charged matter in combined gravitational and electromag-
netic fields, an integration of the generalized form of
pressure equations (5) represents a delicate problem.
There is, however, a very useful technique based on
integration along magnetic field lines, simplifying the study
in many respects. An application of this method is nicely
introduced in the work [29], where a similar problem of
charged matter motion is treated in dipole magnetosphere of
neutron star.
The magnetic field lines can be well represented by the

tangent magnetic vector field Bα. For the considered dipole
magnetic field, the only nonvanishing covariant local tetrad
components are

BðrÞ ¼ FðϕθÞ; BðθÞ ¼ −FðϕrÞ; ð57Þ

and being transformed to the Schwarzschild coordinates
they read

Br ¼
eϕðϕÞe

θ
ðθÞ

erðrÞ
Fϕθ; Bθ ¼ −

eϕðϕÞe
r
ðrÞ

eθðθÞ
Fϕr; ð58Þ
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where erðrÞ ¼ g−1=2rr , eϕðϕÞ ¼ g−1=2ϕϕ and eθðθÞ ¼ g−1=2θθ are the

nonvanishing components of the tetrad basis vectors eαðrÞ,
eαðϕÞ and eαðθÞ. Thanks to the expression Fαβ ¼ ∇αAβ −
∇βAα, in the considered Schwarzschild metric gαβ and with
the only nonvanishing vector potential component Aϕ, we
get the contravariant vector field components

Br ¼ −
1

ðgrrgϕϕgθθÞ1=2
∂θAϕ; ð59Þ

Bθ ¼ 1

ðgrrgϕϕgθθÞ1=2
∂rAϕ: ð60Þ

The pressure equations from the set (5) represent
components of the vector equation Pα ¼ 0, where for
the electromagnetic potential Aα ¼ ð0; Aϕ; 0; 0Þ there is

Pα ¼ ∂αpþ ðpþ ϵÞ
�
∂α ln jUtj −

ω∂αl
1 − ωl

�
− qρUϕ∂αAϕ:

ð61Þ

Equation (61) can be projected (by scalar product with the
magnetic vector field Bα) into the direction of the magnetic
field lines Bα ¼ ð0; 0; Br; BθÞ, providing us with the single
equation PαBα ¼ 0, or in explicit form

dp
pþ ϵ

þ d ln jUtj −
ωdl

1 − ωl
¼ 0; ð62Þ

where we used the relation dr=dθ ¼ Br=Bθ valid (only)
along magnetic field lines. In the special case l ¼ const,
and for the chosen thermodynamical setup with the poly-
tropic equation of state, we get

hþ ln jUtj ¼ const ð63Þ

along magnetic field lines.
The consequence of the particular result (63) is that,

except for constants, we obtain profiles of the h-function
(pressure, density) along magnetic field lines without
integration of the pressure equations. From another point
of view, having the profiles of the h-function as the direct
solution of the pressure equations (32), relation (63)
immediately reveals the structure of magnetic field lines,
independently of the type of the solution h parametrized
by the rotational law and charge profile (see Fig. 2).
Moreover, note that without the presence of the magnetic
field (or the charge of the matter), relation (63) gives
directly the general solution of the pressure equations, as
can be checked after comparison with the solution of
Eq. (56) [37].

III. TOPOLOGY OF l AND ω CONSTANT TORI

In this section, we systematically go through a variety of
topologically different toroidal configurations rotating in
two different ways: with constant l and constant ω [38].
The geometry of such tori is fully determined by the
profiles of the function hðr; θÞ, depending on two param-
eters only: rotational parameter l2 or ω2 and the electro-
magnetic parameter μ introduced later on. For an
illustrative insight, however, we map the toroidal topology
by means of equipotential surfaces of the potential Hðr; θÞ,
directly defined by the function h (54) and conveniently
presented in the cylindrical coordinates R ¼ r sin θ
and z ¼ r cos θ.
Further, we also reveal that in the case of l ¼ const tori,

the toroidal structures circling in the considered back-
ground exist in their uncharged limit in the equatorial plane
and in both the charged equatorial and off-equatorial
regimes. On the other hand, ω ¼ const toroidal structures
do not exist neither in the uncharged limit nor in the
charged off-equatorial regime. The only possibleω ¼ const
configurations is the charged one settled in the equato-
rial plane.

A. Correction function specification

No matter which distribution of specific angular momen-
tum we choose (l ¼ const or ω ¼ const), the integrability
condition (33) can be rewritten in the form

4 cos θ∂rK − f1ðr cos θ∂rK − sin θ∂θKÞ ¼ 0; ð64Þ

where

f1 ¼ −2þ 2rþ ðr − 2Þr ln ð1 − 2=rÞ; ð65Þ

in the case 0 < θ < π having the analytical solution

0 2 4 6 8 10
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R

z

0.0 0.5 1.0 1.5 2.0 2.5
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2.2

2.3

R

z

detail

FIG. 2. Magnetic field lines of the considered dipole magnetic
field. The lines are determined by the vector field Bα and
conveniently plotted in cylindrical coordinates R ¼ r sin θ and
z ¼ r cos θ above the event horizon.
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K ¼ Kðr; θÞ ¼ Kð
ffiffiffiffiffiffiffiffi
−f0

p
sin θÞ: ð66Þ

The correction function Kðr; θÞ is a generic function
which must be chosen. And, as we can see from a
comparison of relations (66) and (25), it must fit the class
of arbitrary functions with the only argument Aϕ, i.e.
Kðr; θÞ ¼ KðAϕÞ. Such a dependence is not an optional
specific need for the simplification of the pressure equa-
tions, which can be then written in the united form (53). It is
the most general integrability requirement in the considered
background and rotational regimes; Eq. (53) provides fully
equivalent solutions to those following from the system
of Eqs. (38).
In the studied cases l ¼ const and ω ¼ const, we choose

the generic function in two exemplary forms

K ¼ kAϕ; ð67Þ

K ¼ kA3
ϕ; ð68Þ

respectively, where k is a constant. Rewriting relations (67)
and (68) by using relations (29) and (37), we find

qρ ¼ k
Aϕðpþ ϵÞ

Uϕ ; ð69Þ

qρ ¼ k
A3

ϕðpþ ϵÞ
Uϕ ; ð70Þ

respectively. Thus, it turns out that k plays the role of a
charge scaling factor. In more details, it is a quantity
allowing us to specify “how much” charged our matter is.
Together with the magnetic moment M, it represents the
free parameter in the model.

