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Following our previous paper, Bergeron et al., Smooth quantum dynamics of the mixmaster universe,
Phys. Rev. D 92, 061302(R) (2015), concerning the quantization of the vacuum Bianchi IX model and
the Born-Huang-Oppenheimer framework, we present a further analysis of the dynamical properties of the
model. Consistently with the deep quantum regime, we implement the harmonic approximation of the
anisotropy potential. We thus obtain manageable dynamical equations. We study the quantum anisotropic
oscillations during the bouncing phase of the universe. Neglecting the backreaction from transitions
between quantum anisotropy states, we obtain analytical results. In particular, we identify a parameter that
is associated with dynamical properties of the quantum model and describes a sort of phase transition. Once
the parameter exceeds its critical value, the Born-Huang-Oppenheimer approximation breaks down. The
application of the present result to a simple model of the universe indicates that the parameter indeed
exceeds its critical value and that there takes place a huge production of anisotropy at the bounce. This in
turn must lead to a sustained phase of accelerated expansion, an inflationary phase. The quantitative
inclusion of backreaction shall be examined in a follow-up paper based on the vibronic approach.
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I. INTRODUCTION

It is expected that a generic spacelike singularity of
general relativity is oscillatory [1,2]. It is conjectured that at
any spatial point approaching a spacelike singularity, the
time derivatives of the gravitational field ultimately domi-
nate the spatial ones, and that the dynamics at these points
becomes asymptotically well approximated by oscillatory,
spatially homogeneous Bianchi models. It is called the
Bielinskii-Khalatnikov-Lifshitz (BKL) conjecture. An
interesting way of rephrasing the dynamics close to the
singularity is to employ the Hamiltonian formalism to bring
the asymptotic general relativistic equations to the form of a
Fuchsian system (or Fuchsian-like one) and claim (or
conjecture) the existence of a unique solution with a fixed
asymptotic behavior [3]. The asymptotic dynamics has
been studied and the oscillatory behavior has been

confirmed in numerical investigations [4]. It was also
found that during the evolution toward the singularity
there may form and develop sharp features at some points,
called spikes [5–7], at which the dynamics is exceptional.
“Quantization of the BKL scenario” remains an elusive

task. One can, however, make some progress in under-
standing the quantum dynamics of the homogeneous models
and in particular of those that play a pivotal role in the BKL
conjecture. This is the aim of the present paper. We are aware
that the quantum theory of Bianchi models may be too
limited to provide a solid, trustworthy picture of the generic
quantum dynamics of the inhomogeneous gravitational field
close to the singular state. Nevertheless, since the Bianchi
models are in general anisotropic, they contain much richer
physics than usually quantized isotropic ones. As a matter of
fact, we focus precisely on the role of anisotropic degrees of
freedom in the quantized dynamics and in particular on their
effect on the quantum bounce.
Among the homogeneous cosmological models, the

Bianchi IX (BIX) model exhibits the oscillatory behavior
on approach to the singularity and has often been a focal
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point of the research into the singularity problem.1 It
describes the nonlinear dynamics of a gravitational wave
whose energy fuels the contraction of the isotropic geom-
etry. Its first quantization was implemented by Misner [8]
within the canonical framework. It was confined to highly
excited anisotropic oscillations and did not resolve the
singularity. A lot of later work followed the Misner
approach introducing some extensions or modifications
(see [9] for references). Since then there have also appeared
a number of new approaches: e.g., in [10] a sum-over-
histories generalized quantum theory of BIX was proposed;
in [11] the quantum dynamics of a supersymmetric Bianchi
IX model was studied; in [12] quantum corrections to the
classical Bianchi IX universe were derived along the lines
of the asymptotic safety program. Recently, an approach
based on loop quantum gravity was developed to deal with
the singularity problem; see, e.g., [13]. A recent review of
quantum cosmology was given in [14]. For a useful list of
references related to the subject, see also [11].
Our recent result shows that the singularity of the

Mixmaster universe can be resolved via affine coherent
state (ACS) quantization. Such a covariant integral quanti-
zation [15] respects the half-plane geometry for the isotropic
canonical variables. The quantum geometrical term, a
repulsive potential that is issued from our quantization
procedure, prevents the universe from reaching the singular
state. Moreover, the nonsingular dynamics can be analyzed
in its deep quantum domain of low anisotropy eigenstates
[16,17]. Specifically, we showed that in this regime the
adiabatic approximation can be applied. We derived the
explicit bouncing dynamics of the mixmaster universewithin
the Born-Oppenheimer (BO) approximation as well as its
refined version, the Born-Huang approximation.
The present paper is devoted to an investigation of

quantum dynamics of the mixmaster beyond the adiabatic
approximation. The suitable framework for this investiga-
tion is ultimately provided by the vibronic approach known
from molecular physics (see [17,18]). In this approach the
anisotropic oscillations are allowed to transit between
eigenstates, and the effect of transitions on the dynamics
of isotropic variables is taken into account. Because such a
framework is computationally heavy, we need first a more
intuitive understanding of the dynamics, which is achieved
with the present paper focusing solely on the quantum
anisotropy transitions and neglecting the backreaction. It is
also useful to acquire such an understanding in order to
efficiently make numerical computations within the
vibronic approach [19].
It is impossible to analyze the anisotropic oscillations in

their exact form. In his paper, Misner applied the so-called

steep wall approximation to the anisotropic potential to
simplify the dynamics of the gravitational wave. Being
more interested in the deep quantum domain of the model,
we make use of the harmonic approximation to the same
potential. Both approximations describe rather well two
extreme dynamical regimes while the intermediate regime
is not well captured by either of them. Although the strictly
quantitative predictions from our model will certainly break
down in the other regime, we expect the essential quali-
tative features of the obtained dynamics to be universal.
We find that the anisotropic degrees of freedom present

in the quantized mixmaster model may be largely excited
when the quantum isotropic geometry undergoes a bounce
from contraction to expansion. This breakdown of the
adiabatic approximation happens for bounces occurring at
very small volumes. More specifically, we identify two
factors leading to the nonadiabatic bounces. The first one is
the initial quantum state of anisotropy set in the contracting
branch and characterized by a large quantum number.
Then the large energy of anisotropy fuels the contraction,
counteracts the quantum repulsive potential, and postpones
the bounce until the universe reaches small volumes. The
other one is a free parameter of our quantum model, which
originates from our quantization procedure. Its value,
which determines the strength of the repulsive potential,
can be fixed only in confrontation with some observational
data. The combined effect of those two factors is quantified
in terms of the so-called stiffness parameter. If this
parameter is smaller than its critical value, we recover
the result agreeing with the Born-Huang-Oppenheimer
approximation of our previous paper [17]. Otherwise, a
completely new phenomenon occurs, which is a pure
quantum geometry-induced inflationary phase following
a quantum bounce. This quantum inflationary phase is
initiated and sustained solely by the creation of anisotropy
quanta.
Our results include a detailed computation of the

scattering matrix for the mixmaster universe bouncing
against the quantum repulsive potential. Thus, we provide
a framework for investigating any initial or final quantum
anisotropy state in the universe. The simplest case com-
prises contracting universes in a fixed anisotropy eigen-
state. Furthermore, we consider a specific example with
parameters that are likely to correspond more or less to the
physical universe, which is assumed to be well enough
described by a radiation filled Bianchi IX model.
Finally, our theoretical framework has some natural

mathematical properties. Among other things, they
include a free parameter to be fixed in accordance with
observational data, time-reparametrization invariance of the
semiclassical-quantum dynamical equations and the use of
time-dependent quantum oscillator so much employed in
the study of linear perturbation theory on curved back-
grounds. All those elements are explained in the main body
of the paper.

