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The tetrad method is used for an introduction of local Lorentz frames and a detailed analysis of local
Lorentz transformations. A formulation of equations of motion in local Lorentz frames is based on the
Pomeransky-Khriplovich gravitoelectromagnetic fields. These fields are calculated in the most important
special cases and their local Lorentz transformations are determined. The local Lorentz transformations and
the Pomeransky-Khriplovich gravitoelectromagnetic fields are applied for a rigorous derivation of a general
equation for the Thomas effect in Riemannian spacetimes and for a consideration of Einstein’s equivalence
principle and the Mathisson force.
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I. INTRODUCTION

Methods of description of gravitational phenomena
based on an introduction of tetrads are often used in
contemporary gravity. Any tetrad can characterize a local
Lorentz frame (LLF) attributed to some observer. The LLFs
applied in the classical monograph [1] for discussing
Einstein’s equivalence principle are also very convenient
for a description of spin effects including quantum
mechanical analysis with the covariant Dirac equation
(see, e.g., the reviews [2,3]). Since the metric of LLFs is
locally Minkowskian, a transition from one LLF (also
called a coframe or a tetrad frame) to another one is defined
by an appropriate Lorentz transformation. Such Lorentz
transformations have been considered in Refs. [4,5]. Basic
tetrads satisfy the Schwinger gauge [6,7] (see also [5])
while other tetrads can also be used. Tetrads which do not
satisfy this gauge are carried by observers moving in a
described spacetime. For example, a tetrad with e0̂i ≠ 0,
e0
î
≠ 0 in a Schwarzschild field is attributed to an observer

moving relative to the source. All tetrads are equivalent and
the use of any tetrad is possible. Nevertheless, Hamiltonians
and equations of motion of a test particle do not coincide
even for different tetrads belonging to the Schwinger gauge
[8,9] (see Sec. IV B).
Great success achieved in description of electromagnetic

phenomena stimulated a search for direct analogies
between the electrodynamics and gravity. Indeed, the
Newton and Coulomb laws as well as the Coriolis and
Lorentz forces seems to be similar. This is the reason why
one often applies a conception of gravitoelectromagnetism
based on the introduction of scalar and vector potentials of
a gravitoelectromagnetic field. Then one introduces grav-
itoelectic and gravitomagnetic fields connected each with

others by Maxwell-like equations (see Refs. [10–12] and
references therein). Since mathematical tools of the electro-
dynamics and gravity significantly differ, this approach
ensures one only an approximate description of gravita-
tional phenomena.
A new big step in formulation of more exact equations

of gravitoelectromagnetic fields has been made by
Pomeransky and Khriplovich [13]. They have started from
standard equations stating the zero values of covariant
derivatives of the four-spin and four-velocity. A following
transition to a LLF has allowed them to derive general
equations for the tetrad components of the four-spin and
four-velocity. The obtained equations are pretty similar to
the corresponding equations in electrodynamics, namely,
to the Thomas-Bargmann-Michel-Telegdi equation for a
Dirac particle and to the equation of motion of a charged
particle. This similarity has made it possible to derive
general formulas for the gravitoelectromagnetic fields [13]
defined in an anholonomic tetrad frame and describing a
relativistic particle in an arbitrarily strong gravitational field
or in a noninertial frame. It is important to mention that this
approach is based on the equivalence principle extended on
the spin by Kobzarev and Okun [14] (see also Ref. [15]).
The most general description of motion of a spinning

particle in general relativity (GR) is provided by the
Mathisson-Papapetrou (MP) equations [16,17]. These
equations predict the violation of the weak equivalence
principle for pointlike spinning particles (see Refs. [18–20]
and references therein). Nevertheless, the MP and
Pomeransky-Khriplovich (PK) equations agree when one
can neglect the mutual influence of particle and spin motion
leading to the aforementioned violation [4]. This circum-
stance substantiates the results obtained by Pomeransky and
Khriplovich and brings a possibility of a wide application of
the approach based on the PK gravitoelectromagnetic fields.
However, the original method [13] used the symmetric
gauge which is inconvenient and may stimulate a wrong*alsilenko@mail.ru
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interpretation of results obtained (see Refs. [4,5]). In
particular, the formula for the angular velocity of spin
rotation in a rotating frame derived by this method differs
from thewell-knownGorbatsevich-Mashhoon formula [21].
Therefore, we use the Schwinger gauge.
A set of previously obtained results [4,5,22,23] has

shown the applicability of the conception of gravitoelec-
tromagnetism based on the PK gravitoelectromagnetic
fields and on the Schwinger gauge. While the PK equations
define the general form of the gravitoelectromagnetic
fields, the weak-field approximation happens to be rather
convenient to obtain simple expressions for the gravitoe-
lectromagnetic fields clarifying their physical meaning. For
stationary spacetimes, such expressions have been deduced
in Ref. [4]. In the present work, we derive general formulas
for the gravitoelectromagnetic fields in this approximation.
The formulas obtained are applicable for a time-dependent
metric. We exactly calculate the gravitoelectromagnetic
fields in several important special cases. We determine the
local Lorentz transformations of these fields. We also use
the gravitoelectromagnetic fields for an analysis of funda-
mental problems of the Mathisson force and Einstein’s
equivalence principle.
The very important problem of spin physics is the

Thomas precession. The general formula for the Thomas
precession in electrodynamics is based on special relativity
[24] and is perfectly substantiated [25–29]. However,
manifestations of the Thomas effect in GR are much less
clear. In the present work, we fulfill the general description
of the Thomas precession in gravity with the use of the
local Lorentz transformations and the gravitoelectromag-
netic fields.
The paper is organized as follows. The detailed analysis

of Lorentz transformations in coframes is carried out in
Sec. II. In Sec. III, we expound the conception based on the
PK gravitoelectromagnetic fields and use it for a derivation
of the equations of motion in coframes. We calculate the
gravitoelectromagnetic fields in the most important special
cases in Sec. IV. The local Lorentz transformations of these
fields are determined in Sec. V. The validity of these
transformations is shown in the case of the uniformly
accelerated frame. In Sec. VI, we apply the gravitoelec-
tromagnetic fields for a demonstration of a difference
between a behavior of spinning particles in the uniformly
accelerated frame and in the Schwarzschild spacetime. The
Mathisson force is considered in Sec. VII. We rigorously
derive the general formula for the Thomas precession in
arbitrary Riemannian spacetimes in Sec. VIII. The results
obtained are summarized in Sec. IX.
We denote world and spatial indices by greek and latin

letters α; μ; ν;… ¼ 0; 1; 2; 3, i; j; k;… ¼ 1; 2; 3, respec-
tively. Tetrad indices are denoted by latin letters from
the beginning of the alphabet, a; b; c;… ¼ 0; 1; 2; 3.
Temporal and spatial tetrad indices are distinguished by
hats. The signature is ðþ − −−Þ. Commas and semicolons

before indices denote partial and covariant derivatives,
respectively.

II. LORENTZ TRANSFORMATIONS
IN COFRAMES

Let us consider Lorentz transformations in coframes.
Our explanation partially follows Refs. [4,5].
One of the most powerful methods in GR is an

introduction of tetrads. They define the LLF characterized
by the Minkowski metric ds2 ¼ ηabdxadxb, ηab ¼
diagð1;−1;−1;−1Þ. The metric tensor of a given spacetime
can be split into tetrads eaμ satisfying the relations

eaμeaν ¼ gμν; eaμe
μ
b ¼ ηab;

eaμe
μ
b ¼ δab; eaμeνa ¼ δνμ: ð1Þ

As usual, the world and tetrad indices (which all run from 0
to 3) are raised and lowered with the metric and Minkowski
tensors, gμν and ηab, respectively.
Any tetrad can be attributed to an observer. Observers

carrying different tetrads may move relative to each other.
A locality of a Lorentz frame defined by some tetrad is
caused by nonzero derivatives of the metric tensor. First
derivatives define forces like the Newton force while
second derivatives define the spacetime curvature and tidal
forces. These forces are felt by the observer and can be
detected in the observer’s lab. In particular, the velocity of
light is equal to c near the observer but the light can be
accelerated (due to the Newton-like force) and can undergo
a deflection.
In the present work, we apply the approach based on the