B. Electromagnetic parameter and sign convention

In the pressure equations (38) for the h-function, the
charged scaling parameter k occurs in the product with the
magnetic moment M only. Therefore, we can introduce
the coupled electromagnetic parameter (effective magnetic
moment)

μ ¼ kM; ð71Þ

playing an important role in the next discussions.
Referring to relations (69) and (70), we can interpret sign

of μ in the following way. Considering the orientation of the
dipole magnetic moment (dipole magnetic field) to be fixed
as M > 0 (oriented along the symmetry axis zþ), then the
sign of the electromagnetic parameter μ is the same as the
sign of the charge parameter k. Thus, positive values μ > 0

mean the positive (counterclockwise) rotation Uϕ > 0
(l > 0 and ω > 0) of the positively charge matter
qρ > 0, or the negative (clockwise) rotation Uϕ < 0

(l < 0 and ω < 0) of the negatively charge matter
qρ < 0. On the other hand, negative values μ < 0 mean
the positive rotationUϕ > 0 of the negatively charge matter
qρ < 0 or the negative rotation Uϕ < 0 of the positively
charge matter qρ > 0.

C. Equatorial l= const neutral tori

In order to well understand the relatively complex
situation with the charged tori characterized by a rich
classification of different configurations, and for the pur-
pose of comparison and emphasis of the electromagnetic
interaction in our model, we briefly recover the l ¼ const
configurations in their uncharged (Polish doughnut) limit.
The second of necessary conditions (41) implies that the

neutral l ¼ const tori are allowed only in the equatorial
plane (θc ¼ π=2); the first one implies for the locations of
the torus center rc (and cusp) the relation

l2 ¼ ~l2
cðrcÞ≡ r3c

ðrc − 2Þ2 : ð72Þ

According to the first of sufficient conditions (44), we find
that the center of the torus exists for rc > 6 only.
Trying to interpret the uncharged limit of the h-function,

we easily reveal its energy nature. In the l ¼ const case,
there is

~h ¼ − ~H þ ~Hin ¼ − ln jUtj þ ln jUtin j
¼ − ln ~Eþ ln ~Ein; ð73Þ

where ~E ¼ −Ut is the specific (per unit mass) energy of
particles moving along circular geodesics with specific
angular momentum ~L ¼ Uϕ. The function ~H ¼ ln ~E then
plays the role of a potential. It fully represents the character
of the ~h-function behavior since ~Hin is only the constant of
integration, having its physical meaning only for setting the
edge (size) of the torus in the prescribed ~H-potential
field [39].
The extrema of ~H (as well as the extrema of ~h) are

located in the equatorial plane only. For their localization,
we can conveniently map behavior of the equatorial profile
of the potential ~H, i.e. the one-dimensional potential
~Hπ=2ðrÞ≡ ~Hðr; θ ¼ π=2Þ, having its extrema determined

by the function ~l2
c (72) shown in Fig. 3. The function ~l2

c

embodies one local minimum ~lms ¼ 27=2 corresponding
to the squared specific angular momentum of particles
moving along the marginally stable circular orbit at r ¼ 6.
The radii determined from the condition l2 ¼ ~l2

cðrcÞ
correspond to unstable (smaller radius) and stable (greater
radius) circular geodesics. The stable one determines
the position of the torus center, where the potential ~H
and its equatorial profile ~Hπ=2 have local minimum, while
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the ~h-function and the corresponding pressure p are
maximal there. The unstable geodesic determines a critical
point (cusp), where the potential ~H has the saddle point,
and ~Hπ=2 has a local maximum there.
Clearly, the toroidal configurations can exist only for

l2 > ~l2
ms, when both the extrema (minimum and maxi-

mum) of ~Hπ=2 are present. For l2 > l2
ph;c, only the local

minimum is present since we are limited by the condition
l2 < l2

ph (39) represented by the forbidden-black region in

Fig. 3. In addition to the limits l2
ph;c and ~l2

ms, there is one

more characteristic value ~l2
mb ¼ 16. It corresponds to the

square of specific angular momentum of particles moving
along the marginally bound equatorial circular geodesic at
r ¼ 4. The toroidal structures with l2 < ~l2

mb can form
a cusp.
Mapping behavior of the ~H-potential through its equi-

potential surfaces, we can emphasize the so-called “critical
surface,” which is the self-crossing surface corresponding
to the maximum (cusp) of ~Hπ=2 (saddle point of ~H) and the

“null” ~H ¼ 0 equipotential surface crossing the equatorial
plane at infinity. The behavior of the potential ~H can be
summarized in the following ways:
For l2 ∈ ð0; ~l2

msÞ, there are no extrema of the potential ~H,
no closed equipotential surfaces and no critical equipoten-
tial surface (see Fig. 4A).
For l2 ¼ ~l2

ms, there is one inflexion point of the potential
~H in the equatorial plane. There, the critical surface
has its critical point corresponding to a ring. The null
equipotential surface is open towards the black hole
(see Fig. 4B).

