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We present a general formulation to analyze the structure of slowly rotating relativistic stars in a broad
class of scalar-tensor theories with disformal coupling to matter. Our approach includes theories with
generalized kinetic terms, generic scalar field potentials and contains theories with conformal coupling as
particular limits. In order to investigate how the disformal coupling affects the structure of relativistic stars,
we propose a minimal model of a massless scalar-tensor theory and investigate in detail how the disformal
coupling affects the spontaneous scalarization of slowly rotating neutron stars. We show that for negative
values of the disformal coupling parameter between the scalar field and matter, scalarization can be
suppressed, while for large positive values of the disformal coupling parameter stellar models cannot be
obtained. This allows us to put a mild upper bound on this parameter. We also show that these properties
can be qualitatively understood by linearizing the scalar field equation of motion in the background of a
general-relativistic incompressible star. To address the intrinsic degeneracy between uncertainties in the
equation of state of neutron stars and gravitational theory, we also show the existence of universal equation-
of-state-independent relations between the moment of inertia and compactness of neutron stars in this
theory. We show that in a certain range of the theory’s parameter space the universal relation largely
deviates from that of general relativity, allowing, in principle, to probe the existence of spontaneous
scalarization with future observations.
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I. INTRODUCTION

Although Einstein’s general relativity (GR) has passed
all the experimental tests of gravity in the weak-field/slow-
motion regimes with flying colors [1], it remains fairly
unconstrained in the strong-gravity regime [2] and on the
cosmological scales [3]. The recent observation of gravi-
tational waves generated during the merger of two black
holes (BHs) by the LIGO/Virgo Collaboration, in accor-
dance with general-relativistic predictions [4,5], has offered
us a first glimpse of gravity in a fully nonlinear and highly
dynamical regime whose theoretical implications are still
being explored [6]. Nevertheless, the pressing issues on
understanding the nature of dark matter and dark energy,
the inflationary evolution of the early Universe and the
quest for an ultraviolet completion of GR have served as
driving forces in the exploration of modifications to
GR [2,3].
In general modifications of GR introduce new gravita-

tional degree(s) of freedom in addition to the metric tensor
and can be described by a scalar-tensor theory of gravity
[7]. On the theoretical side, scalar-tensor theories should
not contain Ostrogradski ghosts [8], i.e. the equations of
motion should be written in terms of the second-order
differential equations despite the possible existence of the

higher-order derivative interactions at the action level. On
the experimental/observational side, any extension of GR
must pass all the current weak-field tests which GR has
successfully passed. Therefore realistic modifications of
gravity should contain a mechanism to suppress scalar
interactions at small scales [9,10] or (to be interesting)
satisfy weak-field tests, but deviate from GR at some
energy scale. Some models satisfying these requirements
belongs to the so-called Horndeski theory [11–14], the
most general scalar-tensor theory with second-order
equations of motion.
In scalar-tensor theories, the scalar field may directly

couple to matter, and hence matter does not follow geo-
desics associated with the metric gμν but with another ~gμν.
In the simplest case these two metrics are related as

~gμν ¼ A2ðφÞgμν; ð1Þ

which is known as the conformal coupling [3]. The two
frames described by gμν and ~gμν are often referred to as the
Einstein and Jordan frames, respectively.

A. Spontaneous scalarization

For relativistic stars, such as neutron stars (NSs), the
conformal coupling to matter can trigger a tachyonic
instability (due to a negative effective mass) of the scalar
field when the star has a compactness above a certain
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threshold. This instability spontaneously scalarizes the NS,
whereupon it harbors a nontrivial scalar field configuration
which smoothly decays outside the star. In its simplest
realization, scalarization occurs when the conformal factor
in Eq. (1) is chosen as AðφÞ ¼ expðβ1φ2=2Þ, where β1 is a
free parameter of the theory and φ is a massless scalar field.
This theory passes all weak-field tests, but the presence of
the scalar field can significantly modify the bulk properties
of NSs, such as masses and radii, in comparison with GR.
This effect was first analyzed for isolated NSs by Damour
and Esposito-Farèse [15,16]. The properties and observa-
tional consequences of this phenomenon were studied in a
number of situations, including stability [17,18], astero-
seismology [19–22], slow (and rapidly) rotating NS sol-
utions [16,23–26], its influence on geodesic motion of
particles around NSs [27,28], tidal interactions [26] and the
multipolar structure of the spacetime [29,30]. Moreover,
the dynamical process of scalarization was studied in
Ref. [31] and stellar collapse (including the associated
process of scalar radiation emission) was investigated in
Refs. [32–34]. We refer the reader to Ref. [35] for an
extensive literature review.
Additionally, a semiclassical version of this effect [36]

(cf. also Refs. [37–40] and Ref. [41] for a connection with
the Damour-Esposito-Farèse model [15,16]) has been
shown to awaken the vacuum state of a quantum field
leading to an exponential growth of its vacuum energy
density in the background of a relativistic star.
These nontrivial excitations of scalar fields induced by

relativistic stars are a consequence of the generic absence of
a “no-hair theorem” for these objects (see Refs. [42–44] for
counterexamples), in contrast to the case of BHs, and can
potentially be an important source for signatures of the
presence of fundamental gravitational scalar degrees of
freedom through astronomical observations [2,45], includ-
ing the measurements of gravitational and scalar radiation
signals [46].
The phenomenological implications of spontaneous

scalarization have also been explored in binary NS mergers
[47–50] and in BHs surrounded by matter [51,52]. In the
former situation, a dynamical scalarization allows binary
members to scalarize under conditions where this would
not happen if they were isolated. This effect can dramati-
cally change the dynamics of the system in the final cycles
before the merger with potentially observable conse-
quences. In the latter case, the presence of matter can
cause the appearance of a nontrivial scalar field configu-
ration, growing “hair” on the BH.
On the experimental side, binary-pulsar observations

[53] have set stringent bounds on β1, whose value is
presently constrained to be β1 ≳ −4.5. This tightly con-
strains the effects of spontaneous scalarization in isolated
NSs, for it has been shown that independently of the choice
of the equation of state (EOS) scalarization can occur
only if β1 ≲ −4.35 for NSs modeled by a perfect fluid

[31,54,55]. These two results confine β1 to a very limited
range, in which, even if it exists in nature, the effects of
scalarization on isolated NSs are bound to be small; see
Refs. [24,55] for examples where the threshold value of β1
can be increased and Refs. [56–58] for recent work
exploring the large positive β1 region of the theory.

B. Disformal coupling

It was recently understood that modern scalar-tensor
theories of gravity, under the umbrella of Horndeski gravity
[11,59], offer a more general class of coupling [60,61]
between the scalar field and matter through the so-called
disformal coupling [62]

~gμν ¼ A2ðφÞ½gμν þ ΛB2ðφÞφμφν�; ð2Þ

where φμ ¼ ∇μφ is the covariant derivative of the scalar
field associated with the gravity frame metric gμν, and Λ is a
constant with dimensions of ðlengthÞ2. For Λ ¼ 0 we
recover the purely conformal case of Eq. (1). Disformal
transformations were originally introduced by Bekenstein
and consist of the most general coupling constructed from
the metric gμν and the scalar field φ that respects causality
and the weak equivalence principle [62]. Disformal cou-
plings have been investigated so far mainly in the context of
cosmology [63–65]. They also arise in higher-dimensional
gravitational theories with moving branes [66,67] in
relativistic extensions of modified Newtonian theories,
the tensor-vector-scalar theories [68,69], and in the decou-
pling limit of the nonlinear massive gravity [70–73].
Moreover, in Ref. [60] it was shown that the mathematical
structure of Horndeski theory is preserved under the
transformation (2), namely if the scalar-tensor theory
written in terms of gμν belongs to a class of the
Horndeski theory the same theory rewritten in terms of
~gμν belongs to another class of the Horndeski theory. Thus
disformal transformations provide a natural generalization
of conformal transformations.
Disformal coupling was also considered in models of a

varying speed of light [74] and inflation [75,76]. The
invariance of cosmological observables in the frames
related by the disformal relation (2) was verified in
Refs. [77–82]. Although applications to early Universe
models are still limited, disformal couplings have been
extensively applied to late-time cosmology [63,65,66,
83–89]. A new screening mechanism of the scalar force
in the high-density region was proposed in Ref. [86], where
in the presence of disformal coupling the nonrelativistic
limit of the scalar field equation seemed to be independent
of the local energy density. However, a reanalysis sug-
gested that no new screening mechanism from disformal
coupling could work [83,90]. It was also argued that
disformal coupling could not contribute to a chameleon
screening mechanism around a nonrelativistic source [91].
Experimental and observational constraints on disformal
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coupling to particular matter sectors have also been inves-
tigated. Disformal couplings to baryons and photons have
been severely constrained in terms of the nondetection of
new physics in collider experiments [75,92–96], the
absence of spectral distortion of the cosmic microwave
background and the violation of distance reciprocal rela-
tions [94,97–99], respectively. On the other hand, disformal
coupling to the dark sector has been proposed in
Refs. [84,100] and is presently less constrained in com-
parison with coupling to visible matter sectors.
When conformal and disformal couplings are universal

to all the matter species, they can only be constrained
through experimental tests of gravity. A detailed study of
scalar-tensor theory with the pure disformal coupling
AðφÞ ¼ 1 and BðφÞ ¼ 1 in the weak-field limit was
presented in Ref. [83] and the post-Newtonian (PN)
corrections due to the presence of pure disformal coupling
were computed [90]. In these papers [83,90], in contrast to
the claim of Refs. [66,86], it was shown that no screening
mechanism which could suppress the scalar force in the
vicinity of the source exists and the difference of the
parametrized post-Newtonian (PPN) parameters from GR
are of order jΛjH2

0, where H0ð∼10−28 cm−1Þ is the present-
day Hubble scale. The strongest bound on jΛj comes from
the constraints on the PPN preferred frame parameter α2.
The near perfect alignment between the Sun’s spin axis and
the orbital angular momenta of the planets provides the
constraint α2 < 4 × 10−5 (see Ref. [101] for a discussion),
which implies that jΛj≲ 10−6H−2

0 ð∼1040 km2Þ. With the
inclusion of the conformal factor, i.e. AðφÞ ≠ 1, the
authors of Ref. [90] argued that the Cassini bound jγ − 1j <
2.1 × 10−5 [102] imposes a constraint on αðφ0Þ, where φ0

is the cosmological background value of the scalar field and

αðφÞ ≔ d logAðφÞ
dφ

; βðφÞ ≔ d logBðφÞ
dφ

: ð3Þ

On the other hand the disformal part of the coupling βðφ0Þ
remains unconstrained, because corrections to the PPN
parameters which include βðφÞ are subdominant compared
to the conformal part. These weaker constraints on the
disformal coupling parameters are due to the fact that in the
nonrelativistic regime with negligible pressure and a slowly
evolving scalar field the disformal coupling becomes
negligible. We also point out that in the weak-field regime
such as in the Solar System, typical densities are small
therefore preventing the appearance of ghosts in the theory
for negative values of Λ.
In the strong-gravity regime such as that found in the

interior of NSs, the pressure cannot be neglected and the
disformal coupling is expected to be as important as
the conformal one. This would affect the spontaneous
scalarization mechanism and consequently influence the
structure (and stability) of relativistic stars, or have a
significant impact on gravitational-wave astronomy [2].