1The Bianchi type VIII model is another Bianchi class A
model with confining anisotropy potential and undergoing
oscillations. Contrary to the type IX model, it does not admit
the isotropic limit.
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The paper is organized as follows. We begin by recalling
the main equation of our previous work on the adiabatic
approximation in Sec. II. Next, in Sec. III, we define a
refined, nonadiabatic, and unitary dynamics of the model
by an extended treatment of anisotropic oscillations. We
solve the quantum dynamical equation and discuss the most
basic observable, i.e., the amplification of the anisotropy
amplitude, in Sec. IV. More details on the quantum
anisotropy evolution are provided in Sec. V in terms of
the scattering matrix. We apply our result to speculate
about the physical universe and conclude with the pos-
sibility of the inflationary phase in a bouncing universe in
Sec. VI. Finally, we conclude in Sec. VII. In Appendix A
we analyze the strength of the repulsive potential in our
model, and in Appendix B we provide a list of symbols
used in our paper.

II. ADIABATIC APPROXIMATION

The complete definition of the Bianchi IX geometry may
be found in many papers, e.g., in [8] or [16]. We recall that
the Bianchi IX phase space is six dimensional. The Misner
(real) variables β� and p� describe the motion of anisotropic
distortion to the spherical shape of the universe, while
(positive) q ¼ e3Ω=2 and (real) p ¼ 2

3
e−3Ω=2pΩ describe

its isotropic expansion and contraction. Since the motion
of the isotropic part of the geometry is the half-plane
fðq; pÞ; q > 0; p ∈ Rg, it is natural to invoke the
“axþ b” affine group of the real line and its representation
in defining quantum theory. In [20] it was shown that
covariant quantization based on ACS shields the boundary of
the phase space, q ¼ 0, by means of a centrifugal potential
∼1=q2 and thus removes the cosmological singularity.
In our previous papers [16,17] we have derived a

Hamiltonian for the Bianchi IX universe ruling the iso-
tropic expansion at a semiclassical level derived from our
ACS formalism and the anisotropic oscillations at a
canonical quantum level. With our approach, the semi-
classical Hamiltonian constraint for the mixmaster universe
reads as follows (the lapse function has put N ¼ −24):

Čðq; pÞ ¼ 9

4

�
p2 þ ℏ2Kðψ ; n�Þ

q2

�

þ Lq
2
3 − EAðNÞq−2

3 − EMqk ≈ 0; ð1Þ

where the positive coefficient Kðψ ; n�Þ arises from our
ACS quantization procedure, based on a choice of the
fiducial vector ψ (see Appendix A of [17] and Appendix A
of the present paper). The integer numbers n� are the
quantum numbers of two modes of anisotropic oscillations
in the harmonic approximation, which are fixed in the
adiabatic approximation, and N ¼ nþ þ n−. The term Lq

2
3

represents the isotropic intrinsic curvature. The energy of
the anisotropic oscillations is given by the q-dependent
expression

EAðNÞq−2
3 ¼ 2

ffiffiffiffiffiffiffi
AB

p
ℏðN þ 1Þq−2

3; ð2Þ

which, for fixed q, is a spectral value of the quantum
anisotropy Hamiltonian,

ĤA ≔ A
p̂2þ þ p̂2

−

q2
þ Bq

2
3ðβ̂2− þ β̂2þÞ: ð3Þ

The term EMqk represents the matter field, and the value
of k depends on the corresponding equation of state. For the
moment we restrict our model to the vacuum case. The
value of coefficient K ≡ Kðψ ; n�Þ depends on whether
the Born-Oppenheimer or the Born-Huang approximation
is applied. The latter, referred to as KBH, includes an extra
correction, while the former, referred to as KBO, is simpler
and will be used in the subsequent analysis. The coeffi-
cients A; B;KBO; KBH, and L were derived in [17] and read

KBO ¼
�
ν2

16
þ ν

4
ξ21 þ

3ν

8
ξ10 þ ξ20

�
≃ ν2

16
;

KBH ¼ KBO þ 2

9
ξ20ðξ10Þ2ðn2þ þ n2− þ nþ þ n− þ 3Þ;

L ¼ 36n2ξ2
3
1ðξ5

3
0Þ13ðξ5

3
2Þ23 ≃ 36n2;ffiffiffiffiffiffiffi

AB
p

¼ 12
ffiffiffi
2

p
nðξ10Þ43ðξ20Þ53ðξ5

3
1Þ12 ≃ 12

ffiffiffi
2

p
n;

where ξrs ¼ ξrsðνÞ ¼ KrðνÞ
KsðνÞ and KrðνÞ is a modified Bessel

function depending on a free parameter ν > 0. The appear-
ance of this parameter is proper to our ACS quantization
procedure and can be partially determined through the
comparison of our model with the observational data. A
mild restriction on ν has been found in [20]. The value of
n ≠ 0 is the structure constant of the algebra of Killing
vector fields in the spatial leaf S3. It is related to the fiducial
volume of the universe, V0 ¼ 16π2

n3 , and has no physical
significance. In (1) we have suppressed the constant 2κ

V0
,

where κ ¼ 8πG. It will be restored in Sec. VI.
Qualitatively, the dynamics generated by the

Hamiltonian constraint (1) is the following. As the universe
contracts and q becomes smaller and smaller, EAðNÞq−2

3

grows and the isotropic contraction energy p2 grows with
it. Then, at some point, the repulsive term ℏ2K

q2 must become

dominant as it grows faster than EAðNÞq−2
3. Since it comes

with the opposite sign, it brings to the halt contraction by
forcing p2 ¼ 0. Then the universe rebounds, and the
expanding phase begins. See Fig. 1.
We note that the eigenenergy EAðNÞq−2

3 of anisotropic
oscillations is fixed in Eq. (1). This is true within the
adiabatic approximation. The present paper is devoted
to a study of conditions under which the adiabatic approxi-
mation breaks down and one needs to allow for tran-
sitions (excitation or decay) of an initial quantum state of
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anisotropy. As the anisotropic energy features in the
Hamiltonian constraint (1), the breakdown of the adiabatic
approximation will have an effect on the isotropic back-
ground’s evolution. However, in what follows we neglect
this effect.

III. NONADIABATIC EXTENSION

A. General setup beyond BO approximation

In what follows we allow for the breakdown of the
adiabatic approximation made in (1). In other words, we let
the energy of anisotropy, EAðNÞ, vary with time. This can
happen in response to sudden and significant changes to
the isotropic geometry described by q and p. The produced
energy of anisotropy would gravitate and influence the
evolution of q and p. However, we neglect this effect and
solve for the dynamics of q and p by keeping EAðNiÞ fixed,
where Ni is the initial number of anisotropic quanta. This
framework allows us to address in a completely analytical
manner many interesting questions and thus understand the
mechanism of this phenomenon. For example: (i) What is
the regime of validity of the adiabatic approximation?
(ii) What are the precise factors on which the excitation (or,
decay) of anisotropy depends? (iii) What is the amount of
anisotropic energy that can be produced in a violent
bouncing cosmological scenario?
We recall that our semiclassical theory for isotropic

mixmaster geometry was derived by first quantizing the
constraint and then giving it a semiclassical portrait in
the kinematical phase space. As a result, we obtain a
semiclassical Hamiltonian constraint theory that is time-
reparametrization invariant in the same way as its classical
counterpart. We are free to solve the dynamics by means of
any time parameter, which is fixed by multiplying the
constraint (1) with a nonvanishing factor, i.e., the lapse

function N . Next, Hamilton’s equations in a given time
parameter are formed by using the Poisson bracket
formalism.
Suppose (to be proved later) that the excitation of the

eigenstates corresponding to n� occurs only in the vicinity
of the bounce, where we assume that the intrinsic curvature
term is negligible by putting L ¼ 0. We transform the
Hamiltonian constraint (1) in order to generate dynamics in
the conformal time τ by changing the choice of lapse to
N ¼ −q2