For l2 ∈ ð ~l2
ms; ~l

2
mbÞ, there is a negative saddle point and a

negative local minimum of the potential ~H in the equatorial
plane (negative maximum and negative minimum of ~Hπ=2).
In this case, closed equipotential surfaces exist. They are
bounded by the critical surface self-crossing in the cusp
located between rms and rmb. The null equipotential surface
is open towards the black hole (see Fig. 4C).
For l2 ¼ ~l2

mb, there is a zero saddle point and a negative
minimum of the potential ~H in the equatorial plane (zero
maximum and negative minimum of ~Hπ=2). The closed
equipotential surfaces are bounded by the critical surface
which coincides with the null equipotential surface
(see Fig. 4D).
For l2 ∈ ð ~l2

mb;l2
ph;cÞ, there is a positive saddle point and a

negative minimum of the potential ~H in the equatorial plane
(positive maximum and negative minimum of ~Hπ=2). The
closed equipotential surfaces are bounded by the outer null
equipotential surface. The critical surface is now open
outwards away from the black hole and self-crosses
between the radii rph;c and rmb (see Fig. 4E).
For l2 ¼ l2

ph;c, the potential ~H diverges at rph;c and the
saddle point no longer exists. The negative local minimum
of the potential ~H is still present. The closed equipotential
surfaces are bounded by the outer null equipotential sur-
face. The critical surface is no longer present.
For l2 > l2

ph;c, the only extremum of the potential ~H is the
negative minimum. The closed equipotential surfaces are
bounded by the outer null equipotential surface. There is no
longer any critical surface, but there is a forbidden region
for fluid elements with prescribed specific angular mo-
mentum, delimited by the radii satisfying the relation l2 ¼
l2
phðrcÞ (see Fig. 4F).

D. Equatorial l= const charged tori

Since the second from the necessary conditions (41) is
automatically satisfied in the equatorial plane, the centers
and cusps of the l ¼ const torus in the equatorial plane can
be determined through the first of them; the choice of the
correction function in the form (67) implies the relation

l2 ¼ l2
cðrc; μÞ≡ r3ð4þ 3μrAϕf1Þ

ðr − 2Þð4r − 8þ 3rμAϕf1Þ
����
r¼rc

: ð74Þ

In dependence on the effective moment μ, the sufficient
conditions (44) then reveal the tori existence region in the
parametric plane ðrc × l2Þ as shown in Fig. 5.
In contrast to the neutral tori, there are three different

types A, B, C of behavior of the function l2
cðrc; μÞ

determining the stationary points of the potential H for
the negative values of μ, and three types D, E and F for the
positive ones (see Fig. 5). Extrema of the function l2

c

are determined from the condition ∂rl2
c ¼ 0, implicitly

defining functions μl;ex�ðrcÞ taking their local extrema

ph,c
2

mb
2

ms
2

c
2

rc

ph
2 rc

5 10 15 20 25

10

15

20

25

30

rc

2

FIG. 3. Behavior of the function ~l2
cðrcÞ governing extrema of

the potential ~Hðr; θÞ in the equatorial plane. For a fixed value of
the squared angular momentum l2, we can clearly determine
positions of the potential maximum (smaller radius) and mini-
mum (larger radius) as the intersections of ~l2

cðrcÞ curve and l2 ¼
const line. The potential ~Hðr; θÞ is not defined in the black region
limited by the function l2

phðrcÞ. The toroidal structures with l2 ¼
const exist only for l2 > ~l2

ms.
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μAB ≐ −0.37, μBC ≐ −0.33, μDE ≐ 2.4 and μEF ≐ 3.0. We
find that for:
μ ∈ ð−∞; μABÞ, the function l2

c has one minimum on the
upper branch of its behavior (type A);
μ ∈ ðμAB; μBCÞ, the function l2

c has minimum on each of its
branches and one maximum on its lower branch (type B);
μ ∈ ðμBC; 0Þ, the function l2

c has one minimum on its right
branch (type C);
μ ∈ ð0; μDEÞ, the function l2

c has one minimum on its
single branch (type D);
μ ∈ ðμDE; μEFÞ, the function l2

c has two minima and one
maximum on its single branch (type E). This class can be
also separated into two subclasses E1 and E2 according to
the comparison of the values of both the minima;

μ ∈ ðμEF;∞Þ, the function l2
c has one minimum on its

single branch (type F ).
Each from the types of the function l2

cðrc; μÞ provides
several different classes of behavior of the potential H,
which full classification is outside the scope of this paper.
We, however, present two very interesting cases of the
H-potential topology: those related to the B and E types of
the function l2

c behavior (see Fig. 6).

E. Off-equatorial l= const charged tori

According to the necessary conditions (41), the l ¼
const off-equatorial tori can be centered in the positions
determined through relations
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FIG. 4. Typical behavior of the potential ~Hðr; θÞ shown in terms of its equipotential surfaces and equatorial profile ~Hπ=2. Taking
progressively increasing values of the squared specific angular momentum l2, we present six qualitatively different types of behavior of
the potential. The dashed and thick curves correspond to critical and null equipotential surfaces, respectively; the dots denote locations
of minima and inflexion point of the potential ~H.
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l2 ¼ −
r3f0sin2θ
4ðr − 2Þ