The influence of disformal coupling on the stability of
matter configurations around BHs was analyzed in
Ref. [103]. The authors of Ref. [103] derived the stability
conditions of the system by generalizing the case of pure
conformal coupling [51,52]. They also generalized these
works to scalar-tensor theories with noncanonical kinetic
terms and disformal coupling, finding that the disformal
coupling could make matter configurations more unstable,
triggering spontaneous scalarization. In the present work
within the same class of scalar-tensor theory considered in
Ref. [103], we will study relativistic stars and investigate
the influence of disformal coupling on the scalarization
of NSs.

C. Organization of this work

This paper is organized as follows. In Sec. II we review
the fundamentals of scalar-tensor theories with a general-
ized kinetic term and disformal coupling. In Sec. III we
present a general formulation to analyze the structure of
slowly rotating stars in theories with disformal coupling. In
Sec. IV, as a case study, we consider a canonical scalar field
with a generic scalar field potential. We particularize the
stellar structure equations to this model and discuss how to
solve them numerically. In Sec. V we explore the conse-
quences of the disformal coupling by studying small scalar
perturbations to an incompressible relativistic star in GR. In
particular we investigate the conditions for which sponta-
neous scalarization happens. In Sec. VI we present our
numerical studies about the influence of disformal coupling
on the spontaneous scalarization by solving the full stellar
structure equations. In Sec. VII as an application of our
numerical integrations, we examine the EOS independence
between the moment of inertia and compactness of NSs in
scalar-tensor theory comparing it against the results
obtained in GR. Finally, in Sec. VIII we summarize our
main findings and point out possible future avenues of
research.

II. SCALAR-TENSOR THEORY WITH THE
DISFORMAL COUPLING

We consider scalar-tensor theories in which matter is
disformally coupled to the scalar field. The action in the
Einstein frame reads

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2PðX;φÞ�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−~gðφ;φμÞ

q
Lm½~gμνðφ;φμÞ;Ψ�; ð4Þ

where xμ (μ ¼ 0, 1, 2, 3) represents the coordinate system
of the spacetime, gμν and ~gμν are respectively the Einstein
and Jordan frame metrics disformally related by (2), g ≔
detðgμνÞ and ~g ≔ detð~gμνÞ, R is the Ricci scalar curvature
associated with gμν, κ ≔ ð8πGÞ=c4, where G is the
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gravitational constant defined in the Einstein frame and
c is the speed of light in vacuum. PðX;φÞ is an arbitrary
function of the scalar field φ and X ≔ − 1

2
gμνφμφν, and Lm

represents the Lagrangian density of matter fields Ψ. We
note that the canonical scalar field corresponds to the case
of PðX;φÞ ¼ 2X − VðφÞ, but we will not restrict the form
of PðX;φÞ at this stage. In this paper we will not omit G
and c.
Varying the action (4) with respect to the Einstein frame

metric gμν, we obtain the Einstein field equations

Gμν ¼ κðTμν
ðmÞ þ Tμν

ðφÞÞ; ð5Þ

where the energy-momentum tensors of the matter fields Ψ
and scalar field φ are given by

Tμν
ðmÞ ¼

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi
−~g

p
Lm½~gðφÞ;Ψ�Þ
δgμν

; ð6Þ

and

Tμν
ðφÞ ≔

1

κ

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
PðX;φÞÞ
δgμν

¼ 1

κ
ðPXφ

μφν þ PgμνÞ; ð7Þ

respectively, where PX ≔ ∂XP and φμ ≔ gμνφν. From
Eq. (2), the inverse Jordan frame metric ~gμν is related to
the inverse Einstein frame metric gμν by

~gμν ¼ A−2ðφÞ
�
gμν −

ΛB2ðφÞ
χðX;φÞ φ

μφν

�
; ð8Þ

where we have defined

χðX;φÞ ≔ 1 − 2ΛB2ðφÞX: ð9Þ

The volume element in the Jordan frame
ffiffiffiffiffiffi
−~g

p
is given

by
ffiffiffiffiffiffi
−~g

p ¼ A4ðφÞ ffiffiffiffiffiffi−gp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞp

. In order to keep the
Lorentzian signature of the Jordan frame metric ~gμν, χ
must be non-negative. We note that in the purely conformal
coupling limit Λ ¼ 0 and χ ¼ 1.
The contravariant energy-momentum tensor in the

Jordan frame ~Tμν
ðmÞ is related to that in the Einstein frame by

~Tμν
ðmÞ ≔

2ffiffiffiffiffiffi
−~g

p δð ffiffiffiffiffiffi
−~g

p
Lm½~g;Ψ�Þ
δ~gμν

;

¼
ffiffiffi
g
~g

r
δgαβ
δ~gμν

Tαβ
ðmÞ ¼

A−6ðφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞp Tμν

ðmÞ: ð10Þ

The mixed and covariant energy-momentum tensors in the
Jordan frame are respectively given by

~TðmÞμ
ν ¼ A−4ðφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χðX;φÞp ðδαμ þ ΛB2ðφÞφμφ
αÞTðmÞαν; ð11aÞ

~TðmÞμν ¼
A−2ðφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞp ðδαμ þ ΛB2ðφÞφμφ

αÞ

× ðδβν þ ΛB2ðφÞφνφ
βÞTðmÞαβ; ð11bÞ

and

Tμν
ðmÞ ¼ A6ðφÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞ

p
~Tμν
ðmÞ; ð12aÞ

TðmÞνμ ¼ A4ðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞ

p �
δρν −

ΛB2ðφÞφρφν

χðX;φÞ
�
~TðmÞρ

μ;

ð12bÞ

TðmÞμν ¼ A2ðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞ

p �
δρμ −

ΛB2ðφÞφρφμ

χðX;φÞ
�

×

�
δσν −

ΛB2ðφÞφσφν

χðX;φÞ
�
~TðmÞρσ: ð12cÞ

In terms of the covariant tensors, the Einstein equations in
the Einstein frame (5) can be recast as

Gμν ¼ κA2ðφÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðX;φÞ

p �
δρμ −

ΛB2ðφÞφρφμ

χðX;φÞ
�

×

�
δσν −

ΛB2ðφÞφσφν

χðX;φÞ
�
~TðmÞρσ þ PXφμφν

þ gμνP: ð13Þ

Varying the action (4) with respect to the scalar field φ, we
obtain the scalar field equation of motion

PX□φþ Pφ − PXXφ
ρφσφρσ − 2XPXφ ¼ κQ; ð14Þ

where the function Q characterizes the strength of the
coupling of matter to the scalar field

Q ≔ Λ∇ρðB2ðφÞTρσ
ðmÞφσÞ − αðφÞTðmÞ

− ΛB2ðφÞ½αðφÞ þ βðφÞ�Tρσ
ðmÞφρφσ; ð15Þ

where TðmÞ ≔ gρσTðmÞρσ is the trace of TðmÞρσ, and αðφÞ and
βðφÞ were defined in Eq. (3). Taking the divergence of
Eq. (5), employing the contracted Bianchi identity
∇ρGρσ ¼ 0, and using the scalar field equation of motion
(14), we obtain

∇ρT
ρσ
ðmÞ ¼ −∇ρT

ρσ
ðφÞ ¼ −Qφσ; ð16Þ

and the coupling strength Q can be rewritten as
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Q ¼ ΛB2ðφÞð∇ρT
ρσ
ðmÞÞφσ þ Y; ð17Þ

where we have introduced

Y ≔ ΛB2ðφÞf½βðφÞ − αðφÞ�Tρσ
ðmÞφρφσ þ Tρσ

ðmÞφρσg
− αðφÞTðmÞ: ð18Þ

Multiplying Eq. (16) by φσ and solving it with respect to
ð∇ρT

ρσ
ðmÞÞφσ, we obtain

χð∇ρT
ρσ
ðmÞÞφσ ¼ 2XY: ð19Þ

Then, substituting it in Eq. (17), using Q ¼ Y=χ, and
finally eliminating Q from Eq. (14), we obtain the reduced
scalar field equation of motion

PX□φþ Pφ − PXXφ
ρφσφρσ − 2XPXφ

¼ κ

χðX;φÞ × fΛB2ðφÞ½ðβðφÞ − αðφÞÞTρσ
ðmÞφρφσ

þ Tρσ
ðmÞφρσ� − αðφÞTðmÞg: ð20Þ

III. THE EQUATIONS OF STELLAR STRUCTURE

A. Equations of motion

In this section, we consider a static and spherically
symmetric spacetime with line element

ds2 ¼ gμνdxμdxν

¼ −eνðrÞc2dt2 þ eλðrÞdr2 þ r2γijdθidθj; ð21Þ

where νðrÞ and λðrÞ are functions of the radial coordinate r
only, γij is the metric of the unit 2-sphere, and the
coordinates θi (i ¼ 1, 2) run over the directions of the
unit 2-sphere, such that γijdθidθj ¼ dθ2 þ sin2 θdϕ2. We
also assume by symmetry that the scalar field is only a
function of r, φ ¼ φðrÞ. Hence the coupling functions AðφÞ
and BðφÞ are also only functions of r through φðrÞ.
We assume that in the Jordan frame only the diagonal

components of the energy-momentum tensor of matter are
nonvanishing

~TðmÞ
t
t ¼ −~ρc2; ~TðmÞ

r
r ¼ ~pr; ~TðmÞ

i
j ¼ ~ptδ

i
j;

ð22Þ

where ~ρ, ~pr and ~pt are respectively the energy density,
radial and tangential pressures of an anisotropic fluid in the
Jordan frame [104]. Using Eq. (12b), they are related to the
components of the energy-momentum tensor of matter in
the Einstein frame, which are represented by the quantities
without a tilde, by

ρ ¼ A4ðφÞ ffiffiffi
χ

p
~ρ; pr ¼

A4ðφÞffiffiffi
χ

p ~pr;

pt ¼ A4ðφÞ ffiffiffi
χ

p
~pt; ð23Þ

where in the background given by Eq. (21), the quantity χ
defined in Eq. (9) reduces to

χ ¼ 1þ e−λΛB2ðφÞðφ0Þ2: ð24Þ

We note that even if the fluid in the Jordan frame has
an isotropic pressure, ~pr ¼ ~pt, it is transformed into an
anisotropic one in the Einstein frame i.e. pr ≠ pt in the
presence of disformal coupling χ ≠ 1.
The ðt; tÞ, ðr; rÞ and the trace of ði; jÞ components of the

Einstein equations (13) are given by

1

r2
½1 − e−λð1 − rλ0Þ� ¼ −Pþ A4ðφÞ ffiffiffi

χ
p

κ ~ρc2; ð25Þ

eλ

r2
½1 − e−λð1þ rν0Þ� ¼ −ðφ0Þ2PX − eλ

�
Pþ A4ðφÞffiffiffi

χ
p ðκ ~prÞ

�
;

