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We investigate irregularity factors for a self-gravitating spherical star evolving in the presence of an
imperfect fluid. We explore the gravitational field equations and the dynamical equations with the
systematic construction in fðR; TÞ gravity, where T is the trace of the energy-momentum tensor.
Furthermore, we analyze two well-known differential equations (which occupy principal importance in
the exploration of causes of energy density inhomogeneities) with the help of the Weyl tensor and the
conservation laws. The irregularity factors for a spherical star are examined for particular cases of dust and
isotropic and anisotropic fluids in dissipative and nondissipative regimes in the framework of fðR; TÞ
gravity. It is found that, as the complexity of the matter with the anisotropic stresses increases, the
inhomogeneity factor corresponds more closely to one of the structure scalars.
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I. INTRODUCTION

The influence of modification in gravity theories has
attracted significant attention from those in both high
energy physics and cosmology. Although there is obser-
vational evidence for an accelerating Universe [1–5],
certain predictions and compelling theoretical work about
the expansion of the Universe are still under consideration.
After the successful detection of gravitational waves, it is
still possible that the cosmological constant added by
Einstein in his field equations can describe the accelerating
phase of the Universe. However, the unnatural fine-tuning
problem favors the possibility of a dark side in the Universe
owing to the dark dynamical effects. The best way to test
the viability of any gravitational theory is to compare the
predictions with the real object’s motion.
A modification in Einstein’s theory for discussing dark

effects involves generalization in the Lagrangian of the
Einstein-Hilbert action. The simplest generalization is to
use function fðRÞ instead of the Ricci scalar in the action.
However, in order to include the matter contents, the
simplest generalization is to replace R with fðR; TÞ, where
T represents the trace of the stress-energy tensor. It is noted
that such an addition in the Lagrangian can be observed as
the addition of new degrees of freedom. The equation of
motion emerging from such a Lagrangian will differ from
Einstein’s one. In that case, it would be possible to
eliminate the cosmological constant to describe the accel-
eratory phase of the Universe. Such Lagrangians are well
suited for studying dark energy (DE) and dark matter
problems and little attention has ever been devoted to this

direction (for reviews on late-time cosmic acceleration, i.e.,
the dark energy problem, and modified gravity theories,
see, e.g., [6–10]).
Theories involving curvature matter coupling have

attracted significant attention for exploring the enigma of
cosmic evolution and other cosmological aspects. A geom-
etry matter coupled system results in the existence of extra
force due to the nongeodesic motion of test particles, and
such systems in the setting of the Lagrangian for fðR; TÞ
were introduced in [11]. It has been observed that the extra
force vanishes if one uses the specific form of the
Lagrangian for usual matter (e.g., Lm ¼ p) for nonmini-
mally coupled fðRÞ theories [12,13]; however, the extra
force does not vanish for a matter geometry coupled
system. fðR; TÞ gravity theory is considered a useful
candidate for studying the acceleratory behavior during
the cosmic expansion, which is due not only to the scalar-
curvature part but also to the matter components. This
theory is also considered a useful candidate among the
modified gravities which is based on nonminimal curvature
matter coupling. The theory holds that the cosmological
constant could be considered the trace dependent function,
i.e., ΛðTÞ gravity. This is done to make the connection
between the usual cosmic matter and DE, which is
supported by some modern cosmological data [14].
Faulkner et al. [15] explored the fðRÞ theory and tried to

equate it with scalar tensor theories for two classes of
models: massive and chameleon fðRÞ models. In recent
years, it has been observed that most of the models
proposed in fðRÞ gravity do not satisfy the weak-field
Solar System constraints [16]. Harko et al. [11] extended
Einstein’s standard relativity theory to fðR; TÞ and found
that higher-curvature theories can assist enough to resolve
the flatness issue in the rotation curves of galaxies. The
field equations for some specific models with explicit
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fðR; TÞ configurations have also been presented. Reddy
et al. [17] discussed the Bianchi type III Universe model
with perfect matter configuration in the background of
fðR; TÞ gravity while studying the early Universe. Adhav
[18] has developed some interesting Bianchi-I Universe
models in this theory. It is worthy to stress that the first law
of black hole thermodynamics does not hold in fðR; TÞ
gravity [19].
Sharif and Yousaf [20] examined the stability of isotropic

compact objects framed within fðR; TÞ gravity and found
relatively more stable and compact objects than those
observed in fðRÞ gravity. Sun and Huang [21] analyzed
cosmic evolution in fðR; TÞ gravity by means of redshift
fluctuations against a distance modulus and found good
fitting numerical plots consistent with the observational
data of astronomy. Baffou et al. [22] investigated dynami-
cal evolution along with the stability of power-law and de
Sitter cosmic models against linear perturbation. They
concluded that such models can be considered potential
dark energy candidates. Alves et al. [23] explored the
physical behavior of gravitational waves in different
formalisms of fðR; TÞ gravity models and showed that
the gravitational wave spectrum is strongly dependent upon
on the fðR; TÞ model. Alhamzawi and Alhamzawi [24]
explored a considerable contribution of fðR; TÞ gravity on
gravitational lensing and found results comparable to those
already present in the literature, thereby suggesting the
viability of this theory. Recently, Yousaf and Bhatti [25]
observed more restricted unstable Newtonian and post-
Newtonian regimes in fðR; TÞ gravity [as compared to
fðRÞ gravity] for the locally anisotropic collapsing stellar
model.
The emergence of curvature singularity for the stellar

systems has been discussed in fðRÞ gravity theory [26,27].
Houndjo [28] performed the cosmological reconstruction
of fðR; TÞ gravity examining the transition from a
matter dominated epoch to a late-time accelerated regime.
Alvarenga et al. [29] formulated energy conditions depend-
ing upon the attractive nature of gravity using the
Raychaudhuri equation. Also, they investigated the viability
of some particular fðR; TÞ gravitymodels using these energy
conditions. Azizi [30] investigated whether static spherically
symmetric traversable wormhole geometries (which are
basically exotic cosmic models) exist in fðR; TÞ gravity.
In the study of accelerated Universe expansion, the

viscosity effects resulting from matter configurations are
quite vital and appear to be the only nonadiabatic ones in
Friedmann-Robertson-Walker (FRW) models. Bulk viscos-
ity disburses negative pressure, thus providing a platform
for negative pressure that indicates repulsive gravity. During
the particle creation and formation of galaxies and clusters
in the early Universe, neutrinos decouple from the cosmic
fluid and viscosity arises in the system [31]. Naidu et al.
[32] studied the cosmological model with the FRW metric
in the presence of viscosity in fðR; TÞ gravity. Reddy et al.