����r¼rc
θ¼θc

; ð75Þ

μ ¼ −
4

3sin2θðf0 þ 4ÞAϕ

����r¼rc
θ¼θc

: ð76Þ

Following relation (40), we find for the azimuthal
velocity of the torus center the limitation

v2c ≡ 1 −
1

4
f0jr¼rc < 1: ð77Þ

Equivalently, we have v2c − 1 ¼ − f0þ4
4

< 0 or f0 þ 4 > 0
for r ¼ rc, which requires the torus center location at

positions rc ⋗ 2.3231 independently on the latitude θc. We
also find that the first of sufficient conditions (43) is
automatically satisfied; the second one, however, provides
uswith the final restriction rc ⋗ 4.1817 independently on θc.
Further investigation of the H-potential configurations

incorporating the off-equatorial minima requires discussion
in the four-dimensional parametric space ðr × θ × l2 × μÞ.
In contrast to the discussions of the equatorial configura-
tions, having one degree of freedom (θ ¼ π=2) less, here,
we manage with the pure statement of the existence and
limitation. Again, we do not go through the full discussion.
Instead, we present the typical two-lobe H-potential top-
ology containing separated off-equatorial lobes formed
around their centers (potential minima) and those joined
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FIG. 5. Profiles of the function l2
cðrc; μÞ governing extrema of the potentialHðr; θÞ in the equatorial plane (first two plots in row), and

profiles of the functions μl;ex�ðrcÞ (thick) determining extrema of l2
cðrc; μÞ (last plot in row). For μ < 0 (lower row), we can find three

different types of behavior of the function l2
c , particularly l2

cAðrc;−0.4Þ (dashed), l2
cBðrc;−0.34Þ (dot-dashed) and l2

cCðrc;−0.3Þ (solid)
in dependence on values of the parameter μ chosen from intervals A, B and C determined by extrema of the function μl;ex−ðrcÞ. For
μ > 0 (upper row), we can also find three different types of behavior of the function l2

c , particularly l2
cDðrc; 2.3Þ (solid), l2

cE1ðrc; 2.6Þ
(dot-dashed) or l2

cE2ðrc; 2.8Þ (dashed), and l2
cF ðrc; 3.1Þ (dotted) in dependence on values of the parameter μ chosen from intervals D, E

and F determined by extrema of the function μl;exþðrÞ. Reading the figure, for a fixed value of l2, we can clearly determine positions of
the H-potential extrema in the equatorial plane as the intersections of a particular l2

cðrc; μÞ curve and l2 ¼ const line. Intersections
located in the light-gray region correspond to minima in the r-direction only. The full local minima are related to the intersections from
the dark-gray region. The intersections in the white region correspond to maxima in the r-direction. Especially, see the intersections
of the dotted lines l2 ≐ 26.5 and l2 ¼ 20 with the l2

cE1ðrc; 2.6Þ and l2
cAðrc;−0.4Þ curves, corresponding to the positions of extrema

of the potential H plotted in Fig. 6. For completeness, note that the potential H is not defined in the black region limited by the
function l2

phðrcÞ.
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through a throat in the equatorial plane (area of the potential
saddle point) (see Fig. 8).

F. Absence of equatorial ω= const neutral tori

Beginning the survey of the ω ¼ const tori, we start with
a comment on their uncharged limit. The necessary con-
ditions (41) restrict possible centers of such tori into the
equatorial plane and to the radii related to the angular
velocity as

~ω2 ¼ ~ω2
cðrcÞ≡ 1

r3c
: ð78Þ

First of the sufficient conditions (44), however, demands
for the tori centers rc < 3, which contradicts the condition
(39). In general, independently of the rotational law, in the
case of a purely azimuthal motion of the neutral fluid, its
center corresponding to a circular geodesic must be located
at radii r > 3, i.e. above the photon circular orbit. Thus, the

ω ¼ const tori do not exist until they are electrically
charged, as we show in the next paragraph.

G. Equatorial ω= const charged tori

By charging the ω ¼ const rotating torus, from con-
ditions (41) and for the chosen correction function (68), we
find that the tori centers and cusps are automatically
allowed in the equatorial plane at positions given by the
relation

ω2 ¼ ω2
cðrc; μÞ≡

ðr − 2Þð4þ 3rμA3
ϕf1Þ

r3ð4r − 8þ 3rμA3
ϕf1Þ

����
r¼rc

: ð79Þ
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FIG. 7. Behavior of the potential Hðr; θÞ determined by the
parameters l2 ¼ 20 and μ ¼ −0.4 close to its saddle points (for
more details see Fig. 6).
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FIG. 6. Typical behavior of the potential Hðr; θÞ shown in terms of its equipotential surfaces and equatorial profiles Hπ=2ðrÞ.
Particularly, we present the topology determined by the parameters l2 ≐ 26.5 and μ ¼ 2.6 (left part), embodying two minima and two
saddle points in the equatorial plane; all of them determined by the function l2

cE1ðr; 2.6Þ. There is also the topology determined by the
parameters l2 ¼ 20 and μ ¼ −0.4 (right part). This is characteristic for its two minima and one saddle point in the equatorial plane
determined by the function l2

cAðrc;−0.4Þ and two saddle off-equatorial points (for an insight into the area around the saddle points see
Fig. 7). The dashed curves correspond to critical equipotential surfaces self-crossing in the equatorial saddle points. The dot-dashed
curves correspond to critical equipotential surfaces self-crossing in the off-equatorial saddle points. The thick dots denote the locations
of potential minima.
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In dependence of the electromagnetic parameter μ, the
sufficient conditions (44) imply the tori center existence in
the region of the parametric plane ðrc × ω2Þ as shown
in Fig. 9.
Going through the classification in the similar manner

as in Sec. III D, we find three different types G, H and I
of behavior of the function ω2

cðrc; μÞ determining the
stationary points of the potential H for the negative

values of μ. For positive values, there are no minima of
the potential H, i.e. no toroidal structures, as demon-
strated in Fig. 9. Extrema of the function ω2