ð26Þ

1

2

�
ν00 þ

�
ν0

2
þ 1

r

�
ðν0 − λ0Þ

�
¼ eλ½Pþ A4ðφÞ ffiffiffi

χ
p ðκ ~ptÞ�:

ð27Þ

On the other hand, the scalar field equation of motion
(20) reduces to

χ

�
PXe−λ

�
φ00 þ

�
ν0

2
−
λ0

2
þ 2

r

�
φ0
�
þ Pφ − PXXe−2λðφ0Þ2

�
φ00 −

λ0

2
φ0
�
þ e−λðφ0Þ2PXφ

�

¼ κ
A4ðφÞ
φ0

�
~prffiffiffi
χ

p
�
−αðφÞφ0 þ ΛB2ðφÞe−λφ0

�
φ00 þ

�
βðφÞφ0 − αðφÞφ0 −

λ0

2

�
φ0
��

−
ffiffiffi
χ

p ½αðφÞφ0ð−~ρc2 þ 2 ~ptÞ þ ΛB2ðφÞe−λ
�
ν0

2
~ρc2 −

2

r
~pt

�
ðφ0Þ2

��
: ð28Þ
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The nontrivial radial component of the energy-
momentum conservation law in the Einstein frame (16)
gives us

d ~pr

dr
¼ −

�
ν0

2
þ αðφÞφ0

�
ð~ρc2 þ ~prÞ − 2

�
1

r
þ αðφÞφ0

�
~σ;

ð29Þ

where we have defined ~σ ≔ ~pr − ~pt, which measures the
degree of anisotropy of the fluid [104]. The same result can
be obtained from the conservation law in the Jordan frame
~∇ρ

~Tρr
ðmÞ ¼ 0, where ~∇ρ represents the covariant derivative

associated with the Jordan frame metric ~gμν. The conser-
vation law (29) depends implicitly on BðφÞ and its
derivative through ν0 [cf. Eq. (26)].

B. The reduced equations of motion

We then reduce the set of equations (25)–(27), (28) and
(29) into a form more convenient for a numerical integra-
tion. We introduce the mass function μðrÞ through

e−λðrÞ ≔ 1 −
2μðrÞ
r

; ð30Þ

and replace all λðrÞ dependence with μðrÞ. We also
introduce the first-order derivative of the scalar field
ψðrÞ, i.e.

ψ ≔
dφ
dr

: ð31Þ

We can write the kinetic energy as

X ¼ −
r − 2μ

2r
ψ2 ð32Þ

and χ can then be expressed as

χ ¼ 1þ r − 2μ

r
ΛB2ðφÞψ2: ð33Þ

The ðt; tÞ component of the Einstein equations
[cf. Eq. (25)] determines the gradient of μ

dμ
dr

¼ r2

2
½A4ðφÞ ffiffiffi

χ
p

κ ~ρc2 − P�: ð34Þ

Similarly, the ðr; rÞ component of the Einstein equa-
tions (26) reduces to

dν
dr

¼ 2μ

rðr − 2μÞ þ r

�
ψ2PX þ r

r − 2μ

�
Pþ A4ðφÞffiffiffi

χ
p ðκ ~prÞ

��
:

ð35Þ

The conservation law (29) combined with Eq. (35)
leads to

d ~pr

dr
¼ −

�
αðφÞψ þ μ

rðr − 2μÞ þ
r
2

�
ψ2PX þ r

r − 2μ

�
Pþ A4ðφÞffiffiffi

χ
p ðκ ~prÞ

���
ð~ρc2 þ ~prÞ − 2

�
1

r
þ αðφÞψ

�
~σ: ð36Þ

Finally, the scalar field equation of motion (28) reduces to

�
χðPX − e−λψ2PXXÞ − κΛA4ðφÞB2ðφÞ ~prffiffiffi

χ
p

�
ψ 0 þ

�
χ

��
ν0

2
−
λ0

2
þ 2

r

�
PX þ λ0

2
e−λψ2PXX þ ψPXφ

�

− κΛA4ðφÞB2ðφÞ
� ffiffiffi

χ
p �

−
ν0

2
~ρc2 þ 2

r
~pt

�
þ ~prffiffiffi

χ
p

�
βðφÞψ − αðφÞψ −

λ0

2

���
ψ

¼ −eλχPφ þ κA4ðφÞαðφÞeλ
�
−

~prffiffiffi
χ

p þ ffiffiffi
χ

p ð~ρc2 − 2 ~ptÞ
�
: ð37Þ

Eliminating λ0 and ν0 from Eq. (37), and using Eqs. (25)–(26), the scalar field equation of motion (37) can be
rewritten as

C2

dψ
dr

¼ −C1ψ þ r
r − 2μ

�
−χPφ þ κA4ðφÞαðφÞ

�
−

~prffiffiffi
χ

p −
ffiffiffi
χ

p ð−~ρc2 þ 2 ~ptÞ
��

; ð38Þ

where we introduced
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C2 ¼ χ

�
PX −

�
1 −

2μ

r

�
ψ2PXX

�
− κΛA4ðφÞB2ðφÞ ~prffiffiffi

χ
p ;

C1 ¼ χ

�
PX

�
2ðr − μÞ
rðr − 2μÞ þ

r
2
ψ2PX þ r2

r − 2μ

�
P −

κ

2
A4ðφÞ

� ffiffiffi
χ

p
~ρc2 −

~prffiffiffi
χ

p
���

þ 1

2

�
−
2μ

r2
þ rð−Pþ A4ðφÞ ffiffiffi

χ
p ðκ ~ρc2ÞÞ

�
ψ2PXX þ ψPXφ

�

− κΛA4ðφÞB2ðφÞ
�
−

1

r − 2μ

�
μ

r
þ r2P

2

�� ffiffiffi
χ

p
~ρc2 −

~prffiffiffi
χ

p
�
−
~ρc2

ffiffiffi
χ

p
2

ψ2PXr

−
κr2

r − 2μ
ð~ρc2 ~prÞA4ðφÞ þ 2

ffiffiffi
χ

p
r

~pt þ
ψffiffiffi
χ

p ðβðφÞ − αðφÞÞ ~pr

�
: ð39Þ

The set of Eqs. (31), (34), (35), (36) and (38) together
with a given EOS

~pr ¼ ~prð~ρÞ; ~pt ¼ ~ptð~ρÞ; ð40Þ

form a closed system of equations to analyze the structure
of relativistic stars in the scalar-tensor theory (4).

C. Slowly rotating stars

In this subsection, we extend our calculation to the case
of slowly rotating stars. Once the set of the equations of
motion for a static and spherically symmetric star is
given, it is simple to take first-order corrections due to
rotation into consideration using the Hartle-Thorne scheme
[105,106]. At first order in the Hartle-Thorne perturbative
expansion, we derive our results in a manner as general as
possible, similarly to the previous section.
In the Einstein frame, the line element including the first-

order correction due to rotation is given by

ds2 ¼ −eνðrÞc2dt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ
þ 2ðω −ΩÞr2sin2θdtdϕ; ð41Þ

where ωðrÞ is a function of r, which is of the same order as
the star’s angular velocity Ω. We can construct the Jordan
frame line element using Eqs. (2) and (8). The construction
of the energy-momentum tensor for the anisotropic fluid in
the Jordan frame is similar to what was done before, except
that now, the normalization of the four-velocity, demands
that

~ut ¼ ½−ð~gtt þ 2 ~Ω~gtϕ þ ~Ω2 ~gϕϕÞ�−1=2; ð42aÞ

~ur ¼ ~uθ ¼ 0; ~uϕ ¼ ~Ω ~ut; ð42bÞ

where ~Ω is the star’s angular velocity in the Jordan frame
[measured in the coordinates of xμ ¼ ðt; r; θ;ϕÞ],

~gtt ¼ A2gtt; ~grr ¼ A2½grr þ ΛB2ðφ0Þ2�; ð43aÞ

~gij ¼ A2gij; ði; j ¼ θ;ϕÞ ð43bÞ

~gtϕ ¼ A2gtϕ; ð43cÞ

and we must expand all expressions, keeping only terms of
order OðΩÞ. As shown in the Appendix, the star’s angular
velocity is disformally invariant, ~Ω ¼ Ω. We also note that
rotation can induce a dependence of the scalar field on θ,
which appears however only at more than second order in
rotation, OðΩ2Þ [26]. Thus in our case, the scalar field
configuration remains the same as in the nonrotating
situation.
At the first order in rotation, the diagonal components of

the Einstein equations and the scalar field equation of
motion remain the same as Eqs. (31), (34), (35), (36) and
(38). A new equation comes however from the ðt;ϕÞ
component of the Einstein equation:

d2ω
dr2

−
�
4

r
−
λ0 þ ν0

2

�
dω
dr

þ 2κA4ðφÞr ffiffiffi
χ

p ð~ρc2 þ ~pr − ~σÞ
ðr − 2μÞ ωðrÞ ¼ 0: ð44Þ

By eliminating ν0 and λ0 with the use of Eqs. (34) and (35),
we obtain the frame-dragging equation

d2ω
dr2

þ
�
1

2
rPXψ

2 þ κr2A4ðφÞ
2

ffiffiffi
χ

p ðr − 2μÞ ð ~pr þ χ ~ρc2Þ − 4

r

�
dω
dr

þ 2κA4ðφÞr ffiffiffi
χ

p ð~ρc2 þ ~pr − ~σÞ
ðr − 2μÞ ωðrÞ ¼ 0: ð45Þ

Equation (45) can be solved together with Eqs. (31), (34),
(35), (36) and (38). Together these equations fully describe
a slowly rotating anisotropic relativistic star in the theory
described by the action (4).
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D. Particular limits

The equations obtained in the previous section represent
the most general set of stellar structure equations for a
broad class of scalar-tensor theories with a single scalar
degree of freedom with a disformal coupling between the
scalar field and a spherically symmetric slowly rotating
anisotropic fluid distribution. Because of its generality, we
can recover many particular cases previously studied in the
literature:
(1) In the limit of the pure conformal coupling, Λ → 0

(thus χ → 1), we recover the case studied in
Ref. [55].

(2) If we additionally assume isotropic pressure
~pr ¼ ~pt ¼ ~p, we recover the standard equations
given in Refs. [15,16].

(3) If we assume a kinetic term of the form
PðX;φÞ ¼ 2X − VðφÞ, where VðφÞ is a mass term
m2φ2, isotropic pressure and purely conformal
coupling we recover the massive scalar-tensor theory
studied in Refs. [107,108] and the asymmetron
scenario proposed in Ref. [109] by appropriately
choosing AðφÞ.