LLFs for a derivation of the equations of motion of a
spinning particle. We use the approximation disregarding
effects conditioned by second derivatives of the metric
tensor. In particular, we do not consider the spin-curvature
coupling. To study such effects, some other approaches
seem to be more convenient. For example, one can describe
the spin-curvature coupling with the MP equations
(see Ref. [23]).
Let us consider two observers and two LLFs in the same

area, i.e., in the vicinity of some point ðx0ð0Þ; x1ð0Þ; x2ð0Þ; x3ð0ÞÞ.
Since dxa ¼ eaμdxμ, dx0a ¼ e0aμdxμ, the connection between
coordinates in the two frames is given by [4]

dxa ¼ Ta
bdx

0b; ð2Þ

where

Ta
b ¼ eaμe0

μ
b: ð3Þ

We mention that the both tetrads are bound with the same
metric tensor gμν ¼ eaμeaν ¼ e0aμe0aν.
The connection between the four-velocities in the two

frames has the form
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ua ≡ dxa

dτ
¼ Ta

bu
0b; ð4Þ

where τ ¼ s=c is the proper time.
We should underline that these relations are not valid

beyond the local area.
Certainly, the connection between two LLFs is realized

by local Lorentz transformations. If the axes in the two
frames are parallel and the direction of the velocity V of the
primed frame in the unprimed one is arbitrary, this con-
nection is given by

dx00̂ ¼ γðdx0̂ − β · dr̂Þ;

dr̂0 ¼ dr̂þ γ2

γþ 1
βðβ · drÞ− βγdx0̂;

dx0̂ ¼ γðdx00̂ þ β · dr̂0Þ;

dr̂¼ dr̂0 þ γ2

γþ 1
βðβ · dr̂0Þ þ βγdx00̂; β¼ V

c
; ð5Þ

where γ ¼ ð1 − β2Þ−1=2 is the Lorentz factor. We need to
specify that the axes of the two frames remain to be parallel.
Unlike the usual Lorentz transformations, the relative
motion of the LLFs may be accelerated ( _V ≠ 0).
The present analysis demonstrates that the quantities dxa

and ua are four-vectors relative to the local Lorentz trans-
formations. The four-momentum pa ¼ −∂S=ð∂xaÞ (S is an
action) and other four-vectors with tetrad components
possess the same property. The tetrad eμa is a world four-
vector when a is fixed and is a four-vector relative to the
local Lorentz transformations when μ is fixed.
However, we should note that the quantity eμaAa may not

be a covariant four-vector even if Aa is a four-vector relative
to the local Lorentz transformations. Examples of such a
situation are given in Sec. IV D of Ref. [30].
It is important to consider the case when the unprimed

frame is at rest relative to the world one. In this case,
the unprimed tetrad satisfies the Schwinger gauge [4–7]
(e0̂i ¼ 0, e0

î
¼ 0). We can mention that the Schwinger

gauge defines an infinite set of tetrads carrying by observ-
ers immobile in the world frame. These tetrads are con-
nected by spatial transformations. Different tetrads
(satisfying the Schwinger gauge) lead to different equations
of motion [8]. The corresponding Hamiltonians also differ
[8,9]. However, appropriate coordinate transformations
establish connections between them.
Equation (3) reduces in the weak-field approximation

when gravitational and noninertial fields are weak
[jgμν − ημνj ≪ 1ðμ; ν ¼ 0; 1; 2; 3Þ]. Since the quantities e0

0̂

and ei
î
are close to 1, the equation eaμeνa ¼ δνμ ¼ 0 ðμ ≠ νÞ

results in eν̂μ ¼ −eνμ̂. Here hats point out the tetrad indices.
The following relations are valid:

g0i ¼ e0̂i − eî0; g0i ¼ e00̂i − e0 î0 ¼ e0i
0̂
− e00

î
;

T 0̂
î
¼ e0̂i þ e00

î
; Tî

0̂
¼ eî0 þ e0i

0̂
: ð6Þ

Evidently, T 0̂
î
− Tî

0̂
¼ 0.

Equation (5) can be presented in the form

dx0a ¼ La
bdx

b; ð7Þ

where La
b is the Lorentz tensor. Therefore,

Ta
b ¼ La

b; ð8Þ

where

L0̂
0̂
¼ γ; L0̂

î
¼ Lî

0̂
¼ −βiγ; Lĵ

î
¼ δji þ

γ2

γ þ 1
βiβj: ð9Þ

Equations (3), (5), (8), and (9) define the dependence of
the relative motion of observers on the tetrads carrying
by them.
The connection between the two tetrads can also be

obtained in an explicit form. Equation (7) and the definition
of tetrads result in

e0aμ ¼ La
be

b
μ: ð10Þ

The tetrads can be used even for two observers moving in
the Minkowski spacetime. If we suppose the first observer
to be at rest, the tetrad carried by him has only trivial
components. In this case, dxμ̂ ¼ dxμ and Eq. (10) takes the
form

e0aμ ¼ La
μ; e00̂0 ¼ γ;

e00̂i ¼ e0 î0 ¼ −βiγ;

e0 îj ¼ δij þ
γ2

γ þ 1
βiβj: ð11Þ

The tetrad (11) satisfies the requirements (1).
Let us also consider an accelerated frame. The metric

tensor is given by

gμν ¼
��

1þ a · r
c2

�
2

;−1;−1;−1
�
;

where a is an acceleration. For the observer at rest, the only
nontrivial tetrad component is e0̂0 ¼ 1þ a · r=c2. To sim-
plify the analysis, we can suppose that the second observer
moves in the LLF of the first observer along the x1 axis with
the velocity V and the first observer is at rest in the world
frame. In this case, the nontrivial tetrad components are
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e00̂0¼ γe0̂0; e01̂0¼−βγe0̂0; e00̂1 ¼−βγ; e01̂1 ¼ γ: ð12Þ

III. EQUATIONS OF MOTION IN COFRAMES

In the present work, we explain and develop the
conception of gravitoelectromagnetism first proposed by
Pomeransky and Khriplovich [13]. This conception has
been advanced in several works [4,5,22,23,30–32].
Certainly, there are other conceptions of gravitoelectro-

magnetism. The conventional conception of gravitoelectro-
magnetism (see Refs. [10–12]) is based on a four-potential of
gravitoelectromagnetic field expressed in terms of compo-
nents of the metric tensor. This conception can be applied for
a nonrelativistic particle in the weak-field approximation and
does not work in the relativistic case. Of course, this is
nothing but the simplest way to introduce the gravitoelec-
tromagnetic fields. Some other approaches provide a
description of dynamics of spinning particles beyond the
nonrelativistic approximation and the weak-field one. We
can mention the known papers by Bailey and Israel [33] and
by Yee and Bander [34]. Important results have been
obtained [35] with the canonical formulation of GR based
on the Arnowitt-Deser-Misner parametrization. In this con-
nection, Ref. [36] can also be noticed. The results obtained
allow one to draw a parallel between electromagnetism and
gravity. In particular, some approaches connecting this
parallel have been proposed in Refs. [37–39]. Established
relations between electromagnetism and gravity are of
interest. Nevertheless, only the gravitoelectromagnetic fields
introduced by Pomeransky and Khriplovich allow one to
reveal a deep analogy between spinning particles in electro-
magnetic and gravitational/inertial fields.
We can note that a canonicalmethod has also been applied

in Refs. [5,22,23,30,40,41] for a derivation of quantum
mechanical equations of motion. In Ref. [23], this method
has also been used to obtain the corresponding classical
equations. In the present work, we basically follow the
original method by Pomeransky and Khriplovich [13].
The distinctive feature of the PK fields is their introduction
in the coframes.
The equation of motion of a pointlike spinless particle in

GR is given by

Duμ ¼ 0: ð13Þ

This equation defines the particle motion on a geodesic line
which is perturbed by the Mathisson force for spinning
particles and by tidal forces for extended ones. As a rule,
the Mathisson and tidal forces are relatively small and can
be neglected in the present study. The motion of spinning
particles with allowance for a particle deflection from the
geodesic line is defined by the Mathisson-Papapetrou
equations [16,17].
The orthogonality condition interconnects the spin

four-vector aμ with either the four-velocity or the

four-momentum. The three-component spin ζ is defined
in the particle rest frame, when aμ ¼ ð0; ζÞ. TheMathisson-
Pirani [16,42] condition connects the spin with the
four-velocity,

uμaμ ¼ 0; ð14Þ

while the Tulczyjev condition [43] joins the spin with the
four-momentum,

pμaμ ¼ 0: ð15Þ

A choice of specific condition does not influence the next
derivations. However, we can note that there exist sit-
uations when the results following from the MP equations
with the supplementary condition (15) are not satisfactory
from the physical point of view [44].
When Eq. (13) is satisfied,

