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Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra,
nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable
from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a
nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in
theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative,
i.e. β0 ≲ −4.35, and has been strongly constrained by pulsar timing observations. In the test-field
approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was
argued that, in theories where β0 > 0, a similar instability would be triggered by sufficiently compact
neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability
for some representative coupling functions with β0 > 0. This is done both through an energy balance
analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy
development of unstable initial data. We find that, contrary to the β0 < 0 case, the final state of the
instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to
spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can
happen in theories with β0 > 0, which could give rise to novel astrophysical tests of the theory of gravity.
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I. INTRODUCTION

Scalar-tensor theories of gravity (STTs) are among the
most studied extensions of general relativity (see e.g.
Refs. [1,2] for reviews). These are well-posed theories
[3] with fruitful applications in cosmology, both in models
of cosmic inflation and the dark sector [4,5]. Moreover, a
large subset of STTs has the interesting property of eluding
tests in the weak field regime, but still predicts radically
different strong-field phenomena, particularly for neutron
stars. Therefore, STTs provide a test bed to probe devia-
tions from general relativity in its nonperturbative regime.
More concretely, the class of theories that we will

consider in this work includes a single scalar field ϕ with
no self-coupling. Multiscalar generalizations are studied in
Refs. [1,6] and the effects of a mass term are discussed in
Ref. [7]. In local coordinates fxμg defined on a 4-dimen-
sional spacetime ðM; gμνÞ, this class of theories is defined
by the following action written in geometric units:

S½gμν;ϕ;Ψm� ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2∇μϕ∇μϕÞ

þ Sm½Ψm; aðϕÞ2gμν�; ð1Þ

where g ≔ detðgμνÞ, R is the Ricci scalar, and the arbitrary
function of the scalar field aðϕÞ fixes a particular theory. In
this formulation (the so-called Einstein frame), the scalar
field couples minimally to the metric, while matter fields,
denoted collectively by Ψm, couple universally to the
conformally rescaled (Jordan) metric ~gμν ≔ aðϕÞ2gμν.
Alternatively, action (1) can be rewritten in terms of the
metric ~gμν, in which case the Einstein-Hilbert term becomes
aðϕÞ−2 ffiffiffiffiffiffi

−~g
p

~R, plus additional terms involving derivatives
of ϕ. In this Jordan frame formulation, there is a non-
minimal coupling of the scalar field to the tensor sector, but
there is no explicit coupling to the matter sector.
In STTs, the cosmological evolution would set a constant

background value for the scalar field at present time,
ϕ0 ≔ ϕðτ0Þ, which would be locally modified by the
presence of matter inhomogeneities [8,9]. Therefore, it is
convenient to consider the expansion of the coupling
function aðϕÞ, or, as frequently done, of its logarithmic
derivative αðϕÞ ≔ d ln aðϕÞ=dϕ, around the background
scalar field:

αðϕÞ ¼ α0 þ β0ðϕ − ϕ0Þ þO½ðϕ − ϕ0Þ2�: ð2Þ

When only the first term in this expansion is present, the
theory reduces to the Jordan-Brans-Dicke proposal [10,11].
This class of theories is, however, considerably constrained
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by solar system experiments, which enforce jα0j to be very
small, namely jα0j≲ 3.4 × 10−3 [12]. On the other hand,
solar system experiments are not as severe in constraining
the coefficients of the higher order terms in Eq. (2). Indeed,
in the particular case of α0 ¼ 0, these experiments cannot
distinguish a STT from GR at all, since both agree to all
post-Newtonian orders independently of fβ0;…g [13].
The second term in Eq. (2) is responsible for the most

striking effects in the strong-field regime of STTs. If β0 is
sufficiently negative, i.e. β0 ≲ −4.35, compact stars are
predicted to undergo a transition from a solution close to
GR (or even identical, if α0 ¼ 0) to a configuration with a
nontrivial scalar field profile and non-negligible scalar
charge. This effect, known as spontaneous scalarization
[14–17], opened a new avenue to test these theories, e.g.,
based on observations of neutron stars in binary systems,
which would lose energy faster due to gravitational-wave
emission in the extra scalar channel. The lack of such an
effect in pulsar timing data has been used to exclude the
values β0 ≲ −4.5 [18], thereby considerably restricting the
parameter space where spontaneous scalarization was
predicted. With the recent detection of gravitational waves
by Advanced LIGO [19] and the beginning of the era of
gravitational-wave astronomy, the presence of this effect in
dynamical settings [20–23] can also potentially be tested.
Due to the existence of the scalarization effect in theories