3. We obtain the respective Hamilton equations,

dq
dτ

¼
�
q

2
3

24

� ∂
∂p Čðq; pÞ;

dp
dτ

¼ −
�
q

2
3

24

� ∂
∂q Čðq; pÞ;

Čðq; pÞ ¼ 0; ð4Þ

the τ dependence of q,

qðτÞ ¼
�
EAðNÞ
144

τ2 þ 9

4

ℏ2K
EAðNÞ

�3
4

; ð5Þ

after assuming the bounce at τ ¼ 0 and L ¼ 0.
The energy of anisotropy that is put into the semi-

classical constraint (1) is an instantaneous (i.e., for
constant q) eigenvalue EAðNÞq−2

3 of the anisotropic
Hamiltonian (3). This is precisely the Born-Oppenheimer
approximation that is based on the assumption of a slow
variation of q. We now go beyond it by allowing the
anisotropic wave function to respond to the variation of q in
conformal time. The new anisotropic wave function is
going to include transitions between instantaneous quan-
tum states. The idea of the following calculation is exactly
the one that is used in the inflationary scenarios for
determining the creation of tensor perturbations. The main
difference is that the gravity waves considered herein are
homogeneous and the background undergoes a nonsingular
bounce.
Let us rewrite the classical version of the anisotropic

Hamiltonian (3) with the new choice for the lapse function,
so that it generates the evolution of anisotropy in conformal
time,

HA ≔
A
24

p2þ þ p2
−

q
4
3

þ B
24

q
4
3ðβ2− þ β2þÞ: ð6Þ

Upon rescaling the anisotropic variables β�→Δ�≔q
2
3β�,

we transform the conjugate momenta as follows p� →

P� ≔ q−
2
3p� þ 3

2
q−

1
3p
A Δ�. The corresponding symplectic

forms are related as follows:

1 2 3 4
Scale factor a

H
ub

bl
e

ra
te

H

5

0

5

FIG. 1. Adiabatic dynamics of the BIX universe forN ¼ 0, 1, 3,
EM ¼ 0, and ν ¼ 2, where we used p ¼ −8Ha3=2 and q ¼ a3=2.
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dβ�dp� ¼ dΔ�dP� − dτd

��
−
3q−

2
3

32A

�
p2 þ ℏ2K

q2

�

þ L
24

�
Δ2

� þ q−
1
3p
8

Δ�P�

�

≡ dΔ�dP� − dτdHext; ð7Þ

where we assumed that the dynamics of the isotropic
variables q and p is independent of the dynamics of the
anisotropic variables Δ� and P�. This is true as in the
Hamiltonian constraint (1) we have a fixed energy of an
initial quantum state of anisotropy. Thus, the anisotropic
Hamiltonian in the new variables reads

Hosc ¼ HA þHext

¼ A
24

ðP2þ þ P2
−Þ þ

B
24

�
1 −

9

4

ℏ2K
AB

q−
8
3 þ L

AB

�

× ðΔ2
− þ Δ2þÞ: ð8Þ

As done previously, we neglect the term L=AB. Therefore,
we describe the anisotropic oscillations in terms of a system
of two uncoupled harmonic or antiharmonic oscillators
both of the same mass and time-dependent frequency,

m ¼ 12

A
; ω2ðτÞ ¼ AB

144

�
1 −

9

4

ℏ2K
AB

q−
8
3ðτÞ

�
: ð9Þ

We note that there will be times, for small values of qðτÞ,
when ω2ðτÞ < 0 causes amplification or suppression of the
amplitude. Our next step is to describe this process at the
quantum level.

B. Nonadiabatic quantum dynamics of anisotropy

We begin with the classical Hamiltonian given in Eq. (8).
We proceed with the usual canonical quantization in the
Heisenberg picture. This is legitimate since the range of
variables Δ� and P� is the whole R, and so their respective
phase spaces have the Weyl-Heisenberg symmetry.
We introduce time-independent creation and annihilation
operators

Δ̂� ¼
ffiffiffiffiffiffiffi
ℏ
2m

r
ðv��ðτÞâ� þ v�ðτÞâ†�Þ: ð10Þ

Once they are inserted into the (quantized) Hamilton
equations, we obtain

P̂� ¼
ffiffiffiffiffiffiffi
ℏm
2

r
ðv́��ðτÞâ� þ v́�ðτÞâ†�Þ; ð11Þ

where the acute means, as usual, derivation with respect to
the conformal time, and

d2v�ðτÞ
dτ2

¼ −ω2ðτÞv�ðτÞ: ð12Þ

Upon invoking the canonical commutation rule (ccr)
½Δ̂�; P̂�� ¼ iℏI, we obtain that ðv��v́� − v�v́��Þ½â�; â†�� ¼
2iI. Therefore, we impose the normalization condition
v��ðτÞv́� − v�ðτÞv́�� ¼ 2i on the solutions to (12).
The quantized Hamiltonian (8) reads Ĥosc¼ Ĥþ

oscþĤ−
osc

with

Ĥ�
osc ¼

ℏ
4
ðω2ðτÞv��ðτÞ2 þ v́��ðτÞ2Þâ2�

þ ℏ
4
ðω2ðτÞv�ðτÞ2 þ v́�ðτÞ2Þâ†2�

þ ℏ
4
ðω2ðτÞjv�ðτÞj2 þ jv́�ðτÞj2Þð2â†�â� þ 1Þ:

ð13Þ

For the n�th eigenstate of the number operator, n̂�¼ â†�â�,
we find the expectation values of the Hamiltonians (13),

hen�jĤ�
oscjen�i ¼

ℏ
2
ðω2ðτÞjv�ðτÞj2 þ jv́�ðτÞj2Þ

�
n� þ 1

2

�
:

ð14Þ

This allows us to compute the averaged number of particles
with respect to the “instantaneous vacuum”

hn�iðτÞ ¼
ðω2ðτÞjv�ðτÞj2 þ jv́�ðτÞj2Þðn� þ 1

2
Þ

2ωðτÞ −
1

2
:

ð15Þ

We set the vacuum state â�j0i ¼ 0 to minimize the initial
value of Hamiltonian by providing the following initial
conditions for v�ðτÞ (up to a phase):

v�ðτiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ωðτiÞ

p ; v́�ðτiÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
ωðτiÞ

p
: ð16Þ

In the next section, we construct solutions to the quantum
dynamics.

IV. DETERMINATION OF THE QUANTUM
ANISOTROPY EVOLUTION

In what follows we solve the previously established
quantum equations of anisotropic motion in the semi-
classical isotropic background. Then we use the solution
to determine the extent of the excitation of anisotropy
starting from initial conditions given by a fixed eigenstate,
that is, a Born-Oppenheimer-type dynamics in the pre– big
bounce era.
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The formula (12) for v�ðτÞ, supplemented with Eqs. (5)
and (9), may be interpreted as the stationary Schrödinger
equation for a particle with energy λ in the potential barrier
VN [see Fig. 2],

�
−

d2

dτ2
þ VNðτÞ

�
v� ¼ λv�; ð17Þ

with

λ ¼ AB
144

; VNðτÞ ¼
1

ðkNτ2 þ k−1N Þ2 ; ð18Þ

where kN ¼ EAðNÞ
18ℏ

ffiffiffi
K

p is the characteristic wave number and

N ¼ n− þ nþ denotes the average number of particles
contained in the initial quantum state and featured in
Eq. (1). The potential VN arises rapidly, reaches its
maximum value k2N at τ ¼ 0, and vanishes rapidly on time
scales k−1N . The solution temporarily changes its character
from oscillatory to exponential if k2N > λ, that is, when
N þ 1 > 3

4

ffiffiffiffi
K

p
. Therefore, the dynamics of anisotropic

variables across the bounce will depend on the bounce’s
properties, with smaller K and larger N corresponding to a
“stiffer” bounce. The latter reflects the nonlinear nature of
the dynamics of anisotropy. For the critical value ofK ¼ 3

4
,2

all quantum states will undergo to some extent the
amplification of its amplitude. The important thing is to
determine the extent of the excitation due to depth and
duration of the negative energy phase of the passing
“particle.”

