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In the weak-field limit, analytic fðRÞ models of gravity introduce a Yukawa-like correction to the
Newtonian gravitational potential. These models have been widely tested at galactic scales and provide an
alternative explanation to the dynamics of galaxies without Dark Matter. We study if the temperature
anisotropies due to the thermal Sunyaev-Zeldovich effect are compatible with these extended theories of
gravity. We assume that the gas is in hydrostatic equilibrium within the modified Newtonian potential and it
is well described by a polytropic equation of state. We particularize the model for the Coma cluster and the
predicted anisotropies are compared with those measured in the foreground cleaned maps obtained using
the Planck Nominal maps released in 2013. We show that the computed fðRÞ pressure profile fits the data,
giving rise to competitive constraints of the Yukawa scale length L ¼ ð2.19� 1.02Þ Mpc and of the
deviation parameter δ ¼ −0.48� 0.22. Those are currently the tightest constraints at galaxy cluster scale,
and support the idea that extended theories of gravity provide an alternative explanation to the dynamics of
self-gravitating systems without requiring dark matter.
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I. INTRODUCTION

Astrophysical and cosmological observations clearly
indicate that the Universe has entered into a period of
accelerated expansion [1–6]. The ΛCDM model accounts
for these observations by requiring two new energy densities:
a dark matter (DM) component, characterized by a small
temperature, interacting only gravitationally with the other
energy components and a cosmological constant Λ, equiv-
alent to a perfect fluid with negative pressure: p ¼ wρ with
an equation of state parameterw ¼ −1. To explain the current
period of accelerated expansion only w ≤ −1=3 is required.
This negative pressure fluid is named Dark Energy (DE).
The current values of the energy densities are ΩDM ≃ 0.26
and ΩΛ ≃ 0.68, in units of the critical density, and of the
equation of state parameter w ¼ −1.019þ0.075

−0.080, compatible
with a cosmological constant [5]. Although the effects of
DM andDE on large scale are very well constrained, the lack
of evidence of counterparts at the particle level has been
interpreted as a break on General Relativity (GR) at galactic,
extragalactic and cosmological scales and alternative models
to GR have been proposed.
Generically, Extended Theories of Gravity (ETGs)

generalize the Hilbert-Einstein Lagrangian by including
higher-order curvature invariants and minimally or non-
minimally coupled terms between scalar fields and geom-
etry. The most studied generalization consists in replacing
the Ricci scalar R in the Hilbert-Einstein action with a more
general function of the curvature fðRÞ (for comprehensive
reviews see [7–12]). Although many fðRÞ models can be

tested with astrophysical and cosmological observations
(see [13] and reference therein), the exact functional form
of the gravitational action is still unknown. The higher
order terms appearing in the Lagrangian can be recast as
additional scalar fields by performing a conformal trans-
formation from the Jordan to the Einstein frame [9]. As an
example, chameleon fðRÞ models introduce a scalar field
nonminimally coupled to matter, giving rise to the so called
fifth force. These models require a screening mechanism to
erase the effect of the scalar field in high density environ-
ments to evade the constraints imposed by the Solar System
dynamics [14,15]. Many efforts have been devoted to test
these models from astrophysical to cosmological scales
[16–23]. For instance, an upper bound on the background
amplitude of the chameleon field has been found by
studying the gravitational interaction on the outskirts of
galaxy clusters [24–26]. At the scale of cluster of galaxies,
[27] demonstrated the existence of a degeneracy between
the baryonic processes and the underlying theory of gravity.
Although it is always possible to transform the model from
the Jordan to the Einstein frame and vice-versa since they
are conformally equivalent, nothing can be said a priori
about their physically equivalence that must be studied for
each specific case [12,28,29].
Alternatively, one could make the whole analysis in

the Jordan frame and consider the additional degrees of
freedom introduced by the theory of gravity as “free
parameters” that must be constrained using data. Thus,
those parameters are expected to acquire different values at
different scales in order to pass the Solar system con-
straints. For instance, analytic fðRÞ models, those expand-
able in Taylor series around a fixed point R0, i.e.,

*ivan.demartino1983@gmail.com

PHYSICAL REVIEW D 93, 124043 (2016)

2470-0010=2016=93(12)=124043(10) 124043-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.124043
http://dx.doi.org/10.1103/PhysRevD.93.124043
http://dx.doi.org/10.1103/PhysRevD.93.124043
http://dx.doi.org/10.1103/PhysRevD.93.124043


fðRÞ ¼
X

n

fnðR0Þ
n!

