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The so-called unimodular version of general relativity is revisited. Unimodular gravity is constructed by
fixing the determinant of the metric, which leads to the trace-free part of the equations instead of the usual
Einstein field equations. Then a cosmological constant naturally arises as an integration constant. While
unimodular gravity turns out to be equivalent to general relativity (GR) at the classical level, it provides
important differences at the quantum level. Here we extend the unimodular constraint to some extensions of
general relativity that have drawn a lot of attention over the last years—fðRÞ gravity (or its scalar-tensor
picture) and Gauss-Bonnet gravity. The corresponding unimodular version of such theories is constructed
as well as the conformal transformation that relates the Einstein and Jordan frames for these nonminimally
coupled theories. From the classical point of view, the unimodular versions of such extensions are
completely equivalent to their originals, but an effective cosmological constant arises naturally, which may
provide a richer description of the evolution of the Universe. Here we analyze the case of Starobisnky
inflation and compare it with the original one.
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I. INTRODUCTION

Over the last decades, the so-called “cosmological
constant problem” has been one of the major challenges
in theoretical physics. The issue refers to the absence of
gravitational effects, particularly at the cosmological level,
of the vacuum energy density predicted by quantum field
theories or, better said, the impossibility of fine-tuning
properly its counterterms, which is known as radiative
instability (for a review, see Refs. [1] and [2]). On the other
hand, after the discovery of some deviations of the
luminosity distances of Supernovae Ia in 1998, which
was then interpreted as a consequence of the acceleration of
the Universe’s expansion (and later confirmed by other
proofs), the best and most accepted model that can explain
such behaviour lies on the presence of a cosmological
constant in the gravitational field equations, which in
principle should be connected somehow to the vacuum
energy density. However, the required cosmological con-
stant for the acceleration of the expansion (of the order the
Hubble parameter today) is around 120 orders of magni-
tude smaller than the one predicted by quantum field
theories. Hence, here the problem arises, how to drop
down the huge value of vacuum fluctuations. In this sense,
there have been plenty of proposals, which include a
possible symmetry that protects the cosmological constant
in the same sense that chiral symmetry does with the
electron mass as well as supersymmetry attempts. In
addition, an alternative way, which may include the dark
energy models and modified gravities, tries to suppress
such a large value by additional fields or modifications of
general relativity (GR). In this sense, there have been plenty

of dark energy models proposed, which may play that role;
see [3] and [4]. However, rather than solving the problem,
the former always requires a precise fine-tuning as well
(Weinberg’s no-go theorem).
An alternative widely studied in the literature is the

so-called unimodular gravity (see Refs. [1,2,5–13]). The
theory fixes the determinant of the metric, such that
the field equations are given by the trace-free part of
GR’s field equations. From the classical point of view,
fixing the determinant of the metric provides a cosmologi-
cal constant that naturally arises as an integration constant
after applying the corresponding geometrical identities,
which at the cosmological level may be a way of under-
standing the problem of dark energy [5]. The unimodular
constraint can be implemented in several ways, all of them
leading to the same classical theory, as shown in the
literature [5–13]. However, in spite of the theory being
equivalent to GR at the classical level, the equivalence is
not clear at the quantum one, where great effort has been
made to get a better understanding of the features of the
theory [6,7]. When the theory is analyzed in quantum
mechanics, radiative instability is absent for this effective
cosmological constant, which is one of the most interesting
features of the theory since it can suppress the large
contribution of the vacuum energy density [8]. The absence
of radiative instability has been shown in the literature by
using different approaches, for instance, by the existence of
a shift symmetry in the classical field equations that remove
the contributions from the quantum vacuum and also by the
evaluation of the renormalization group equation for the
cosmological constant. In addition, unimodular gravity
may be distinguished from GR by some observables, as
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it may lead to a different concept of mass [9]. Hence,
unimodular gravity may provide a way of better under-
standing not only the cosmological constant problem but
also the dark energy issue.
In this sense, an extension of unimodular gravity has

been recently proposed, where more general actions rather
than the Hilbert-Einstein action are considered [14,15].
Note that modified gravities such as fðRÞ gravity have
drawn a lot of attention in recent years, as alternatives to
dark energy and inflation, since they can realize the
cosmological history. In addition, some of them, such as
Starobinsky inflation [16] and the so-called Hu-Sawicki
model for late-time acceleration [17], are able to satisfy the
last observational constraints with great accuracy. Hence,
the analysis of such extensions within the unimodularlike
framework may provide interesting features.
With this aim, this paper is devoted to the analysis of some