IV. SCALAR-TENSOR THEORY WITH A
CANONICAL SCALAR FIELD

A. Stellar structure equations

Now let us apply the general formulation developed in
the previous section to the canonical scalar field with the

potential VðφÞ, i.e. P ¼ 2X − VðφÞ. The stellar structure
equations (31), (34), (35), (36) and (38) reduce to

dμ
dr

¼ rðr − 2μÞ
2

ψ2 þ r2

2
VðφÞ þ A4ðφÞ ffiffiffi

χ
p �

κ

2
~ρc2r2

�
;

ð46aÞ
dν
dr

¼ 2μ

rðr − 2μÞ þ rψ2 −
r2

r − 2μ
VðφÞ

þ r2

r − 2μ

A4ðφÞffiffiffi
χ

p ðκ ~prÞ; ð46bÞ

d ~pr

dr
¼ −

�
αðφÞψ þ μ

rðr − 2μÞ þ
r
2
ψ2 −

r2

2ðr − 2μÞVðφÞ

þ r2

r − 2μ

A4ðφÞffiffiffi
χ

p
�
κ

2
~pr

��
ð~ρc2 þ ~prÞ

− 2

�
1

r
þ αðφÞψ

�
~σ; ð46cÞ

dφ
dr

¼ ψ ; ð46dÞ

C2

dψ
dr

¼ −C1ψ þ rχVφðφÞ
r − 2μ

þ κr
r − 2μ

A4ðφÞαðφÞ

×

�
−

~prffiffiffi
χ

p þ ffiffiffi
χ

p ð~ρc2 − 2 ~prÞ þ 2
ffiffiffi
χ

p
~σ

�
; ð46eÞ

where

C1 ¼
2χ

r − 2μ

�
2ðr − μÞ

r
− r2VðφÞ − κ

2
A4ðφÞr2

� ffiffiffi
χ

p
~ρc2 −

~prffiffiffi
χ

p
��

− κΛA4ðφÞB2ðφÞ
�
−

μ

rðr − 2μÞ
� ffiffiffi

χ
p

~ρc2 −
~prffiffiffi
χ

p
�

−
rψ2

2

� ffiffiffi
χ

p
~ρc2 þ ~prffiffiffi

χ
p

�
þ r2VðφÞ
2ðr − 2μÞ

� ffiffiffi
χ

p
~ρc2 −

~prffiffiffi
χ

p
�
− κA4ðφÞ r2

r − 2μ
~pr ~ρc2

þ 2
ffiffiffi
χ

p
r

ð ~pr − ~σÞ þ ψffiffiffi
χ

p ðβðφÞ − αðφÞÞ ~pr

�
ð47Þ

and

C2 ¼ 2χ − κΛAðφÞ4BðφÞ2 ~prffiffiffi
χ

p : ð48Þ

In the case of a slowly rotating star, the frame-dragging
equation (45) becomes

d2ω
dr2

−
�
rψ2 þ κr2A4ðφÞ

2ðr − 2μÞ
�
~ρc2ffiffiffi
χ

p þ ffiffiffi
χ

p
~pr

�
−
4

r

�
dω
dr

− 2κA4ðφÞr ffiffiffi
χ

p ð~ρc2 þ ~pr − ~σÞ
ðr − 2μÞ ωðrÞ ¼ 0: ð49Þ

Through the Einstein equation (26), we find that if Λ > 0
the second term of C2 in Eq. (48) is of order OðΛB2=r2Þ,
from which we can estimate the radius within which the
contributions of disformal coupling to the gradient terms
become comparable to the standard ones in the scalar-
tensor theory as RD ≔

ffiffiffiffi
Λ

p
BðφÞ. If RD > R, where r ¼ R is

the star’s radius, the contributions of disformal coupling to
the gradient terms become important throughout the star,
while if RD < R they could be important only in a portion
of the star’s interior r < RD. When B → 1, RD ≈

ffiffiffiffi
Λ

p
and

therefore
ffiffiffiffi
Λ

p
characterizes the length scale for which the

disformal coupling effects become apparent. As the
radius of a typical NS is about 10 km, the effects of
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disformal coupling of the star become apparent when
Λ > Oð100 km2Þ.
We note that in the presence of the disformal coupling,

when integrating the scalar field equation (38), the coef-
ficient C2 in the dψ=dr equation may vanish at some
r ¼ R�, i.e. C2ðR�Þ ¼ 0. This could happen when both
Λ > 0 and the pressure at the center of the star is large
enough such that C2 < 0 in the vicinity of r ¼ 0. In such a
case, as we integrate the equations outwards, since the
radial pressure ~pr decreases and vanishes at the surface of
the star, there must be a point R� where C2 vanishes. This
point represents a singularity of our equations and a regular
stellar model cannot be constructed. The nonexistence of a
regular relativistic star for a large positive Λ is one of the
most important consequences due to the disformal cou-
pling. The appearance of the singularity is due to the fact
that the gradient term in the scalar field equation of motion
(46e) picks a wrong sign (i.e., negative speed of sound) and
is an illustration of the gradient instability pointed out in
Refs. [72,86,110].

B. Interior solutions

From this section onwards, we focus on the case of
isotropic pressure ~p ¼ ~pr ¼ ~pt. We then derive the boun-
dary conditions at the center of the star, r ¼ 0, which have
to be specified when integrating Eqs. (46) and (49). We
assume that at r ¼ 0, ~ρð0Þ ¼ ~ρc. The remaining metric and
matter variables can be expanded as

μðrÞ ¼ 1

6
½κ ~ρcc2A4ðφcÞ þ VðφcÞ�r3 þOðr5Þ; ð50aÞ

νðrÞ ¼ 1

6
½κð~ρcc2 þ 3 ~pcÞA4ðφcÞ − 2VðφcÞ�r2 þOðr4Þ;

ð50bÞ

φðrÞ¼φcþ
κA4ðφcÞαðφcÞð~ρcc2−3 ~pcÞþVφðφcÞ

12½2−κΛ ~pcA4ðφcÞB2ðφcÞ�
r2þOðr4Þ;

ð50cÞ

~pðrÞ ¼ ~pc −
1

12
ð~ρcc2 þ ~pcÞ

�
κA4ðφcÞ

�
~ρcc2 þ 3 ~pc þ αðφcÞ2

~ρcc2 − 3 ~pc

1 − κ
2
Λ ~pcA4ðφcÞB2ðφcÞ

�

− 2VðφcÞ
�
1 −

αðφcÞVφðφcÞ
2VðφcÞ

1

1 − κ
2
Λ ~pcA4ðφcÞB2ðφcÞ

��
r2 þOðr4Þ; ð50dÞ

where ~pc is fixed by ~ρc through the EOS, i.e. ~pc ¼ ~pð~ρcÞ.
The central value of the scalar field φc is fixed by
demanding that outside the star the scalar field approaches
a given cosmological value φ0 as r → ∞, which is
consistent with observational constraints. We will come
back to this in Sec. IV C.
As a well-behaved stellar model requires ~p00ð0Þ < 0, we

impose

κA4ðφcÞ
�
~ρcc2þ3 ~pcþαðφcÞ2

~ρcc2−3 ~pc

1− κ
2
Λ ~pcA4ðφcÞB2ðφcÞ

�

−2VðφcÞ
�
1−

αðφcÞVφðφcÞ
2VðφcÞ

1

1− κ
2
Λ ~pcA4ðφcÞB2ðφcÞ

�
>0:

ð51Þ

For a large positive disformal coupling parameter Λ > 0
and a large pressure at the center ~pc such that
j1 − κΛ

2
~pcA4ðφcÞB2ðφcÞj ≪ 1, the r2 terms of the scalar

field and pressure diverge and the Taylor series solution
(50) breaks down. Such a property is a direct consequence
of the appearance of the singularity inside the star which
was mentioned in the previous subsection. Assuming that
AðφcÞ ≈ 1 and BðφcÞ ≈ 1, the maximal positive value of
Λmax can be roughly estimated as

Λmax ≈
2

κ ~pc
¼ c4

4πG ~pc
≈ 102 km2; ð52Þ

for ~pc ¼ 1036 dyne=cm2, which agrees with the numerical
analysis done in Sec. VI. On the other hand, for a large
negative value of the disformal coupling Λ < 0, no singu-
larity appears, from Eq. (50c) the r2 correction to the scalar
field amplitude is suppressed, and φðrÞ → φc everywhere
inside the star. This indicates that AðφcÞ ≈ constant, and for
a vanishing potential VðφÞ ¼ 0 the stellar configuration
approaches that in GR.
In the case of slowly rotating stars, the boundary

condition for ω near the origin reads

ω ¼ ωc

�
1þ κ

5
A4ðφcÞð~ρcc2 þ ~pcÞr2

�
þOðr4Þ: ð53Þ

1. Stellar models in purely disformal theories

It is interesting to analyze the stellar structure equa-
tions in the purely disformal coupling limit, when
AðφÞ ¼ 1. In this case we find that the expansions near
the origin are
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μðrÞ ¼ 1

6
½κ ~ρcc2 þ VðφcÞ�r3 þOðr5Þ;

νðrÞ ¼ 1

6
½κð~ρcc2 þ 3 ~pcÞ − 2VðφcÞ�r2 þOðr4Þ;

φðrÞ ¼ φc þ
VφðφcÞ

12½1 − κ
2
Λ ~pcB2ðφcÞ�

r2 þOðr4Þ;

~pðrÞ ¼ ~pc −
1

12
ð ~pc þ ~ρcc2Þ½κð~ρcc2 þ 3 ~pcÞ − 2VðφcÞ�r2

þOðr4Þ: ð54Þ

Thus for VðφÞ ¼ 0, φ ¼ φc everywhere, and the disformal
coupling term does not modify the stellar structure with
respect to GR. In other words, to obtain a nontrivial scalar
field configuration inside the NS we must have a potential

VðφÞ ≠ constant. It was argued in Ref. [83] that for a
simple mass term potential Vφ ∼m2φ, where m is the
mass of the scalar field, disformal contributions can be
neglected and the NS solution is the same as in GR.

2. Metric functions in the Jordan frame

Finally, we mention the behaviors of the metric functions
in the Jordan frame. In the Appendix we derive
the relationship of the physical quantities defined in the
two frames. The boundary conditions (50) indicate that in
the singular stellar solution of the Einstein frame the
metric functions μ and ν remain regular. Using
Eqs. (A3) and (A9), the metric functions in the Jordan
frame behave as

ν̄ðrÞ ¼ lnAðφcÞ2 þ
1

6

�
ð~ρcc2 þ 3 ~pcÞ − 2VðφcÞ þ αðφcÞ

κA4ðφcÞαð~ρcc2 − 3 ~pcÞ þ V 0ðφcÞ
1 − κΛ

2
A4ðφcÞB2ðφcÞ ~pc

�
r2 þOðr4Þ; ð55Þ

μ̄ðrÞ ¼ AðφcÞ
18

�
3ðA4ðφcÞ~ρc2 þ VðφcÞÞ þ 3αðφcÞ

κA4ðφcÞαð~ρcc2 − 3 ~pcÞ þ V 0ðφcÞ
1 − κΛ

2
A4ðφcÞB2ðφcÞ ~pc

þ ΛB2ðφcÞ
ðκA4ðφcÞαð~ρcc2 − 3 ~pcÞ þ V 0ðφcÞÞ2

4ð1 − κΛ
2
A4ðφcÞB2ðφcÞ ~pcÞ2

�
r3 þOðr5Þ: ð56Þ

Therefore, for j1 − κΛ
2
A4ðφcÞB2ðφcÞ ~pcj ≪ 1, the Taylor

series solutions for μ̄ðrÞ and ν̄ðrÞ break down, which
indicates that the metric functions in the Jordan frame μ̄
and ν̄ diverge at some finite radius and a curvature
singularity appears there.