ðR − R0Þn ≃ f0 þ f00Rþ f000
2
R2 þ � � � :

ð1Þ

give rise to Yukawa-like corrections of the gravitational
potential in the Newtonian limit [29,30]

ΦgravðrÞ ¼ −
GM
r

�
1þ δe−

r
L

1þ δ

�
; ð2Þ

where δ quantifies the deviation from GR at zero order
and L is an extra gravitational scale length of the self-
gravitating object [12]. This new gravitational scale is
strictly related to the theory: fðRÞ gravity is a fourth-order
theory and its extra degrees of freedom give rise, in the
weak-field limit, to a new characteristic scale length
(see [31] for the description of the general paradigm on
ð2kþ 2Þ-order theories of gravity). Those two parameters
are related to the coefficients in the Taylor expansion,
Eq. (1), by the relations: δ ¼ f00 − 1 and L ¼ ½−6f000f00�1=2
(see Sect. II for a more detailed discussion). Analytic fðRÞ
models have been shown to evade the Solar System
constraints [30,32–35] and to correctly describe the
collapse of self-gravitating systems [36], the emission of
gravitational waves [33,37,38] and the dynamics of ellip-
tical and spiral galaxies without requiring DM [39,40].
Nevertheless, they are poorly tested at galaxy cluster scale.
At such scale, analytic fðRÞ models provide a good fit to
the mass profile of 12 x-ray clusters without requiring a
DM halo [41]. An equally attractive test is given by the
pressure profile of clusters derived from the Cosmic
Microwave Background (CMB) temperature anisotropies
generated by the thermal Sunyaev-Zeldovich (TSZ) effect
[42]. An upper bound on the parameters of Eq. (2) was
determined using a reconstructed map of CMB temperature
fluctuations, and computing SZ profiles averaged over a
sample of 579 galaxy clusters [43]. This led to the
bounds δ < −0.1 and L < 19 Mpc at the 95% confidence
level (C.L.).
In this paper, we demonstrate that the SZ profiles of

clusters agree with the observed profiles when their intra-
cluster gas is in hydrostatic equilibrium within the potential
in Eq. (2). There is no need to introduce a dominant DM
component. We particularize our analysis for the Coma
cluster since is located close to the galactic pole where the
foreground emission is comparatively low. We use Planck
2013 Nominal maps to measure its SZ profile and constrain
the parameters ðδ; LÞ of the modified gravitational poten-
tial. We assume Coma to be spherically symmetric and
the intra-cluster gas to be in hydrostatic equilibrium. These
are good approximations to describe the gas distribution
and its dynamical state in the intermediate regions where
the nonthermal pressure is expected to be subdominant
[24,25,44]. The outline of the paper is as follows: in Sec. II,

we briefly summarize the weak-field limit of analytic fðRÞ
gravity and we discuss the modified gravitational potential
limit at small and large scales; in Sec. III, we describe the
SZ effect and the model to be tested; in Sec. IV, we describe
the main observational features of the Coma cluster and
Planck 2013 Nominal data, summarizing the procedure
used to produce foreground cleaned maps, and in Sec. V we
describe our methodology. Finally, in Sec. VI, we present
our results, and in Sec. VII, we summarize our conclusions.

II. YUKAWA-LIKE CORRECTION
TO THE NEWTONIAN POTENTIAL FROM

THE WEAK-FIELD LIMIT OF f ðRÞ GRAVITY

Our purpose is to test a class of theories of gravity that in
the weak-field limit gives rise to a Yukawa-like correction
of the Newtonian gravitational potential. Let us first
consider the action of a fðRÞ-gravity model in the vacuum
[7–12]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ: ð3Þ

The corresponding field equations are

f0ðRÞRμν − 1
2
fðRÞgμν − f0ðRÞ;μν þ gμν□f0ðRÞ; ð4Þ

and their trace is

3□f0ðRÞ þ f0ðRÞR − 2fðRÞ ¼ 0: ð5Þ

In the post-Newtonian limit, one is interested in describing
the motion of the particles beyond the Newtonian approxi-
mation by including higher order corrections in the
perturbation expansion of the metric. The post-
Newtonian limit in a higher order theory of gravity
introduces correction terms in the Newtonian gravitational
potential. The correcting terms depends on the order of the
partial differential equations that describe the gravitational
field [28]. For instance, in fðRÞ ¼ R2 the field equations
are fourth order and in the post-Newtonian limit there is a
Yukawa-like correction term that modifies the Newtonian
potential [45]. This correction also appears in any fðRÞ-
model that can be expanded in Taylor series. To illustrate
this point, let us briefly derive the solution of the field
equations in the weak-field limit for a spherically sym-
metric matter distribution (a detailed description of the
weak-field limit in GR can be found in [46], while its
analogue in fðRÞ gravity was studied in [28,29]). In this
case, the metric can be written as