[33] investigated the Kaluza-Klien Universe model in the
presence of viscosity with the background of fðR; TÞ
modified gravity theory. Sharif and his collaborators [34]
have explored some physical processes with shear-free as
well as expansion and expansion-free self-gravitating col-
lapsing objects. Kiran and Reddy [35] determined the
solutions of field equations in fðR; TÞ gravity theory for
the Bianchi type III spatially homogeneous model.
Nojiri and Odintsov [36] claimed that inflationary

modified high degree of freedom quantities promote the
evolution of Schwarzschild–de Sitter black hole antievapo-
ration in the classical background. Farinelli et al. [37]
discussed the equilibrium state of hydrostatic celestial
objects and concluded that a wide range of compact objects
exist in nature in modified gravity. Guo et al. [38]
investigated the dynamical behavior of spherical relativistic
collapse in modified gravity. Albareti et al. [39] analyzed
homogeneous cosmological models through Raychaudhuri
expressions and detailed some viability constraints attrib-
utable to the modified gravity theory expansion regimes of
the Universe. Hason and Oz [40] observed extended
configurations of the Jeans instability condition for the
relativistic systems for normal and super fluids.
During the evolution of a star model, a large

amount of radiation emits in the form of photons and
neutrinos, which gradually increases as the evolution
proceeds. The radiating energy can be characterized in
two approximations, i.e., diffusion and free-streaming
approximation. The diffusion limit is applicable when
the typical length of the object is greater than the mean
free path of the particles responsible for the motion of
energy. In that case, the dissipation is described by a
heat flow type vector while, in the other case, it is
characterized by an outflow of null fluid. Herrera et al.
[41] found that the energy density should be inhomo-
geneous if the system involves a zero expansion con-
dition in a nondissipative fluid background. Herrera [42]
explored some factors for a self-gravitating spherical
star which are important for describing the irregularities
in the matter distribution. Sharif and his collaborators
[43] have also explored some factors describing the
inhomogeneous density distribution for self-gravitating
objects with different matter configurations.
In a recent paper, Yousaf et al. [44] have formulated

some dynamical variables by splitting the Riemann tensor
into its constituent trace and trace-free scalar parts in
fðR; TÞ theory. They have also discussed the evolution
of shear and expansion using the Raychaudhuri equation.
This paper is organized in the following manner. In Sec. II,
we will provide some basic equations, including the action
of this framework and the equation of motion. In Sec. III,
modified field equations, some kinematical and dynamical
quantities, and modified Ellis equations are formulated for
the construction of our analysis in a systematic way.
Section IV explores the irregularity factors involving
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dissipative and nondissipative matter distribution in certain
cases. Finally, we deliver our conclusions in Sec. V.

II. f ðR;TÞ GRAVITY AND SPHERICAL SYSTEMS

The notion of fðR; TÞ gravity as a possible modification
in the gravitational framework of general relativity (GR)
received significant attention from researchers. This theory
provides numerous interesting results in the field of physics
and cosmology, including a plausible explanation for the
accelerating cosmic expansion [6,8,9]. The main tenet of
this theory is to use an algebraic general function of Ricci
as a well trace of the energy-momentum tensor in the
standard Einstein-Hilbert action. It can be written [11]

SfðR;TÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR; TÞ þ LM�; ð1Þ

where g, T are the traces of the metric and standard GR
energy-momentum tensors, respectively, while R is the
Ricci scalar. In the literature, variety LM corresponds to
particular configurations of relativistic matter distributions.
Choosing LM ¼ μ (where μ is the system’s energy density)
and making variation in the above equation with gαβ, the
corresponding fðR; TÞ field equations are given as follows:

Gαβ ¼ Tαβ
eff ; ð2Þ

where

Tαβ
eff ¼

�
ð1þ fTðR; TÞÞTðmÞ

αβ − μgαβfTðR; TÞ

−
�
fðR; TÞ

R
− fRðR; TÞ

�
R
2

þð∇α∇β þ gαβ□ÞfRðR; TÞ
�

1

fRðR; TÞ

is a nonstandard energy-momentum tensor representing a
modified version of a gravitational contribution coming
from fðR; TÞ extra degrees of freedom, while Gαβ is an
Einstein tensor. Furthermore, ∇α represents covariant
derivation, while fTðR; TÞ, □, and fRðR; TÞ represent
the dfðR;TÞ

dT , ∇α∇α, and dfðR;TÞ
dR operators, respectively.

We consider a spherical relativistic self-gravitating non-
rotating and nonstatic system whose metric can be
expressed with the help of the following diagonal form:

ds2 ¼ −A2ðt; rÞdt2 þ B2ðt; rÞdr2 þ C2dθ2 þ C2sin2θdϕ2:

ð3Þ

It is assumed that this system is filled with shearing
viscous, locally anisotropic, and radiating fluid. This fluid
can be indicated through the following configurations of
the mathematical form:

Tαβ ¼ P⊥hαβ þ μVαVβ þ Πχαχβ þ εlαlβ

þ qðχβVα þ χαVβÞ − 2ησαβ; ð4Þ

where P⊥ is the tangential pressure, Π≡ Pr − P⊥, and Pr
is the fluid pressure along the radial direction. ε is the
radiation density, qβ is a vector controlling heat dissipation,
σαβ is a tensor controlling shearing viscosity, and η is its
coefficient. Furthermore, hαβ is the projection tensor,
defined as follows:

hαβ ¼ gαβ þ VαVβ:

The vectors lγ , Vγ, and χγ represent the null four-vector, the
fluid four-velocity, and the radial unit four-vector, respec-
tively. Under comoving coordinates, these four-vectors can
be evaluated as Vγ ¼ 1

A δ
γ
0, χγ ¼ 1

C δ
γ
1, lγ ¼ 1

A δ
γ
0 þ 1

B δ
γ
1,

qγ ¼ qðt; rÞχγ . Moreover, they obey

VβVβ ¼ −1; χβχβ ¼ 1; χβVβ ¼ 0;

Vβqβ ¼ 0; lβVβ ¼ −1; lβlβ ¼ 0:

The scalar variable controlling the expansion and contrac-
tion of the matter distribution is known as the expansion
scalar. This can be obtained through the Θ ¼ Vα

;α math-
ematical expression. For Eq. (3), it is found as follows:

Θ ¼ 1

A
ð _BB−1 þ 2 _CC−1Þ;

σ ¼ −1
A

ð _CC−1 − _BB−1Þ; ð5Þ

where the overdot notation represents the temporal partial
derivation.
The fðR; TÞ field equations (2) for spherical nonstatic

interior (3) are found to be

G00 ¼
A2

fR

�
μþ ε −

R
2

�
f
R
− fR

�
þ ψ00

A2

�
; ð6Þ

G01 ¼
AB
fR

�
−ð1þ fTÞðqþ εÞ þ ψ01

AB

�
; ð7Þ

G11 ¼
B2

fR

�
μfT þ ð1þ fTÞ

�
Pr þ ε −

4

3
ησ

�

þ R
2

�
f
R
− fR

�
þ ψ11

B2

�
; ð8Þ

G22 ¼
C2

fR

�
ð1þ fTÞ

�
P⊥ þ 2

3
ησ

�
þ μfT

þ R
2

�
f
R
− fR

�
þ ψ22

C2

�
; ð9Þ

where
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ψ00 ¼ 2∂ttfR þ
�
_B
B
− 2

_A
A
þ 2

_C
C

�
∂tfR þ

�
A2

B0

B
− 2AA0 − 2A2

C0

C

� ∂rfR
B2

;

ψ01 ¼ ∂t∂rfR −
A0

A
∂tfR −

_B
B
∂rfR;

ψ11 ¼ ∂rrfR −
B2

A2
∂ttfR þ

�
B2

_A
A
− 2B2

_C
C
− 2B _B

� ∂tfR
A2

þ
�
A0

A
þ 2

C0

C
− 2

B0

B

�
∂rfR;

ψ22 ¼ −C2
∂ttfR
A2

þ C2

A2

�
_A
A
− 3

_C
C
−

_B
B

�
∂tfR þ C2

B2

�
C0

C
þ A0

A
−
B0

B

�
∂rfR:

Here, the prime represents radial partial differentiation.
We are now interested in evaluating expressions that would be helpful for studying the dynamical phases of spherical

anisotropic radiating and shearing viscous interiors in fðR; TÞ gravity. It is seen that in this gravitational theory, the
divergence of the energy-momentum tensor is nonvanishing and is found to be

∇αTαβ ¼
fT

ð1 − fTÞ
�
ðΘαβ þ TαβÞ∇α ln fT −

1

2
gαβ∇αT þ∇αΘαβ

�
: ð10Þ

The divergence of the fðR; TÞ energy-momentum tensor gives the following equations of motion:

_μ

�
1þ fT þ fRfT
fRð1þ fTÞ

�
−

μ

f2R
∂tfR −

�
f − RfR

2

�
;0
þ
�
ψ00

A2

�
;0
− q̄0

B
A
ð1þ fTÞ

fR
−

q̄
A2

�
ABð1þ fTÞ

fR

�
;1

þ 1

A2

�
ψ01

fR

�
;1
−

B _B
A2fR

�
ð1þ fTÞμþεþ ð1þ fTÞ

�
Pr þ εþ 4

3
ησ

�
þ ψ00

A2
þ ψ11

B2

�

−
2C _C
A2fR

�
μ̄þ μfT þ ð1þfTÞ

�
P⊥ þ 2

3
ησ

�
þ ψ00

A2
þ ψ22

C2

�

þ
�
B0

B
þ A0

A
−
CC0

B2
þ 2

AA0

B2

�
1

fR

�
ð1þ fTÞABq̄ −

ψ01

A2

�

þ 1

1þ fT

�
ð2μþ εÞ∂tfT þ

�
_μþ

_T
2

�
fT

�
¼ 0; ð11Þ

ð1þ fTÞ
fR

�
P̄0
r −

4

3
ησ0

�
þ μ0fT

fR
þ 1

ð1þ fTÞ
�
P̄r −

4

3
ησ − μ

�
∂rfT −

A
BfR

q̄0ð1þ fTÞ

−
�
ABð1þ fTÞ

fR

�
;0

1

B2
þ 1

B2

�
ψ01

fR

�
;0
þ μ∂rfT

fR
−
μfT
f2R

∂rfR

þ 1

fR

�
P̄r −

4

3
ησ

��
∂rfT −

ð1þ fTÞ
fR

∂rfR

�
þ
�
f − RfR

2
þ ψ11

B2

�
;1

−
AA0

B2fR

�
μfT þ μ̄þ ð1þ fTÞ

�
P̄r −

4

3
ησ

�
þ ψ11

B2
þ ψ00

A2

�

þ 2CC0

B2fR

�
ð1þ fTÞðP̄r−P⊥ − 2ησÞ þ ψ11

B2
−
ψ22

C2

�
−

fT
ð1þ fTÞ

�
μ0 þ ∂rT

2

�

þ
�
_B
B
þ

_A
A
þ 2C _C

A2
þ 2

B _B
A2

��
A
B
ð1þ fTÞ

fR
q̄ −

ψ01

B2fR

�
¼ 0: ð12Þ

The matter content within the spherical collapsing stellar geometry can be defined through the general Misner-Sharp
formula [45]. This is obtained as
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m ¼
�
_C2

A2
−
C02

B2
þ 1

�
C
2
: ð13Þ

Before calculating its variations among adjacent surfaces of
spherical radiating fluid configurations, we introduce some
useful operators. The operators corresponding to proper
and radial derivations are found to be