c are
determined from the condition ∂rω

2
c ¼ 0, implicitly

defining the function μω;exðrcÞ taking its extrema
μGH ≐ −0.110 and μHI ≐ −0.094. We find that for:
μ ∈ ð−∞; μGHÞ, the function ω2

c has one maximum on
its right branch (type G);
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FIG. 9. Profiles of the function ω2
cðrc; μÞ governing extrema of the potential Hðr; θÞ in the equatorial plane (first two plots in row) and

profiles of the function μω;exðrcÞ (thick) determining extrema of ω2
cðrc; μÞ (last plot in row). For μ < 0, we can find three different types

of behavior of the function ω2
c , particularly ω2

cGðrc;−0.3Þ (dashed), ω2
cHðrc;−0.095Þ (dot-dashed) and ω2

cIðrc;−0.04Þ (solid) in
dependence on values of the parameter μ chosen from intervalsG,H and I determined by the extrema of the function μω;exðrcÞ. For μ > 0

we cannot find minima of the potential H. Reading the figure, for a fixed value of the squared angular velocity ω2, we can clearly
determine positions of the H-potential extrema in the equatorial plane as the intersections of a particular ω2

cðrÞ curve and ω2 ¼ const
line. Intersections located in the light-gray region correspond to minima in the r-direction only. The full local minima are related to the
intersections from the dark-gray region. The intersections in the white region correspond to maxima in the r-direction. Especially, see the
intersections of the dotted lines ω2 ≐ 0.02909 and ω2 ¼ 0.0097 with the ω2

cHðrc;−0.095Þ and ω2
cGðrc;−0.3Þ curves, corresponding to

the positions of extrema of the potential H plotted in Fig. 10. For completeness, note that the potential H is not defined in the black
region limited by the function ω2

phðrcÞ.
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μ ∈ ðμGH; μHIÞ, the functionω2
c has maximum on each of its

branches and one local minimum on its left branch
(type H);
μ ∈ ðμHI; 0Þ, the function ω2

c has one maximum on its left
branch (type I).
Each from the types of the function ω2

cðrc; μÞ provides
several different classes of behavior of the potential H,
together revealing a rich classification of them, as well as in
the l ¼ const case. Also here, we skip this classification
and present two interesting cases of the H-potential top-
ology, those related to the G and H types of the function ω2

c
behavior in Fig. 10.

H. Absence of off-equatorial ω= const charged tori

In contrast to the l ¼ const tori, the rigidly rotating
ω ¼ const tori cannot be formed above the equatorial
plane for any choice of the correction function
K ¼ KðAϕÞ.
That is because the necessary conditions (41) imply

the stationary points of the h-function satisfying the
relations

ω2 ¼ −
ðr − 2Þf0
4r3sin2θ

����r¼rc
θ¼θc

; ð80Þ

M ¼ −
4

3sin2θðf0 þ 4ÞK
����r¼rc
θ¼θc

; ð81Þ

and for the azimuthal velocity of the torus center we find
the same limitation (77) as in the case of off-equatorial
l ¼ const tori. Thus, we require f0 þ 4 > 0 and f0 < 0 for
r ¼ rc, which demands the torus center location at posi-
tions rc ⋗ 2.3231 independently on θc.
Under these assumptions the sufficient conditions (43)

can be rewritten in the form

sin2θðf0 þ 4Þ ∂Aϕ
K

K

����r¼rc
θ¼θc

>
8

3
; ð82Þ

sin2θðf0 þ 4Þ ∂Aϕ
K

K

����r¼rc
θ¼θc

<
8

3

f2
f0f3

����r¼rc
θ¼θc

; ð83Þ

where

f2 ¼ 4ðr3 þ r2 þ 5rþ 9Þ þ 4r2ðr2 þ 2Þ ln
�
1 −

2

r

�

þ r4ðr − 1Þ
�
ln

�
1 −

2

r

��
2

; ð84Þ

f3 ¼ 3r2 þ r2ðr − 1Þ ln
�
1 −

2

r

�
þ 6: ð85Þ

Since f2
f0f3

< 1 for rc ⋗ 2.3231, conditions (82) and (83) are
contradicting; thus, the rigidly rotating off-equatorial tori
cannot exist in the considered background.

IV. PROCEDURE OF TORUS CONSTRUCTION

The previous Sec. III was focused on the geometrical
investigation of topologically different toroidal configura-
tions. Studying different types of the two-parametric (μ, l)
or (μ, ω) h-function solution (54), we introduced the main
part of the presented work. However, for a basic contex-
tualization, we gladly enhance the paper with an elemen-
tary physical discussion of the tori properties based on
relations (45)–(48). Constructing theoretically relevant tori,
along with the limitations given by the assumptions of the
model, we must be also aware of the most fundamental
astrophysical restrictions on the tori and background.
Following the scheme of the fluid toroidal structures
imitating the equilibrium state of accretion discs, we can
roughly estimate how much “close” or “far” from this
idealization the constructed tori could be.