ds2 ¼ g00ðct; rÞc2dt2 − g11ðct; rÞdr2 þ r2dΩ2; ð6Þ

where dΩ2 is the solid angle. In order to study the weak-
field limit, the metric tensor can be written as follows [46]
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g00ðct; rÞ ¼ 1þ gð2Þ00 ðct; rÞ þ gð4Þ00 ðct; rÞ; ð7Þ

g11ðct; rÞ ¼ −1þ gð2Þ11 ðct; rÞ; ð8Þ

g22ðct; rÞ ¼ −r2; ð9Þ

g33ðct; rÞ ¼ −r2 sin θ2: ð10Þ

These expansions are introduced into the field equations (4)
to compute the perturbations at Oð0Þ, Oð2Þ, and Oð4Þ.
Particularizing Eq. (1) for an analytic fðRÞ model at order
zero one finds the condition

f0
2
gð0Þμν ¼ 0; ð11Þ

that automatically implies f0 ¼ 0. Thus, the solutions at
higher orders will not depend on this parameter. If we now
consider the approximation at second order, the vacuum
field equations can be re-written as

f00rR
ð2Þ − 2f00∂rg

ð2Þ
tt þ 8f000∂rRð2Þ − f00r∂2

rg
ð2Þ
tt

þ f000rR
ð2Þ ¼ 0; ð12Þ

f00rR
ð2Þ − 2f00∂rg

ð2Þ
rr þ 8f000∂rRð2Þ − f00r∂2

rg
ð2Þ
tt ¼ 0; ð13Þ

2f00g
ð2Þ
11 − r½f00rRð2Þ − f00∂rg

ð2Þ
tt − f00∂rg

ð2Þ
rr

þ 4f000∂rRð2Þ þ 4f000r∂2
rRð2Þ� ¼ 0; ð14Þ

f00rR
ð2Þ þ 6f000½2∂rRð2Þ þ r∂2

rRð2Þ� ¼ 0; ð15Þ

2gð2Þ11 þ r½2∂rg
ð2Þ
tt − rRð2Þ þ 2∂rg

ð2Þ
rr þ r∂2

rg
ð2Þ
tt � ¼ 0: ð16Þ

These generic expressions can be particularized for a
specific theory selecting the corresponding coefficients
fi in the Taylor expansion of Eq. (1). In other words,
this system of equations can be rewritten for any fðRÞ-
Lagrangian as long as it is expandable in Taylor series. The
solution of Eqs. (12)–(16) is [29,30]

gð2Þtt ¼ δ0 −
ϒ
f00r

−
δ1ðtÞe−r

ffiffi
ξ

p

3ξr
þ δ2ðtÞer

ffiffi
ξ

p

6ð−ξÞ3=2r ; ð17Þ

gð2Þrr ¼ −
ϒ
f00r

þ δ1ðtÞ½r
ffiffiffi
ξ

p þ 1�e−r
ffiffi
ξ

p

3ξr

−
δ2ðtÞ½ξrþ

ffiffiffi
ξ

p �er
ffiffi
ξ

p

6ξ2r
; ð18Þ

Rð2Þ ¼ δ1ðtÞe−r
ffiffi
ξ

p

r
−
δ2ðtÞ

ffiffiffi
ξ

p
er

ffiffi
ξ

p

2ξ
; ð19Þ

where ϒ is an arbitrary integration constant, the coefficient

ξ ¼ − f0
0

6f00
0

has units of ðlengthÞ−2, and f00 and f000 are the

Taylor coefficients of the Lagrangian; δ0 is dimensionless
and the time dependent functions δ1ðtÞ, δ2ðtÞ have dimen-
sions ðlengthÞ−1, ðlengthÞ−2, respectively. Since in the

weak-field limit gtt ¼ 1þ 2ϕgrav ¼ 1þ gð2Þtt , then δ0 ¼ 0

and

Φgrav ¼ −
ϒ

2f00r
−
δ1ðtÞe−r

ffiffiffiffi
−ξ

p

6ξr
þ δ2ðtÞer

ffiffiffiffi
−ξ

p

12ð−ξÞ3=2r : ð20Þ

When r → ∞, the potential must go to zero. Imposing this
condition yields δ2ðtÞ≡ 0. Finally, to restore GR in the
limit f00 ¼ 1 and f000 ¼ 0, then ϒ ¼ 2GM. Introducing the
notation of

ffiffiffiffiffiffi
−ξ

p ¼ 1=L, where now L has units of length,
δ1 ¼ − 6GM

L2
δ

1þδ, and 1þ δ ¼ f00, the Eq. (20) can be
rewritten as the modified potential of Eq. (2).