with β0 < 0, works in the past three decades have focused
almost exclusively in this region of the parameter space (see
[24] for a broad review). However, it was recently realized
[25] that many realistic equations of state for nuclear matter
can support stars which are compact enough to exhibit a
similar effect in theories with β0 > 0. In order to demon-
strate this, Ref. [25] mainly explored the test-field approxi-
mation, in which the scalarization effect manifests itself as
a tachyonic-like instability. It was left as an open question
whether the end state of this instability would be a stable,
scalarized solution (as in the β0 < 0 case), or would lead to
a different outcome, such as an explosion or gravitational
collapse. The first numerical simulations addressing this
issue were reported in Ref. [26]. The authors restricted their
attention to the model obtained by truncating the series
expansion of Eq. (2) up to linear order—which has been
widely adopted in the literature since the seminal work by
Damour and Esposito-Farèse [15]—, and concluded that
the end state of the instability would be, in general, collapse
to a black hole.
The aim of this work is to perform a more detailed

analysis of the end state of the instability of highly compact
neutron stars in STTs with β0 > 0 and investigate its
astrophysical implications. We consider two different
models with representative coupling functions, which
coincide up to the linear term in Eq. (2). One is again
the Damour-Esposito-Farèse (DEF) model obtained by
neglecting quadratic and higher-order terms in Eq. (2);
the other is an analytical approximation to the physically

interesting case of a scalar field that couples nonminimally
to gravity, by means of a ξ ~Rϕ2 interaction term in the
Jordan frame action, where ξ ∈ R. Our analysis follows
two main routes. First, we construct static equilibrium
solutions in theories with β0 > 0, and determine whether
scalarized solutions can be energetically favored over the
unstable GR-like configurations, and thus be a plausible
end state of their evolution. Second, we numerically solve
the initial value problem for the scalar-tensor-fluid evolu-
tion equations in order to determine the stability of the
various equilibrium stellar configurations, and dynamically
investigate the final state of the unstable ones. The
conclusions we draw from both approaches are comple-
mentary and in complete agreement with each other.
The most intriguing finding of our work is the manifest

model dependence of the results. In fact, within the DEF
model we find that the existing scalarized solutions are all
unstable and energetically disfavored with respect to the
GR-like solution and that, when the latter is unstable, it
undergoes gravitational collapse—in agreement with
Ref. [26]. On the other hand, within the model that mimics
nonminimally coupled fields, we find the existence of
stable, energetically favored scalarized solutions, which are
numerically seen to be the end state of the instability in
many cases. To the best of our knowledge, this is the first
dynamical demonstration that spontaneous scalarization
can take place in STTs with β0 > 0.
This model dependence when β0 > 0 contrasts sharply

with the β0 < 0 case, in which higher order terms in Eq. (2)
are known to influence only quantitatively the properties of
scalarized solutions. This feature of the β0 > 0 case is, on
the one hand, less “convenient,” in the sense that eventual
observational constraints cannot be expressed as generic
bounds on β0, but must be attributed to particular classes of
models. On the other hand, it also means that observations
could potentially be used to probe deeper into the structure
of the coupling function αðϕÞ, due to the richer phenom-
enology present in this case.
The paper is organized as follows. In Sec. II we present

the equations governing the dynamics of STTs in spherical
symmetry and write them in a flux-conservative form
suitable to our numerical techniques. The static limit of
these equations is also discussed, as well as the numerical
algorithm to construct equilibrium solutions. In Sec. III we
describe our chosen equation of state, and define the two
forms for the coupling function that are used in what
follows. In order to compare our results with previous
analyses in a relatively self-contained manner, in Sec. IV
we describe (i) the test-field approximation and the
appearance of unstable scalar modes in GR-like configu-
rations, and (ii) properties of scalarized solutions when
β0 < 0, as well as illustrative results from our numerical
simulations. Section V contains our main results. We
conclude in Sec. VI with further discussions. Details on
numerical methods and self-convergence tests are deferred
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to the Appendix. We use units such that c ¼ 1 ¼ G
throughout the text.

II. FIELD EQUATIONS

The field equations obtained from varying the action in
Eq. (1) with respect to the metric gμν and the scalar field ϕ
in local coordinates fxμg read

Gμν − 2∇μϕ∇νϕþ gμν∇ρϕ∇ρϕ ¼ 8πa2 ~Tμν; ð3Þ

∇μ∇μϕ ¼ −4πa4α ~T; ð4Þ

where

αðϕÞ ≔ d ln aðϕÞ
dϕ

; ð5Þ

~T ≔ ~gμν ~T
μν, and ~Tμν ≔ 2ð−~gÞ−1=2δSm½Ψm; ~gρσ�=δ~gμν is the

stress-energy-momentum tensor of the matter fields, which
is covariantly conserved in the sense that

~∇ν
~Tμν ¼ 0; ð6Þ

where ~∇ is the covariant derivative compatible with the
Jordan metric ~gμν ¼ aðϕÞ2gμν. Note that quantities with a
tilde are associated to the Jordan metric, which also lowers
and raises their indices. In this work, we choose to evolve
the Einstein frame metric due to the simplicity of the
resulting field equations, but we describe the fluid in the
Jordan frame, in which the equations of motion (6) have a
more natural interpretation. For a discussion on the
equivalence of Einstein and Jordan frames, see e.g.
Refs. [27,28]. In this work, we model neutron stars by
spherically symmetric perfect fluids with stress-energy-
momentum tensor given by