A. Two-regime approximation

Let us assume that λ ≪ k2N (otherwise there is no
amplification). Then Eq. (17) can be split into two regimes:
(i) λ ≫ VN and (ii) λ ≪ VN , in which it takes two distinct
approximate forms,

ðiÞ −
d2

dτ2
v� ¼ λv�; ðiiÞ

�
−

d2

dτ2
þ VNðτÞ

�
v� ¼ 0:

ð19Þ

The solution to (ii) is determined to be exactly

v�ðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kNτ2 þ k−1N

q
ða0 þ a1 arctanðkNτÞÞ; ð20Þ

where a0 and a1 are constants. The solution to (i) in the

left-hand side of the potential reads v�ðτÞ ¼ 1
λ1=4

ei
ffiffi
λ

p
τ in

accordance with conditions (16), whereas it reads

v�ðτÞ ¼ C
λ1=4

ei
ffiffi
λ

p
τ þ D

λ1=4
e−i

ffiffi
λ

p
τ in the right-hand side of

the potential. Inclusion of the appropriate continuity
conditions leads to

C ¼ −ie−i2z−1
ffiffiffiffiffiffi
z−1

p
ðiþ ffiffiffiffiffiffiffiffiffiffi

z − 1
p Þ

× ð1þ ðiþ ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ arctan ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ; ð21Þ

D ¼ ið ffiffiffiffiffiffiffiffiffiffi
z − 1

p þ z arctan
ffiffiffiffiffiffiffiffiffiffi
z − 1

p Þ; ð22Þ

where we have introduced the parameter

z ¼ kNffiffiffi
λ

p : ð23Þ

It represents our “stiffness parameter,” named so for
reasons explained below.
Now we can compute the amplification of amplitude

AðzÞ, which is defined as the ratio of the final to the initial

amplitude AðzÞ ≔ j v�ðτfÞv�ðτiÞ j. It reads

AðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 arctan2

ffiffiffiffiffiffiffiffiffiffi
z − 1

p þ 4z
ffiffiffiffiffiffiffiffiffiffi
z − 1

p þ 2z − 1

q

∼
at large z

πz; ð24Þ

where in computing jv�ðτÞj2 ¼ λ−1=2ðjCj2 þ jDj2 þ
2ReðCD̄e2i

ffiffi
λ

p
τÞÞ we time averaged the oscillatory part.

Making use of AðzÞ and (15) we obtain

hN�if þ
1

2
¼ ð2z2arctan2 ffiffiffiffiffiffiffiffiffiffi

z − 1
p þ 4z

ffiffiffiffiffiffiffiffiffiffi
z − 1

p þ 2z − 1Þ

×

�
hN�ii þ

1

2

�
: ð25Þ

FIG. 2. Potential VN for kN ¼ 1. It arises and vanishes sharply
reflecting a sudden change in the background’s dynamics in the
vicinity of the bounce.

2This value was found to provide a unitary dynamics for
isotropic models without the need for boundary conditions for the
wave function; see [20] for details.
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In Fig. 3 we plot the amplification of the amplitude as a
function of z ¼ kNffiffi

λ
p . We clearly see that upon lowering the

value of K or increasing the value of N, the amplification
grows unboundedly. In particular, one finds that
hNif ∝ hNi3i ; that is, the excitation is a nonlinear effect.

B. Analytical approximation

In what follows we apply another approximation that is
more accurate in describing the amplification of the
anisotropy oscillation at low z. We will be able to see a
phase transition from adiabatic to nonadiabatic behavior.
Starting with Eq. (17) we perform the change of variable
τ ↦ u ¼ kNτ and obtain the new equation

−v001ðuÞ þ
1

ðu2 þ 1Þ2 v1ðuÞ ¼ z−2v1ðuÞ; ð26Þ

where v1ðuÞ ¼ vðu=kNÞ. This equation is not explicitly
solvable. But we can approximate the potential by a new
one which leads to an explicit solution. Namely, we notice
that numerically

1

ðu2 þ 1Þ2 ≃
1

cosh2ð4u=πÞ : ð27Þ

This is shown in Fig. 4. The coefficient α ¼ 4=π is obtained
by imposing

Z
R

du
ðu2 þ 1Þ2 ¼

Z
R

du
cosh2ðαuÞ : ð28Þ

Therefore we replace Eq. (26) by the new one,

−v001ðuÞ þ
1

cosh2ð4u=πÞ v1ðuÞ ¼ z−2v1ðuÞ: ð29Þ

Upon introducing another change of variable, u ↦ ξ ¼
4u=π, we obtain the equation

−v002ðξÞ þ
ðπ=4Þ2
cosh2ξ

v2ðξÞ ¼ k2v2ðξÞ; ð30Þ

where v2ðξÞ ¼ v1ðξπ=4Þ and k ¼ z−1π=4. This equation
can be solved as follows. With

s ≔
1

2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðπ=2Þ2

q �
ð31Þ

the solution of Eq. (30), compatible with the expected
asymptotic behavior, reads as

v2ðξÞ ¼ ð1 − ðtanh ξÞ2Þik=22F1

×

�
ik − s; ikþ sþ 1; 1þ ik;

1þ tanh ξ
2

�
ð32Þ

up to a multiplicative constant. From the properties of
hypergeometric functions, we find the asymptotic behavior

v2ðξÞ≃ξ→−∞ 2ikeikξ;

v2ðξÞ≃ξ→þ∞ Ceikξ þDe−ikξ ð33Þ

with

C ¼ 2ik
Γð1þ ikÞΓðikÞ

Γðik − sÞΓðikþ sþ 1Þ ;

D ¼ 2ik
Γð1þ ikÞΓð−ikÞ
Γð1þ sÞΓð−sÞ : ð34Þ

From Eq. (15), we finally find the excitation EðzÞ ≔
½AðzÞ�2 as

FIG. 3. Amplification AðzÞ obtained within the two-regime
approximation. For z ≫ 1 we get AðzÞ ≈ πz. We note that the
amplification is an unbounded function of z, and thus, of the
initial number of particles N.

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0

FIG. 4. The fitting and exact potentials of Eq. (18) are hardly
distinguishable as shown in the plot.

NONADIABATIC BOUNCE AND AN INFLATIONARY PHASE … PHYSICAL REVIEW D 93, 124053 (2016)

124053-7



EðzÞ ¼ Nf þ 1
2

Ni þ 1
2

¼ 1þ 2
jsin πsj2
sinh2ðπ2

4zÞ
¼ 1þ 2

cosh2πχ

sinh2ðπ2
4zÞ

;

ð35Þ

where χ ¼ ℑðsÞ. In particular, if z ≫ π2=4≃ 2.4, then

E ≃ 1þ 32

π4
z2cosh2πχ: ð36Þ

We deduce that

E ≫ 1 if z ≫
π2

4
ffiffiffi
2

p
coshðπχÞ≃ 0.5: ð37Þ

The conclusions are the following: (I) There is no maximal
value for the excitation E, and excitations occur except for
small values of z. Recalling the definition of z we find that
for Ni þ 1 ≫ 3

8

ffiffiffiffi
K

p
excitations occur. (II) There is no

excitation when Ni þ 1 < 3
8

ffiffiffiffi
K

p
, this condition being

possible only if K > 64
9
, and we recover the adiabatic

bounce that was the result of our previous paper [17].
(III) Since we can prove (see Appendix A) that the minimal
bound for K is K ≳ 4, we find that for the minimum value

of K excitations occur for all Ni, except for the lowest ones,
where the excitation is negligible.
Assuming K ≃ 4, using Eq. (35), we can express the

function NfðNiÞ as

Nf ¼ Ni þ cosh2ðπχÞ 2Ni þ 1

sinh2ð 3π2

8ðNiþ1ÞÞ
: ð38Þ

The plot ofAðzÞ is shown in Fig. 5. One can see that around
z ≈ 0.5 a kind of phase transition occurs. To see it we had
to employ the analytical approximation as the phase
transition occurs outside the domain of applicability of
the two-regime approximation.