DT ¼ 1

A
∂
∂t ; DC ¼ 1

C0
∂
∂r : ð14Þ

The relativistic velocity associated with the spherical stellar
structure can be found by using the above mentioned proper
derivative operator. This turns out to be

U ¼ DTC ¼
_C
A
: ð15Þ

Now, we define E as a ratio C0
B . From Eqs. (13) and (15), one

can obtain

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2 −

2mðt; rÞ
C

r
: ð16Þ

Using field equations and the above two equations, the
radial mass variations is found to be

DCm ¼ C2

2fR

�
μ̄ −

R
2

�
f
R
− fR

�
þ ψ00

A2

þ U
E

�
ð1þ fTÞq̄ −

ψ01

AB

��
; ð17Þ

whose integration yields

m ¼ 1

2

Z
C

0

C2

fR

�
μ̄ −

R
2

�
f
R
− fR

�
þ ψ00

A2

þ U
E

�
ð1þ fTÞq̄ −

ψ01

AB

��
dC; ð18Þ

where the overbar indicates the addition of radiation
density in the corresponding variable quantity. The par-
ticular combinations of radiating matter parameters,
fðR; TÞ higher-curvature terms, and energy density can
be achieved via the Misner-Sharp mass formulation. This
can be obtained, after using Eq. (18), and is found to be

3m
C3

¼ 3

2C3

Z
r

0

�
μ̄ −

R
2

�
f
R
− fR

�
þ ψ00

A2

þU
E

�
ð1þ fTÞq̄ −

ψ01

AB

�
C2C0

�
dr: ð19Þ

This equation can be recast to obtain a scalar related to the
tidal forces acting on the anisotropic, radiating, shearing,
viscous spherical stellar system

E ¼ 1

2fR

�
μ̄ − ð1þ fTÞðΠ̄ − 2ησÞ − R

2

�
f
R
− fR

�

þ ψ00

A2
−
ψ11

B2
þ ψ22

C2

�
−
3m
C3

; ð20Þ

where E is the Weyl scalar. It so happened that the Weyl
scalar can be decomposed into its magnetic and electric
constituents. The magnetic part of the Weyl scalar is zero
for the spherical matter distribution. However, an electric
part does exist. The scalar, E, is associated with this
component of the Weyl tensor. In this way, E describes
the gravity effects coming due to tidal forces in the cosmos.
Equation (20) has related tidal forces with the structural
properties of the fluid configurations and fðR; TÞ extra
curvature terms. Equation (20) has been evaluated by
taking a regular distribution of fluid contents at the central
point, i.e., mðt; 0Þ ¼ 0 ¼ Cðt; 0Þ.

III. EXPANSION-FREE CONDITION AND f ðR;TÞ
ELLIS EQUATIONS

In this section, we shall evaluate an expansion-free
constraint and then discuss its meaning in the interpretation
of the mysterious dark Universe. We then consider the
viable and consistent fðR; TÞ gravity model. We then
proceed forward in our analysis by evaluating well-known
Ellis equations. The expansion-free equation can be
achieved by equating the expansion scalar with zero.
Thus, Eq. (5) yields

_B
B
¼ −

2 _C
C

; ð21Þ

which, upon integration, gives

B ¼ h
C2

; ð22Þ

where h is an arbitrary integration radial function.
Gravitational collapse is the phenomenon that takes

place in this accelerating expanding cosmos when the state
of hydrostatic equilibrium of a celestial body is destroyed.
If a stellar object is massive enough that the gas pressure is
insufficient to support it against gravitational forces, then
the star undergoes gravitational collapse, giving birth to
new stars. It is important to stress that any self-gravitating
stellar body would subject to gravitational collapse once it
bears through inhomogeneous and irregular surface energy
density. Therefore, in the collapse of self-gravitating
relativistic fluids, the role of energy density inhomogeneity
has gained much significance. If the fluid of the relativistic
celestial interiors is expansion free, this study may gain
even more attention.
The expansion-free condition has produced several

interesting results at galactic and cosmological scales.
Skripkin [46] noticed the captivating process of cavity
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emergence within nonradiating ideal relativistic matter
field. It is seen from the literature that, in null expansion
evolution, the innermost boundary surface of the interior
fluid configuration slides away from the central point, thus
conceiving a vacuum Minkowskian core [47]. The nullity
of Θ is sufficient but is not a necessary constraint that
guarantees the cavity emergence. The scenario of cavity
emergence has been explored in the literature [48] under
some kinematical constraints other than Θ ¼ 0. Di Prisco
et al. [49] and Sharif and Yousaf [50] studied core
formation within the relativistic celestial locally anisotropic
configurations after its central explosion and demonstrated
some expansion-free relativistic solutions.
The possible implementations of the null expansion

condition is anticipated for those astronomical settings
where a Minkowskian core is probably to be appear. In
addition to this, during the process of gravitational collapse,
whenever the expansion-free matter moves inside to reach
the central point, there will be a strong shear scalar blowup.
Joshi et al. [51] claimed that the apparent horizon formation
could be delayed due to the effects originated from the
strong shear of the collapsing system. This suggests the
emergence of naked singularity (NS). Therefore, the study
of expansion-free relativistic interiors could provide an
uncomplicated platform for the analysis of the NS appear-
ance. NS is a spacetime singularity that can be observed
directly by a distant observer. It represents the formation of
extremely high curvature and strong gravity regions and
could provide a source of gravitational waves. Are black
holes (BHs) and NS observationally distinguishable from
each other? In this perspective, Virbhadra et al. [52] gave a
very useful mathematical tool for understanding the NS
physics.
Virbhadra and Ellis [53] established that one can

observationally differentiate NS from BHs by analyzing
the corresponding characteristics of gravitational lensing
(GL). Claudel et al. [54] demonstrated that any photon
relativistic spherical body could be around the BH only if it
obeys a reasonable energy condition. For the observational
study of a cosmic censorship hypothesis, GL could provide
a reliable direction. In this context, it is seen from [55] that
BHs and NS of the same symmetry and Arnowitt-Deser-
Misner mass yield a variety of different images of the same
source of light. Furthermore, time of image delays because
of GL by a BH is greater than that of NS. This asserts that
one can get smaller time delays by choosing extreme values
of nakedness variables. NS could also provide images with
negative delays of time [56].
Because of zero expansion, matter sources could be