Dua ¼ DðuμeaμÞ ¼ uμeaμ;νdxν: ð16Þ

Therefore,

Dua

dτ
¼ eaμ;νuμuν ¼ eμbe

a
μ;νeνcubuc ¼ Γa

bcu
buc: ð17Þ

Here Γabc ¼ −Γbac ¼ eμbe
ν
ceaμ;ν are the Lorentz connection

coefficients (Ricci rotation coefficients). They can also be
presented in the form

Γabc ¼
1

2
ðλabc þ λbca − λcabÞ;

λabc ¼ −λacb ¼ eμbe
ν
cðeaμ;ν − eaν;μÞ: ð18Þ

Since ua ¼ uμeaμ is a world scalar, Dua ¼ dua and
Eq. (17) takes the form [13]

dua

dτ
¼ Γa

bcu
buc: ð19Þ

Since DðuμaμÞ ¼ 0, Eqs. (13) and (14) result in

Daμ ¼ 0: ð20Þ

Equations (13) and (20) can be considered as a math-
ematical formulation of the equivalence principle for the
particle and spin.
The same derivation as above leads to the equation of

spin motion in LLFs. Since

Daa

dτ
¼ eaμ;νuμuν ¼ eμbe

a
μ;νeνcubuc ¼ Γa

bca
buc; ð21Þ

we finally obtain
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daa

dτ
¼ Γa

bca
buc: ð22Þ

Equations (19) and (22) have been first obtained in
Ref. [13]. We can note that the use of LLFs for a description
of spin dynamics is quite natural. The three-component
spin by which evolution is commonly described is defined
in the particle rest frame. This frame can be attributed to
some observer and the local Lorentz transformation of the
spin (pseudo)vector coincides with its transformation in
special relativity (see, e.g., Ref. [45]),

aa ¼ ða0̂; âÞ; â ¼ ζ þ γ2βðβ · ζÞ
γ þ 1

;

a0̂ ¼ β · â ¼ γβ · ζ: ð23Þ

In this case,

ua ¼ ðu0̂; ûÞ ¼ ðγ; γβÞ: ð24Þ

Let us remember that V ¼ βc is the velocity of relative
motion of the two LLFs. Therefore, the quantity ζ defines
here the three-component spin in the instantaneously
accompanying frame. The spin motion in the nonrotating
instantaneously accompanying frame and in the particle
rest frame differs due to the Thomas effect [24]. This
difference is defined by [24,25]

�∂ζ
∂t
�

nonrot
¼

�∂ζ
∂t
�

rest frame
þωT × ζ; ð25Þ

where ωT is the angular velocity of the Thomas precession.
In electrodynamics and special relativity,

ωT ¼ −
γ

γ þ 1

�
β ×

dβ
dτ

�
: ð26Þ

Equations (19) and (22) are similar to the corresponding
equations of motion in electrodynamics,

duμ
dτ

¼ e
m
Fμνuν; ð27Þ

dsμ
dτ

¼ e
m
Fμνsν: ð28Þ

Equation (28) describes the spin motion of a particle with
the Dirac magnetic moment (g ¼ 2).
The electromagnetic field tensor can be expressed in

terms of the electric and magnetic fields, Fμν ¼ ðE;BÞ. A
similarity between ðe=mÞFμν and Γabcuc has allowed
Pomeransky and Khriplovich to introduce the gravito-
electric and gravitomagnetic fields, cΓabcuc ¼ ðE;BÞ.
Explicitly [13]

E î ¼ cΓ0icuc; Bî ¼ −
c
2
eiklΓklcuc: ð29Þ

For the gravitoelectromagnetic fields E and B, we do not
make a difference between upper and lower indices.
As a result of comparison of the foregoing equations of

motion in gravitational/inertial and electromagnetic fields,
Pomeransky and Khriplovich [13] have obtained the
following equation of motion for the three-component spin:

dζ
dτ

¼ Ω0 × ζ; Ω0 ¼ −Bþ û × E

u0̂ þ 1
: ð30Þ

The time dilation is given by

dt ¼ u0dτ; dt̂ ¼ u0̂dτ: ð31Þ

As a result,

dζ
dt

¼ Ω × ζ; Ω ¼ 1

u0

�
−Bþ û × E

u0̂ þ 1

�
: ð32Þ

The validity of Eqs. (30) and (32) has been substantiated in
Refs. [4,5,32]. It has been demonstrated [4,5] that the LLF
which is at rest relative to the world frame satisfies the
Schwinger gauge. Other gauges define the equations of
motion in frames moving relative to the world frame.
This important property was not taken into account in
Refs. [13,31,32].
The equations of particle motion can be presented as the

following [13]:

dû
dτ

¼ u0̂E þ û ×B;
du0̂

dτ
¼ E · û: ð33Þ

We can underline that the equation of motion (19) is
essentially nonlinear and Eq. (22) contains the four-
velocity. These properties differ the equations of motion
in GR from the corresponding equations in electrodynam-
ics [Eqs. (27) and (28)]. Therefore, the gravitoelectromag-
netic fields depend on the four-velocity and they are
effective fields. In particular, one cannot use these fields
to construct a free gravitoelectromagnetic field.
Since the particle velocity in the coframe is equal to v̂≡

dr̂=dt̂ ¼ cû=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ û2

p
and d=dt̂ ¼ ð1=u0̂Þðd=dτÞ, the cor-

responding acceleration is given by

ŵ≡ dv̂
dt̂

¼ c

u0̂

�
dû
dt̂

−
û

ðu0̂Þ2
�
û ·

dû
dt̂

��

¼ c

u0̂
½E þ β̂ ×B − β̂ðE · β̂Þ�; ð34Þ

where β̂ ¼ v̂=c.
We should take into account that Eqs. (22), (32), and

(33), (34) are not equally useful. Equations (22) and (32)
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are perfect for a description of the spin motion. It is often
admissible to disregard an inhomogeneity of the gravitoe-
lectromagnetic fields and their dependence on the four-
velocity. One can also take into account the aforementioned
inhomogeneity and the evolution of the four-velocity in the
LLF. As a contrary, Eqs. (33) and (34) do not define
measurable dynamics of the four-velocity. First of all, one
cannot ignore the nonlinearity caused by the dependence of
the gravitoelectromagnetic fields on the four-velocity.
Second, an observer needs a description of dynamics of
the four-velocity in the world frame. In particular, the
conventional force which governs the particle motion is
defined in this frame and has the form fi ¼ mcðdui=dtÞ.
An example of the description of the particle motion in the
world frame will be presented in Sec. VI.
Thus, the introduction of the gravitoelectromagnetic

fields defined in LLFs simplifies the description of dynam-
ics of spinning particles in GR. Equation (29) shows that
the important specific feature of the gravitoelectromagnetic
fields is their dependence on the particle four-velocity.
However, the results presented do not define some other
fundamental properties of gravitoelectromagnetic fields.
It is very important to find a transformation law of these
fields. This problem will be solved in Sec. V.

IV. GRAVITOELECTROMAGNETIC FIELDS IN
SOME IMPORTANT SPECIAL CASES

It is instructive to calculate the gravitoelectromagnetic
fields in the most important special cases. Certainly, we will
determine these fields in the LLFs which are at rest relative
to the corresponding world frames. We will consider,
among others, several examples of a nonstationary (time-
dependent) metric, the importance of which for analyzing
fundamental problems of GR has been recently affirmed
in Ref. [8].
The general form of the line element of an arbitrary

gravitational field can be given by [22,46]

ds2 ¼ V2c2dt2 − δî ĵW
î
kWĵ

lðdxk − KkcdtÞðdxl − KlcdtÞ:
ð35Þ

An analysis of the most important metrics can be
simplified with the use of the isotropic (more exactly,
Cartesian-like isotropic) coordinates. In this case, the line
element takes the form (see Ref. [5])

ds2 ¼ V2c2dt2 −W2δijðdxi − KicdtÞðdxj − KjcdtÞ:
ð36Þ

A. General noninertial frame

The accelerated and rotating noninertial frame presents
the general case of inertial fields in a flat spacetime. The
acceleration a and the angular velocity of rotation ω of an
observer are independent of the spatial coordinates but may

depend arbitrarily on time. The exact metric of the general
noninertial frame has the form (36), where

V¼ 1þaðtÞ · r
c2

; W¼ 1; K¼−
1

c
ðωðtÞ× rÞ: ð37Þ

Explicitly, the metric is given by [47]

ds2 ¼
��

1þ aðtÞ · r
c2

�
2

−
½ωðtÞ × r�2

c2

�
c2dt2

− 2½ωðtÞ × r� · drdt − δijdxidxj: ð38Þ

The nonzero Lorentz connection coefficients have the
same forms for time-dependent and time-independent
inertial fields,

Γî ĵ 0̂ ¼ −
ceijkωkðtÞ
c2 þ aðtÞ · r ;

Γ0̂ î 0̂ ¼ −Γî 0̂ 0̂ ¼ −
aiðtÞ

c2 þ aðtÞ · r : ð39Þ

The gravitoelectromagnetic fields are given by

E ¼ −
caðtÞ

c2 þ aðtÞ · r u
0̂; B ¼ c2ωðtÞ

c2 þ aðtÞ · r u
0̂: ð40Þ

There is only the gravitoelectric field in the uniformly
accelerated frame,

E ¼ −
caðtÞ

c2 þ aðtÞ · r u
0̂; B ¼ 0: ð41Þ

In the rotating frame, there is only the gravitomagnetic
field,

E ¼ 0; B ¼ ωðtÞu0̂: ð42Þ

It is important that the gravitoelectric field does not depend
on û. All equations presented in this subsection are exact.
The use of Eqs. (32) and (33) allows one to reproduce

known formulas for the particle motion and the spin
rotation in the general noninertial frame.