C. Numerical investigation and stiffness parameter

Here we report on numerical computations that we
carried out to describe the structure of the anisotropy
excitations caused by the bounce. Let us recall that the
excitations happen because the solution becomes of expo-
nential type during the contraction-expansion transition. It
translates into the condition k2N > λ. In Fig. 6 we plot the
outcome of numerical computations. We thus confirm the
result obtained with the help of our two previous analytical
approximation approaches. The result clearly displays the

50
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1.005
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FIG. 5. Amplification AðzÞ of the amplitude of oscillations obtained from the exact solution to the dynamics in the approximate
potential. For large values of z ≫ 1, it coincides with the two-regime approximation (left plot).

FIG. 6. Amplification AðzÞ obtained from numerical computations. The result coincides with the one obtained from approximating
the potential.
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nonlinear nature of the process of excitation of anisotropic
distortion oscillations due to the cosmic bounce. The
existence of some initial anisotropic distortion will enhance
the amplification of the oscillation’s amplitude. This
process is a purely quantum effect but its nonlinear nature
is reminiscent of the classical chaotic behavior of the model
on which the quantization was imposed.
The formulas (24) and (35) show that the stiffness

parameter z is the only variable in the theory on which
the anisotropy excitation depends. Since it is inversely
proportional to K, the smaller the value of K the more
deeply the universe collapses and the more abrupt its
rebound is. We see that a bounce with a small enough
value of K can turn a smoothly contracting Friedmann-like
universe into a highly excited one. Because the final state is
expected to be semiclassical, the universe may emerge as
highly chaotic into the expanding classical phase. Let us
emphasize that K is a purely quantum coefficient, which
does not feature in the classical theory. Its very existence is
due to our ACS quantization procedure, and its value has to
be fixed from models consistent with growing observa-
tional data. We discuss the possible values of K issued from
our quantization in Appendix A.

V. SCATTERING MATRIX

In the previous section, we have dealt with the simplest
question concerning the excitation of the energy of
anisotropy starting from an eigenstate in the contracting
phase. In the present section we develop a framework
dedicated to more detailed questions: (i) Suppose the
universe has started in an anisotropy eigenstate. What is
then exactly the final quantum state of anisotropy? Or
(ii) how does the dynamics proceed if the initial state is a
generic one? The right choice in this regard is the
formalism of the scattering matrix. As we will see
soon, the matrix elements depend only on the stiffness
parameter z.

A. General case

By introducing the initial condition for v�ðτÞ in (16) we
are, in fact, defining our creation/annihilation operators as
the ones with the corresponding vacuum state minimizing
the initial energy. Alternatively, we can set the creation/
annihilation operators by requiring that this condition holds
for the final state instead of the initial one. Then, in the
Heisenberg picture developed here, we obtain a useful
Hilbert space basis to discuss a postbounce quantum state.
Suppose that two solutions to (17) are related through a
SU(1,1) transform,

vfðτÞ ¼ αviðτÞ þ βv̄iðτÞ; ð39Þ

where α and β are constants such that jαj2 − jβj2 ¼ 1 (to
preserve the normalization), and viðτÞ and vfðτÞ denote the

solutions with condition (16) fixed before and after the
bounce, respectively. Then the relation between the respec-
tive creation/annihilation operators reads

âi ¼ ᾱâf þ βâ†f; âf ¼ αâi − βâ†i ; ð40Þ

where we omit the distinction between the þ and − modes.
Let us express the initial vacuum state with respect to the
final basis as

j0ii ¼ cife
β
2ᾱðâ†fÞ2 j0fi; ð41Þ

where cif is the normalization factor. Now, we compute the
transition as

hmfjnii ¼ cifhmfj
ðαâ†f þ β̄âfÞnffiffiffiffiffi

n!
p e

β
2ᾱðâ†fÞ2 j0fi; ð42Þ

where mf=ni denotes the mth=nth eigenstate in the final/
initial basis. We immediately see thatmf − ni must be even
for a nonvanishing element.
Let us introduce the Schrödinger-Glauber-Sudarshan

coherent states jξi ¼ e−
jξj2
2

P
n

ξnffiffiffi
n!

p jni. Then,

hξfjξii ≔
X
mf;ni

ξ
mf

fffiffiffiffiffiffiffiffi
mf!

p ξniiffiffiffiffiffiffi
ni!

p hmfjnii

¼ e−
jξf j2þjξi j2

2 Nhξfjeξiðαâ
†
fþβ̄âfÞe

β
2ᾱðâ†fÞ2 j0fi: ð43Þ

We will place all the creation operators to the left. Making
use of the Baker-Campbell-Hausdorf formula we find

eξiðαâ
†
fþβ̄âfÞ ¼ e

1
2
ξ2i αβ̄eξiαâ

†
f eξiβ̄âf : ð44Þ

We also find

eξiβ̄âf e
β
2ᾱðâ†fÞ2e−ξiβ̄âf ¼ e

β
2ᾱðâ†fþξiβ̄Þ2: ð45Þ

Inserting the above into (43) we obtain

hξfjξii ¼ e−
jξf j2þjξi j2

2 Ne
1
2
ξ2i αβ̄eξiαξ̄fe

β
2ᾱðξ̄fþξiβ̄Þ2 ; ð46Þ

where we used the well-known property âjξi ¼ ξjξi (and
hξjâ† ¼ hξjξ̄). Up to a phase, we determine

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ð2nÞ!
ðn!Þ2 ð1−jαj

−2

4
Þn

q ¼ 1ffiffiffiffiffiffijαjp :

We finally obtain
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hξfjξii ¼
e−

jξf j2þjξi j2
2ffiffiffiffiffiffijαjp exp

�
ξ2i

�
1þ

				 βα
				
2
�
αβ̄

2

þ 2ξiξ̄f

�
1þ

				 βα
				
2
�
α

2
þ ξ̄2f

β

2ᾱ

�
: ð47Þ

In what follows the identifications α ¼ C and β ¼ D
according to Eqs. (21) and (22) are made. We note that
the matrix defined by (47) is not unique. We have instead a
continuous family of matrices parametrized by the stiffness
parameter z [as we have αðzÞ and βðzÞ]. To compute the
scattering amplitude correctly, one needs to determine the
average values of nþ and n− for the initial state and set
the value of z. Therefore the scattering against the bounce is
not a linear process but a nonlinear one in this framework.
The superposition principle is broken due to the split
between the semiclassical isotropic evolution and the
quantum anisotropic one. Therefore, the dynamics is not,
in general, invertible. To obtain a unitary invertible dynam-
ics of all the degrees of freedom, one needs to include the
backreaction on the background geometry, which is the
subject of our future papers devoted to the vibronic
approach [19].

B. Case z ≫ 1

Let us now inspect formula (47) under the condition
z ≫ 1. From careful examination of the expansions of β

ᾱ,

j βα j, αβ̄, and α we find the asymptotic behavior

jhξfjξiij≃
ffiffiffiffiffi
2

πz

r
exp

�
−
π2z2

4
ððξRi Þ2 − ðξIiÞ2Þ − πzξRi ξ

I
i

�

× exp

�
−ðξIfÞ2 −

2

π2z2
ðξRf Þ2 −

1

πz
ξRf ξ

I
f

�

× exp

�
−ðξRi ξRf þ ξIiξ

I
fÞ −

π

2
ðξRi ξIf − ξIiξ

R
f Þ
�
;

ð48Þ

where ξR ¼ ReðξÞ and ξI ¼ ImðξÞ.