C. Exterior solution

In the vacuum region outside the star r > R, the fluid
variables ~ρ, ~pr and ~pt vanish. The exterior solution should
be the vacuum solution of GR coupled to the massless
canonical scalar field. The following exact solution can be
obtained [15,111]:

ds2 ¼ −eνðρÞc2dt2 þ e−νðρÞ

×

�
dρ2 þ

�
ρ2 −

2Gs
c2

ρ

�
γijdθidθj

�
; ð57Þ

νðρÞ ¼ ν0 þ ln

�
1 −

2Gs
c2ρ

�M
s

; ð58Þ

φðρÞ ¼ φ0 −
Q
2M

ln

�
1 −

2Gs
c2ρ

�M
s

; ð59Þ

where ν0 represents the freedom of the rescaling of the time
coordinate, φ0 is the cosmological value of the scalar field

at r → ∞, M and Q are the integration constants and
s ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ2

p
. The metric (57) can be rewritten in

terms of the Schwarzschild-like coordinate r by the
transformations

rðρÞ ¼ ρ

�
1 −

2Gs
c2ρ

�s−M
2s

; ð60Þ

μðρÞ ¼ M
�
1 −

Gðs −MÞ2
2Mρc2ð1 − 2Gs

c2ρÞ
��

1 −
2Gs
c2ρ

�s−M
2s

: ð61Þ

As r → ∞, the solution (57) behaves as

μðrÞ ¼ GM
c2

−
G2Q2

2c4r
þO

�
1

r2

�
; ð62aÞ

νðrÞ ¼ ν0 −
2GM
c2r

þO
�
1

r2

�
; ð62bÞ

φðrÞ ¼ φ0 þ
GQ
c2r

þO
�
1

r2

�
: ð62cÞ

Thus the integration constants M and Q correspond to the
Arnowitt-Deser-Misner (ADM) mass and the scalar charge
in the Einstein frame, respectively. For later convenience
we also define the fractional binding energy
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Eb ≔
Mb

M
− 1; ð63Þ

which is positive for bound (but not necessarily stable)
configurations. We note that for the vanishing scalar field at
asymptotic infinity the ADM mass is disformally invariant,
M̄ ¼ M [see Eq. (A10)].
In the slowly rotating case, the integration of Eq. (44) in

vacuum ~ρ ¼ ~pt ¼ 0 gives

ω0 ¼ 6G
c2r4

e
λþν
2 J; ð64Þ

where J is the integration constant. In the vacuum case, we
can find the exact exterior solution at the first order in
rotation [16]. Expanding it in the vicinity of r → ∞ gives

ω ¼ Ω −
2GJ
c2r3

þO

�
1

r5

�
: ð65Þ

Thus J corresponds to the angular momentum in the
exterior spacetime.

D. Matching

At the surface of the star, the interior solution is matched
to the exterior solution (57). Then the cosmological value
of the scalar field φ0, the ADM mass M and the scalar
charge Q are evaluated as

φ0 ¼ φs þ ln

�
x1 þ x2
x1 − x2

�ψs
x2 ; ð66aÞ

M ¼ c2R2ν0s
2G

�
1 −

2μs
R

�1
2

�
x1 þ x2
x1 − x2

�
− ν0s
2x2 ; ð66bÞ

q ≔
Q
M

¼ −
2ψ s

ν0s
ð66cÞ

where we introduced x1 ¼ ν0s þ 2=R and
x2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν02s þ 4ψ2

s

p
. We also defined μs ≔ μðRÞ

and νs ≔ νðRÞ.
In the case of a slowly rotating star, the angular

velocity and angular momentum of the star, Ω and J,
are evaluated as

Ω ¼ ωs −
3c4J

4G2M3ð3 − αðφsÞ2Þ
�

4

x21 − x22

�
x1 − x2
x1 þ x2

�2ν0s
x2

×

�
3ν0s
R

þ 1

R2
þ 3ν02s − ψ2

s

�
− 1

�
; ð67Þ

J ¼ c2R4

6G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2μs
R

r
e−

ν0s
2ω0

s: ð68Þ

The moment of inertia can be obtained by

I ≔
J
Ω
; ð69Þ

or equivalently by integrating Eq. (44), using Eqs. (34)
and (35)

I ¼ 8π

3c2

Z
R

0

drA4ðφÞ ffiffiffi
χ

p
r4e−

ν−λ
2 ð~ρc2 þ ~ptÞ

�
ω

Ω

�
: ð70Þ

We observe that this relation for the moment of inertia holds
for any choice of PðX;φÞ, AðφÞ and BðφÞ. In the purely
conformal theory we obtain the result of Ref. [55].
For a given EOS the equations of motion (46) and (49)

are numerically integrated from r ¼ 0 up to the surface of
the star r ¼ R, where the pressure vanishes ~pðRÞ ¼ 0. With
the values of various variables at the surface at hand, we can
compute φ0, M, q and I using the matching conditions.
From the Einstein frame radius R, we can calculate the

physical Jordan frame radius ~R through [cf. Eq. (2)]

~R ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðφsÞ½R2 þ ΛB2ðφsÞψ2

s �
q

ð71Þ

where we introduced φs ≔ φðRÞ and ψ s ≔ ψðRÞ. For a
vanishing scalar field we have ~R ¼ R.
The total baryonic mass of the star Mb can be obtained

by integrating

Mb ¼
Z

R

0

drA3ðφÞ ffiffiffi
χ

p 4π ~mbr2ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2μ

r

q ~nðrÞ; ð72Þ

where ~mb ¼ 1.66 × 10−24 g is the atomic mass unit and ~n is
the baryonic number density.
In the Appendix we show that the physical quantities

related to the rotation of fluid and spacetime, namely I and
J as well as ω and Ω, are invariant under the disformal
transformation (2).

V. A TOY MODEL OF SPONTANEOUS
SCALARIZATION WITH AN
INCOMPRESSIBLE FLUID

Before carrying out the full numerical integrations of the
stellar structure equations it is illuminating to study under
which conditions scalarization can occur in our model. This
can be accomplished by studying a simple toy model where
a scalar field lives on the background of an incompressible
fluid star. The results obtained in this section will be
validated in Sec. VI.
Let us start by assuming that the star has a constant

density ρ (incompressible) and an isotropic pressure
p ¼ pr ¼ pt. The scalar field φ is massless, and has a
canonical kinetic term and small amplitude, such that we
can linearize the equations of motion. The conformal and
disformal coupling functions can be expanded as
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AðφÞ ¼ 1þ 1

2
β1φ

2 þOðφ3Þ;

BðφÞ ¼ 1þ 1

2
β2φ

2 þOðφ3Þ; ð73Þ

where we have defined β1 ≔ Aφφð0Þ and β2 ≔ Bφφð0Þ. As
at the background level the scalar field is trivial φ ¼ 0, the
Jordan and Einstein frames coincide, and ~ρ ¼ ρ and ~p ¼ p.
For an incompressible star, the Einstein field equations
admit an exact solution of the form (21) given by [112]

eλðrÞ ¼
�
1 −

2GMr2

c2R3

�−1
; ð74aÞ

eνðrÞ ¼
�
3

2

�
1 −

2GM
c2R

�
1=2

−
1

2

�
1 −

2GMr2

c2R3

�
1=2

�
2

;

ð74bÞ

pðrÞ ¼ ρc2
ð1 − 2GMr2

c2R3 Þ1=2 − ð1 − 2GM
c2R Þ1=2

3ð1 − 2GM
c2R Þ1=2 − ð1 − 2GMr2

c2R3 Þ1=2
; ð74cÞ

where r ¼ R is the surface of the star, at which pðRÞ ¼ 0.
Here, M and C are the total mass and compactness of the
star:

M ¼ 4πR3

3
ρ; C ¼ GM

c2R
: ð75Þ

We then consider the perturbations to the background
(74) induced by the fluctuations of φ. Since the correc-
tions to the Einstein equations appear in Oðφ2;φμ

2Þ, at
the leading order of φ only the scalar field equation of
motion becomes nontrivial. In the linearized approxi-
mation, χ ¼ 1þOðφμ

2Þ, α ¼ β1φþOðφ2Þ and β ¼
β2φþOðφ2Þ, and the scalar field equation of motion
(20) for the massless and minimally coupled scalar field
P ¼ 2X reduces to

�
gρσ −

κΛ
2
Tρσ
ðmÞ

�
φρσ ¼ −

κβ1
2

TðmÞρρφþOðφ2;φ2
μÞ: ð76Þ

Thus, as expected, in the Einstein frame the corrections
from disformal coupling appear as the modification of
the kinetic term via the coupling to the energy-momen-
tum tensor.
Taking the s-wave configuration for a stationary field,

_φ ¼ φ̈ ¼ 0, we get

φ00 þ
ν0−λ0
2

þ 2
r −

κΛ
2
½− ν0

2
ρc2 þ ð− λ0

2
þ 2

rÞpðrÞ�
1 − κΛ

2
pðrÞ φ0

−
κβ1
2

eλðrÞ
ρc2 − 3pðrÞ
1 − κΛ

2
pðrÞ φþOðφ2;φ02Þ ¼ 0: ð77Þ

Inside the star, the scalar field equation of motion in the
stationary background (77) can be expanded as

φ00 þ 2

r

�
1þO

�
C
r2

R2

��
φ0 þ u

�
1þO

�
C
r2

R2

��
φ ¼ 0;

ð78Þ

where we have defined

u ≔
6ð3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2C
p

− 2ÞC
ð3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2C
p

− 1ÞR2 þ 3Cð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
− 1ÞΛ jβ1j: ð79Þ

By neglecting the correction terms of order OðC r2

R2Þ in
Eq. (78), the approximated solution inside the star satisfy-
ing the regularity boundary condition at the center,
φð0Þ ¼ φc and φ0ð0Þ ¼ 0, is given by

φðrÞ ≈ φc
sinð ffiffiffi

u
p

rÞffiffiffi
u

p
r

: ð80Þ

We note that at the surface of the star, r ¼ R, the
corrections to this approximate solution (80) would be
of OðCÞ, which is negligible for C ≪ 1 and gives at most a
10% error even for C ≃ 0.1. Thus the solution (80) provides
a good approximation to the precise interior solution of
Eq. (77), up to corrections of Oð10%Þ for typical NSs.
Outside the star, where ~ρ ¼ ~p ¼ 0, the scalar field

equation of motion (77) reduces to

φ00 þ
�
1

r
þ 1

r − 2GM
c2

�
φ0 ¼ 0: ð81Þ

The exterior solution of the scalar field is given by

φðrÞ ¼ φ0 þ
Q
2M

ln

�
1 −

2GM
c2r

�
; ð82Þ

which can be expanded as

φðrÞ ¼ φ0 −
GQ
c2r

þO
�
1

r2

�
; ð83Þ

where Q denotes scalar charge. Matching at the surface
r ¼ R gives

GQ
c2Rφ0

¼ −
2Cð1 − 2CÞð ffiffiffi

u
p

R − tanð ffiffiffi
u

p
RÞÞ

Ξ
; ð84Þ
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φc

φ0

¼ −
2C

ffiffiffi
u

p
R

cos ð ffiffiffi
u

p
RÞ

1

Ξ
ð85Þ

where we introduced

Ξ ¼ ð1 − 2CÞ ffiffiffi
u

p
R ln ð1 − 2CÞ

− ½2C þ ð1 − 2CÞ ln ð1 − 2CÞ� tanðR ffiffiffi
u

p Þ: ð86Þ

The scalar charge Q and the central value of the scalar
field φc blow up when

tan ð ffiffiffi
u

p
RÞffiffiffi

u
p

R
¼ ð1 − 2CÞ lnð1 − 2CÞ

2C þ ð1 − 2CÞ lnð1 − 2CÞ : ð87Þ

Thus, inside the star, the scalar field can be enhanced and
the scalarization takes place when

ffiffiffi
u

p
R ≈

π

2

�
1þ 4

π2
C
�
: ð88Þ

The condition (88) can be rewritten as

jβcrit1 j ≈ π2

24C

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
− 1þ 3Cð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2C
p