B. Cylindrical coordinate system

When the cylindrical coordinate system is used, the
spacetime is flat. However, the metric tensor is nontrivial
and has the form gμν ¼ diagð1;−1;−ρ2;−1Þ. The simplest
tetrad satisfying the Schwinger gauge has the only non-

trivial component eϕ̂ϕ ≡ e2̂2 ¼ ρ. As a result, the nonzero
Lorentz connection coefficients are
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Γ2̂ 1̂ 2̂ ¼ −Γ1̂ 2̂ 2̂ ¼
1

ρ
: ð43Þ

The gravitoelectromagnetic fields are given by [48]

E ¼ 0; Bρ̂ ≡ B1̂ ¼ 0; Bϕ̂ ≡ B2̂ ¼ 0;

Bẑ ≡ B3̂ ¼
u2̂

ρ
¼ uϕ ≡ u2: ð44Þ

Equations (33) and (44) show that the force determined
by the gravitomagnetic field acting in the cylindrical
coordinate system is an analogue of the Lorentz force.
Its appearance is a consequence of the fact that, if the
azimuthal angle of the particle changes by dϕ̂, the hori-
zontal axes of the cylindrical and Cartesian systems of
coordinates rotate by the same angle with respect to each
other. Thus, the cylindrical coordinate system rotates with
an instantaneous angular velocity −dϕ̂=dt ¼ −vϕ̂=ρ with
respect to the Cartesian one [48].
The nonzero gravitomagnetic field leads to forces acting

on particles and torques rotating spins. However, these
forces and torques are fictitious. Their appearance is caused
by the fact that particle trajectories have different shapes in
the Cartesian and cylindrical coordinate systems. The
aforementioned forces and torques are not felt by an
observer. In contrast, the observer feels the acceleration
force and the centrifugal one acting in the general non-
inertial frame.
The result can differ for another tetrad even if it also

satisfies the Schwinger gauge. Let us consider an observer
using the Cartesian coordinates (x0̂ ¼ x0, x1̂ ¼ ρ cosϕ,
x2̂ ¼ ρ sinϕ, x3̂ ¼ z). In this case, the nontrivial tetrad
components are given by

e1̂1 ¼ cosϕ; e1̂2 ¼ −ρ sinϕ;

e2̂1 ¼ sinϕ; e2̂2 ¼ ρ cosϕ:

It is easy to obtain that the gravitoelectromagnetic fields are
equal to zero (E ¼ 0, B ¼ 0). This result is natural for the
Cartesian coordinate system in the Minkowski spacetime.
This comparison of the two tetrads satisfying the

Schwinger gauge elucidates the statement made in
Ref. [8]. A tetrad field in the Schwinger gauge is not
unique, and different tetrads may lead to different equations
of motion. The corresponding Hamiltonians do not
coincide either [9,48]. However, the forces and torques
caused by a difference of the tetrads are fictitious and are
not felt by an observer.

C. Gravitoelectromagnetic fields in the weak-field
approximation

The weak-field approximation can often be used. To find
gravitoelectromagnetic fields in this approximation, we use

the Schwinger gauge and suppose that the tetrad compo-
nents eμ̂μðμ ¼ μ̂; μ ¼ 0; 1; 2; 3Þ are close to unit. Under
these conditions, some important general relations can
be obtained,

eνμ̂ þ eν̂μ ¼ δνμ; gμν ¼ eμ̂ν þ eν̂μ;

Γabc ¼
1

2
ðeâb;c − eb̂a;c þ gbc;a − gac;bÞ: ð45Þ

As a result, nonzero Lorentz connection coefficients are
given by

Γ0̂ î 0̂ ¼ −
1

2
g00;i; Γ0̂ î ĵ ¼ −

1

2
ðg0i;j þ g0j;i − gij;0Þ;

Γî ĵ 0̂ ¼
1

2
ðg0j;i − g0i;jÞ; Γî ĵ k̂ ¼

1

2
ðgjk;i − gik;jÞ: ð46Þ

The gravitoelectromagnetic fields are equal to

E î ¼ −
c
2
½g00;iu0̂ þ ðg0i;j þ g0j;i − gij;0Þuĵ�;

Bî ¼
c
4
eijk½ðg0j;k − g0k;jÞu0̂ þ ðgjl;k − gkl;jÞul̂�: ð47Þ

In Ref. [4], Eqs. (46) and (47) have been obtained for a
stationary metric. Only the gravitoelectric field explicitly
depends on the time derivative.
We can conclude that the equations of motion in

coframes (32) and (33) become very simple in the weak-
field approximation. In this case, they contain only first
derivatives of the metric tensor and can be easily derived.
The equations obtained are relativistic.

D. Lense-Thirring metric

Lense and Thirring discovered in 1918 that rotating
bodies “drag” the spacetime around themselves (this is
called frame dragging [49]). In other words, they demon-
strated the similarity between rotating frames and space-
times created by rotating bodies.
The Lense-Thirring (LT) metric [49] defines a gravita-

tional field of a rotating source in the weak-field approxi-
mation. It can be obtained from the Kerr metric when the
distance from the source is much large than the gravita-
tional radius. The static part of the LT metric characterizes
the Schwarzschild field of a distant source. It is convenient
to transform the LT metric to the isotropic coordinates [5],

V ¼ 1 −
GM
c2r

; W ¼ 1þ GM
c2r

; K ¼ ω × r
c

;

ω ¼ 2G
c2r3

J ¼
�
0; 0;

2GMa
cr3

�
: ð48Þ

Here J ¼ Mcaez is the total angular momentum of the
source and M is its mass.
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For this metric, the gravitoelectromagnetic fields read

E ¼ −
Gm
cr3

ru0̂ þ 3G
c2r5

½rðJ · ðr × ûÞÞ − ðr × JÞðû · rÞ�;

B ¼ −
Gm
cr3

r × û −
G
c2r3

�
3ðr · JÞr

r2
− J

�
u0̂: ð49Þ

Because (see Ref. [5])

ðr × ûÞðJ · ðr × ûÞÞ þ ðû × ðr × JÞÞðû · rÞ
¼ 2ðr × ûÞðJ · ðr × ûÞÞ
þ ðû × ðr × ûÞÞðr · JÞ þ r2ðû × ðû × JÞÞ;

Eqs. (32) and (49) lead to the following equivalent
equations of spin motion [5]:

Ω ¼ 1

u0

�
GM
cr3

·
2u0̂ þ 1

u0̂ þ 1
r × ûþ G

c2r5
½3rðr · JÞ − r2J�u0̂

−
3G
c2r5

·
1

u0̂ þ 1
½ðr × ûÞðJ · ðr × ûÞÞ

þ ðr · ûÞðû × ðr × JÞÞ�
�
; ð50Þ

Ω ¼ 1

u0

�
GM
cr3

·
2u0̂ þ 1

u0̂ þ 1
r × ûþ G

c2r5
½3rðr · JÞ − r2J�u0̂

−
3G
c2r5

·
1

u0̂ þ 1
½2ðr × ûÞðJ · ðr × ûÞÞ

þ ðû × ðr × ûÞÞðr · JÞ þ r2ðû × ðû × JÞÞ�
�
: ð51Þ

These equations describe the geodetic precession and the
LT one for the relativistic particle.
Equations (50) and (51) agree with the approximate

formula by Lense and Thirring [49]. One of important
preferences of the relativistic approach is the discovery of
additional dependence of E and B on the nondiagonal and
diagonal components of the metric tensor, respectively. The
corresponding contributions to the angular velocity of the
spin precession do not follow from the nonrelativistic
approximation.