C. Excitation from vacuum

Let us put ξi ¼ 0; that is, the quantized anisotropy is in
its vacuum state initially. Then, after the bounce,

jhξfj0iij≃
ffiffiffiffiffi
2

πz

r
exp

�
−ðξIfÞ2 −

2

π2z2
ðξRf Þ2 −

1

πz
ξRf ξ

I
f

�
:

ð49Þ

The occupation of highly excited states decreases exponen-
tially with jξfj2. We notice the possibility of the following
cosmological scenario: The quantum universe undergoes a
smooth adiabatic Friedmann-Roberston-Walker (FRW)-like

contraction phase with anisotropy remaining in a fixed low
eigenstate. A surge of the quantum repulsive potential force
causes a sudden bounce, which excites the anisotropic
oscillations to a large degree. It is almost opposite to what
happens according to the classical dynamics, where the
growth of anisotropy during contraction is so large that it
eventually leads to a chaotic contraction. For this reason,
cosmological bouncing scenarios aimed at explaining a
smooth initial state of the expanding universe tend to employ
exotic forms of matter in the contracting phase [21,22] to
suppress the chaos. Nevertheless, as we show, even in this
case a stiff enough bounce will excite anisotropies (a
quantum effect) so that the expanding universe may emerge
in a chaotic state.

VI. INFLATIONARY BOUNCING UNIVERSE

In what follows we employ the obtained results to
analyze a simple model of the physical universe. We
assume that the whole universe is well modeled by a single
Bianchi IX model. In our rough estimate we assume that the
volume of the present universe is V0 ¼ 1078γm3, where
1 < γ < ∞,3 and the Hubble rate is H0 ≃ 10−26 m−1. The
radiation-matter equality era happened at the redshift
ze ¼ 3500 (see, e.g., [23]), and thus, Ve ≃ 1067γm3 and
He ≃ 10−24 m−1.

A. Adiabatic bounce

Let us rewrite the semiclassical constraint (1) in terms of
the Hubble rate H and the volume V ¼ V0a3. This can be
done by using p ¼ −4Ha3=2 V0

κ , q ¼ a3=2, and restoring the
constant κ,

H2 þ κ2

16

ℏ2K
V2
0a

6
þ 1

144

L
a2

−
1

144

EAðNÞ
a4

−
1

144

EM

a3=2k−3
¼ 0:

ð50Þ

To consider the earliest phase of the expanding universe,
we neglect the isotropic curvature L ¼ 0 and assume that
the matter content is radiation, k ¼ −2=3. Then we
compute the number of e-folds Ne-f of the inflationary
phase that starts at the bounce for ab∶ _aðabÞ ¼ 0 and lasts
until af∶äðafÞ ¼ 0. It is, in fact, independent of the
coefficients featuring in (50),

Ne-f ¼ ln

�
af
ab

�
¼ ln

ffiffiffi
2

p
: ð51Þ

According to the standard inflationary scenario, the infla-
tion lasts for at least Ne-f ≃ 60 e-folds. We conclude that

3γ ¼ 1 corresponds to the size of the observable universe.
However, to comply with the requirement of the intrinsic
curvature being negligible, we need γ ≫ 1.
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within the adiabatic approximation (FRW cosmology) there
is practically no inflation.

B. Nonadiabatic bounce

As was mentioned above, we put k ¼ −2=3 in (50) as we
focus on the radiation domination epoch that in our
scenario lasts until the radiation-matter equality era. At
that time the universe is well in its classical phase and the
repulsive potential has become negligible. We also keep the
isotropic curvature negligible throughout the epoch, L ¼ 0.
Plugging the values for the radiation-matter equality era

into Eq. (50) we find that

EAðNÞ þ EM ¼ 144H2
eV

4=3
e

V4=3
0

≃ 1040
�

γ

V0

�
4=3

; ð52Þ

where EAðNÞ≃ 10−64.4

V4=3
0

ðN þ 1Þ. Let us assume low N in the

contracting branch and thus EAðNÞ=EM ≃ 0,

EM ≃ 1039.5
�

γ

V0

�
4=3

: ð53Þ

Now we are able to derive the stiffness parameter (23)
characterizing the subsequent bounce,

z ¼ 2EM

3ℏ
ffiffiffiffi
K

p ffiffiffiffiffiffiffi
AB

p ≃ 10105
γ4=3ffiffiffiffi
K

p ; ð54Þ

where we put EM instead of EAðNÞ which appeared in the
previous definitions of z neglecting the matter [see the
definition of kN below Eq. (18)]. We find by means of
the two-regime approximation given by Eq. (25) that if the
universe is contracting smoothly with the two modes of
anisotropies in their vacua, then after the bounce we get the
following number of anisotropy quanta:

hNfi≃ z2 ≃ 10209
γ8=3

K
ð55Þ

and hence the produced anisotropy energy

EAðhNfiÞ≃ 10144.6

V4=3
0

γ8=3

K
≃ 10105

γ4=3

K
EM: ð56Þ

It seems reasonable to expect that the value of K will not
be much larger than its smallest possible value allowed by
the quantization procedure, i.e., of the order of unity (see
Appendix A). On the other hand, γ ≫ 1. We conclude that
just after the bounce the amount of anisotropy EAðhNfiÞ
greatly surpasses the amount of radiation EM and thus
takes over the evolution of the background. In the vicinity
of the bounce there must take place a huge production of
anisotropy. By the virtue of the constraint equation (50), the
growth of the energy of anisotropy has to be balanced by
the growth of the isotropic expansion energy. In other

words, the behavior of the averaged scale factor will be
steeper in the postbounce phase. This huge transfer of
energy to the isotropic expansion may produce a more or
less lasting inflationary phase, which could provide a viable
model of the superaccelerated phase in the early universe in
an alternative way to the postulated scalar-driven inflation.
This inflationary phase will last for a finite number of

e-folds. To be able to determine this number precisely,
we must ultimately employ the vibronic approach that is
needed to address the postbounce dynamics quantitatively.
However, let us note that once the excitation of the
anisotropy is completed the quantum anisotropy state is
far from an eigenstate. On the basis of Eq. (49) we infer that
the production of the Schrödinger coherent states reads

jhξfj0iij≃ 10−57
K1=4

γ2=3
exp

�
−10−210

K

γ8=3
ðξRf Þ2

�
: ð57Þ

Then the universe must begin to isotropize as the (semi)
classical anisotropy will vanish as a−6. We can compute
that from the bounce until the radiation-matter equality
era in the expanding branch the scale factor must have
increased by

ae
ab

≃ 1075
γffiffiffiffi
K

p : ð58Þ

Therefore, the produced anisotropy must have been
suppressed relative to the radiation by the time of the
radiation-matter equality era, and we have

FIG. 7. The universe filled with radiation starts in adiabatic
contraction with anisotropy in an eigenstate. Then, because of the
repulsive potential, the bounce occurs and the anisotropy gets
amplified. The produced anisotropy sources an inflationary
phase, ä > 0, occurring just after the bounce. Later on, the
anisotropy vanishes as a−6, and the radiation again dominates the
dynamics.
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�
ab
ae

�
2

EAðhNfiÞ≃ 10−46γ−2=3EM; ð59Þ

where the factor ðabaeÞ2 describes the relative diminishing
of anisotropy with respect to radiation. This is consistent
with our initial assumption about the radiation-matter
equality era, which puts anisotropy negligible. The sche-
matic representation of the scenario is given in Fig. 7.
We expect that due to the high expectation value hNfi,

the final anisotropy state will not be accurately described
within the harmonic approximation. To investigate quali-
tatively this inflationary phase, and in particular find out the
number of e-folds for this phase, the vibronic approach has
to be employed [19]. Our first computations within the
vibronic approach already confirm the proposed scenario.