− 1Þ Λ
R2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
− 2

×

�
1þ 4

π2
C
�

2

; ð89Þ

where βcrit1 is the critical value of β1 for which scalarization
can be triggered.
For small compactness C ≪ 1, we find at leading order

jβcrit1 j ≈ π2

12C

�
1 −

3C2

2R2
Λ

�
: ð90Þ

For a typical NS, the compactness parameter C≃ 0.2, and
if Λ is negligibly small jβcrit1 j ¼ π2=ð12CÞ≃ 4.1, which
agrees with the ordinary scalarization threshold [15,17]. On
the other hand, disformal coupling becomes important
when Λ≃ ðR=CÞ2, which for R ∼ 10 km and C≃ 0.2,
corresponds to Λ≃ 2500 km2.
In the other limit, for sufficiently large negative

disformal coupling parameters jΛj ≫ ðR=CÞ2, as
uR2 ≃ 2R2=ðjΛjC2Þ ≪ 1, from Eqs. (84) and (85) we have

GQ
c2Rφ0

≃ −
1 − 2C

3
uR2 ≪ 1 and φc ≃ φ0; ð91Þ

and the scalar field excitation is suppressed inside the star:
the stellar configuration is that of GR.
In the next section, we will show explicit examples

of the numerical integrations of the stellar structure and
scalar field equations (46) and (49), and explore how the
disformal coupling affects the standard scalarization
mechanism in the models proposed in Refs. [15,16]. We

will confirm our main conclusions from the perturbative
calculations presented here.

VI. NUMERICAL RESULTS

Having gained analytical insight into the effect of the
disformal coupling on spontaneous scalarization, we now
will perform full numerical integrations of the stellar
structure equations.
For simplicity, we will focus on the simple case of a

canonical scalar field without a potential VðφÞ ¼ 0 and we
will assume the special form of the coupling functions that
enter Eq. (2)

AðφÞ ¼ e
1
2
β1φ

2

; BðφÞ ¼ e
1
2
β2φ

2

; ð92Þ

as a minimalmodel to include the disformal coupling in our
problem. In the absence of the disformal coupling function
(Λ ¼ 0), this model reduces to that studied originally by
Damour and Esposito-Farèse [15,16]. Another input from
the theory is the cosmological value of the scalar field φ0,
which for simplicity we take to be zero throughout this
section. We also studied the case φ0 ¼ 10−3, which does
not alter our conclusions.
Under these assumptions our model is invariant under

the transformation φ → −φ (reflection symmetry).
Therefore for each scalarized NS with scalar field con-
figuration φ, there exists a reflection-symmetric counterpart
with φ → −φ. For both families of solutions the bulk
properties (such as masses, radii and moment of inertia) are
the same, while the scalar chargesQ have opposite sign, but
the same magnitudes. Moreover, φ ¼ 0 is a trivial solution
of the stellar structure equations. These solutions are
equivalent to NSs in GR.
In this section we sample the (β1, β2, Λ) parameter space

of the theory, analyzing each parameter’s influence on NS
models and on spontaneous scalarization. As mentioned in
Sec. I, binary-pulsar observations have set a constraint of
β1 ≳ −4.5 in what corresponds to the purely conformal
coupling (Λ ¼ 0) limit of our model. This lower bound on
β1 is not expected to apply for our more general model and
therefore, so far, the set of parameters (β1, β2, Λ) are largely
unconstrained.

A. Equation of state

To numerically integrate the stellar structure equations
we must complement them with a choice of EOS. Here we
consider three realistic EOSs, namely APR [113], SLy4
[114] and FPS [115], in decreasing order of stiffness. The
first two support NSs with masses larger than the M ¼
2.01� 0.04 M⊙ lower bound from the pulsar PSR
J0348þ 0432 in GR [116]. On the other hand, EOS
FPS has a maximum mass of ∼1.8 M⊙ in GR and is in
principle ruled out by Ref. [116]. Nevertheless, as we will
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see this EOS can support NSs with M ≳ 2 M⊙, albeit
scalarized, for certain values of the theory’s parameters.
With this set of EOSs we validated our numerical code

by reproducing the results of Refs. [28,55] in the purely
conformal coupling limit. Our results including the pres-
ence of the disformal coupling are presented next.

B. Stellar models in the minimal scalar-tensor
theory with disformal coupling

In Sec. V we found that β1 always needs to be
sufficiently negative for scalarization to be triggered. For
this reason, let us first analyze how Λ and β2 affect
scalarized nonrotating NSs assuming a fixed value of β1.
In Fig. 1, we consider what happens when we change the

value of Λ while maintaining β1 and β2 fixed. We observe
that for sufficiently negative values of Λ the effects of
scalarization become suppressed. This can be qualitatively
understood from Eq. (90): as Λ=R2 → −∞ we need
jβcrit1 j → ∞ for scalarization to happen. For fixed values
of β1 and C, there will be a sufficiently negative value of Λ,
for which βcrit1 > β1 and scalarization ceases to occur.
Although in Fig. 1 we show Λ ¼ −3000 km2, we have
confirmed this by constructing stellar models for even
smaller values of Λ. Also, in agreement with Sec. V, we see
that Λ alters the threshold for scalarization. This is most
clearly seen in the right panel of Fig. 1, where for different
values of Λ scalarization starts (evidenced by a nonzero
scalar charge q) when different values of compactness C

are reached.1 In particular, for Λ > 0, because of the minus
sign in the disformal term in Eq. (90), NSs can scalarize for
smaller values of C, while the opposite happens when
Λ < 0. We remark that for large positive Λ the structure
equations become singular at the origin as discussed in
Sec. IV. This prevents nonrelativistic stars, for which
C → 0, from scalarizing.
In Fig. 2, we consider what happens when we change the

value of β2 while maintaining β1 and Λ fixed. We see that in
agreement with Eq. (90), the parameter β2 does not affect
the threshold for scalarization. Moreover, we observe that
β2 < 0 (β2 > 0) makes scalarization more (less) evident
with respect to β2 ¼ 0. In fact, in Eqs. (48) and (47), we see
that β1 and β2 contribute to the scalar field equation through
the factors ΛA4B2 and β − α, which have competing effects
in sourcing the scalar field for β1 < 0 and β2 ≠ 0. Our
numerical integrations indicate that the former is dominant
and that β2 ≠ 0 affects only very compact NSs (C ≳ 0.15 in
the example of Fig. 2).

FIG. 1. We show the role of Λ in spontaneous scalarization. In
both panels we consider stellar models using EOS SLy4 with
β1 ¼ −6.0, β2 ¼ 0 and for Λ ¼ ð−500;−3000; 50Þ km2. For
reference the solid line corresponds to GR. Left panel: The
mass-radius relation. Right panel: The dimensionless scalar
charge q ≔ −Q=M [15] as a function of the compactness C.
We see that Λ > 0 slightly increases scalarization with respect to
the purely conformal theory (cf. Fig. 2). On the other hand, Λ < 0
can dramatically suppress scalarization. Note also that unlike β2,
Λ can change the compactness threshold above which scalariza-
tion can happen, as predicted by the analysis of Sec. V. These
results are qualitatively independent of the choice of EOS.

FIG. 2. We show the role of β2 in spontaneous scalarization.
As in Fig. 1, in both panels we consider stellar models using
SLy4 EOS but with β1 ¼ −6.0 and Λ ¼ −1000 km2 for
β2 ¼ ð−20; 0; 20Þ. For reference the solid line corresponds to
GR. Left panel: The mass-radius relation. Right panel: The
dimensionless scalar charge q ¼ −Q=M as a function of the
compactness C. We see that β2 affects highly scalarized stellar
models making scalarization stronger (in the sense of increas-
ing the value of q) when β2 < 0, or weaker for β2 > 0. Observe
that β2 has a negligible effect on weakly scalarized models
(jqj ≲ 0.35). This is in agreement with its absence from the
perturbative analysis of Sec. V. Note that the range of C for
which scalarization occurs is the same, irrespective of the
choice of β2. Again, these results are qualitatively independent
of the choice of EOS.

1In the preceding section, because of the weak (scalar) field
approximation the Jordan and Einstein frame radii are approx-
imately the same, i.e ~R ¼ R. This is not the case in this section
and hereafter the compactness uses the Jordan frame radius, i.e.
C ¼ GM=ðc2 ~RÞ.
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It is also of interest to see how scalarization affects the
interior of NSs. In Fig. 3, we show the normalized pressure
profile p=pc (top left), the dimensionless mass function
μ=M⊙ (top right), the scalar field φ (bottom left) and the
disformal factor χ (bottom right) in the stellar interior. The
radial coordinate was normalized by the Einstein frame
radius R. The quantities correspond to three stellar con-
figurations using SLy4 EOS with fixed baryonic mass
Mb=M⊙ ¼ 1.5, which in GR yields a canonical NS with
mass M ≈ 1.4 M⊙, for the sample values of ðβ1; β2;ΛÞ
indicated in Table I. In agreement with our previous
discussion we see that NSs with Λ > 0 (Λ < 0) support
a larger (smaller) value of φc, which translates to a larger
(smaller) value of q. It is particularly important to observe
that χ is non-negative for all NS models, guaranteeing the
Lorentzian signature of spacetime [cf. Eq. (9)].
In Fig. 4 we show the mass-radius curves (top panels)

and moment of inertia-mass (lower panels) for increasing
values of β1 (from left to right), for three realistic EOSs,

keeping β2 ¼ 0, but using different values of Λ. As we
anticipated in Fig. 1, negative values of Λ reduce the effects
of scalarization, while positive values increase them. The
case Λ ¼ 0 corresponds to the purely conformal theory of
Ref. [15]. We observe that scalarized NS models branch
from the GR family at different points for different values
of Λ (when β1 is fixed). In agreement with our previous
discussion, sufficiently negative values of Λ can completely
suppress scalarization. Indeed for β ¼ −4.5 the solutions
with Λ ¼ −1000 km2 are identical to GR, while scalarized
solutions exist when Λ ¼ 0.
Additionally, we observe degeneracy between families of

solutions in theories with different parameters. For instance,
the maximum mass for a NS assuming EOS APR is
approximately the same, M=M⊙≈2.38, for both β1¼
−5.5, Λ ¼ 0 and β1 ¼ −6.0, Λ ¼ −1000 km2. We also
point out the degeneracy between the choice of EOS and
of the parameters of the theory. For instance, the maximum
mass predicted byEOSFPS in the theorywith β1 ¼ −5.5 and
Λ ¼ 50 km2 is approximately the same as that predicted by
GR, but for EOS SLy4, i.e. M=M⊙ ≈ 2.05. We emphasize
that these two types of degeneracies are not exclusive to the
theorywe are considering, but are generic to anymodification
to GR [117].
In Fig. 5, we exhibit the mass-radius (top panels) and

moment of inertia-mass (lower panels) for increasing
values of β1 (from left to right), but now keeping Λ ¼
−1000 km2 and changing the value of β2. Once more,
sufficiently negative values of Λ can completely suppress
scalarization. This is clearly seen in the panels for
β1 ¼ −4.5, where Λ ¼ −1000 km2, suppresses scalariza-
tion for all values of β2 considered. We observe that
independently of the choice of EOS, β2 > 0 (β2 < 0) yields
smaller (larger) deviations from GR.