E. Static gravitational fields in isotropic coordinates

The static metric in the isotropic coordinates is defined
by Eq. (36) at the condition that K ¼ 0 and has the form

ds2 ¼ V2c2dt2 −W2ðdr · drÞ: ð52Þ
The respective gravitoelectromagnetic fields are given by

E ¼ −cu0̂∇V; B ¼ c∇W × û: ð53Þ

An appearance of nonzero B depending on W is a new
property as comparedwith the nonrelativistic approximation.

The most important examples of static fields are the
Schwarzschild, de Sitter, and anti–de Sitter spacetimes. We
use the weak-field approximation.
For the Schwarzschild metric in the isotropic coordi-

nates, V and W are given by Eq. (48). In the weak-field
approximation, the gravitoelectromagnetic fields take the
form

E ¼ −
GMr
cr3

u0̂ ¼ gu0̂

c
; B ¼ −

GM
cr3

r × û ¼ g × û
c

;

ð54Þ

where g is the Newtonian acceleration. We can state the
significant difference between the gravitoelectromagnetic
fields in the uniformly accelerated frame and in the
Schwarzschild spacetime. The gravitomagnetic field in
the Schwarzschild spacetime, contrary to the uniformly
accelerated frame, is nonzero.
The four-dimensional de Sitter metric can be presented

in the form

ds2 ¼
�
1 −

r2

α2

�
c2dt2 −

�
1 −

r2

α2

�−1
dr2

− r2ðdθ2 þ sin2θdϕ2Þ: ð55Þ

There is a cosmological horizon at r ¼ α.
The de Sitter spacetime is an Einstein manifold since the

Ricci tensor is proportional to the metric,

Rμν ¼
4

α2
gμν:

This means that the de Sitter spacetime is a vacuum solution
of the Einstein equation with the cosmological constant
Λ ¼ 3=α2 and the scalar curvature R ¼ 4Λ ¼ 12=α2.
The anti–de Sitter metric can be obtained with the

substitution α → ik.
The well-known coordinate transformation may reduce

de Sitter and anti-de Sitter metrics to isotropic forms. For
the de Sitter metric, this transformation is given by

r ¼ ρ

1þ ρ2

4α2

: ð56Þ

The metric takes the form

ds2 ¼ k2−k−2þ c2dt2 − k−2þ ½dρ2 þ ρ2ðdθ2 þ sin2θdϕ2Þ�;

k� ¼ 1� ρ2

4α2
: ð57Þ

As a result, the isotropic Cartesian coordinates can be used.
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The gravitoelectromagnetic fields read

E ¼ c
α2

ρu0̂; B ¼ −
c
α2

ρ × û: ð58Þ

For the anti–de Sitter metric, the gravitoelectromagnetic
fields can be obtained with the substitution α → ik and are
equal to

E ¼ −
c
k2

ρu0̂; B ¼ c
k2

ρ × û: ð59Þ

An existence of the gravitomagnetic field in static
spacetimes is very important for an evolution of momentum
and spin. This field is not weak, at least for relativistic
particles.

V. LOCAL LORENTZ TRANSFORMATIONS OF
GRAVITOELECTROMAGNETIC FIELDS

The properties of the local Lorentz transformations allow
us to determine the general dependence of the gravitoelec-
tromagnetic fields from the choice of a tetrad. The results
obtained in Sec. II and the explicit expression of Γabcuc in
terms of tetrads (18) lead to the conclusion that this quantity
is an antisymmetric tensor relative to the local Lorentz
transformations. Therefore, the gravitoelectric and grav-
itomagnetic fields, E and B, transform like the electric and
magnetic ones,

E0 ¼ γ

�
E −

γ

γ þ 1
βðβ · EÞ þ β × B

�
;

B0 ¼ γ

�
B −

γ

γ þ 1
βðβ · BÞ − β × E

�
: ð60Þ

This property also establishes a great similarity between
electromagnetism and gravity.
When the local Lorentz transformations (60) are used,

one needs to take into account the dependence of the
gravitoelectromagnetic fields on the four-velocity. To
express E0 and B0 in terms of the four-velocity in the
primed frame, one needs to transform the components of uc

entering into Eq. (29) as follows:

u0̂ ¼ γðu00̂ þ β · û0Þ; û ¼ û0 þ γ2

γ þ 1
βðβ · û0Þ þ βγu00̂:

ð61Þ

Let us consider, as an example, the local Lorentz
transformations of the gravitoelectromagnetic fields in
the uniformly accelerated frame. Let us suppose that the
acceleration is constant and has nonzero projections onto
the axes e1 and e2 (a ¼ að1Þe1 þ að2Þe2). Let us suppose that
the second observer moves in the LLF of the first observer
along the x1 axis with the velocity V and the first observer
is at rest in the world frame. In this case, the nontrivial

tetrad components are given by Eq. (12). The nontrivial
components of the inverse tetrad are equal to

e00
0̂
¼ γc2

c2 þ a · r
; e00

1̂
¼ βγc2

c2 þ a · r
;

e01
0̂
¼ βγ; e01

1̂
¼ γ ð62Þ

and the nonzero Lorentz connection coefficients
(Γabc ¼ −Γbac) read

Γ1̂ 0̂ 0̂ ¼
γað1Þ

c2 þ a · r
; Γ2̂ 0̂ 0̂ ¼

γ2að2Þ

c2 þ a · r
;

Γ1̂ 0̂ 1̂ ¼
βγað1Þ

c2 þ a · r
;

Γ0̂ 2̂ 1̂ ¼ −
βγ2að2Þ

c2 þ a · r
; Γ2̂ 1̂ 0̂ ¼

βγ2að2Þ

c2 þ a · r
;

Γ1̂ 2̂ 1̂ ¼ −
β2γ2að2Þ

c2 þ a · r
: ð63Þ

The use of Eqs. (29) and (61) results in

E0
1 ¼ −

að1Þc
c2 þ a · r

u0̂; E0
2 ¼ −

γað2Þc
c2 þ a · r

u0̂;

B0
3 ¼

βγað2Þc
c2 þ a · r

u0̂: ð64Þ

Since the same result can be easily obtained with Eqs. (41)
and (60), this derivation confirms the validity of the general
equation (60).
The results presented in this section explicitly show

the possibility of the local Lorentz transformations of the
gravitoelectromagnetic fields and the equivalence of all
tetrads. However, the tetrads belonging the Schwinger
gauge are much more convenient.

VI. CONNECTION BETWEEN EQUATIONS OF
MOTION IN THE UNIFORMLY ACCELERATED
FRAME AND IN THE SCHWARZSCHILD FIELD

AND ITS RELATION TO EINSTEIN’S
EQUIVALENCE PRINCIPLE

In this section, we use the results presented for a
comparison of motion of a spinning particle in the
uniformly accelerated frame and in the Schwarzschild
field. This problem is directly related to Einstein’s equiv-
alence principle which is a cornerstone of GR. In this
section, we do not make a difference between x with upper
and lower indices.

A. Previously obtained results

Equation (41) and (54) shows the difference between the
gravitoelectromagnetic fields in the uniformly accelerated
frame and in the Schwarzschild metric in the isotropic
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coordinates. The corresponding angular velocities of the
spin precession in the nonrelativistic limit (v ≪ c) are equal
to [50,51]

ΩðaÞ ¼ −
a × v̂
2c2

; ΩðiÞ ¼ 3g × v̂
2c2

: ð65Þ

Owing to the difference between the two angular velocities
on the condition that a ¼ −g, it has been claimed in
Refs. [50,52] that Einstein’s equivalence principle is
violated. This claim has been based on a noncoincidence
of the quantum mechanical Hamiltonians for a nonrelativ-
istic Dirac particle in the uniformly accelerated frame [47]
and in the Schwarzschild metric in the isotropic coordi-
nates. The latter Hamiltonian was first derived in Ref. [53].
In Ref. [52], the nonrelativistic quantum mechanical
Hamiltonians was obtained for the Schwarzschild metric
in the Cartesian coordinates but its derivation contains an
error. This error has been corrected in Ref. [51].
The Schwarzschild metric in the Cartesian coordinates

has the form ([35]) where

V ¼ 1 −Φ; Wî
k ¼ δik þ

Φxixk
r2

;

K ¼ 0; Φ ¼ GM
c2r

: ð66Þ

The appropriate Schwinger tetrad is given by [23]

e0̂μ ¼ Vδ0μ; eîμ ¼ Wî
kδ

k
μ: ð67Þ

The corrected Hamiltonian for the Schwarzschild metric
in the Cartesian coordinates [51] leads to the angular
velocity of the spin precession coinciding with that defined
by the Donoghue-Holstein Hamiltonian [53],

ΩðCÞ ¼ 3g × v̂
2c2

: ð68Þ

In Ref. [51], the relativistic expression for the angular
velocity of the spin precession has also been obtained.
Therefore, the angular velocity of the spin precession of

the nonrelativistic Dirac particle is three times bigger in the
Schwarzschild field than in the uniformly accelerated
frame. It was shown in Ref. [51] that the part of the
effect in the Schwarzschild spacetime caused by the
temporal component of the metric is equal to the total
effect in the accelerated frame and the additional effect in
the Schwarzschild spacetime is due to the spatial compo-
nents of the metric. The classical equations for the spin
precession in the Schwarzschild spacetime [51,54] and in
the uniformly accelerated frame [51,55] fully agree
with the corresponding quantum mechanical ones. In the
general case, the perfect agreement between classical and
quantum mechanical equations of motion was proven in
Refs. [23,30].