effective for the voids explanation. Voids are so-called
underdense regions incorporating a substantial amount of
information on the cosmological environment [57]. Voids
offers a reliable guide to discuss the cosmic structure
appearance at large scales. In comparison with GR, they
are more rich in modified gravity [58]. Wiltshire [59]

claimed that the actual picture of cosmos constitutes
spongelike structural bodies in which voids have a dom-
inant role. Furthermore, some cosmological indications
assert that about 40%–50% volume of the current cosmos is
endowed with cosmological voids with a scale 30h−1Mpc,
where h is the nondimensional Hubble parameter,
H0 ¼ 100h km sec−1Mpc−1.
The evident relevance of such effects could increase

interest in the problem addressed in this paper.
The fascinating phenomenon of accelerating cosmic

expansion could be described by taking into account
extended gravity models involving curvature matter cou-
pling, like fðR; TÞ gravity. For theoretically and cosmo-
logically consistent fðR; TÞ gravity, the choice of fðR; TÞ
function is very crucial. We are considering the following
particular fðR; TÞ model form:

fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ: ð23Þ

This model form does involve direct minimal curvature
matter coupling. This could be assumed as a possible
correction in the well-known fðRÞ gravity. Here, we
take a linear choice of f2, from which some striking
outcomes can be observed on the basis of nontrivial
coupling, as compared to fðRÞ gravity. Thus, we assume
f2ðTÞ ¼ νT, where ν is a constant. The Lagrangian with
this background of f2 has been broadly examined by many
relativistic astrophysicists. Harko et al. [60] obtained some
cosmic solutions depicting a clear accelerating, expanding
picture of the Universe framed within f2 ¼ νT.
Now, we are interested in taking a physical feasible

generic Ricci invariant function. These may give birth to
the existence of some new spherical models. A cosmo-
logical viable model needs to obey big-bang nucleosyn-
thesis, radiation as well as matter dominated regimes.
Also, they should be expected to allow cosmological
perturbations consistent with cosmic restrictions emerging
from anisotropies in the cosmic microwave background.
In this realm, we consider power-law Ricci scalar
corrections, i.e., fðRÞ ¼ Rþ λRn, where λ ∈ Rþ, with
Rþ being the set of positive real numbers and n a
constant. Depending upon the selection of n, this model
has some physical descriptions. For instance, this model,
for n ¼ 2, could depict the exponential behavior of the
early cosmic expansion proposed by Starobinsky [61].
Such fðRÞ model could draw dark matter (for λ ¼ 1

6M2

[62] with M ¼ 2.7 × 10−12 GeV [7]) and DE effects in
the gravitational theory. Furthermore, gravity induced
under n ¼ 2 [63] and n ¼ 3 [64] supports the existence
of more massive compact objects than GR. The fðRÞ
tanh corrections have also been investigated in the study
of stellar collapse [65]. However, the negative n values
could helps to explain the dynamics of a stellar object in
the presence of late-time accelerating cosmic expansion
corrections [6].
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In order to delve into the survival of the regular energy density over the dissipative spherical celestial object, we now
calculate a couple of well-known equations by following the procedure introduced by Ellis [66]. These expressions in the
background of dark source fðR; TÞ corrections can be found by using Eqs. (6)–(9), (13), (14), (20), and (23) as

�
E −

1

2ð1þ nλRn−1Þ
�
μ̄ − ð1þ νÞðΠ̄ − 2ησÞ − ð1 − nÞ

2
λRn −

ν

2
T þ φ00

A2
−
φ11

B2
þ φ22

C2

��
;0

¼ 3 _C
C

�
1

2ð1þ nλRn−1Þ
�
μ̄þ ð1þ νÞ

�
P⊥ −

2

3
ησ

�
þ μνþ φ00

A2
þ φ22

C2

�
− E

�

þ 3AC0

2BCð1þ nλRn−1Þ
�
ð1þ νÞq̄ −

φ01

AB

�
; ð24Þ

�
E −

1

2ð1þ nλRn−1Þ
�
μ̄ − ð1þ νÞðΠ̄ − 2ησÞ − ð1 − nÞ

2
λRn −

ν

2
T þ φ00

A2
−
φ11

B2
þ φ22

C2

��0

¼ −
3C0

C

�
E þ 1

2ð1þ nλRn−1Þ
�
ð1þ νÞðΠ̄ − 2ησÞ þ φ11

B2
−
φ22

C2

��

−
3B _C

2ACð1þ nλRn−1Þ
�
ð1þ νÞq̄ −

φ01

AB

�
; ð25Þ

where φii encapsulate fðR; TÞ extra degrees of freedom
involved in the evolution of a shearing, viscous, radiating
spherical body. These quantities can be evaluated by
considering Eqs. (6)–(9) and (23) accordingly.

IV. IRREGULARITIES IN THE DYNAMICAL
SYSTEM

In this section, we shall calculate some irregularity
factors that cause the appearance of irregularities over
the surface of a stellar spherical system with an fðR; TÞ
background. The system enters into the collapsing window
once the celestial surface suffers energy density inhomo-
geneities. Therefore, the understanding of the system’s
collapsing nature is directly related to the exploration of
irregularity factors. For this purpose, we assume that our
stellar spherical relativistic system is in a complete homo-
geneous phase. We shall take some specific choices of
matter fields framed within dark source terms coming from
the fðR; TÞ model. As fðR; TÞ field equations are highly
nonlinear, we will confine ourselves to the constant values
of the trace of the stress-energy tensor as well as the

cosmological Ricci scalar. These are represented by putting
a tilde over the respective quantities. We shall also calculate
irregularity factors for those spherical relativistic interiors
that continue their evolutions by establishing central
Minkowskian cavity. This would be achieved by taking
an expansion-free condition in the corresponding equa-
tions. We shall classify our investigation in two scenarios,
i.e., dissipative/radiating and nondissipative/nonradiating
systems as follows.