C. Stability of the solutions

Let us briefly comment on the stability of the scalarized
solutions obtained in this section. In general, for a given set
of parameters ðβ1; β2;ΛÞ and fixed values ofMb and φ0, we
have more than one stellar configuration with different
values of the mass M. Following the arguments of
Refs. [15,17,35], we take the solution of smallest mass M
i.e. larger fractional binding energy Eb defined in Eq. (63), to

TABLE I. The properties of NSs in GR and scalar-tensor theory
using EOS SLy4 and fixed baryonic mass Mb=M⊙ ¼ 1.5. The
radial profiles of some of the physical variables involved in the
integration of the stellar model are shown in Fig. 3.

ðβ1; β2;ΛÞ ~R [km] M [M⊙] I [1045 g cm2] φc q

GR 11.72 1.363 1.319 – –
ð−6; 0; 0Þ 11.60 1.354 1.431 0.220 0.613
ð−6;−40;−500Þ 11.64 1.354 1.438 0.218 0.622
ð−6; 0; 60Þ 11.59 1.354 1.430 0.223 0.615

FIG. 3. We show the normalized pressure profile p=pc (top
left), dimensionless mass function μ=M⊙ (top right), scalar field
φ (bottom left) and the disformal factor χ (bottom right) in the
stellar interior. The radial coordinate was normalized by the
Einstein frame radius R. The radial profiles above correspond to
three stellar configurations using SLy4 EOS, with fixed baryonic
mass Mb=M⊙ ¼ 1.5 and theory parameters ðβ1; β2;ΛÞ ¼
ð−6; 0; 60Þ, ð−6;−40;−500Þ and ð−6; 0; 0Þ, the latter corre-
sponding to a stellar model in the Damour-Esposito-Farèse
theory [15,111]. While the fluid variables are not dramatically
affected, models with Λ > 0 (Λ < 0) become more (less)
scalarized due to the disformal coupling. The bulk properties
of these models are summarized in Table I.

RELATIVISTIC STARS IN SCALAR-TENSOR THEORIES … PHYSICAL REVIEW D 93, 124041 (2016)

124041-15



be the one which is energetically favorable to be realized
in nature. In Fig. 6, we show Eb as a function of Mb for the
two families of solutions in a theory with ðβ1; β2;ΛÞ ¼
ð−6; 0; 50Þ and φ0 ¼ 0. The dashed line corresponds to
solutions which are indistinguishable from the ones obtained
in GR, while the solid line (which branches off from the
former around Mb=M⊙ ≈ 1.1) corresponds to scalarized
solutions. We see that scalarized stellar configurations in
our model are energetically favorable, as happens in the case
of purely conformal coupling theory [15,17,35].

VII. AN APPLICATION: EOS-INDEPENDENT
I − C RELATIONS

As we have seen in the previous sections the presence of
the disformal coupling modifies the structure of NSs

making scalar-tensor theories generically predict different
bulk properties with respect to GR. However, as we
discussed based on Figs. 4 and 5, modifications caused
by scalarization are usually degenerate with the choice of
EOS, severely limiting our ability to constrain the param-
eters of the theory using current NS observations (see e.g.
Ref. [118]). Moreover, different theory parameters can
yield similar stellar models for a fixed EOS.
An interesting possibility to circumvent these problems

is to search for EOS-independent (or at least weakly EOS-
dependent) properties of NSs. Accumulating evidence
favoring the existence of such EOS independence between
certain properties of NSs, culminated with the discovery of
the I-Love-Q relations [119,120] connecting the moment
of inertia, the tidal Love number and the rotational

FIG. 4. We show NS models in scalar-tensor theories with disformal coupling for three choices of realistic EOSs, namely APR, SLy4
and FPS, in decreasing order of stiffness. We illustrate the effect of varying the values of β1 and Λ, while keeping β2 fixed (β2 ¼ 0) for
simplicity. The curves corresponding to Λ ¼ 0, represent stellar models in purely conformal theory [15,16]. Top panels: Mass-radius
relations. Bottom panels: Moment of inertia versus mass. As seen in Fig. 1 already, while Λ < 0 weakens scalarization, Λ > 0
strengthens the effect. For β2 ¼ 0, this latter effect is very mild, being more evident by β2 < 0 (cf. Fig. 5).

MASATO MINAMITSUJI and HECTOR O. SILVA PHYSICAL REVIEW D 93, 124041 (2016)

124041-16



quadrupole moment (all made dimensionless by certain
multiplicative factors) of NSs in GR.
If such relations hold in modified theories of gravitation

they can potentially be combined with future NS measure-
ments to constrain competing theories of gravity. This
attractive idea was explored in the context of dynamical
Chern-Simons theory [120], Eddington-inspired Born-Infeld
gravity [121], Einstein-dilaton-Gauss-Bonnet (EdGB) grav-
ity [122,123], fðRÞ theories [124] and the Damour-Esposito-
Farèse model of scalar-tensor gravity [24,26].
Within the present framework we cannot compute the

I-Love-Q relations, since while on one hand we can
compute I, the tidal Love number requires an analysis of
tidal interactions, and the rotational quadrupole moment Q
requires pushing the Hartle-Thorne perturbative expansion

up to order OðΩ2Þ. Nevertheless, we can investigate
whether the recently proposed I-C relations [125] between
the moment of inertia I and the compactness C remain valid
in our theory. For a recent study in the Damour-Esposito-
Farèse and R2 theories, see Ref. [126]. This relation was
also studied for EdGB and the subclass of Horndeski
gravity with nonminimal coupling between the scalar field
and the Einstein tensor in Ref. [127].
The relation proposed in Ref. [125] for the moment of

inertia Ī ≔ I=M3 and the compactness C is

Ī ¼ a1C−1 þ a2C−2 þ a3C−3 þ a4C−4; ð93Þ

where the coefficients ai (i ¼ 1;…; 4) are given by a1 ¼
8.134 × 10−1, a2 ¼ 2.101 × 10−1, a3 ¼ 3.175 × 10−3 and

FIG. 5. In comparison to Fig. 4, here we show the influence of β2 on spontaneous scalarization while keeping Λ ¼ −1000 km2. As we
have seen in Fig. 1 (and by the analytic treatment of Sec. V), negative values of Λ suppress scalarization. This effect is such that for
β1 ¼ −4.5, scalarization is suppressed altogether (top left panel). For smaller values of β1, this value of Λ weakens scalarization and we
clearly see that β2 affects the most scalarized stellar models in the conformal coupling theory. Note that the range covered by the axis
here and in Fig. 4 is the same, making it clear that scalarization is less strong for the values of β2 adopted.
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a4 ¼ −2.717 × 10−4. This result is valid for slowly rotating
NSs in GR, although it can easily be adapted for rapidly
rotating NSs [125]. The coefficients in Eq. (93) are
obtained by fitting the equation to a large sample of

EOSs. For earlier work considering a different normaliza-
tion for Ī, namely I=ðMR2Þ, see e.g. Refs. [128–132].
We confront this fit against stellar models in two scalar-

tensor theories with the parameters ðβ1; β2;ΛÞ having the
values ð−6;−20;−500Þ and ð−7;−20;−500Þ that support
highly scalarized solutions. As seen in Fig. 7, the deviations
from GR can be quite large, up to 40% for the theory with
β1 ¼ −7 in the range of compactness for which spontaneous
scalarization happens (cf. Fig. 7, bottompanel).Nevertheless,
the EOS independence between Ī and C remains even when
scalarization occurs (cf. Fig. 7, top panel).
Since our model is largely unconstrained observatio-

nally, measurements of the moment of inertia and compact-
ness of NSs could in principle be used to constrain it or,
more optimistically, indicate the occurrence of spontaneous
scalarization in NSs. This is in contrast with the standard
Damour-Esposito-Farèse model, for which the theory’s
parameters are so tightly constrained by binary pulsar
observations [133], that spontaneous scalarization (if it
exists) is bound to have a negligible influence on the I-C
relation [126]. We stress however that in general it will be
difficult to constrain the parameter space ðβ1; β2;ΛÞ only
through the I-C relation. The reason is in the degeneracy of
stellar models for different values of the parameters; see the
discussion in Sec. VI B.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have presented a general formulation to
analyze the structure of relativistic stars in scalar-tensor
theories with disformal coupling, including the leading-
order corrections due to slow rotation. The disformal
coupling is negligibly small in comparison with conformal
coupling in the weak-gravity or slow-motion regimes,
where the scalar field is slowly evolving and typical
pressures are much smaller than the energy density scales,
but it may be comparable to the ordinary conformal
coupling in the strong-gravity regime found inside relativ-
istic stars. Our calculation covers a variety of scalar-tensor
models, especially, conformal and disformal couplings to
matter, nonstandard scalar kinetic terms and generic scalar
potential terms.
After obtaining the stellar structure equations, we have

particularly focused on the case of a canonical scalar field
with a generic scalar potential. We showed that in the
absence of both conformal coupling and a scalar potential,
the disformal coupling does not modify the stellar structure
with respect to GR. On the other hand, this result shows us
that inside relativistic stars the effects of disformal coupling
always appear only when there is conformal coupling to
matter and/or a nontrivial potential term. The strength of
disformal coupling crucially depends on the coupling
strength Λ in Eq. (2) with dimensions of ðlengthÞ2. For
a canonical scalar field, Λ has to be of Oð103Þ km2 to
significantly influence the structure of NSs.

FIG. 6. We show the fractional binding energy Eb as a function
of the baryonic mass for stellar models using EOS SLy4 and for
theory with ðβ1; β2;ΛÞ ¼ ð−6; 0; 50Þ. Solutions in this theory
branch around Mb=M⊙ ≈ 1.1 with scalarized solutions (solid
line) being energetically favorable over the general-relativistic
ones (dashed line). The turning point at the solid curve corre-
sponds to the maximum in the M-R relation, cf. Fig. 1.