generalizations of unimodular gravity at the classical level.
First, we carefully reconstruct such extensions departing
from variational principles by using a Lagrange multiplier
which imposes the unimodular constraint, leading to the
trace-free part of the field equations. We show that, as in the
case of unimodular gravity, any extension leads to the same
result; i.e., a cosmological constant arises naturally in the
field equations, recovering full diffeomorphisms. We also
analyze how conformal transformations affect the gauge
choice imposed initially and the effects of unimodular gravity
in the Einstein frame. Finally, some cosmological solutions
are obtained for fðRÞ gravity and Gauss-Bonnet gravities,
while Starobinsky inflation is also analyzed, where we
find a constraint on the merging constant in order to keep
Starobinsky predictions.
The paper is organized as follows: Section II gives a brief

review of unimodular gravity. In Sec. III, we introduce
fðRÞ and Gauss-Bonnet unimodular gravity. In Sec. IV, the
conformal transformation is analyzed and the correspond-
ing unimodular version is obtained in the Einstein frame.
Then, Sec. V is devoted to the analysis of cosmological
solutions. Finally, Sec. VI gathers the conclusions.

II. UNIMODULAR GRAVITY

Unimodular gravity is constructed in such a way that the
determinant of the spacetime metric is not dynamical but is
restricted to be

ffiffiffiffiffiffi
−g

p ¼ s0; ð1Þ

which fixes the determinant of the metric to be a
constant s0. As stated in [1], “just because we use a
generally covariant formalism does not mean that we are
committed to treating all components of the metric as
dynamical fields.” Then, restricted variations of the action
with respect to the metric have to be null only for those
which keep the determinant fixed,

gμνδgμν ¼ 0: ð2Þ

The variation of the metric can be written then in terms of
the unconstrained variation as

δgμν ¼ δugμν −
1

4
gμνgλγδugλγ: ð3Þ

The gravitational field equations are obtained by varying
the gravitational action SG, which can also be expressed in
terms of the unconstrained variation, leading to

δSG
δgμν

¼ δSG
δugμν

−
1

4
gμνgλγ

δSG
δugλγ

: ð4Þ

These are precisely the traceless part of the gravitational
field equations, which for the Hilbert-Einstein action leads
to the traceless part of the Einstein field equations,

Rμν −
1

4
gμνR ¼ κ2

�
Tμν −

1

4
gμνT

�
; ð5Þ

where Rμν is the usual Ricci tensor and R its trace, while

Tμν ¼ 2ffiffiffiffi−gp ∂Sm∂gμν is the matter energy-momentum tensor, and

κ2 ¼ 8πG. Contrary to general relativity, the field equa-
tions (5) are not divergence free:

∇μ

�
Rμν −

1

4
gμνR − κ2Tμν −

1

4
gμνT

�
¼ 0: ð6Þ

Then, by using the Bianchi identities, which hold

∇μ

�
Rμν −

1

2
gμνR

�
¼ 0; ð7Þ

and the energy conservation,

∇μTμν ¼ 0; ð8Þ

The divergence of the field equations (6) yields

∇μðRþ κ2TÞ ¼ 0; ð9Þ

the so-called integrability condition, which after integrating
leads to

Rþ κ2T ¼ 4λ0 ¼ const; ð10Þ

where λ0 is an integration constant. Hence, by inserting (10)
in the field equations (5), we get

Rμν −
1

2
gμνRþ gμνλ0 ¼ κ2Tμν; ð11Þ

where the usual Einstein field equations are recovered, with
λ0 being a cosmological constant. This is the great success
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of unimodular gravity, since a cosmological constant
emerges naturally as an integration constant by departing
from the trace-free part of the Einstein equations. Such a
constant may compensate for the large value of the vacuum
energy density. In addition, since the integrability condition
(9) recovers the usual general relativity equations, any
prediction from the former turns out to be a prediction of
unimodular gravity, which avoids any possible discrepancy
with well-tested experiments.
Alternatively, unimodular gravity can be implemented

through a variational principle with unrestricted variations
of the metric by assuming transverse diffeomorphisms
(TDiff) instead of the full diffeomorphisms [6,8,10], which
gives rise to the appearance of a scalar field that represents
the determinant of the metric. Such extra degrees of
freedom can be removed by an additional Weyl symmetry
(WTDiff) [6,10,11]. Moreover, unimodular gravity can also
be obtained by using a Lagrange multiplier in the action
as follows [12],