In Ref. [40], the known results were generalized
to a relativistic Dirac particle. The relativistic Foldy-
Wouthuysen transformation was performed and quantum
mechanical and semiclassical equations of motion for the
momentum and spin were derived. It was shown that all
equations of motion are different for particles in the
Schwarzschild spacetime and in the uniformly accelerated
frame. The semiclassical equations of motion in the
Schwarzschild field are given by [40]

dp
dt

¼ 2γ2 − 1

γ
mg;

dζ
dt

¼ −
2γ þ 1

c2ðγ þ 1Þ ðg × vÞ × ζ;

ð69Þ

where p ¼ −fpig is the generalized momentum. The
corresponding equations ofmotion for the accelerated frame
read [40]

dp
dt

¼ −γma;
dζ
dt

¼ γ

c2ðγ þ 1Þ ða × vÞ × ζ: ð70Þ

Theweak-field approximation and the isotropic coordinates
are used in Eqs. (69) and (70). When a ¼ −g, these
equations significantly differ.
Equation (69) and (70) demonstrate a difference between

the particle motion in the Schwarzschild spacetime and in
the uniformly accelerated frame. For example, the light
deflection in the Schwarzschild field in the isotropic
coordinates (g ¼ −a) defined by Eq. (69) seems to be
twice as much as in the uniformly accelerated frame. This
problem will be considered below in details. An origin of
the aforementioned effects is the nonzero spatial part of the
Schwarzschild metric. Equations (41) and (54) show that
the gravitoelectric field in the uniformly accelerated frame
is the same as in the Schwarzschild spacetime. However,
the spatial part of the Schwarzschild metric generates the
gravitomagnetic field B ¼ g × û=c which is absent in the
uniformly accelerated frame.
Nevertheless, we do not share the statement about the

violation of Einstein’s equivalence principle presented in
Refs. [50,52]. It is incorrect to suppose that the equivalence
principle as formulated by Einstein and successors states
the complete equivalence of static gravitational fields and
uniformly accelerated frames. In Einstein’s papers [56], the
equivalence principle has been formulated only relative to
constant uniform gravitational fields. The Schwarzschild
field (as well as other real gravitational fields) is nonuni-
form. Since the equivalence principle is one of fundamental
principles of GR, we will consider the problem of the
importance of a field inhomogeneity in detail.
We should mention that the presence of tidal and

Mathisson forces always differs the static gravitational
field from the uniformly accelerated frame. The tidal forces
are proportional to derivatives of the Newtonian acceler-
ation, i.e., to second derivatives of the metric tensor.
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The Mathisson force, which defines the spin-curvature
coupling and is also proportional to second derivatives of
the metric tensor, will be considered in the next section.

B. Comparison of equations of motion in the
Schwarzschild field in the Cartesian

and isotropic coordinates

To demonstrate an influence of a spatial inhomogeneity
of the Schwarzschild field on the particle motion, we can
compare the equations of motion in the Cartesian and
isotropic coordinates. To establish a difference in these
equations of motion, it is sufficient to consider a field of a
distant source and to use the weak-field approximation. In
this approximation, the metric tensors of the Schwarzschild
field can be given by [57]

gðCÞ00 ¼ 1 −
rg
r
; gðCÞ0i ¼ 0; gðCÞij ¼ −

�
δij −

rgxixj
r3

�

ð71Þ
and

gðiÞ00 ¼ 1 −
rg
r
; gðiÞ0i ¼ 0; gðiÞij ¼ −

�
1 −

rg
r

�
δij

ð72Þ
in the Cartesian and isotropic coordinates, respectively.
Here rg ¼ 2GM=c2 is the gravitational radius.
The use of the general equation (47) for the metric (71)

results in the following expressions for the gravitoelectro-
magnetic fields:

EðCÞ ¼ −
crgr

2r3
u0̂ ¼ gu0̂

c
; BðCÞ ¼ −

crg
2r3

r × û ¼ g × û
c

:

ð73Þ

A comparison of Eqs. (54) and (73) shows that the
gravitoelectromagnetic fields in the Cartesian coordinates
are the same as in the isotropic ones. Therefore, the
equations of the spin motion in the Schwarzschild field
have the same form in the Cartesian and isotropic coor-
dinates. However, the opposite situation takes place for the
particle motion. While the metrics (71) and (72) character-
ize the gravitational field of the same source, they belong to
different kinds of the spatial inhomogeneity. As a result, the
equations of the particle motion in the Cartesian and
isotropic coordinates significantly differ.
Let us use the conventional equations of the particle

motion

duμ
ds

−
1

2
gνλ;μuνuλ ¼ 0 ð74Þ

and

duμ

ds
þ fμνλguνuλ ¼ 0; ð75Þ

where

fμνλg ¼ 1

2
gμρðgρν;λ þ gρλ;ν − gνλ;ρÞ ð76Þ

are the Christoffel symbols. The equations of the particle
motion in the Cartesian coordinates take the form

dui
ds

¼ ðu0Þ2rg
2r3

�
xi
�
1þ 3ðβ · rÞ2

r2

�
− 2βiðβ · rÞ

�

¼ −
ðu0Þ2
c2

�
gi
�
1þ 3ðβ · rÞ2

r2

�
− 2βiðβ · gÞ

�
;

du0
ds

¼ 0; ð77Þ

dui

ds
¼ −

ðu0Þ2rg
2r3

xi
�
1þ 2β2 −

3ðβ · rÞ2
r2

�
¼ ðu0Þ2

c2
gi
�
1þ 2β2 −

3ðβ · rÞ2
r2

�
;

du0

ds
¼ −

ðu0Þ2rgðβ · rÞ
r3

¼ 2
ðu0Þ2
c2

ðβ · gÞ: ð78Þ

We do not make a difference between the upper and lower indices for the Newtonian acceleration g.
The corresponding equations in the isotropic coordinates read

dui
ds

¼ ðu0Þ2rg
2r3

xið1þ β2Þ ¼ −
ðu0Þ2
c2

gið1þ β2Þ; du0
ds

¼ 0; ð79Þ

dui

ds
¼ −

ðu0Þ2rg
2r3

½xið1þ β2Þ − 2βiðβ · rÞ� ¼ ðu0Þ2
c2

½gið1þ β2Þ − 2βiðβ · gÞ�;
du0

ds
¼ −

ðu0Þ2rgðβ · rÞ
r3

¼ 2
ðu0Þ2
c2

ðβ · gÞ: ð80Þ
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These equations can be compared with the related
equations for the uniformly accelerated frame,

dui
ds

¼ ðu0Þ2ai
c2

;
du0
ds

¼ 0; ð81Þ

dui

ds
¼ −

ðu0Þ2ai
c2

;
du0

ds
¼ −2

ðu0Þ2
c2

ðβ · aÞ: ð82Þ

The comparison of Eqs. (77)–(82) shows that the terms
different for the Schwarzschild field and the uniformly
accelerated frame (g ¼ −a) are of the same order of
magnitude as the corresponding terms different for the
Schwarzschild field in the Cartesian and isotropic coordi-
nates. We can conclude that the spatial inhomogeneity
significantly influences the form of the equations of motion.
Therefore, the results presented do not give a reason for
the assertion about a violation of Einstein’s equivalence
principle.
We should mention that the forces conditioned by the

mismatched terms in Eqs. (77)–(82) are proportional to first
derivatives of the spatial components of the metric tensor.