A. Small and large scale limits of the modified
gravitational potential

The general result of Eq. (2) implies that the Newtonian
potential describes the gravitational interaction only
in the particular case of the Einstein-Hilbert Lagrangian,
i.e. fðRÞ ¼ R. In other words, the parameters of the
Yukawa-like correction, ðδ; LÞ, represent the deviation of
the gravitational potential from the standard Newtonian
gravity. As it is well known, any high order theory of
gravity has to evade the Solar System constraints.
Specifically, at small scales (r ≪ L) the Yukawa term in
the gravitational potential is not in contradiction with Solar
System observations [35,47]. In fact, in the GR limit f00¼ 1

and f000 ¼ 0 and δ¼ f00−1¼ 0 and L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6f000=f00

p ¼ 0.
Thus, from Eq. (2), the Newtonian potential is restored and
no violation of the Solar System constraints appears. Since
there is no general prescription that ensures the physical
equivalence of the weak-field limit in the Jordan and the
Einstein frames [48–50], no conformal transformation was
made to read these extra degrees of freedom as some scalar
fields [51,52]. Nevertheless, apart of a possible inadequacy
in comparing results from the two frames, one can re-write
any fðRÞ model as a scalar-tensor theory plus a scalar
field (ϕ). Then, in the small scale limit the mass of the
scalar field, given bym2

ϕ ¼−f00=3f000 ¼ 2=L2, diverges [53].
This divergence corresponds to the well-known chameleon
mechanism which requires the scalar field to be suppressed
(at small scales) in high density environments [14]. At large
scales, the values f00 ≠ 1 and f000 ≠ 0 generate deviations
from Newtonian gravity, open the possibility to observa-
tionally confirm or rule out these alternative theories of
gravity.
Modifications of the Einstein-Hilbert Lagrangian have

an effect at all scales. As indicated such modifications have
to evade the well-established Solar System constraints.
At galaxy scales, the corrections to the Newtonian gravi-
tational potential can describe systems like spiral and
elliptical galaxies and galaxy clusters without resorting
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to DM. Detailed analysis at galaxy scales have been carried
out [39,40], there is not a definitive answer on whether the
assumptions on the underlying theory of gravity are correct
or not. Our purpose is to test such theories using clusters
of galaxies, the largest virialized objects in the Universe,
to test modified models of gravity at scales intermediate
between galactic and cosmological scales. Let us also
remark that in the limit r ≫ L the gravitational potential
is that of a pointlike mass M=ð1þ δÞ. In this limit, the
dynamics is Newtonian and to explain the structure of
self-gravitating systems and the evolution of large scale
structure, DM needs to be introduced as in the standard
cosmological model.

III. THE SUNYAEV-ZELDOVICH CLUSTER
PROFILE IN f ðRÞ GRAVITY

Cluster of galaxies are the largest virialized objects in the
Universe. Their intra-cluster medium (ICM) reaches tem-
peratures in the range Te ∼ 1–10 keV. When CMB photons
cross the potential wells of clusters, they gain energy via
inverse Compton scattering with the hot electrons of the
ICM. The CMB temperature anisotropies generated by the
Sunyaev-Zeldovich effect (SZ) have two components:
the thermal SZ effect (TSZ, [42]) due to the thermal
motion of the ICM medium and the kinematic SZ effect
(KSZ, [54]) due to the proper motion of the cluster with
respect to the isotropic CMB frame. The TSZ is usually
expressed in terms of the Comptonization parameter yc as