S ¼ 1

2κ2

Z
dx4½ ffiffiffiffiffiffi

−g
p

R − 2λð ffiffiffiffiffiffi
−g

p
− s0Þ� þ Sm; ð12Þ

where s0 is a constant and λ is the Lagrange multiplier,
which in principle is dynamical. Note that the last term in
(12) breaks the full diffeomorphism invariance, since it
fixes the determinant of the metric, restricting the group of
symmetries. Then, by varying the action with respect to the
metric, the field equations yield

Rμν −
1

2
gμνRþ gμνλ ¼ κ2Tμν; ð13Þ

while the variation with respect to λ leads to the unimodular
restriction (1). Taking the trace of the field equations (13),

Rþ κ2T ¼ 4λðxÞ: ð14Þ

This looks like (10) except that, in principle, λ ¼ λðxÞ is
not a constant. Nevertheless, taking the divergence of
equations (13) together with the energy conservation
∇μTμν ¼ 0, yields

∇μλ ¼ 0 → λ ¼ λ0: ð15Þ

Then, the trace-free part of the equations follows, and the
previous result (11) is obtained, in this case by means of
the action (12). Moreover, as in (12), one can depart from
the Henneaux-Teitelboim action, leading to the same result
[13]. Note that while all these implementations of unim-
odular gravity are classically equivalent, they are not at the
quantum level (see [6]). However, as we focus just on
classical aspects throughout this paper, we are assuming,
for convenience, the action (12) as the departing point, as
shown below.

III. GENERALIZATIONS OF UNIMODULAR
GRAVITY

In recent years, some modifications of the Hilbert-
Einstein action have been considered, particularly as infra-
red corrections to GR, in order to provide a natural
explanation to the late-time acceleration of the expansion
[4]. Moreover, such modifications have been widely
applied to inflation since the data seem to favor such
models. Within modified gravities, the so-called fðRÞ
gravity has drawn a lot of attention. Its principle states
on a gravitational action given precisely by,

S ¼ 1

2κ2

Z
dx4

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm; ð16Þ

whose field equations are obtained by varying the action
with respect to the metric, leading to

RμνfR −
1

2
gμνf þ ðgμν□ −∇μ∇νÞfR ¼ κ2Tμν; ð17Þ

where fR ¼ ∂f
∂R. Generalization of unimodular gravity turns

out now to be clear. As noted in [15], the action (16) has a
unimodular fðRÞ version which is constructed by fixing the
determinant to be a constant,

S ¼ 1

2κ2

Z
dx4½ ffiffiffiffiffiffi

−g
p

fðRÞ − 2λð ffiffiffiffiffiffi
−g

p
− s0Þ� þ Sm: ð18Þ

The field equations are then given by

RμνfR−
1

2
gμνfþðgμν□−∇μ∇νÞfRþgμνλ¼ κ2Tμν; ð19Þ

While the variation of the action with respect to λ leads toffiffiffiffiffiffi−gp ¼ s0. As in the previous section, taking the diver-
gence of the field equations (19) yields

∇μλ ¼ 0 → λ ¼ λ0; ð20Þ

where we have used the identities ∇μðRμν − 1
2
RgμνÞ ¼ 0

and ð∇ν□ −□∇νÞfR ¼ Rμν∇μfR. Then, by using the trace
of the field equations (19), the following condition is
provided,

−RfR þ 2f − 3□fR þ κ2T ¼ 4λ0; ð21Þ

which is the generalization of the integrability condition
(10). Hence, the usual fðRÞ equations are recovered with an
additional cosmological constant:

RμνfR −
1

2
gμνf þ ðgμν□ −∇μ∇νÞfR þ gμνλ0 ¼ κ2Tμν;

ð22Þ
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Equivalently, one may proceed to obtain the same result by
starting from the trace-free part of (17) as the field
equations:

RμνfR −
1

2
gμνf þ ðgμν□ −∇μ∇νÞfR

−
1

4
ðRfR − 2f þ 3□fRÞgμν ¼ κ2

�
Tμν −

1

4
gμνT

�
: ð23Þ

By using ∇μTμν ¼ 0 and the Bianchi identities, the
divergence of (23) yields

∇μðRfR − 2f þ 3□fR − κ2TÞ ¼ 0; ð24Þ

which is equivalent to (21) after integrating, and the field
equations (22) are recovered.
Hence, it is straightforward to construct other general-

izations of unimodular gravity by following the procedure
described above. For instance, we may consider the
so-called modified Gauss-Bonnet gravity,

S ¼ 1

2κ2

Z
dx4½ ffiffiffiffiffiffi

−g
p ðRþ fðGÞ − 2λð ffiffiffiffiffiffi

−g
p

− s0Þ� þ Sm;

ð25Þ
where G ¼ RμνλσRμνλσ − 4RμνRμν þ R2 is the Gauss-
Bonnet topological invariant. The field equations are
obtained by varying the action (25) with respect to the
metric [18],

Rμν −
1

2
gμνR −

1

2
gμνfðGÞ þ 2fGRRμν − 4fGRμρRν

ρ þ 2fGRμρστRνρστ

þ 4fGRμρσνRρσ − 2R∇μ∇νfG þ 2gμνR□fG þ 4Rνρ∇ρ∇μfG þ 4Rμρ∇ρ∇νfG

− 4Rμν□fG − 4gμνRρσ∇ρ∇σfG þ 4Rμρνσ∇ρ∇σfG þ λgμν ¼ κ2Tμν: ð26Þ

As above, by taking the divergence of the field equations,
the condition ∇μλ ¼ 0 arises again, which leads to the
integrability condition for this case:

Rþ 2f − 2fGR2 þ 4fGRμνRμν − 2fGRμνλσRμνλσ

− 4fGRμνλ
μRνλ − 2R□fG þ 8Rμν∇μ∇νfG

þ 4Rμνλ
μ∇ν∇λfG þ T ¼ 4λ0: ð27Þ

Then, we get the usual modified Gauss-Bonnet gravity
with an additional cosmological constant. Note that the
same result is obtained when departing from the trace-free
part of the field equations for Gauss-Bonnet gravity, as was
shown above for the case of fðRÞ gravity. Hence, following
any of the above procedures, unimodular gravity can be
easily extended to other more complex actions. The result
basically adds a cosmological constant to the field equa-
tions, as in the case of Hilbert-Einstein unimodular gravity.
Alternatively to the Lagrange multiplier, one may depart

from restricting variations over the gravitational action (4),
leading to the traceless part of the corresponding fðRÞ or
fðR;GÞ action, as above. Other implementations of unim-
odular gravity can also be applied for these cases equiv-
alently at the classical level. However, by using a Lagrange
multiplier instead of other implementations of the unim-
odular condition, calculations are simplified when dealing
with theories with higher-order derivatives. In the next
section, we analyze unimodular scalar-tensor theories
(equivalent to fðRÞ gravities) and their transformation to
the so-called Einstein frame when applying a conformal
transformation, which becomes also simpler when forcing

the unimodular constraint by a Lagrange multiplier than
other alternative -classically- equivalent implementations.

IV. CONFORMAL FRAMES

As well known, fðRÞ gravities can be expressed in terms
of an scalar field with a null kinetic term through the action:

S ¼ 1

2κ2
1

2κ2

Z
dx4

ffiffiffiffiffiffi
−g

p ðϕR − VðϕÞÞ þ Sm; ð28Þ

Varying the action with respect to the scalar field, the
corresponding equivalence is found:

V 0ðϕÞ ¼ R → ϕ ¼ ϕðRÞ; fðRÞ ¼ ϕðRÞR − VðϕðRÞÞ;
which yields the relations:

ϕ ¼ fR; V ¼ RfR − f; ð29Þ
As in the previous section, the reconstruction of the
unimodular theory for the action (28) is given by fixing
the determinant of the metric,

S ¼ 1

2κ2

Z
dx4

ffiffiffiffiffiffi
−g

p ðϕR − VðϕÞÞ − 2λð ffiffiffiffiffiffi
−g

p
− s0Þ þ Sm;

ð30Þ
The field equations are given by:

Rμν−
1

2
gμνðϕR−VðϕÞÞþðgμν□−∇μ∇νÞϕþgμνλ¼ κ2TðmÞ

μν ;

ð31Þ
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Taking the divergence of the field equations, the condition
∇μλ ¼ 0 results and the integrability condition (21) is
obtained, which is now given by

ϕR − 2V − 3□ϕþ κ2TðmÞ ¼ 4λ0: ð32Þ

Consequently, the field equations (31) become the usual
equations for the scalar-tensor theory (28) with an addi-
tional cosmological constant. The question now arises,
does the action (30) have a counterpart in the Einstein
frame? To do so, let us transform the action (30) into
the Einstein frame, which basically means recovering the
usual Hilbert-Einstein action by applying the following
conformal transformation:

~gμν ¼ Ω2gμν where Ω2 ¼ ϕ: ð33Þ

Here the tilde refers to the Einstein frame. Then, the Ricci
scalar is transformed as follows:

~R ¼ 2

Ω2

�
R −

6□Ω
Ω

�
: ð34Þ

And the action (30) becomes

~S ¼
Z

dx4
� ffiffiffiffiffiffi

−~g
p �

~R
2κ2

−
1

2
∂μφ∂μφ − ~VðφÞ

�

− 2~λð
ffiffiffiffiffiffi
−~g

p
e−2

ffiffiffiffiffiffi
2=3

p
κφ − s0Þ;

�
ð35Þ

where we have redefined the scalar field,

ϕ ¼ e
ffiffiffiffiffiffi
2=3

p
κφ ~VðφÞ ¼ e−2

ffiffiffiffiffiffi
2=3

p
κφ

2κ2
VðφÞ; ~λ ¼ λ

2κ2
: ð36Þ

The field equations are obtained by varying the action with
respect to the metric,

~Rμν −
1

2
~gμν ~R ¼ κ2ðTðφÞ

μν þ TðmÞ
μν Þ; ð37Þ

where we have defined the energy-momentum tensor of the
scalar field as,

TðφÞ
μν ¼ ∂μφ∂νφ − gμν

�
1

2
∂σφ∂σφþ ~V

�
− 2~λgμνe

−2
ffiffiffiffiffiffi
2=3

p
κφ

ð38Þ

The scalar field equation is obtained by varying the action
(35) with respect to the scalar field,

□φ − V 0ðφÞ þ 4~λ

ffiffiffi
2

3

r
κe−2

ffiffiffiffiffiffi
2=3

p
κφ ¼ 0: ð39Þ

While the variation of the action with respect to the
Lagrange multiplier leads to the constraint,

ffiffiffiffiffiffi
~−g

p
¼ s0 × e2

ffiffiffiffiffiffi
2=3

p
κφ: ð40Þ

Hence, contrary to the case of the Jordan frame, the
determinant of the metric ~gμν is not constant. Taking the
divergence of the field equations (39), and applying
the identity ∇μð ~Rμν − 1

2
~gμν ~RÞ ¼ 0 and the matter-energy

conservation ∇μTμνðmÞ ¼ 0, yields,

∇μTμνðφÞ ¼
�
□φ − V 0 þ 4~λ

ffiffiffi
2

3

r
κe−2

ffiffiffiffiffiffi
2=3

p
κφ

�
∂νφ

− 2e−2
ffiffiffiffiffiffi
2=3

p
κφ∂ν ~λ ¼ 0: ð41Þ

The first term in (41) is the scalar field equation (39) which
becomes null, leading to

∂ν
~λ ¼ 0; → ~λ ¼ ~λ0: ð42Þ

Then the energy-momentum tensor for the scalar field (38)
is obtained:

TðφÞ
μν ¼ ∂μφ∂νφ− gμν

�
1

2
∂σφ∂σφþ ~V

�
− 2~λ0gμνe

−2
ffiffiffiffiffiffi
2=3

p
κφ:

ð43Þ

Hence, the field equations (37) are basically the equations
of the action,

~S ¼ 1

2κ2

Z
dx4

� ffiffiffiffiffiffi
−~g

p �
~R

2κ2
−
1

2
∂μφ∂μφ − ~VeffðφÞ

��
;

ð44Þ

where the effective potential is defined as,

~VeffðφÞ ¼ ~VðφÞ þ 2~λ0e
−2

ffiffiffiffiffiffi
2=3

p
κφ: ð45Þ

In comparison with the case in the Jordan frame, where a
cosmological constant naturally arises, here the scalar
potential is modified, which may introduce corrections
to some solutions.
In the next section, we explore some cosmological

solutions within the context of fðRÞ and modified
Gauss-Bonnet gravities, but also solutions in the Einstein
frame are analyzed, particularly we study Starobinsky
inflation within the context of unimodular gravity by
applying the results obtained above.