VII. MATHISSON FORCE

One of Mathisson’s great achievements was the discov-
ery of an additional force acting on a spinning particle in a
curved spacetime. The Mathisson force is similar to the
Stern-Gerlach one in electrodynamics. The gravitoelectro-
magnetism allows us to explain the main difference
between the two forces as a result of a specific dependence
of the gravitoelectromagnetic fields on the particle four-
velocity. An analysis of the Mathisson force can be fulfilled
in the general case (see, e.g., Refs. [18–20,23,44]).
Nevertheless, a derivation of a simple expression in the
weak-field approximation seems to be rather important. In
particular, this expression shows that a similarity between
the gravity and electromagnetism exists even for effects
depending on curvature.
To take into account the influence of the spin on the

particle motion, we may use the Hamiltonian method and
may add the Hamiltonian of a spinless particle in a
gravitational field [58] by the term ζ ·Ω,

H ¼ H0 þ ζ ·Ω: ð83Þ

The possibility of this addition was mentioned in Ref. [13].
In Refs. [22,23], this addition was rigorously substantiated
not only in framework of classical gravity but also for Dirac
particles.
It follows from Eqs. (32) and (83) that the additional

force acting on a spinning particle is given by

fM ¼ −∇ðH −H0Þ ¼ ∇
�
1

u0
ζ ·

�
B −

û × E

u0̂ þ 1

��
: ð84Þ

In electrodynamics, the Stern-Gerlach force acting on a
Dirac particle (g ¼ 2) has a similar form,

f SG ¼ e
mc

∇
�
1

u0
ζ ·

�
B −

u × E
u0 þ 1

��
: ð85Þ

Equation (85) is obtained in the classical limit. The most
important difference between Eqs. (84) and (85) consists of
the dependence of the gravitoelectromagnetic fields on the
four-velocity.
Since the Stern-Gerlach and Mathisson forces are pro-

portional to gradients of scalars, they define the additions
only to the electric and gravitoelectric forces, respectively.
This property has been proved in Ref. [23] for arbitrarily
strong gravitational fields. As a result, ∇ × f SG ¼ 0,
∇ × fM ¼ 0.
The Mathisson force violates the weak equivalence

principle [18–20] because particles with different spin
directions move on different trajectories. Since the grav-
itoelectromagnetic fields are proportional to first deriva-
tives of the metric, the Mathisson force is proportional to
second derivatives of the metric, i.e., to the curvature
(see Ref. [23]).
The resulting force acting on a spinning particle in a LLF

is given by

F ¼ mcu0̂

u0

�
E þ û ×B

u0̂

�
þ fM: ð86Þ

In Ref. [23], the Mathisson force was obtained in an
explicit form. Evidently, Eq. (86) presents the next-order
approximation as compared with the PK equations.

VIII. THOMAS PRECESSION
IN GENERAL RELATIVITY

Amazingly, the use of the local Lorentz transformations
and the PK fields allow us to derive the formula for the
Thomas precession in inertial and gravitational fields. For
this purpose, we apply the method developed in electro-
dynamics and presented in Refs. [25,29]. Equation (25) is
in fact the definition of the Thomas effect. We calculate
spin dynamics and separate contributions from the local
Lorentz transformations and from the Thomas effect to the
angular velocity of the spin precession.
To determine the contribution from the local Lorentz

transformations, we need to compare the spin motion in the
two LLFs connected with the chosen tetrad and with the
observer instantaneously accompanying the test particle. At
a given moment of time, the velocity of the test particle in
zero. In the general case, the test particle can be accelerated
in this frame. It is more convenient to present Eq. (30) in the
form
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dζ
dt̂

¼ ~Ω × ζ; ~Ω ¼ 1

u0̂

�
−Bþ û × E

u0̂ þ 1

�
: ð87Þ

In the instantaneously accompanying frame, the angular
velocity of the spin motion is defined only by the
gravitomagnetic field,

~Ωð0Þ ¼ −Bð0Þ: ð88Þ

The connection between the angular velocities of the
spin motion in the LLF which relates to the chosen tetrad
and in the instantaneously accompanying frame is defined
by the time dilation. As follows from Eqs. (24), (31), (60),
and (88), this connection is given by

~ΩL ¼
~Ωð0Þ

u0̂
¼ −

Bð0Þ

u0̂
¼ −Bþ 1

u0̂ðu0̂ þ 1Þ
ûðû · BÞ

þ û × E

u0̂
;

ΩL ¼ u0̂

u0

�
−Bþ 1

u0̂ðu0̂ þ 1Þ
ûðû · BÞ þ û × E

u0̂

�
: ð89Þ

Equation (89) would be sufficient for a description of
the spin precession if the three-component spin were
defined in the instantaneously accompanying frame.
However, it is defined in the particle rest frame. As a
result, we need to take into account the Thomas pre-
cession. For this purpose, we follow Refs. [25,29]. It is
convenient to denote

F ab ¼ cΓabcuc ¼ ðE;BÞ:

With the use of Eq. (19), Eq. (22) can be presented in the
form

daa

dτ
¼ F abab − uaF bcubac − ua

dub

dτ
ab: ð90Þ

The next derivations can be made similarly to
Refs. [25,29]. We use the denotation

Φa ¼ F abab − uaF bcubac: ð91Þ

Evidently, Φa ¼ ðΦ0̂; Φ̂Þ is a four-vector relative to
the local Lorentz transformations. Since uaΦa ¼
u0̂Φ0̂ − û · Φ̂ ¼ 0, it satisfies the relationΦ0̂¼ðû ·Φ̂Þ=u0̂¼
β ·Φ̂, where β is defined by Eq. (24). The similar relation
for the four-spin is given by Eq. (23). We can perform the
following transformation:

ab
dub

dτ
¼ a0̂

du0̂

dτ
− â · β

du0̂

dτ
− u0̂â ·

dβ
dτ

¼ −u0̂â ·
dβ
dτ

;

ua
dub

dτ
ab ¼ −uau0̂â ·

dβ
dτ

: ð92Þ

Thus, Eq. (90) leads to

da0̂

dτ
¼ Φ0̂ þ ðu0̂Þ2â · dβ

dτ
;

dâ
dτ

¼ Φ̂þ ðu0̂Þ2β
�
â ·

dβ
dτ

�
:

ð93Þ

Now we can calculate the equation of motion for the rest-
frame spin ζ with the use of the relations

ζ ¼ â −
u0̂

u0̂ þ 1
βðβ · âÞ;

d
dτ

�
u0̂

u0̂ þ 1
β

�
¼ u0̂

u0̂ þ 1

dβ
dτ

þ ðu0̂Þ3
ðu0̂ þ 1Þ2

β

�
β ·

dβ
dτ

�
:

The needed equation has the form (cf. Refs. [25,29])

dζ
dτ

¼ Φ̂ −
u0̂β

u0̂ þ 1
Φ0̂ þ ðu0̂Þ2

u0̂ þ 1
ζ ×

�
β ×

dβ
dτ

�
: ð94Þ

The transformation of the given four-vector Φa to the
instantaneously accompanying frame results in ðΦð0ÞÞa ¼
ð0; Φ̂ð0ÞÞ, where

Φ̂ð0Þ ¼ Φ̂ −
u0̂

u0̂ þ 1
βðβ · Φ̂Þ ¼ Φ̂ −

u0̂β

u0̂ þ 1
Φ̂0:

As follows from Eq. (31), the derivation of Φ̂ð0Þ from
Eq. (91) brings the equation of the spin motion to the form

dζ
dt̂

¼ −
Bð0Þ

u0̂
× ζ þ u0̂

u0̂ þ 1
ζ ×

�
β ×

dβ
dτ

�
: ð95Þ

The angular velocity of the spin precession is given by

~Ω ¼ −
Bð0Þ

u0̂
−

u0̂

u0̂ þ 1

�
β ×

dβ
dτ

�
; Ω ¼ u0̂

u0
~Ω: ð96Þ

Since ~Ω ¼ ~ΩL þ ~ΩT , the angular velocity of the Thomas
precession is equal to

~ΩT ¼ −
u0̂

u0̂ þ 1

�
β ×

dβ
dτ

�
¼ −

1

u0̂ðu0̂ þ 1Þ

�
û ×

dû
dτ

�
:

ð97Þ

Explicitly,
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~ΩT ¼ −
û × Eð0Þ

u0̂ðu0̂ þ 1Þ
¼ −

1

u0̂ þ 1

�
û × E þ û × ðû ×BÞ

u0̂

�

¼ u0̂ − 1

u0̂
B −

1

u0̂ðu0̂ þ 1Þ
ûðû · BÞ − û × E

u0̂ þ 1
: ð98Þ

Equation (87) can be presented in terms of the rest-frame
fields,

~Ω ¼ −
Bð0Þ

u0̂
−

û × Eð0Þ

u0̂ðu0̂ þ 1Þ
: ð99Þ

Equations (87), (89), (98), and (99) are consistent.
Thus the use of the PK fields has allowed us to derive