A. Torus limitations

Trying to list the physical restriction on the fluid forming
an equilibrium configuration representing an accretion disc,
one can be surprised by an enormous number of them.
Within the scope of this paper, we manage with the idea of
nondegenerated matter not being subjected to the nuclear
reaction. For this purpose, we roughly compare and restrict
the extrema of the pressure, density and temperature
profiles of the constructed tori below the solar core values
p̂⊙ ∼ 1016 Pa, ρ̂⊙ ∼ 105 kgm−3 and T̂⊙ ∼ 107 K repre-
senting our upper limits.
The temperature must be kept certainly low not only to

prevent the matter from nuclear reactions. In our model, we
neglect the torus radiation pressure ∼T4. Thus, within the
consistency, the temperature should be as low as possible in
the precise and severe verdict.
Similarly, the density must be kept low not only due to

nuclear reactions. Clearly, the dense fluid forms heavy
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FIG. 11. Behavior of the potential Hðr; θÞ determined by the
parameters ω2 ¼ 0.0097 and μ ¼ −0.3 close to its maximum (for
more details see Fig. 10).
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torus and also leads to its high total charge. Such generates
strong magnetic field comparable with the ambient one,
violating the simplifying assumption of the test torus. Of
course, both the low mass and small charge requirements
can be met even for highly dense tori, but such tori have to
be relatively tiny and slightly charged. In this respect,
we can ask, how much rarefied matter we can afford.
This is clearly limited by the considered magnetohydrody-
namic approach. Usually, the upper limit for the kinetic
approach applicability (rarefied fluids) is the number
density up to 1024 m−3. Considering particles of approx-
imately protonmass m̂p ∼ 10−27 kg, we get themass density
limit ρ̂MHD ≳ 10−3 kgm−3.
Within the specific charge profile setting, we must be

aware of the high specific charge of the order of qp ∼ 1018,
representing the specific charge for elementary proton-like
particles (cations). For the purpose of minimization of the
total charge of the torus, however, the specific charge
should be kept lower in orders.

B. Torus construction and two-parameter tuning

In the wide range of parameters (μ, l or ω, Γ, κ and Hin)
entering the geometrical and physical characteristics of the
tori, the construction of the physically relevant tori (tori
with reasonable profiles of pressure p, density ρ, temper-
ature T, specific charge q, etc.) might have seemed not clear
enough. We can, however, choose a well-arranged method
providing us with an efficient procedure of the tori
construction and profiles modification.
At first, we must realize that the geometry of the torus,

studied through the investigation of the h-function solution
in previous section, also directly determines profiles of the
physical characteristics given by relations (45)–(48).
Geometry is, however, not the only factor for the physical
setup. That is also the torus matter origin. Thus, we can
look at the construction of the torus from two interfering
points of view. These are (i) choice of the geometric
characteristics (fully determined through the h-function)
and (ii) determination of the matter parameters Γ and κ
(yielding reasonable profiles of the physical characteristic
together with the chosen h-function).
We start with determination of the geometry (type and

size) of the torus determined through the h-function. The
structure of the h-solution reads h ¼ −H þHin, where the
potential H prescribe the type (shape, and positions of
centers and cusps) of the torus. The potential H is uniquely
determined by two parameters: the electromagnetic (field-
matter) parameter μ and the torus rotational law (parameters
l or ω). The integration constant Hin shifts values of the
potential up and down only, setting this way the edge of the
torus (zero surface), i.e. the size of the torus.
Next step is to choose the matter parameters Γ and κ.

Being focused on the nonrelativistic matter approximation,
we can put the polytropic exponent Γ ¼ 5=3. Any change
within the physically realistic values 1 < Γ < 2, however,

does not influence the characteristics profiles dramatically;
thus, the only parameter, which should be chosen carefully,
is the polytropic coefficient κ.
We can see that having the type of the torus set (μ, l (or

ω)), we still have two degrees of freedom due to two
parameters: the geometric (size) parameter Hin and the
matter parameter κ. Proper balancing of them yields the
feasible physical characteristics. In more details, the effec-
tive construction of the torus can be realized in the
following steps:
(1) Choice of the torus type (shape, positions of centers

and cusps) through the parameters μ, l (or ω). This
also implicitly sets the profiles of all the physical
characteristics, which will be tuned in the follow-
ing steps.

(2) Choice of the torus size through the parameter Hin.
This primarily sets the temperature profile, however,
it also simultaneously sets the pressure and density
profiles, which will be finally tuned in the last step.

(3) Choice of the fluid type through the parameter κ.
This tunes the final pressure and density profiles,
and does not touch the previous κ independent
temperature profile.

(4) Check of the total charge of the torus and generated
magnetic field. If the total charge is high enough to
generate the magnetic field comparable with the
ambient magnetic field, we must either decrease
the size of the torus through the parameterHin or the
density profile through the parameter κ (the specific
charge profile itself is κ independent). Of course,
there is also the option to entirely change the type of
the torus by changing parameters μ, l (or ω); as a
matter of fact, this means to start with point
(1) again.

C. Exemplary toroidal structures

In this paragraph, we present several samples of tori with
the geometry determined by the previously presented
profiles of the H-potential. We choose values of the geo-
metric parameterHin and matter parameters κ and Γ, so that
theymatch (or illustrativelymismatch) the abovementioned
physical limits. In all the presented cases, we exemplary set
the parameters to be κ ¼ 106 and Γ ¼ 5=3, whereas the
geometric constantHin varies in the samples. Moreover, we
choose the mass of the central compact object to be M̂ ¼
M̂⊙ and define its radiusR ¼ 3, under which all the profiles
loose their meaning. The magnetic field strength is set to
B ≐ 4.24 × 10−8 (in SI units corresponding to the value
B̂ ¼ 108 T) in the equatorial plane at the compact object
surface r ¼ R. This choice corresponds to the dipole
moment of the magnetic field M ≐ 4.2 × 10−7. Such a
kind of the central object setup follows from the considered
idealization of the object imitating a magnetic star, as we
comment below in more details. Note that the assumed
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magnetic field strength is consistent with our test-field
assumption; even the magnetic fields B̂ ∼ 1011 T can be
considered as the test fields [4].