ΔTTSZðn̂Þ
T0

¼ GðxÞyc ¼ GðxÞ kBσT
mc2

Z

l
TeðlÞneðlÞdl

¼ GðνÞ σT
mc2

Z

l
PeðlÞdl: ð21Þ

In this expression, T0 is the current value of the CMB
black-body temperature T0 ¼ 2.725� 0.002 K [55], GðνÞ
is the spectral dependence of the TSZ effect, σT the
Thomson cross section, me the electron mass, c the speed
of light and kB the Boltzmann constant. The pressure
profile along the line of sight (l.o.s.) PeðlÞ is given by
PeðlÞ ¼ neðlÞTeðlÞ, where neðlÞ and TeðlÞ are the electron
density and electron temperature, respectively. In the non-
relativistic limit (Te ≈ few keV), GðνÞ ¼ ~ν cothð~ν=2Þ − 4
where ~ν ¼ hν=kBTe is the reduced frequency. To improve
the description of the TSZ effect, we included relativistic
corrections in the electron temperature up to fourth order
([56–58]).
To compute the pressure profile of Eq. (21) in fðRÞ

gravity, we follow the procedure described in [43]. We
consider the analytic fðRÞ model given by Eq. (1), and the
modified gravitational potential of Eq. (2) generalized for
an extended spherically symmetric system [41]. Further,
the gas is assumed to be in hydrostatic equilibrium within
the modified potential well of the galaxy cluster

dPðrÞ
dr

¼ −ρðrÞ dΦ
extended
grav ðrÞ
dr

ð22Þ

and it is well described by a polytropic equation of state

PðrÞ ∝ ργðrÞ ð23Þ

The system of equation is closed with the conservation of
the mass

dMðrÞ
dr

¼ 4πρðrÞ: ð24Þ

The density ρðrÞ refers to the gas density residing in the
modified potential well of the cluster and does not include
a DM component. The pressure profile PðrÞ ¼ PcPðrÞ is
given in terms of the two gravitational parameters ðδ; LÞ
characterizing the theory, the polytropic index γ, and the
central pressure Pc. The resulting profile will be integrated
along the l.o.s. and convolved with the antenna beam of the
different Planck channels to predict the TSZ temperature
fluctuations.

IV. DATA

We use the Planck 2013 Nominal maps1 to measure the
TSZ temperature anisotropies induced by the Coma cluster.
Planck maps were originally released in a Healpix format
with resolution Nside ¼ 2048 [59].

A. The Coma Cluster

The nearby Coma cluster is one of the best studied
clusters of galaxies because of its richness, degree of
symmetry and location near the galactic pole. It is located
at redshift z ¼ 0.023. Its x-ray luminosity and temperature
are LX ∼ 7.77 × 1044 erg=s in the [0.1–2.4] keV band
[60] and Te ¼ 6.9þ0.1

−0.8 KeV [61]. Recently, the Planck
Collaboration [62] determined that the angular size sub-
tended by the r500 scale was θ500 ¼ 48� 1 arcmin, corre-
sponding to r500 ∼ 1.314 Mpc in the concordance model;
the associated mass is M500 ∼ 6 × 1014M⊙. Substructure,
cooling processes in the cluster core and departure from the
spherical symmetry have been shown to exist [63–71]. All
these components affect the inner- and outermost regions of
the cluster, but in the intermediate regions the assumptions
of hydrostatic equilibrium and spherical symmetry hold
[24–26,44]. Therefore, we will restrict our analysis to this
intermediate region.

B. Foreground cleaned Planck Nominal maps

Planck Nominal maps were released in 2013. In addition
to the intrinsic CMB temperature anisotropies, SZ effect
and instrumental noise, they contain foreground emissions

1Data are available at http://www.cosmos.esa.int/web/planck.
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from galactic dust, CO lines, synchrotron radiation and
point and extended infrared sources. The TSZ effect has a
unique dependence with frequency and it can be reliably
distinguished from other components using adequate
techniques to reduced foreground contamination and the
cosmological CMB signal (our cleaning procedure is
extensively described in [72]). We will analyze only the
High Frequency Instrument (HFI) data. This instrument
operates at frequencies 100–857 GHz, with angular reso-
lutions θFWHM ≤ 10 arcminutes. It has better angular
resolution and lower instrument noise than the Low
Frequency Instrument (30–70 GHz). We will measure
the TSZ cluster profile at 100, 143, and 353 GHz channels,
since after cleaning, the data at 545 GHz are still dominated
by residual foreground emission. In those channels, the
Coma pressure profile has been measured from 5 to
100 arcminutes. At 217 GHz, the TSZ is greatly reduced
and provides no relevant information. The details on Planck
data processing are deferred to Appendix A.