V. COSMOLOGICAL SOLUTIONS

Let us now explore some cosmological solutions in the
generalizations of unimodular gravity studied above. Here
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we intend to analyze dark energy solutions as well as some
inflationary models.

A. Late-time acceleration

Since we are interested in late-time cosmological sol-
utions, we assume a flat Friedmann-Lemaître-Robertson.
Walker metric,

ds2 ¼ −dt2 þ a2ðtÞ
X3
i¼1

dxi2 ð46Þ

Let us start by studying solutions in fðRÞ unimodular
gravity, whose field equations (22) for the metric (46) turn
out to be

H2 ¼ 1

3fR

�
κ2ρm þ RfR − f

2
− 3H _RfRR þ λ0

�
;

−3H2 − 2 _H ¼ 1

fR

�
κ2pm þ _R2fRRR þ 2H _RfRR þ R̈fRR

þ 1

2
ðf − RfR − 2λ0Þ

�
: ð47Þ

Note that every solution of a particular fðRÞ gravity is
also a solution of unimodular fðRÞ gravity just by shifting
the action f → f þ 2λ0. Nevertheless, the additional con-
stant in the FLRW equations (47) may provide a wider set
of solutions. In order to show this, let us analyze some
particular and illustrative cosmological solutions. Since
the Universe goes through several accelerating stages,
the de Sitter solution plays an important role, where the
Hubble parameter is given by

HðtÞ ¼ H0: ð48Þ
Moreover, H ¼ H0 is a critical point in every fðRÞ gravity
[19], such that the possible critical points of a particular
gravitational action can be identified with the dark energy
epoch and also inflation. Then, for the de Sitter solution
(48), the first FLRW (in vacuum) is given by,

3fR0
H2

0 −
1

2
ðR0fR0

− f0 − λ0Þ ¼ 0: ð49Þ

Hence, every root of this equation is a critical point and
becomes a possible de Sitter stage along which the
Universe evolves. The presence of λ0 introduces a correc-
tion that some particular fðRÞ0s, which lead to an effective
cosmological constant (as in the Hu-Sawicky model [17]),
may require.
Let us now explore power-law solutions in cosmology,

which also have great importance in the history of the
Universe:

aðtÞ ¼ a0tm; HðtÞ ¼ m
t
: ð50Þ

Note that for pressureless matter m ¼ 2=3, for radiation
m ¼ 1=2 and for an accelerating universe m > 1. The
above solution has been analyzed in standard fðRÞ gravity,
where the following action holds [20],

fðRÞ ¼ A�R
1
4
ð3−m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ10mþm2

p
Þ: ð51Þ

Whether we assume the above fðRÞ gravity in unimodular
gravity with m < 1, the effective cosmological constant λ0
may become important at late-times, when the dark energy
epoch starts, while the terms in (51) may contribute during
the matter/radiation epochs when they dominate over λ0.
Moreover, whether m > 1 the unimodular fðRÞ gravity
(51) contributes to the acceleration of the expansion,
leading to corrections over a de Sitter expansion which
would depend on the weight of A� in comparison with λ0.
Let us now consider the unimodular version of Gauss-

Bonnet gravity (25), whose FLRW equation becomes:

3H2 ¼ κ2ρm þ 1

2
ðGfG − fÞ − 12fGG _GH3 þ λ0; ð52Þ

where G ¼ 24ð _HH2 þH4Þ. As in the previous case, we
can analyze de Sitter solutions (48) by introducing (48) into
Eq. (52), which turns out to be an algebraic equation,