1. l= const equatorial tori

The presented l ¼ const equatorial tori (see Fig. 12) are
assigned to the behavior of the H-potential determined by
the parameters l2 ≐ 26.5 and μ ¼ 2.6 (see Fig. 6),
embodying two minima at rc ≐ 3.8 and rc ≐ 9.1 and
two saddle points in the equatorial plane. In dependence
on the value of the parameter Hin, such a topology allows
construction of one or two separated tori with the centers
corresponding to the minima of the potential H or two tori
joint through the cusp. Here, we show a sample of two
separated tori, determined by the value Hin ≐ −0.041
corresponding to the inner edges of the tori at rin ≐ 3.4
(larger torus) and rin ¼ 8.8 (smaller torus) in the equato-
rial plane.
The central pressure, density and temperature of the

inner (greater) torus reach in dimensionless units their
maxima pc ∼ 10−15, ρc ∼ 10−13 or in physical SI units
p̂c ∼ 1023 Pa, ρ̂c ∼ 108 kgm−3, T̂c ∼ 1010 K. The total

charge of the torus reaches Q ∼ 10−5, and the generated
dipole magnetic field from the torus (close to its surface)
can be estimated as B ∼ 10−6. We can see that the inner
torus does not fit all the considered limits described above,
and, moreover, neither does our assumption of the test torus
since we have B ≫ B here.
The central pressure, density and temperature of the

outer (smaller) torus reach their maxima pc ∼ 10−23,
ρc ∼ 10−17 or equivalently p̂c∼1016 Pa, ρ̂c ∼ 104 kgm−3,
T̂c ∼ 108 K. The total charge of the torus and the generated
dipole magnetic field areQ ∼ 10−9 andB ∼ 10−10, respec-
tively. This torus fits our limits, except for the slightly
higher temperature; our assumption of the test torus is
fulfilled.

2. l= const off-equatorial tori

The presented l ¼ const off-equatorial tori (see
Fig. 13) are assigned to the behavior of the H-potential
determined by the parameters l2 ≐ 6.042 and μ ≐
−1.167 (see Fig. 8), embodying two minima (surrounded
by two topological lobes) at the radius rc ¼ 6, and
latitudes θc ¼ π=3 and θc ¼ 2π=3, two saddle points
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outside the equatorial plane and one saddle point (lobes
connection) in the equatorial plane. In dependence on the
value of the parameter Hin, such a topology allows
construction of two separated off-equatorial tori with
the centers corresponding to the local minima of the
potential or the construction of the off-equatorial tori
joint through the cusp in the equatorial plane. Here, we
chose Hin ≐ −0.0781, determined by the choice of the
torus edge at rin ¼ 5.98 and θin ¼ π=3 or θin ¼ 2π=3, and
get two separated rather small tori.
The central pressure, density and temperature of the tori

reach their maxima pc∼10−24, ρc∼10−18 or equivalently
p̂c∼1013 Pa, ρ̂c∼102 kgm−3, T̂c ∼ 107 K. The total charge
of each torus and the generated dipole magnetic field are
Q ∼ −10−13 andB ∼ −10−14, respectively. Thus, these off-
equatorial tori meet all our limitations as well as the
assumption of the test tori, though they have to be
really small.

3. ω= const equatorial tori

The presented ω ¼ const equatorial torus (see Fig. 14) is
assigned to the behavior of the H-potential determined by
the parameters ω2 ¼ 0.0097 and μ ¼ −0.3 (see Fig. 10),
embodying one minimum at rc ¼ 3.9 and one saddle point
in the equatorial plane. The choice of the parameter
Hin ≐ −0.493, determined by the choice of the position
of the inner edge rin ¼ 3.892 in the equatorial plane, leads
to the simple bounded torus here.
The central pressure, density and temperature of the

torus presented in Fig. 14 reach their maxima pc ∼ 10−24,
ρc ∼ 10−18 or equivalently p̂c ∼ 1014 Pa, ρ̂c ∼ 103 kgm−3,
T̂c ∼ 5 × 107 K. The total charge of the torus and the
generated dipole magnetic field are Q ∼ −10−13 and
B ∼ −10−13, respectively. Also here, this sample torus
meets all our limitations as well as the assumption of
the test torus.
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On the other hand, for a comparison, the torus presented
in Fig. 15 reaches extremely high values of the density
ρc ∼ 10−10. They were achieved by the change of the
polytropic parameter to κ ¼ κdn ≐ 5 or equivalently
κ̂ ¼ ð3π2Þ2=3ℏ̂2=ð5m̂8=3

n Þ ≐ 5 × 103 Pa kg−5=3 m5, with the
rest parameters being kept; the parameter κdn corresponds
to the polytropic parameter of the ideal degenerated neutron
gas. As a direct consequence of the extreme density, the
total charge of the torus reaches Q ∼ −10−5 and generates
the magnetic field B ∼ −10−5, exceeding the ambient
field by orders and thus violating the assumption of
test field.

V. DISCUSSION

A. Background idealization—Magnetic star

It is well known that the application of Schwarzschild
geometry is typical for investigation of processes in static
and spherically symmetric gravitational fields of
Schwarzschild black holes. There is, however, a number
of another situations, where the Schwarzschild geometry
can be approximately applied: from strong fields of very
slowly rotating black holes to the weak limit of normal
stars. In our scenario, we use the advantage of the
Schwarzschild geometry simplicity for an approximate
description of gravity around object, which mimics a
slowly rotating (more precisely non-rotating) compact
neutron star. These stars are typically endowed with a
dipole-type magnetic field, considered in our scenario. For
sure, such a configuration can be precisely described by
more complex geometries, e.g. Hartle-Thorne’s [40] or
Manko’s [41]. Here, however, we restrict our attention to
the illumination of basic properties of the charged toroidal
configurations only; for this purpose the Schwarzschild
geometry and test dipole magnetic field seems to be
adequate.