VII. CONCLUSIONS

A nonsingular dynamics of the quantum gravitational
field is expected to replace the generic cosmological
singularity present in the classical theory. The presented
analysis of the quantized mixmaster dynamics is to our
knowledge the most detailed description of this purely
quantum phase and its properties. Already the first steps
taken herein reveal a rich and unexpected physics of this
most fascinating event in the cosmological evolution.
However, the amount of theoretical work that is needed
in order to obtain a fully satisfactory model of the quantum
bounce is enormous. Our forthcoming paper [19] extends
the present analysis by including backreaction.
Ourmain finding is a sort of phase transition in thebehavior

of the anisotropic distortions. Once a critical value describing
stiffness of the bounce is reached, the BO approximation
breaks down and a highly nonlinear excitation of anisotropic
eigenstates takes place throughout the bounce.We considered
a scenario in which the universe is isotropically and smoothly
contracting in a FRW-like quantum state. The application of
our result to this simplemodel of the universe shows that there
occurs a large production of anisotropy at the bounce, which
in turn leads to some sort of a sustained superexpansion phase
similar to the one of the standard inflationary models. The
most important limitation of our model comes from the fact
that the universe is assumed to be homogeneous at the bounce
and that the nonperturbative inclusion of inhomogeneities
may alter or even prevent the inflationary phase. This
limitation, if confirmed, can be viewed as being analogous
to the known constraints on the initial inhomogeneous
conditions from which the standard inflationary dynamics
fueled by amassive scalar field could set off [24].Wenote that
our notion of inflation is slightly different from the one
employed in the conventional inflationary scenarios. It refers
to the accelerated expansion of a semiclassical isotropic
geometry rather than a purely classical one. This brings
justified questions about the qualitative effects this phase
could have, e.g., on the cosmological perturbations. We

expect that the effect could be similar to that of the conven-
tional inflation to the extent to which the semiclassical
variables accurately approximate the fully quantum dynam-
ics. This phase will be further studied within the vibronic
approach in our next papers.
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APPENDIX A: HOW STIFF IS THE BOUNCE?

In what follows we examine the stiffness of the bounce in
terms of the lower bound of the value of K ≡ KðψÞ, which
depends on the choice of fiducial vector ψ in our quantiza-
tion scheme. We follow the notation of Appendix A of our
previous work [17]. We put K ¼ KBO < KBH to find a
lower bound on the stiffness of the quantum bounce
responsible for the quantum anisotropy excitation. Let us
first recall some facts about the affine coherent state
quantization from which the value of K is issued.

1. Fiducial vectors in quantization

The ACS depends on the data of the fiducial vector
ψ ∈ L2ðRþ; dxÞ. We associate with ψ coefficients cγðψÞ
defined as

cγðψÞ ¼
Z

∞

0

dx
xγþ2

jψðxÞj2:

The ACS quantization is useful only if the cγ are not infinite
for a sufficient large domain of γ, including γ ¼ −1; 0;….
This domain is needed to quantize qβ for different powers
β, since

Aqβ ¼
cβ−1
c−1

q̂β:

The vector ψ must be normalized, that is,

c−2ðψÞ ¼ 1:

The fiducial vector ψ is chosen real, to simplify the formula
of quantized observables (to obtain the formula close to the
ones arising from canonical quantization). To impose the
canonical commutation rule on the basic operators Aq and
Ap, i.e., ½Aq; Ap� ¼ iℏI, we require

c0ðψÞ ¼ c−1ðψÞ:
This constraint can be simply obtained by rescaling the
fiducial vector as ψðxÞ ↦ λ1=2ψðλxÞ. Taking into account
the previous conditions (ψ real, c−2 ¼ 1, c0 ¼ c−1), the
constant K ¼ KBO reads

KðψÞ ¼ c−3ðψÞ2
Z

∞

0

dxψ 0ðxÞ2ð1þ xÞ;
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2. Different families of fiducial vectors

We will analyze different choices of the fiducial vector
to estimate the lower bound of KðψÞ. We start with the
fiducial vector of our paper [20] (a function of rapid decrease
onRþ). We obtain a functionKðψνÞ plotted in Fig. (8a). The
minimal value is obtained for νm ≃ 2.5,whereKðψνmÞ≃ 6.3.
We pick another function of rapid decrease, namely

ψνðxÞ ¼
�
ν

π

�
1=4 1ffiffiffi

x
p exp

�
−
ν

2

�
ln x −

3

4ν

�
2
�
: ðA1Þ

The above function, which is nothing but the square root
of a Gaussian distribution on the real line with variable
y ¼ ln x, centered at 3=4ν, and with variance 1=ν, verifies
the required conditions (ψ real, c−2 ¼ 1, c0 ¼ c−1).
Furthermore, we have

cγ ¼ exp

�ðγ þ 2Þðγ − 1Þ
4ν

�
:

In this case, the coefficient KðψνÞ simply reads

KðψνÞ ¼
�
νþ 1

4

�
exp

�
3

2ν

�

and is plotted in Fig. (8b). The function KðψνÞ reaches its
lower bound at νm ≃ 1.7, where KðψνmÞ≃ 4.7.
Let us consider a function ψðxÞ, which is not of rapid

decrease at the origin and is vanishing at the origin as a
fixed power of x, for example,

ψaðxÞ ¼
ða − 1Þa=2ffiffiffiffiffiffiffiffiffiffi

ΓðaÞp x
a−1
2 e−ða−1Þx=2 with a > 2: ðA2Þ

This function verifies the required conditions (ψa real,
c−2 ¼ 1, c0 ¼ c−1). Furthermore we have

cγ ¼ ða − 1Þγþ2
Γða − γ − 2Þ

ΓðaÞ ;

where coefficients cγ are well defined for γ < a − 2. The
coefficient KðψaÞ reads

KðψaÞ ¼
a2ð2a − 3Þ

4ða − 1Þða − 2Þ for a > 2:

The function KðψaÞ is plotted in Fig. 9, and it reaches its
lower bound at am ≃ 3.5, where KðψamÞ≃ 3.3.
However, for a ¼ am the quantization of qβ is possible

only for β < am − 1≃ 2.3. Therefore, this choice of the
fiducial vector ψ is much more restrictive than the ones
based on a function ψ of rapid decrease. If we require that
our procedure of quantization should be defined for all
powers of q, then the fiducial vector ψ must be a function of
rapid decrease and therefore the value KðψamÞ≃ 4 appears
to be a reasonable estimate of the lower bound for K.
We find that at minimal value of K, the ground state of
excitation corresponds to the stiffness parameter z ¼ 2

3
,

which means that there is practically no excitation and that
the adiabatic approximation holds in agreement with the
result of our previous paper [17].
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FIG. 9. KðψaÞ, issued from ψ of Eq. (A2), versus ν.
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FIG. 8. The value of parameter K for different ν-dependent families of the fiducial vectors: (a) based on a family introduce in [17],
(b) based on a family introduced in Eq. (A1).

NONADIABATIC BOUNCE AND AN INFLATIONARY PHASE … PHYSICAL REVIEW D 93, 124053 (2016)

124053-13



APPENDIX B: SYMBOLS USED THROUGHOUT THE TEXT

[1] V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz,
Oscillatory approach to a singular point in the relativistic
cosmology, Adv. Phys. 19, 525 (1970).

[2] B. Berger, D. Garfinkle, J. Isenberg, V. Moncrief, and M.
Weaver, The singularity in generic gravitational collapse is
spacelike, local, and oscillatory, Mod. Phys. Lett. A 13,
1565 (1998).

[3] T. Damour and S. de Buyl, Describing general cosmological
singularities in Iwasawa variables, Phys. Rev. D 77, 043520
(2008).