A. Nonradiating matter

Here, we deal with adiabatic noninteracting, ideal, and
locally anisotropic forms of relativistic matter distributions
coupled and framed within the fðR; TÞ background.

1. Noninteracting relativistic particles

This subsection addresses geodesically moving non-
interacting fluid configurations. So, we take all pressure
gradients effects to be zero, P̂r ¼ 0 ¼ P⊥ ¼ q̂, along with
A ¼ 1. Then the fðR; TÞ Ellis equations (24) and (25)
reduce to

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T
��

;0

¼ 3 _C
C

�
1

2ð1þ nλ ~Rn−1Þ fμð1þ νÞg − E
�
;

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��0
¼ −3

C0

C
E:

Using Eqs. (5), (11), and (23) in the above equations, we have
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_E þ 3 _C
C

E ¼ μð1þ λÞ
2ð1þ nλ ~Rn−1Þ

�
3 _C
C

þ ð1þ νÞB2C2

f1þ ð1þ nλ ~Rn−1Þð1þ νÞgΘ
�
; ð26Þ

E0 þ 3C0

C
E ¼ μ0

2ð1þ nλ ~Rn−1Þ : ð27Þ

It can seen from Eq. (27) that, if μ0 ¼ μðtÞ, then

E ¼ 0;

thereby indicating that the existence of the Weyl scalar is directly proportional to the existence of the regular energy density
of noninteracting self-gravitating particles. This is the very result found in GR by many relativistic astrophysicists. Thus, we
conclude that fðR; TÞ extra curvature terms have not altered or disturbed the Weyl curvature role in the conformally flat
solutions of a relativistic dust cloud. Now, we solve Eq. (26) to investigate which quantities are in fact making an impact
over the contribution of the Weyl scalar in fðR; TÞ gravity. The solution of Eq. (26) yields

E ¼ ð1þ νÞ
2ð1þ nλ ~Rn−1ÞC3

Z
t

0

�
3C2 _Cþ ð1þ νÞB2C5

f1þ ð1þ nλ ~Rn−1Þð1þ νÞgΘ
�
μdt: ð28Þ

This shows that the Weyl scalar for dust particles in the fðR; TÞ model is directly related to the temporal integrals of the
energy density and expansion scalar. If we take the null expansion scenario, the above equation gives

E ¼ 3ð1þ νÞ
2ð1þ nλ ~Rn−1ÞC3

Z
t

0

μC2 _Cdt: ð29Þ

The relativistic systems that evolve by encapsulating the Minkowskian core in the Universe should satisfy the above
constraint in order to enter into the inhomogeneous phase. In other words, for the regular distribution of dust expansion-free
particles in fðR; TÞ gravity, one needs to take Eq. (29) to be zero.

2. Isotropic fluid

Here, we consider the case of an ideal self-gravitating fluid in the environment of fðR; TÞ gravity. The extended Ellis
equations (24) and (25) give rise to the following set of differential equations:

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��
;0

¼ 3 _C
C

�
1

2ð1þ nλ ~Rn−1Þ fðμþ PÞð1þ νÞg − E
�
;

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��0
¼ −3

C0

C
E:

Equations (5) and (12) provide

_E þ 3 _C
C

E ¼ ð1þ λÞðμþ PÞ
2ð1þ nλ ~Rn−1Þ

�
3 _C
C

þ ð1þ νÞB2C2

f1þ ð1þ nλ ~Rn−1Þð1þ νÞgΘ
�
; ð30Þ

E0 þ 3C0

C
E ¼ μ0

2ð1þ nλ ~Rn−1Þ : ð31Þ

It is seen from the second of the above equations that energy density will be regular as long as E ¼ 0. However, the solution
of Eq. (30) yields

E ¼ ð1þ νÞ
2ð1þ nλ ~Rn−1ÞC3

Z
t

0

�
3C2 _Cþ ð1þ νÞB2C5

f1þ ð1þ nλ ~Rn−1Þð1þ νÞgΘ
�
ðμþ PÞdt: ð32Þ

This indicates that the influence of tidal forces is controlled by the linear combination of the system energy density and a
locally isotropic pressure gradient. This also highlights the importance of an expansion scalar in the modeling of a
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homogeneous spherical geometry coupled with isotropic matter configurations in the presence of fðR; TÞ corrections.
However, if we eliminate this scalar with the help of Eq. (21), we have

E ¼ 3ð1þ νÞ
2ð1þ nλ ~Rn−1ÞC3

Z
t

0

ðμþ PÞC2 _Cdt: ð33Þ

This suggests that a pressure gradient has increased the impact of tidal forces over the isotropic spherical stellar interior.
Furthermore, fðR; TÞ corrections tend to reduce the influence of the Weyl scalar due to its nonattractive nature.

3. Anisotropic fluid

This subsection is aimed at extending our previous work. Here, we introduce effects of anisotropic stresses; thus, Π ≠ 0
in our analysis. In this realm, the fðR; TÞ Ellis equations (24) and (25) take the following forms:

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ − ð1þ νÞΠ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��
;0

¼ 3 _C
C

×

�
1

2ð1þ nλ ~Rn−1Þ fðμþ P⊥Þð1þ νÞg − E
�
;

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ − ð1þ νÞΠ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��0
¼ −3

C0

C
×

�
E þ ð1þ νÞΠ

2ð1þ nλ ~Rn−1Þ

�
;

which can be manipulated, after using Eq. (12), in the following manner:

�
E þ ð1þ λÞΠ

2ð1þ nλ ~Rn−1Þ

�
;0

þ 3

�
E þ ð1þ λÞΠ

2ð1þ nλ ~Rn−1Þ

�
_C
C

¼ 3½μþ ð1þ νÞPr� _C
2Cð1þ nλ ~Rn−1Þ þ ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1