In our illustrative scheme, we assume a sample of
rather compact neutron star of the dimensionless radius
R ¼ 3, being in geometrical units R̄ ¼ 3M̄ ¼ 3M̄⊙ ¼ 3×
1478 m ¼ R̂, where the mass of the Sun in geometrical
units M̄ ¼ M̂⊙Ĝ=ĉ2 ¼ 1.99 × 1030Ĝ=ĉ2 kg ¼ 1478 m;
the star is endowed with a dipole magnetic field with
strength B̂ ¼ 108 T in the equatorial plane at the radius
r ¼ R, corresponding to the dimensionless strength B ¼
B̄ M̄ ≐ 4.24 × 10−8 and to the magnetic dipole moment
M ≐ 4.2 × 10−7 [42].

B. Fluid idealization—He compound

Questioning the kind of fluid forming the constructed
tori, we must admit a considerable uncertainty. The
introduced test bed model of the charged fluid does not
conform with the widely presented accretion disc models.
We assume the nonconductive fluid with global nonzero
charge, contradicting the classic idea of plasma or dusty-
plasma discs with high conductivity and quasi-neutrality.
The pure dust grains seem to be not very convenient either
because of its rather negligible pressure, which excludes it
to be treated within the magnetohydrodynamic approach.
Moreover, there is a considerable Coulombian repulsion
between the charged dust grains, which we do not include
in the presented model.
The possible scenario can be found in terms of the partly

ionized helium—a proper mixture of neutral atoms or
molecules with very low percentage of cations. The specific
charge profile in a constructed torus, being by order far away
from the proton one, can be interpreted as an average specific
charge over a bulk of neutral particles bounding a cation, like
in the mentioned helium composition. Such an idea, how-
ever, must be supported by an argument how to keep the
charged helium species well locked among the neutral ones.
This could be ensured by the here considered sufficiently
high pressure and low temperature (high densities) in the
fluid. Then, particlemean free path is smaller than atom size,
and all the particles are “squeezed” enough to each other.
The assumed rigid rotation of the fluid could support this
scenario since in the ω ¼ const case the circling fluid can
sustain in the bulk hydrodynamicmotionwithout the friction
even for the required high densities.
The discussed partly ionized heliummixture is believed to

form neutron stars atmospheres, also under the temperatures
107 K, magnetic fields 108 T and densities 104 kgm−3
considered here [45]. This kind of neutron star atmosphere
could possibly serve as a source of matter for our tori being
located very close to the star surface, although we are aware
of the “high degree of idealization” of this scenario. There
are, however, theoretical suggestions of the existence of
(from neutron star surface spatially separated, but closely
located) fluid structures—atmospheric gaseous shells [46].
Naturally, being focused on the region close to a neutron

star, one can ask about the degenerate neutron gas as a
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FIG. 15. Density profile of negatively charged equatorial ω2 ¼
0.0097 torus counterclockwise rotating in the field with the
electromagnetic parameter μ ¼ −0.3 shown in Fig. 14 and
differing in the value of the polytropic parameter only, here
being fixed to κ ¼ κdn ≐ 5.
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possible fluid forming the studied tori. The considered
configurations could be imagined as being formed from
bulk particles, each containing throng of neutrons and a
proton, in accordance with the proper specific charge
profile. However, we can see that due to very high densities
of such a matter the tori constructed within the model
would have to be extremely tiny in order to meet the
condition of the test tori.

VI. CONCLUSIONS

Within the magnetohydrodynamic general-relativistic
approach, we studied electrically charged toroidal struc-
tures encircling a central compact object endowed with a
dipole magnetic field. This way we introduced a kind of
direct continuation of our previous studies of charged
toroidal structures [13,24,25]. Now, bringing the tori into
new kind of background, we revealed new configurations
of them and also updated the general solution of the
mathematical concept of the model, currently being pre-
sented in the united analytic integral form.
Studying the problem, we confined ourselves to the case

of gravito-electromagnetically test tori, i.e. mildly charged
and lightweight, purely azimuthally rotating, requiring thus
zero electrical conductivity. Along with these assumptions,
we considered a perfect fluid satisfying the polytropic
pressure–density relation and fixed the rotation with con-
stant specific angular momentum distribution or with
constant angular velocity (rigid rotation), both demanding
a particular specific charge scattering throughout the torus.
We can briefly conclude that the charged toroidal

structures can take shapes from rich topological family,
existing not only in the equatorial plane as a single torus but
also as two tori possibly coupled and joint through a cusp
[47] or existing even out of the equatorial plane as a pair of
off-equatorial tori. For comparison and better understand-
ing of the charge influence, we briefly mentioned the
family of electrically neutral tori (Polish doughnuts); we
proved the absence of those in rigid rotation.
Along with the pure topological study of possible

toroidal shapes, we also went through a basic astrophysical
contextualization. By fitting the matter and fields

parameters, we proved that the toroidal structures can exist
also within general astrophysical limits given by the
maximal possible central pressure, density and temper-
ature. For the purpose of a rough estimation, those had to be
kept below the solar core values. We showed that within the
considered model, the feasible tori must be relatively small
in size, as compared with the central object, supporting also
our conception of test tori.
For completeness, however, it is necessary to add that

our discussion of the tori properties strongly depends on the
choice of the charge correction function, being fixed
a priori. A change of this function could lead to more
or less interesting and realistic results, which can be part of
a further investigation. We must also admit a certain
incomprehension when questioning the origin of the matter
circling in the constructed tori. This represents serious
challenge for a future detailed study and matching, along
with the update of the physics in the model, represented,
e.g. by the considered thermodynamical setup. We are also
interested in an improvement of the model itself, in the way
of, e.g. inclusion of Coulombian interactions in the torus.
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