FIG. 7. We consider the I-C relation in scalar-tensor gravity.
Top panel: The fit (93) obtained in the context of GR (thick
solid line) is confronted against stellar models obtained in GR
(solid line); and scalar-tensor theories with parameters
ðβ2;ΛÞ ¼ ð−20;−500Þ, but with β1 ¼ −6 (dashed lines) and
β2 ¼ −7 (dash-dotted lines), using EOSs APR, SLy4 and FPS.
Middle panel: Relative error between the fit for GR against scalar-
tensor theory with β1 ¼ −6. Bottom panel: Similarly, but for
β1 ¼ −7. In all panels the shaded regions correspond to approx-
imately the domain of compactness for which spontaneous
scalarization occurs in each theory. While for GR, the errors
are typically below 6%, scalarized models can deviate from GR
by 20% (for β1 ¼ −6) and up to 40% (for β1 ¼ −7).
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In our numerical analyses, we have investigated the
effects of the disformal coupling on the spontaneous
scalarization of NSs in the scalar-tensor theory with purely
conformal coupling. We found that the effects of disformal
coupling depend on the sign of Λ. We showed that for
negative values of Λ the mass and moment of inertia of NSs
decrease, approaching the values in GR for sufficiently
large negative values of Λ. We speculate that this is the
consequence of a mechanism similar to the disformal
screening proposed in Ref. [86] where in a high-density
or a large disformal coupling limit the response of the scalar
field becomes insensitive to the local matter density,
exemplified here by studying relativistic stars. On the other
hand, for positive values of Λ, we showed that the mass and
moment of inertia increase but for too large positive values
of Λ the stellar structure equation becomes singular and a
regular NS solution cannot be found. This allowed us to
derive a mild upper bound of Λ≲ 100 km2, that does not
depend on the choice of the EOS.
We have also tested the applicability of a recently

proposed EOS-independent relation between the dimen-
sionless moment of inertia I=M3 and the compactness C for
NSs in GR. We found that for a certain domain of the
theory’s parameter space, the deviations from GR can be as
large as ∼40%, suggesting that future measurements of the
NS moment of inertia might be used to test scalar-tensor
theories with disformal coupling. Because of the large
dimensionality of the parameter space, modifications with
respect to GR are generically degenerate between different
choices of β1, β2 and Λ. Thereby, even though deviations
from GR can be larger, it seems unlikely that constraints
can be put on the theory’s parameters using exclusively the
I-C relation. In this regard, it would be worth extending our
work and studying how the I-Love-Q relations are affected
by the disformal coupling, generalizing the works of
Refs. [24–26] for scalar-tensor theories with disformal
coupling.
Still in this direction, one could investigate whether the

“three-hair” relations—EOS-independent relations con-
necting higher-order multipole moments of rotating NSs
in terms of the first three multipole moments in GR
[134–136]—remain valid in scalar-tensor theory, including
those with disformal coupling. This could be accomplished
by combining the formalism developed in Ref. [29] with
numerical solutions for rotating NSs such as those obtained
in Ref. [24].
Although the main subject of this paper was to inves-

tigate the hydrostatic equilibrium configurations in scalar-
tensor theories with disformal coupling, let us briefly
comment on the gravitational (core) collapse resulting in
the formation of a NS (see e.g. Ref. [34]). A fully numerical
analysis of dynamical collapse in this theory is beyond the
scope of our paper, but an important issue in this dynamical
process may be the possible appearance of ghost insta-
bilities for negative values of Λ [72,75,86,110]. During

collapse, matter density at a given position increases,
and if at some instant it reaches the threshold value where
the effective kinetic term in the scalar field equation
vanishes, the time evolution afterwards cannot be deter-
mined. For a canonical scalar field P ¼ 2X, in a linearized
approximation where χ ≃ 1 and BðφÞ≃ 1, the effective
kinetic term of the equation of motion (20) is roughly
given by

−
�
1 −

κjΛj
2

~ρc2
�
φ̈; ð94Þ

where the dot represents a time derivative. The sign of
the kinetic term may change in the region of a critical
density higher than ~ρcrit ¼ 2=ðκc2jΛjÞ. The choice of Λ ¼
−100 km2 gives ~ρcrit ≃ 1015 g=cm3, which is a typical
central density of NSs. Thus for jΛj≲ 100 km2 a NS is not
expected to suffer an instability while for other values it
might occur in the interior of the star. Of course, for a more
precise estimation, nonlinear interactions between the
dynamical scalar field, spacetime and matter must be taken
into consideration. A detailed study of time-dependent
processes in our theory is definitely important, but is left for
future work.
Another interesting prospect for future work would be to

study compact binaries within our model. The most
stringent test of scalar-tensor gravity comes from the
measurement of the orbital decay of binaries with asym-
metric masses, which constrains the emission of dipolar
scalar radiation by the system [53]. We expect that the
disformal coupling parameters β2 and Λ should play a role
in the orbital evolution of a binary system by influencing
the emission of scalar radiation from the system. In fact,
both parameters are expected to modify the so-called
sensitivities [137,138] that enter at the lowest PN orders
sourcing the emission of dipolar scalar radiation. An
investigation of compact binaries within our model could,
combined with current observational data, yield tight
constraints on disformal coupling. Moreover one could
study NS solutions for other classes of scalar-tensor
theories not considered here. This task is facilitated by
the generality of our calculations presented in Sec. III.
Work in this direction is currently underway and we hope to
report it soon.
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APPENDIX: DISFORMAL INVARIANCE

In this appendix, we study how the physical quantities
associated with the stellar properties transform under the
disformal transformation (2). We write the metrics with
slow rotation of spacetimes in the Einstein and Jordan
frames as

ds2 ¼ −eνðrÞc2dt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ
þ 2ðω −ΩÞr2sin2θdtdϕ; ðA1Þ

and

d~s2 ¼ −eν̄ðr̄Þc2dt2 þ eλ̄ðr̄Þdr̄2 þ r̄2ðdθ2 þ sin2θdϕ2Þ
þ 2ðω̄ − Ω̄Þr̄2sin2θdtdϕ: ðA2Þ

We can relate Eqs. (A1) and (A2) using the disformal
relation (2) as

eν̄ ¼ A2ðφÞeν; ðA3Þ

e
λ̄
2dr̄ ¼ AðφÞ ffiffiffi

χ
p

e
λ
2dr; ðA4Þ

r̄ ¼ rAðφÞ; ðA5Þ

ω̄ − Ω̄ ¼ ω −Ω; ðA6Þ

where we recall that due the symmetries of the problem
φ ¼ φðrÞ. From Eqs. (A4) and (A5) we get

eλ̄ ¼ χ

ð1þ rαφ0Þ2 e
λ: ðA7Þ

Introducing μ and μ̄ in the Einstein and Jordan frames by

e−λ ¼ 1 −
2μ

r
; e−λ̄ ¼ 1 −

2μ̄

r̄
; ðA8Þ

and using Eqs. (A5) and (A7) we find

μ̄ ¼ −
rAðφÞ
2

��
1 −

2μ

r

� ð1þ rαðφÞφ0Þ2
χ

− 1

�
: ðA9Þ

As it is reasonable to set φ0 ¼ 0 and φ0
0 ¼ 0 at asymptotic

infinity, in the class of models considered in the text
[Eq. (73)], Aðφ0Þ ¼ 1, αðφ0Þ ¼ 0 and χðφ0;φ0

0Þ ¼ 1, we
find that the ADM mass obtained from the leading-order
values of μ and μ̄ at asymptotic infinity is disformally
invariant

M̄ ¼ M: ðA10Þ

The energy-momentum tensors of the matter fields in the
Einstein and Jordan frames are defined by

TðmÞμν ¼ ρc2uμuν þ prkμkν þ ptðgμν þ uμuν − kμkνÞ;
T̄ðmÞμν ¼ ρ̄c2ūμūν þ p̄r̄k̄μk̄ν þ p̄tðḡμν þ ūμūν − k̄μk̄νÞ;

ðA11Þ

where uμ (ūμ) and kμ (k̄μ) are the four-velocity and unit
radial vectors in the Einstein (Jordan) frame, respectively
[55]. Within the first order of Hartle-Thorne’s slow-rotation
approximation [106], in the Einstein frame

uμ ¼
�

1ffiffiffiffiffiffiffiffi−gtt
p ; 0; 0;

Ωffiffiffiffiffiffiffiffi−gtt
p

�
;

kμ ¼
�
0;

1ffiffiffiffiffiffi
grr

p ; 0; 0

�
; ðA12Þ

and in the Jordan frame ūμ and k̄μ are defined in the same
way as Eq. (A12) with an overbar. The nonvanishing
components of the energy-momentum tensors in both
frames are then given by

TðmÞtt¼−ρc2; TðmÞrr¼pr; TðmÞθθ¼TðmÞϕϕ¼pt;

ðA13aÞ

T̄ðmÞtt¼−ρ̄c2; T̄ðmÞr̄r̄¼ p̄~r; T̄ðmÞθθ¼ T̄ðmÞϕϕ¼ p̄t;

ðA13bÞ

and

TðmÞϕt ¼
�
ρþ pt

c2

�
e−νωr2sin2θ; ðA14aÞ

T̄ðmÞϕt ¼
�
ρ̄þ p̄t

c2

�
e−ν̄ω̄r̄2sin2θ: ðA14bÞ

In the Jordan frame, we then make a coordinate trans-
formation from x̄μ ¼ ðt; r̄; θ;ϕÞ to xμ ¼ ðt; r; θ;ϕÞ, such
that

~TðmÞμ
ν ≔

∂x̄ρ
∂xμ

∂xν
∂x̄σ T̄ðmÞρσ: ðA15Þ

Introducing the components of the energy-momentum
tensor ~TðmÞμν as Eqs. (A13a)–(A13b) with a tilde, we find

ρ̄ ¼ ~ρ; p̄r̄ ¼ ~pr; p̄t ¼ ~pt; ðA16Þ
and consequently
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T̄ðmÞϕt ¼ ~TðmÞϕ
t: ðA17Þ

The components of the energy-momentum tensor in the
Einstein and Jordan frames are related by Eq. (23) and

TðmÞϕt ¼ A4ðφÞ ffiffiffi
χ

p ~TðmÞϕ
t: ðA18Þ

Substituting Eqs. (23), (A3), (A5), (A14a)–(A14b), (A16)
and (A17) into Eq. (A18) we find

ω̄ ¼ ω: ðA19Þ

Thus from Eq. (A6),

Ω̄ ¼ Ω: ðA20Þ

The angular momenta in the Einstein and Jordan frames
are given by

J ¼
Z

drdθdϕr2 sin θe
νþλ
2 TðmÞϕt; ðA21Þ

J̄ ¼
Z

dr̄dθdϕr̄2 sin θe
ν̄þλ̄
2 T̄ðmÞϕt: ðA22Þ

Using again Eqs. (A3), (A4), (A5), (A17) and (A18), we
find that the angular momentum is disformally invariant

J̄ ¼ J: ðA23Þ

From Eqs. (A20) and (A23) we find that the moments of
inertia in the Einstein and Jordan frames, I ¼ J=Ω and
Ī ¼ J̄=Ω̄, are also disformally invariant

Ī ¼ I: ðA24Þ

Thus all quantities associated with rotation are disformally
invariant. Our arguments in this appendix can be applied to
a generic class of the Horndeski theory connected by the
disformal transformation [60].
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