V. METHODOLOGY

To constrain extended theories of gravity using the
pressure profile of the Coma cluster, we first measure
the average TSZ emission (δT̄ðνk; θiÞ=T0) over disc/rings
out to ∼100 arcminutes from center of the Coma cluster
(see Appendix A). The model prediction is computed at the
same apertures (δT̄ðp; νk; θiÞ=T0) (see Sec. III), and fit to
the data. We compute the likelihood −2 logL¼ χ2ðp;νkÞ as

−2 logL ¼ χ2ðp; νkÞ ¼ ΣN
i;j¼0ΔT̄kiðpÞC−1

ij ΔT̄kjðpÞ; ð25Þ

whereΔT̄kiðpÞ≡ δT̄ðp;νk;θiÞ
T0

− δT̄ðνk;θiÞ
T0

,N ¼ 22 is the number
of data points, p ¼ ½Pc; γ; δ; L� are the parameters of
the model, νk denotes each Planck channel and Cij is
the correlation matrix [see Eq. (A1)]. When computing the
likelihood we neglect the error on the CMB blackbody
temperature T0 and the uncertainty on the angular scale that
corresponds to each data point since they are both negli-
gible with respect to the error on the TSZ temperature
anisotropies.

A. Monte Carlo Markov chain sampling method

We constrain the fðRÞ model parameters using a
Monte Carlo Markov chain (MCMC). We employ the
Metropolis-Hastings [73,74] sampling algorithm and we
use the Gelman-Rubin criteria to test the mixing and
convergence of our runs [75]. We run four independent
chains starts at a random point of the parameter space and
contains at least 40,000 steps. The step size is adapted in
order to reach an optimal acceptance rate between 20% and
50% [76,77]. If the step size is too small the acceptance
rate will be too high (≥ 50%) resulting in poor mixing
and if the step is too large then the acceptance rate will be
small (≤ 20%) and the chain will converge slowly.

The parameter space explored by our MCMC is
given in Table I. Intervals are chosen on physical grounds:
the central pressure Pc must be positive; in the central pixel,
we measure yC ≃ 150 μK which corresponds to
∼1.37 × 10−2 cm−3 keV; thus, ½0.0–3.0� × 10−2 cm−3 keV
represents a suitable range; ICM models having the
polytropic index γ > 5=3 are convectively unstable [78];
therefore, γ is varied between the isothermal and the
adiabatic limits γ ¼ ½1.0; 5=3�; the gravitational potential
diverges at δ ¼ −1 and becomes repulsive at δ < −1 and,
following [43], we set δ ¼ ½−0.999; 1.0�. This range also
includes δ ¼ 0 for which the Yukawa term disappears and
the cluster gravitational potential is Newtonian, shallower
than in the concordance model since it does not contain
DM, being generated only by the baryonic component. The
gravitational scale length L varies between two limiting
scales: from galaxy scales [40] to the mean cluster
separation scale, L ¼ ½0.01; 20� Mpc. Finally, we merged
the four chains and used the marginalized distributions to
compute the best-fit parameters and their 1σ errors bars.

VI. RESULTS AND DISCUSSION

To test for consistency, we performed two different
analyses. First, MCMC are run independently fitting
separately the data at each frequency. Second we computed
the joint likelihood LðpÞ ¼ ΠkLðp; νkÞ. We found that the
best-fit parameters at the three frequencies are consistent
with each other and with the results obtained from the join
distribution, indicating that our cleaning procedure does not
distort the TSZ emission of the cluster and that the data at
each frequency only differ in the level of the remaining
foreground residuals. Due to this internal consistency,
hereafter we will only quote the results derived from the
joint analysis.
Figure 1 illustrates the MCMC convergence after an

initial burn-in phase (≲100 steps). We represent the trace
plot of likelihood values of the first five thousand steps of
each chain. To ensure good mixing we use the Gelman-
Rubin criteria requiring the ratio of the variances in the
target distribution to be R < 1.03 (see Sec. 3.2 of [79] for
definitions). In our chains, we found R ¼ 1.007.
In Fig. 2, we represent the two-dimensional probability

contours at the 68% C.L. (dark gray) and 95% C.L. (light
gray) for pairs of parameters and the one-dimensional
probability distribution of each parameter. Compared with
[43], the two-dimensional contours are closed allowing

TABLE I. Parameter space explored by the MCMC.