3H2
0 þ

1

2
ðf0 −G0fG0

Þ − λ0 ¼ 0: ð53Þ

Hence, the merging cosmological constant λ0 would
determine the de Sitter points and, consequently, the
accelerating stages of the Universe. In the case of
power-law solutions (50), the exact action within pure
Gauss-Bonnet gravity (with no Ricci scalar in the action)
that reproduces such solutions in vacuum are [21]:

fðGÞ ¼ AG
1−m
4 ; ð54Þ

which may play the same role as in the case of fðRÞ gravity,
as shown above. Nevertheless, the most important feature
of the action fðR;GÞ ¼ Rþ fðGÞ is that reproduces exact
ΛCDM model,

H2 ¼ Λ
3
þ κ2

3
ρ0a−3; ð55Þ

by means of the gravitational action given by [18],

fðR;GÞ ¼ Rþ a1
�
Λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Λ2 − 3G

p �
2

þ a2
�
Λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Λ2 − 3G

p �
þ a3; ð56Þ

where a1 is an integration constant, a2 ¼ 6−30a1Λ
15

and a3 ¼
3ð1 − 6a1ΛÞ are constants. Then, by identifying the last
term of (56) with the cosmological constant λ0,
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λ0 ¼ −
3

2
ð1 − 6a1ΛÞ ð57Þ

The unimodular version of Gauss-Bonnet gravity described
by the action (56) arises naturally as the gravitational action
which leads to the ΛCDM model (55).
Hence, extensions of unimodular gravity provide reliable

descriptions of the late-time acceleration in a natural way.

B. Inflation

Let us now study how these extensions of unimodular
gravity may affect the inflationary paradigm. In particular,
here we analyze Starobinsky inflation [16] when consid-
ering the unimodular fðRÞ theory (18), which for the case
of Starobinsky inflation is given by

S¼ 1

2κ2

Z
dx4

� ffiffiffiffiffiffi
−g

p �
Rþ R2

6m2

�
− 2λð ffiffiffiffiffiffi

−g
p

− s0Þ
�
; ð58Þ

wherem2 is a constant. In order to simplify the calculations,
we work in the scalar-tensor equivalence (30), whose
correspondence to the action (58) is provided by

ϕ ¼ 1þ R
3m2

; Vðϕ Þ ¼ 3m2ðϕ − 1Þ2: ð59Þ

Applying the conformal transformation (33) and the
definitions (36), the action (44) is constructed following
the steps described in Section IV, where the effective
potential for the case (58) is given by,

~VeffðφÞ ¼
1

2κ2

�
3m2

2

�
1 − e−2

ffiffiffiffiffiffi
2=3

p
κφ
�
2
− 2λ0e

−2
ffiffiffiffiffiffi
2=3

p
κφ

�
:

ð60Þ

Then, the FLRW equations are:

3

κ2
H2 ¼ 1

2
_φ2 þ ~VeffðφÞ;

−
1

κ2
ð3H2 þ 2 _HÞ ¼ 1

2
_φ2 − ~VeffðφÞ; ð61Þ

While the scalar field satisfies

φ̈þ 3H _φþ ∂ ~VeffðφÞ
∂φ ¼ 0 ð62Þ

Slow-roll inflation occurs in the regime κφ ≫ 1, where the
friction term in (62) dominates, and the expansion grows
exponentially approximately, being the Hubble parameter
H ∼H0. Then, the following relations hold

H _ϕ ≫ φ̈; ~V ≫ _φ2: ð63Þ

Equivalently, we can define the slow-roll parameters,

ϵ ¼ 1

2κ2

�
~V 0
effðφÞ

~VeffðφÞ

�2

; η ¼ 1

κ2
~V 00
effðφÞ

~VeffðφÞ
; ð64Þ

Hence, during inflation ϵ ≪ 1 and η < 1, while after an
enough number of e-foldings, usually aroundN ¼ 50 − 65,
ϵ ≥ 1, when the scalar field φ rolls down the potential slope
and the kinetic term becomes important and eventually
dominates. Then the field oscillates around the minimum of
the potential, emitting particles and reheating the Universe.
Hence, by using these approximations and combining the
FLRWequations (61) and the scalar field equation (62), the
equations during inflation are given approximately by

H2 ≃ κ2

3
~VeffðφÞ;

3H _φ≃ − ~V 0
effðφÞ: ð65Þ

The slow-roll parameters (64) for the potential (60) are
given by

ϵ ¼ 4

3

h
3m2

�
−1þ e

ffiffiffiffiffiffi
2=3

p
κφ
�
− 4λ0

i
2

h
3m2

�
−1þ e

ffiffiffiffiffiffi
2=3

p
κφ
�
2 þ 4λ0

i
2
;

η ¼ 4

3

−3m2
�
−2þ e

ffiffiffiffiffiffi
2=3

p
κφ
�
þ 8λ0

3m2
�
−1þ e

ffiffiffiffiffiffi
2=3

p
κφ
�
2 þ 4λ0

; ð66Þ

Starobinsky inflation is recovered by setting λ0 ¼ 0.