Eq. (97) for the Thomas effect in Riemannian spacetimes.
We have rigorously proven that this equation has practically
the same form as the corresponding equation (26) defining
the Thomas effect in electrodynamics. However, the equa-
tion for the Thomas effect in the world frame (with a
substitution of the velocity and the acceleration in the
world frame for the corresponding LLF quantities) may be
different.
Let us calculate the contributions from the local Lorentz

transformations and from the Thomas effect to the angular
velocity of the spin precession for the uniformly accel-
erated frame and for the Schwarzschild field in the isotropic
coordinates. We can use the weak-field approximation. For
the uniformly accelerated frame, these contributions are
given by

~ΩðaÞ
L ¼ −

cû × aðtÞ
c2 þ aðtÞ · r ;

~ΩðaÞ
T ¼ u0̂

u0̂ þ 1
·
cû × aðtÞ

c2 þ aðtÞ · r :

ð100Þ

In the weak-field approximation, this equation takes the
form

~ΩðaÞ
L ¼−

û×aðtÞ
c

; ~ΩðaÞ
T ¼ u0̂

cðu0̂þ1Þ
û×aðtÞ: ð101Þ

The corresponding relations for the Schwarzschild field
in the isotropic coordinates are given by

~ΩðiÞ
L ¼ 2û × g

c
; ~ΩðiÞ

T ¼ −
2ðu0̂Þ2 − 1

cu0̂ðu0̂ þ 1Þ
û × g: ð102Þ

When a ¼ const ¼ −g, Eqs. (101) and (102) significantly
differ. We have discussed the origin of this difference in
Sec. VI. We should underline that neither the contributions
from the local Lorentz transformations nor those from the
Thomas effect vanish in the nonrelativistic limit. It has been
claimed in Ref. [50] that the spin rotation in the uniformly
accelerated frame is caused only by the Thomas effect.
The fallacy of this claim has been shown in Ref. [51].

We can also specify the two contributions to the angular
velocity of the spin precession in the rotating frame. In
this case, the both contributions are also nonzero and are
given by

~ΩL ¼ −ωu0̂ þ ûðû · ωÞ
u0̂ þ 1

;

~ΩT ¼ −
û × ðû × ωÞ

u0̂ þ 1
¼ ωðu0̂ − 1Þ − ûðû · ωÞ

u0̂ þ 1
: ð103Þ

The quantity

O ¼ −
1

u0ðu0 þ 1Þ
�
u ×

du
dτ

�
ð104Þ

frequently used for a specification of the Thomas preces-
sion in curved spacetimes can be obtained with Eq. (75).
In the weak-field approximation (û ≈ u, u0̂ ¼ u0), the
quantity O is twice as much as ~ΩT ,

~ΩT ¼ −
u × ðu × ωÞ

u0 þ 1
; ð105Þ

O ¼ −
2u × ðu × ωÞ

u0 þ 1
: ð106Þ

This example unambiguously shows that the use of the
quantity (104) for the determination of the Thomas pre-
cession in curved spacetimes is incorrect. We should
nevertheless mention that Eqs. (97), (98), (103), and
(105) describe the precession of the spin pseudovector
defined in the LLF. These equations cannot be directly
applied to the Thomas precession of a segment of a rapidly
rotating disk which was considered in Ref. [59].

IX. DISCUSSION AND SUMMARY

The introduction of the gravitoelectromagnetic fields
being effective fields in an anholonomic tetrad frame
(coframe) significantly simplifies a description of motion
of spinning particles in GR. When one neglects the spin-
curvature coupling and the mutual influence of particle and
spin motion, dynamics of the four-velocity and spin is
defined by Eqs. (32) and (33) similar to corresponding
equations in electrodynamics. However, the equations of
motion for the four-velocity and spin are not equally useful.
The conventional three-component spin is defined in the
particle rest frame which is one of LLFs. In contrast,
the four-velocity is the world vector and its evolution
should be defined in the world frame. Certainly, the
transition to the world coordinates is not difficult because

uμ ¼ eμaua;
duμ

dτ
¼ eμa

dua

dτ
þ ua

deμa
dτ

:

Moreover, the investigation of the particle motion is
simplified when the trajectory is infinite. In this case,
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one can apply the fact that the quantities uμ and ua coincide
at the initial and final parts of the particle trajectory because
of the very large distance to the field source [22]. However,
the use of Eq. (75) seems to be more straightforward.
For a derivation of the equations of motion, canonical

methods based on the use of Hamiltonians and Lagrangians
can also be successfully applied.
Basic tetrads satisfy the Schwinger gauge while other

tetrads are also applicable. Tetrads which do not satisfy this
gauge are carried by observers moving in a described
spacetime. All tetrads are equivalent and the use of any
tetrad is possible. Different tetrads are connected by local
Lorentz transformations. This connection is determined in
Sec. II. In the general case, the gravitoelectromagnetic
fields differ in different coframes. In accordance with
Refs. [8,9], these fields do not coincide even for different
tetrads belonging to the Schwinger gauge (see the example
given in Sec. IV B).
In the present work, we explain and develop the

conception of gravitoelectromagnetism first proposed by
Pomeransky and Khriplovich [13]. We calculate the grav-
itoelectromagnetic fields in the most important special
cases (Sec. IV) and determine their local Lorentz trans-
formations (Sec. V). The validity of these transformations
is demonstrated for the case of the uniformly acceler-
ated frame.
We apply the gravitoelectromagnetic fields for a com-

parison of inertia and gravity and of the Mathisson and
Stern-Gerlach forces. In agreement with Refs. [40,50–52],
the uniformly accelerated frame cannot completely imitate
the gravitational field of the Schwarzschild source. The
forces conditioned by the mismatched terms in the equa-
tions of motion for the Schwarzschild field in the Cartesian
and isotropic coordinates and for the uniformly accelerated
frame are proportional to first derivatives of the spatial
components of the metric tensor while the tidal and
Mathisson forces are defined by second derivatives of
the metric tensor. However, we cannot support the claim
made in Refs. [50,52] that these properties violate
Einstein’s equivalence principle. This principle has been
formulated only relative to constant uniform gravitational
fields. The Schwarzschild field (as well as other real
gravitational fields) is nonuniform. We have shown that
the spatial inhomogeneity significantly influences the form
of the equations of motion. The terms different for the
Schwarzschild field and the uniformly accelerated frame
(g ¼ −a) are of the same order of magnitude as the
corresponding terms different for the Schwarzschild field
in the Cartesian and isotropic coordinates. Therefore,
the difference between the equations of motion in the

Schwarzschild field and the uniformly accelerated frame
does not violate Einstein’s equivalence principle.
An expression of the Mathisson force in terms of the

gravitoelectromagnetic fields allows us to state that the
deep similarity between the gravity and electromagnetism
exists even for effects depending on curvature. It is well
known that the Mathisson force violates the weak equiv-
alence principle.
Probably the most exciting result of the use of the local

Lorentz transformations and the gravitoelectromagnetic
fields is the general description of the Thomas precession
in GR carried out in Sec. VIII. Amazingly, Eq. (97)
defining the angular velocity of the Thomas precession
in LLFs is analogous to the corresponding formula [24–29]
of special relativity. Equations (98) and (99) show the
convenience of the gravitoelectromagnetic fields for a
description of spin effects in GR and detach the Thomas
effect.
We underline a great importance of the Thomas effect

for a better understanding of spin dynamics in inertial
and gravitational fields. Experimental investigations of
this dynamics in turn are very important to determine
fundamental properties of gravity. In particular, the Gravity
Probe B experiment [60] has confirmed the theoretical
prediction [54] (see also Sec. IV D) for the spin precession
due to the geodetic and LT effects. The LT effect for orbiting
bodies (frame dragging) has been certified in experiments
with the LAGEOS satellites [61]. Experiments with atomic
and nuclear spins in Earth’s rotating frame [62,63] have
verified the behavioral equivalence of quantum mechanical
spins and classical gyroscopes [30,41]. Experimental con-
straints for equivalence principles and new interactions were
analyzed in Ref. [64].
We can conclude that the conception of gravitoelectro-

magnetism used here perfectly describes the evolution of
the spin of a relativistic particle in general noninertial
frames and arbitrarily strong gravitational fields. The main
distinctive features of this conception are comparatively
simple equations of motion and the clear analogy between
electromagnetism and gravity. The introduction of the
gravitoelectromagnetic fields can be regarded as a com-
paratively new powerful method in general relativity.
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