Parameter Priors

Pc=½10−2 cm−3 keV� [0.0, 3.0]
δ ½−0.999; 1.0�
L=½Mpc� [0.01, 20]
γ ½1.0; 5=3�
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us to derive new constraints on ðδ; LÞ; these results are
summarized in Table II.
The table summarizes two important results: for the first

time, the central amplitude of the TSZ profile in Coma
cluster has been constrained in fðRÞ gravity and δ ≠ 0 at

the 95% C.L.; this latter result clearly shows that the data
are compatible with fðRÞ gravity plus baryons and could
be interpreted as statistical evidence in favor of modified
gravity and against GR plus DM. The value L ¼ 0 is
also ruled out at the 95% of C.L. This limit corresponds to a
Newtonian gravitational potential generated by a mass
M0 ¼ M=ð1þ δÞ. Since the data favor models with
δ < 0, M0 ≫ M is analogue to the field generated by a
cluster that contains a large fraction of DM distributed like
the baryonic gas. To conclude, to explain the pressure
profile of the COMA cluster, either DM or a modified
theory of gravity is required. We found that the preferred
value of the polytropic index is γ ¼ 1.44þ0.10

−0.17 . The best-fit
value is compatible at the 1.5σ level with γ ∼ 1.2, the
value preferred by observations and numerical simulations
[80–83]. Since the polytropic index is determined by
physical processes that drive the cluster collapse and its
subsequent relaxation [84], our results support the idea that
analytic fðRÞ models without a dominant DM component
can explain the structure of galaxy clusters as the
ΛCDM model.
To illustrate the quality of the fit to the data by the model,

in Fig. 3 we plot the data (diamonds) with their associated

FIG. 1. Trace plot of the likelihood values of the four MCMC.
Only the first 5,000 steps have been represented to better
visualize the burn-in phase.

FIG. 2. Two-dimensional marginalized contours of the model parameters ðPc; δ; L; γÞ obtained from the MCMC analysis. For each
pair of parameters, the 68% (dark gray) and 95% C.L. (light gray) are shown. In each row, the right panels represent the marginalized
likelihood distributions.
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error bars and the best-fit model (solid line). Panels (a)–(c)
correspond to the three different frequencies. The χ2 per
d.o.f is given in each panel. The plot shows a slight
departure from the model in the outskirt of the cluster,
specially evident at 353 GHz. Since our clean patches are
generated centered on the cluster, the outer parts of the
cluster profile is the region most affected by foreground
residuals. This is particularly true at 353 GHz where we
estimate a residual of ∼5 μK compared with ∼1 μK at the
other two frequencies. However, this departure could be
due to physical reasons such as the gas not being in
hydrostatic equilibrium, departures from spherical sym-
metry and the presence of substructure. In order to study the
impact of such phenomena, one should include a non-
thermal term in the pressure. For that, either N-body
simulations of each specific fðRÞ model or a scaling
relation to estimate such nonthermal component are
needed. Since the latter has been achieved using

hydrodynamical N-body simulations in ΛCDM, its use
could bias the results forcing the model to mimic the DM in
the outskirt masking any effect due to the modified theory
of gravity. Finally, it has been shown in [24,25] that such
contributions are negligible when, as in this work, the
analysis is restricted to the intermediate regions of the
cluster.
The resolution of our foreground clean maps is 10 arc-

minutes and the data do not probe the innermost region
where shock heating, turbulence, cooling flows and other
physical processes can deviate the dynamical state of the
gas from hydrostatic equilibrium. Also, we did not stack
the cluster profile outside θ > 100 arcminutes since dust
residuals dominate over the TSZ emission. To test the
theory of gravity using data from the cluster core would
require a good understanding of the physical phenomena to
separate the physical effects associated with the dynamical
state of the gas from those associated with the modified
theory of gravity, and an extensive study with numerical
hydro-codes would be needed to compute the pressure
profile. In any case, the next generation of full-sky CMB
missions such as COrE/PRISM [85] will resolve the core,
opening to the possibility to properly study the coupling/
degeneracies between the underlying theory of gravity and
the baryonic processes.

VII. CONCLUSIONS

Cluster of galaxies have been widely used to constrain
chameleon fðRÞ models ([19,24,26]), the Galileon gravity
model [25], the K-mouflage modification of gravity [86]
and fðχÞ-gravity models [87]. We have constrained a
particular class of ETGs using the TSZ temperature
anisotropies due to the Coma cluster. With respect to
previous works, in our model we introduce a Yukawa-like
correction to the Newtonian potential in the weak-field
limit of an analytic fðRÞ model. To test such a model, we
have produced foreground cleaned patches of the Coma
cluster from the 2013 data release of PlanckNominal maps.
The measured TSZ profile was used to constrain the model
parameters using an MCMC algorithm assuming that the
gas was in hydrostatic equilibrium within the potential
well and the physical state of the ICM was well described
by a polytropic equation of state. The correctness of these
hypotheses can only be tested using hydrodynamical
simulations. However since ETGs have extra degrees of
freedom compared to GR, each specific Lagrangian would
require its own set of simulations. Lacking this information,
we could not study the effect of a possible departure of
hydrostatic equilibrium as well as possible degeneracies
between baryonic processes and the underlying theory of
gravity.
Even though we have studied a single cluster, the

marginalized likelihood functions displayed closed con-
tours. This analysis provided a more sensitive statistic and
allows us to improved our earlier results [43]. The best-fit

TABLE II. Results from the MCMC.