[4] D. Garfinkle, Numerical Simulations of Generic Singularities,
Phys. Rev. Lett. 93, 161101 (2004).

[5] W. C. Lim, L. Andersson, D. Garfinkle, and F. Pretorius,
Spikes in the mixmaster regime of G2 cosmologies, Phys.
Rev. D 79, 123526 (2009).

[6] B. K. Berger and V. Moncrief, Numerical investigation of
cosmological singularities, Phys. Rev. D 48, 4676 (1993).

[7] B. K. Berger, Numerical approaches to spacetime singular-
ities, Living Rev. Relativ. 5, 1 (2002).

[8] C. W. Misner, Quantum cosmology, Phys. Rev. 186, 1319
(1969).

[9] G. Montani, M. V. Battisti, R. Benini, and G. Imponente,
Classical and quantum features of the mixmaster singularity,
Int. J. Mod. Phys. A 23, 2353 (2008).

[10] D. Craig and J. B. Hartle, Generalized quantum theory of
recollapsing homogeneous cosmologies, Phys. Rev. D 69,
123525 (2004).

[11] T. Damour and P. Spindel, Quantum supersymmetric
Bianchi IX cosmology, Phys. Rev. D 90, 103509 (2014).

[12] G. D’Odorico and F. Saueressig, Quantum phase
transitions in the BKL universe, Phys. Rev. D 92,
124068 (2015).

[13] M. Bojowald and G. Date, Quantum Suppression of the
Generic Chaotic Behavior Close to Cosmological Singu-
larities, Phys. Rev. Lett. 92, 071302 (2004).

[14] M. Bojowald, Quantum cosmology: A review, Rep. Prog.
Phys. 78, 023901 (2015).

[15] J. P. Gazeau and R. Murenzi, Covariant affine integral
quantization(s), J. Math. Phys. (N.Y.) 57, 052102 (2016).

[16] H. Bergeron, E. Czuchry, J. P. Gazeau, P. Małkiewicz, and
W. Piechocki, Smooth quantum dynamics of the mixmaster
universe, Phys. Rev. D 92, 061302(R) (2015).

Symbol Definition Meaning

q, p By (1), above (50) p ¼ −4Ha3=2 V0

κ , q ¼ a3=2 Isotropic canonical variables

K Below (1) Strength of repulsive potential

EA Below (1) EAðNÞ ¼ 2
ffiffiffiffiffiffiffi
AB

p
ℏðN þ 1Þ Energy of anisotropy

EM Below (1) Energy of matter (initially neglected)

N, Ni, Nf Below (1) Number of anisotropic quanta (initial, final)

A, B, β�, p� By (6) Constants in anisotropic Hamiltonian, Misner canonical anisotropy variables

Δ�, P� Below (6) Δ� ¼ q
2
3β�, P�

¼ q−
2
3p� þ 3

2
q−

1
3p
A Δ�

Rescaled anisotropic canonical variables

ω, m By (9) m ¼ 12
A , ω

2ðτÞ ¼ AB
144

½1 − 9
4
ℏ2K
AB q−

8
3ðτÞ� Frequency and mass of anisotropic oscillations in rescaled variables

kN Below (18) kN ¼ EAðNÞ
18ℏ

ffiffiffi
K

p Characteristic wave number/root of height of scattering potential

VN By (18) VNðτÞ ¼ 1
ðkNτ2þk−1N Þ2 Scattering potential

λ By (18) λ ¼ AB
144

“Energy” of incoming “particle”

z By (23) z ¼ kNffiffi
λ

p Stiffness parameter

AðzÞ Below (23) AðzÞ ¼ j v�ðτfÞv�ðτiÞ j Amplitude amplification

EðzÞ Above (35) EðzÞ ¼ ½AðzÞ�2 Anisotropy excitation

jξi Above (43) jξi ¼ e−
jξj2
2

P
n

ξnffiffiffi
n!

p jni Schrödinger-Glauber-Sudarshan coherent state

BERGERON, CZUCHRY, GAZEAU, and MAŁKIEWICZ PHYSICAL REVIEW D 93, 124053 (2016)

124053-14

http://dx.doi.org/10.1080/00018737000101171
http://dx.doi.org/10.1142/S0217732398001649
http://dx.doi.org/10.1142/S0217732398001649
http://dx.doi.org/10.1103/PhysRevD.77.043520
http://dx.doi.org/10.1103/PhysRevD.77.043520
http://dx.doi.org/10.1103/PhysRevLett.93.161101
http://dx.doi.org/10.1103/PhysRevD.79.123526
http://dx.doi.org/10.1103/PhysRevD.79.123526
http://dx.doi.org/10.1103/PhysRevD.48.4676
http://dx.doi.org/10.12942/lrr-2002-1
http://dx.doi.org/10.1103/PhysRev.186.1319
http://dx.doi.org/10.1103/PhysRev.186.1319
http://dx.doi.org/10.1142/S0217751X08040275
http://dx.doi.org/10.1103/PhysRevD.69.123525
http://dx.doi.org/10.1103/PhysRevD.69.123525
http://dx.doi.org/10.1103/PhysRevD.90.103509
http://dx.doi.org/10.1103/PhysRevD.92.124068
http://dx.doi.org/10.1103/PhysRevD.92.124068
http://dx.doi.org/10.1103/PhysRevLett.92.071302
http://dx.doi.org/10.1088/0034-4885/78/2/023901
http://dx.doi.org/10.1088/0034-4885/78/2/023901
http://dx.doi.org/10.1063/1.4949366
http://dx.doi.org/10.1103/PhysRevD.92.061302


[17] H. Bergeron, E. Czuchry, J. P. Gazeau, P. Małkiewicz, and
W. Piechocki, Singularity avoidance in quantum mixmaster
universe, Phys. Rev. D 92, 124018 (2015).

[18] D. R. Yarkony, Nonadiabatic quantum chemistry: Past,
present, and future, Chem. Rev. 112, 481 (2012).

[19] H. Bergeron, E. Czuchry, J. P. Gazeau, and P. Małkiewicz,
Vibronic framework for mixmaster universe, Phys. Rev. D
93, 064080 (2016).

[20] H. Bergeron, A. Dapor, J.-P. Gazeau, and P. Małkiewicz,
Smooth big bounce from affine quantization, Phys. Rev. D
89, 083522 (2014).

[21] J. Erickson, D. Wesley, P. Steinhardt, and N. Turok, Kasner
and mixmaster behavior in universes with equation of state
w ≥ 1, Phys. Rev. D 69, 063514 (2004).

[22] Y.-F. Cai, R. Brandenberger, and P. Peter, Anisotropy in a
nonsingular bounce, Classical Quantum Gravity 30, 075019
(2013).

[23] D. H. Lyth and A. R. Liddle, The Primordial Density
Perturbation: Cosmology, Inflation and the Origin of Struc-
ture (Cambridge University Press, Cambridge, UK, 2009).

[24] D. S. Goldwirth and T. Piran, Initial conditions for inflation,
Phys. Rep. 214, 223 (1992).

NONADIABATIC BOUNCE AND AN INFLATIONARY PHASE … PHYSICAL REVIEW D 93, 124053 (2016)

124053-15

http://dx.doi.org/10.1103/PhysRevD.92.124018
http://dx.doi.org/10.1021/cr2001299
http://dx.doi.org/10.1103/PhysRevD.93.064080
http://dx.doi.org/10.1103/PhysRevD.93.064080
http://dx.doi.org/10.1103/PhysRevD.89.083522
http://dx.doi.org/10.1103/PhysRevD.89.083522
http://dx.doi.org/10.1103/PhysRevD.69.063514
http://dx.doi.org/10.1088/0264-9381/30/7/075019
http://dx.doi.org/10.1088/0264-9381/30/7/075019
http://dx.doi.org/10.1016/0370-1573(92)90073-9