Nevertheless, since m2=λ0 > e−2
ffiffiffiffiffiffi
2=3

p
κφstart in order to

ensure a large enough number of e-foldings before the
field rolls down, together with κφ ≫ 1, it gives the
following the slow-roll parameters,

ϵ ¼ 4

3
e−2

ffiffiffiffiffiffi
2=3

p
κφ;

η ¼ −
4

3
e−

ffiffiffiffiffiffi
2=3

p
κφ: ð67Þ

In addition, the spectral index and the scalar-to-tensor ratio
are given in terms of the slow-roll parameters by

ns − 1 ¼ −3ϵþ 2ηr ¼ 16ϵ: ð68Þ

It is straightforward to calculate the number of e-foldings
during inflation, which is given by

N ≡
Z

tend

tstart

~Hdt ¼ −κ2
Z

φend

φstart

~VeffðφÞ
~V 0
effðφÞ

≃ 3

4
e

ffiffiffiffiffiffi
2=3

p
κ ~φstart : ð69Þ

Note that the number of e-foldings is related to the slow-
roll parameters as

ϵ≃ 3

4

1

N2
; η≃ −

1

N
: ð70Þ
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Then, assuming a number of e-foldings N ∼ 65, the
following values of the inflationary observables are
obtained:

ns ¼ 0.968; r ¼ 0.00284: ð71Þ

This is exactly the same result as in Starobisnky inflation,
which satisfies quite well the constraints provided by the

previous data [22]. Hence, as far as m2=λ0 > e−2
ffiffiffiffiffiffi
2=3

p
κφstart ,

the unimodular version of Starobinsky inflation is also
successful, but it includes, in addition, the corresponding
cosmological constant that may dominate at late times,
leading to a complete description of the evolution of the
Universe.

VI. CONCLUSIONS

To summarize, in this paper we have extended the
so-called unimodular gravity to other more general actions
other than the Hilbert-Einstein action. As in the original
case, extensions of unimodular gravity can be constructed
by departing from the trace-free part of the field equations
or, alternatively, by the gauge choice that fixes the
determinant of the metric to be a constant. As has been
widely noted in the literature, any implementation of the
unimodular constraint leads to the same results at the
classical level, but may provide differences when quantum
mechanics are considered. Nevertheless, since the paper is
devoted to the classical aspects, we have forced the
unimodular constraint in the action through a Lagrange
multiplier, so that the calculations become simpler when
dealing with gravitational Lagrangians that have more
general functions of curvature invariants. Hence, following
this procedure, and in spite of the apparent lack of
symmetries, extensions of unimodular gravity lead to the

covariant field equations of the originals with the presence
of a cosmological constant.
The issue is more subtle when dealing with conformal

transformations. As is shown, by transforming the gravita-
tional action from the Jordan to the Einstein frame, the
determinant is no longer fixed to be a constant. However, the
Lagrangemultiplier used to fix the determinant of themetric
turns out to be a constant as well, so that the corresponding
counterpart in the Einstein frame becomes the usual quin-
tessencelike model, but in this case with a correction in the
scalar potential. Such an additional term may have conse-
quences when studying some particular solutions.
Finally, some cosmological solutions have been studied

within the unimodular version of Gauss-Bonnet gravity and
fðRÞ gravity (together with its scalar-tensor equivalence).
As shown, the unimodular version of these theories
provides a richer set of solutions and is able to give a
complete picture of the evolution of the Universe in a
natural way. In addition, predictions from Starobinsky
inflation are fully recovered as long as the correction in
the scalar potential is well set. Moreover, the unimodular
version of Starobinsky inflation may provide an explan-
ation for the late-time acceleration through the effective
cosmological constant that naturally arises. Hence, such
results point to Rþ R2 as a reliable cosmological model for
describing the whole history of the Universe.
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