Parameter Results

Pcð10−2 cm−3 keVÞ 0.90� 0.04
δ −0.48� 0.22
L (Mpc) 2.19� 1.02
γ 1.44þ0.10

−0.17

(a)

(b)

(c)

FIG. 3. Predicted and measured TSZ profile of the Coma
cluster at different frequencies. For each channel, the fðRÞ
best-fit model has been convolved with the antenna beam.
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values of the model parameters are summarized in Table II.
We confirm that the values δ≃ 0 and L ¼ 0 are ruled
at the 95% C.L., demonstrating that the dynamical state of
the Coma cluster gas is either in equilibrium of the
gravitational field of a DM halo or the gravitational field
is modified by a Yukawa-type correction. This latter idea
finds additional support since the best-fit value of the
polytropic index γ ¼ 1.44þ0.10

−0.17 is compatible with obser-
vations and numerical simulations.
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APPENDIX: CLEANING PROCEDURE AND
DATA ERRORS

In this Appendix, we briefly describe the method used to
clean Planck 2013 Nominal maps and the errors on the
measured TSZ profile. More details are given in [72].
Briefly,

(i) all Planck channels are downgraded to a common
10 arcmin resolution assuming a Gaussian beam for;

(ii) at each frequency, the cosmological CMB and KSZ
signals are removed by subtracting the LGMCA
CMB template of [88,89];

(iii) CO emission at 100 and 217 GHz is removed by
subtracting the CO type 2 maps provided by the
Planck Collaboration [90],

(iv) point sources and foreground residuals close to the
Galactic Plane are excised with the PCCS-SZ-Union
mask [91,92];

(v) finally, the thermal dust emission is removed using
the 857 GHz channel as a dust-template [93,94],
following the method described in [95].

At each frequency, from 100 to 545 GHz, our cleaning
method provides foreground cleaned patches Pðν; xÞ cen-
tered on the position x of the selected cluster from where we
can measure the TSZ temperature fluctuations (δT̄=T0) at
the cluster position. In Fig. 4, we show the patch around the
Coma cluster to illustrate how effectively our cleaning
procedure removes foregrounds. Temperatures are given
in μK. The top row corresponds to the original Planck
Nominal data and the bottom row to the foreground cleaned
maps. The Nominal patches are dominated by the intrinsic
CMB temperature fluctuations, while in the foreground
clean maps the TSZ signal dominates. The signal is
negative at 100 and 143 GHz, zero at 217 and positive
at 353 GHz, as expected. At 545 GHz, it is dominated by
dust residuals and, together with 217 GHz that corresponds
to the TSZ null, they will not be included in our analysis.
The pressure profile is constructed by taking averages

on the central disc of radius 5 arcminutes and on rings of
5 arcminutes width out to 100 arcminutes. The angular
scale associated to each temperature average is the mean
angular distance to the center of the cluster of all pixels
within the disc or ring. The dispersion around the mean
ranges from a minimum of ∼0.5 arcminutes in the central
15 arcminutes to a maximum of ∼1.5 arcmin. To compute

FIG. 4. First and second rows: Planck Nominal and foreground cleaned patches centered at the position of A1656 (Coma cluster) at
100–545 GHz. Patches are 2° × 2°.
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the error on the measured TSZ anisotropies, we place the
cluster at 1,000 random positions in the sky. The patch is
cleaned as described before and the mean on the central
5 arcmin disc and rings is evaluated. To avoid overlapping
with real clusters, we mask an area of one degree radius
around all clusters in the [96] catalog. We repeat the
procedure and compute the correlation matrix (Cij)
between different bins (θi) averaging over all random
positions,

CijðνkÞ ¼
h½δT̄ðνk; θiÞ − μðνk; θiÞ�½δT̄ðνk; θjÞ − μðνk; θjÞ�i

σðνk; θiÞσðνk; θjÞ
;

ðA1Þ

where μðνk;θiÞ¼hδT̄ðνk;θiÞi, and σðνk;θiÞ¼ h½δT̄ðνk;θiÞ−
μðνk;θiÞ�2i1=2. The error bars on the profile of the
Coma cluster are the square root of the diagonal elements
of the correlation matrix.
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