2Af1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
ðμþ PrÞB2C5Θþ 2CΠ _C

A

�
; ð34Þ

�
E þ ð1þ λÞΠ

2ð1þ nλ ~Rn−1Þ

�
;1

þ 3

�
E þ ð1þ λÞΠ

2ð1þ nλ ~Rn−1Þ

�
C0

C
¼ μ0

2ð1þ nλ ~Rn−1Þ : ð35Þ

It is well known from the work of several relativistic astrophysicists that, in GR [67] as well as in fðR; TÞ [44], one can
break the Riemann tensor into a couple of tensors, namely, Xαβ and Yαβ. The traceless part of Xαβ yields the following (for
details please see [44]):

XTF ¼ −E −
ð1þ λÞΠ

2ð1þ nλ ~Rn−1Þ : ð36Þ

It is seen that some terms involved in Eqs. (34) and (35) have the same configurations as that of the traceless part of the
second dual of the Riemann curvature tensor mentioned in Eq. (33). In this context, Eqs. (34) and (35) can be recast as

_XTF þ 3XTF
_C

C
¼ −

3½μþ ð1þ νÞPr� _C
2Cð1þ nλ ~Rn−1Þ −

ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1
2Af1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
ðμþ PrÞB2C5Θþ 2CΠ _C

A

�
; ð37Þ

X0
TF þ 3XTFC0

C
¼ −μ0

2ð1þ nλ ~Rn−1Þ : ð38Þ

The second of the above equations points out that if μ0 ¼ 0, then XTF ¼ 0, and vice versa. This indicates XTF as an entity
supervising inhomogeneities in the energy density of the anisotropic spherical fluids. This result supports the conclusions of
[44]. Now, we are interested in finding out on which factors this XTF depends, in the presence of dark source terms resulting
from fðR; TÞ gravity. The solution of Eq. (37) yields
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XTF ¼ −3
2ð1þ nλ ~Rn−1ÞC3

Z
t

0

½μþ ð1þ νÞPr�C2 _Cdt

−
ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1

2Af1þ ð1þ nλ ~Rn−1Þð1þ νÞg
Z

t

0

�
ðμþ PrÞB2C5Θþ 2CΠ _C

A

�
dt: ð39Þ

This illustrates the importance of pressure anisotropy and an expansion scalar in the modeling of regular energy density of
the celestial spherical geometry in fðR; TÞ gravity. Now, using Eqs. (21) and (22), we get

XTF ¼ −3
2ð1þ nλ ~Rn−1ÞC3

Z
t

0

½μþ ð1þ νÞPr�C2 _Cdt

−
ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1

A2f1þ ð1þ nλ ~Rn−1Þð1þ νÞg
Z

t

0

CΠ _Cdt: ð40Þ

This provides that inhomogeneity factor; i.e., XTF depends upon the anisotropic pressure gradients in the scenario of
fðR; TÞ gravity. Since we know that, in the null expansion stellar body, the central point is covered by another metric
appropriately joined with the rest of the matter distributions.

B. Radiating shearing viscous noninteracting particles

This subsection discusses the irregularity factors in the realm of dissipation with both free-streaming and diffusion limits,
but with a special case of viscous particles. Therefore, we consider Pr ¼ 0 ¼ P⊥ in the matter field, and the evolution is
characterized by geodesics. This assumption is well established in the background of some theoretical developments. Then,
Eqs. (24) and (25) give

�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ − 2ð1þ νÞησ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��
;0

¼ 3 _C
C

×

�
1

2ð1þ nλ ~Rn−1Þ

�
μ̄ −

2

3
ð1þ νÞησ þ μν

�
− E

�
þ 3Að1þ νÞq̄C0

2BCð1þ nλ ~Rn−1Þ ; ð41Þ
�
E −

1

2ð1þ nλ ~Rn−1Þ

�
μ̄þ 2ð1þ νÞησ −

ð1 − nÞ
2

λ ~Rn −
ν

2
~T

��0

¼ −3
C0

C
×

�
E þ ð1þ νÞησ

ð1þ nλ ~Rn−1Þ

�
−

3Bð1þ νÞq̄ _C

2ACð1þ nλ ~Rn−1Þ : ð42Þ

It has been investigated with the above equation that the quantity which is controlling irregularities isΨ, defined as follows:

Ψ≡ E þ ð1þ νÞ
C3ð1þ nλ ~Rn−1Þ

�
η

Z
r

0

�
σ0 −

3C0

C
σ

�
C3dr −

3

2

Z
r

0

B _C q̄C2dr

�
: ð43Þ

Thus, if there is a regular configuration of energy density, i.e., μ0 ¼ μðtÞ, thenΨ ¼ 0, and vice versa. Thus, in order to enter
into the homogeneous window by the radiating dust cloud, it should vanish the above quantity Ψ. It can be seen that Ψ
controls shearing viscosity and heat flux. Making use of Eqs. (5) and (12) in Eq. (41), the Ψ evolution equation is found to
be as follows:

_Ψ −
_Ω
C3

¼ ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1
2f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
q̄0Bþ B2C2

�
μ̄þ 2

3
ησ

�
Θþ B

�
εþ 2

3
ησ

�
_B

�

þ _ε

2ð1þ nλ ~Rn−1Þ

�
1 −

ð1þ νÞ
f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�

þ ηð1þ νÞ
ð1þ nλ ~Rn−1Þ

�
_σ þ

_C
C
σ

�
þ 3 _C

2Cð1þ nλ ~Rn−1Þ fεþ μð1þ νÞg − 3 _C
C

Ψ

þ ð1þ νÞq̄
2ð1þ nλ ~Rn−1Þ

�
3C0

C
−

ð1þ νÞ
f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
B0

B
−
CC0

B2

��
; ð44Þ
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whose solution leads to

Ψ ¼ 1

C3

Z
t

0

�
_Ωþ

� ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1C3

2f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
B2C2

�
μ̄þ 2

3
ησ

�
Θþ q̄0Bþ

�
εþ 2

3
ησ

�
B _B

��

þ _εC3

2ð1þ nλ ~Rn−1Þ

�
1 −

ð1þ νÞ
f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�

þ ηð1þ νÞ
ð1þ nλ ~Rn−1Þ

�
_σ þ

_C
C
σ

�
C3 þ 3 _CC2

2ð1þ nλ ~Rn−1Þ fεþ μð1þ νÞg

þ ð1þ νÞq̄
2C3ð1þ nλ ~Rn−1Þ

�
3C0

C
−

ð1þ νÞ
f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
B0

B
−
CC0

B2

���
: ð45Þ

For an expansion-free condition, the inhomogeneity factor for the viscous dissipative system is found to be as follows:

Ψ ¼ 1

C3

Z
t

0

�
_Ωþ

� ð1þ νÞ2ð1þ nλ ~Rn−1Þ−1C3

2f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
hq̄0

C2
−
2h2 _C
C5

�
εþ 2

3
ησ

���

þ _εC3

2ð1þ nλ ~Rn−1Þ

�
1 −

ð1þ νÞ
f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
þ ηð1þ νÞ
ð1þ nλ ~Rn−1Þ

�
_σ þ

_C
C
σ

�
C3

þ 3 _CC2

2ð1þ nλ ~Rn−1Þ fεþ μð1þ νÞg

þ ð1þ νÞq̄
2C3ð1þ nλ ~Rn−1Þ

�
3C0

C
−

ð1þ νÞ
f1þ ð1þ nλ ~Rn−1Þð1þ νÞg

�
h0

h
−
2C0

C
−
C5C0

h2

���
: ð46Þ

This asserts the importance of matter parameters as the
irregularity factor has some correspondence with the fluid
variables, especially the shearing viscosity, heat flux, and
structural properties of the system.

V. CONCLUSIONS

In this paper, we have studied the impact of modified
gravity on the distribution of matter configuration for a self-
gravitating spherical star. The disturbance in the hydrostatic
equilibrium of a celestial object leads to homogeneous or
inhomogeneous matter state. We have taken into consid-
eration the spherically symmetric source in the gravitational
field of fðR; TÞ gravity. The geometry is filled with an
imperfect fluid due to anisotropic stresses and dissipation
which are designed in both limits, i.e., diffusion and the
free-streaming limit. We have constructed the modified
field equations and the corresponding dynamical equations
using conservation laws. Some kinematical and dynamical
quantities are formulated to explain the evolutionary
development of such objects. The mass function using
the Misner-Sharp [45] approach is calculated for our
spherical object and the curvature tensor, as well as the
Weyl tensor, is explored in this framework. It has been
found that the Weyl tensor has its constituent tensor, like its
electric and magnetic parts. Its magnetic part vanishes due
to the symmetry of the underconsidered problem, while
only its electric part exists.

It is a well-established fact that the Weyl tensor is
responsible for the emergence of tidal forces which makes
the object more inhomogeneous over the evolution of time.
In our case, the spherical system suffers the inhomo-
geneous states due to the presence of its electric part only.
We have established an explicit expression between the
Weyl tensor and the matter variables—heat flux, aniso-
tropic stresses, etc.—which is significantly important in
light of Penrose’s proposal [68]. Penrose provided the idea
of a relationship between the Weyl tensor with inhomo-
geneities in energy density and isotropic pressure; however,
such a link is no longer valid in the presence of anisot-
ropies. In this manuscript, we have established such a
relation between the Weyl tensor and fluid parameters in
the background of higher order curvature terms emerging
due to the fðR; TÞ gravitational field.
We have also disintegrated the curvature tensor into its

constituent parts using the comoving coordinates. These are
found to be structure scalars, as was already obtained in the
framework of fðRÞ gravity. These scalars have gained
significant importance in light of the Newtonian and
general relativistic star models. It is also observed that
these scalars are used to find the solutions of the Einstein
field equations [69]. Moreover, these scalars are also used
to discuss the irregular distribution of matter density. It is
still unclear how different physical factors emerging in
fluid configuration can affect the production of inhomo-
geneities in energy density. Here, we have found some
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factors creating the irregularities in the matter distribution
with fðR; TÞ extra curvature ingredients. Our analysis will
strictly depend upon two differential equations emerging
from the explicit expression of Weyl tensor with matter
variables and the mass function. These equations are
carried out by using Ellis’s procedure as adopted in his
paper. We have constructed our analysis to demonstrate the
inhomogeneities in two regimes, i.e., with dissipative and
nondissipative fluids. The results obtained in the particular
cases of dust, isotropic, and anisotropic matter are given as
follows.

(i) In the absence of dissipative effects and with dust
cloud and fðR; TÞ dark source terms, we have found
that the evolutionary motion of the celestial bodies
will be homogeneous if the Weyl scalar is zero, with
extra curvature terms of the theory. In other words,
the Weyl tensor attributed to its electric part and the
impact of modified gravity makes the system more
inhomogeneous in the gravitational arrow of time.
This result can be seen from Eqs. (28) and (29); i.e.,
if we have a homogeneous matter distribution, then
the Weyl tensor and the dark source term should
vanish.

(ii) By increasing the complexity in the previous case
with isotropic pressure, we have observed the same
factors creating the irregularities in the density
distribution, but in the presence of isotropic
pressure.

(iii) For the nondissipative anisotropic fluid model, it has
been found that a linear combination of matter
profile is now responsible for the emergence of

density inhomogeneity. Furthermore, we have
examined that such a linear combination corre-
sponds to one of the structure scalars obtained
in Eq. (40).

(iv) For the dissipative dust cloud case, we have factored
in controlling the density distribution as a combi-
nation of geometrical and physical variables in the
background of fðR; TÞ gravity theory, as obtained in
Eqs. (45) and (46).

We mention that this study can be generalized to
study the density inhomogeneity to fðR; T; RμνTμνÞ grav-
ity. We would like to draw attention to a recent paper [70],
in which Ayuso et al. discussed the consistency of a
recently proposed class of theories described by an arbi-
trary function of the Ricci scalar, the trace of the energy-
momentum tensor, and the contraction of the Ricci tensor
with the energy-momentum tensor. Therein they briefly
discussed the limitations of including the energy-
momentum tensor in the action, as it is a non-fundamental
quantity but a quantity that should be derived from the
action (in agreement with Koivisto and Padmanabhan
arguments). All of our results reduce to general relativity
if we take fðR; TÞ ¼ R.
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