~Tμν ¼ ~ϵ ~uμ ~uν þ ~pð~gμν þ ~uμ ~uνÞ; ð7Þ

where ~ϵ and ~p are the fluid’s total energy density and
pressure, respectively, as measured by observers comoving
with the fluid elements, whose 4-velocity ~u is normalized
according to ~gμν ~uμ ~uν ¼ −1. The description of the star is
completed by specifying a cold equation of state,
~p ¼ ~pð~ρÞ, where ~ρ is the fluid’s baryon mass density as
measured by observers comoving with the fluid, and
defines the baryon mass current ~J ≔ ~ρ ~u, which is locally
conserved according to

~∇μ
~Jμ ¼ 0: ð8Þ

Our particular choice of equation of state will be
described and justified in Sec. III A.

A. Evolution equations in spherical symmetry

We are interested in finding solutions of the initial value
problem for the relativistic hydrodynamic system consist-
ing of the scalar-tensor field equations (3) and (4) coupled
to the Euler equations (6) and (8). To this purpose, we
follow the standard 3þ 1 formalism [29], which splits the
4-dimensional spacetime into 3-dimensional Cauchy
hypersurfaces labeled by a coordinate time t. We assume
spherical symmetry and thus foliate the spatial hyper-
surfaces in 2-spheres described in the usual spherical
coordinates fr; ϑ;φg, so the spacetime coordinate basis
is f∂t; ∂r; ∂ϑ; ∂φg. Let ~n be a future directed timelike unit
vector field orthogonal to the t ¼ cnt hypersurfaces,
meaning ~nμ ~nμ ¼ −1, and ~nμ ~eðjÞμ ¼ 0 for ~eðjÞ ≔ ∂j=a,
j ∈ fr; ϑ;φg. Demanding zero spatial shift between the
Cauchy hypersurfaces, which is known as polar slicing
condition, the relation ∂t ¼ aNðt; rÞ ~n defines the lapse
function N. Furthermore, we impose the radial gauge,
which consists in the coincidence of the coordinate r with
the areal radius of the 2-spheres. The polar slicing con-
dition, together with the radial gauge, imply the following
form of the spacetime line element in the Einstein frame:

ds2 ¼ −Nðt; rÞ2dt2 þ Aðt; rÞ2dr2 þ r2ðdϑ2 þ sin2ϑdφ2Þ:
ð9Þ

In analogy with the static, vacuum case, the radial metric
function A is written in terms of an auxiliary mass aspect
function m through Aðt; rÞ ≔ ½1 − 2mðt; rÞ=r�−1=2.
Particularly relevant is the family of observers moving

along the integral curves of the vector field ~n, known as
Eulerian observers. Their relation to the ones comoving
with the fluid is given by the Lorentz factor
Γ ≔ − ~nμ ~uμ ¼ aN ~ut, which by virtue of the normalization
~uμ ~uμ ¼ −1, can be written as

Γ ¼ ð1 − A2v2Þ−1=2; ð10Þ

where Av ≔ ðA=NÞðdr=dtÞ is the fluid’s radial velocity as
measured by an Eulerian observer.
At this point, we could proceed to project the fluid

equations (6) and (8) along the basis f ~n; ~eðjÞg adapted to
Eulerian observers, write down evolution equations for the
set of primitive variables f~ϵ; v; ~pg, and attempt to solve
them by a standard finite differences numerical scheme.
However, the hydrodynamic equations are known to
generically develop shocks and rarefaction waves charac-
terized by unbounded gradients in the fluid quantities,
which standard finite differences methods are unable to
handle [30]. Instead, we implement a finite volume
numerical scheme together with a high resolution shock
capturing (HRSC) method designed to consistently treat
rarefaction and shock propagation (see the Appendix for
details). In particular, finite volume methods require the
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evolution equations to be written as a hyperbolic system of
conservation laws [31], which in a spherically symmetric
spacetime takes the form

∂
∂t ðAqÞ þ

1

r2
∂
∂r ðNAr2FðqÞÞ ¼ SðqÞ; ð11Þ

where q is a state vector of conserved quantities with
associated flux and source vectors FðqÞ and SðqÞ, respec-
tively. To that end, let us construct alternative fluid
variables all measured by Eulerian observers, namely the
total energy density ~E, the baryon mass density ~D, the radial
momentum density ~S, and the internal energy density ~τ,
defined by

~E ≔ ~Tμν ~nμ ~nν ¼ Γ2ð~ϵþ ~pÞ − ~p; ð12Þ

~D ≔ −~Jμ ~nμ ¼ ~ρΓ; ð13Þ

~S ≔ − ~Tμν ~nμ ~eðrÞν ¼ ð ~Eþ ~pÞA2v; ð14Þ

~τ ≔ ~E − ~D: ð15Þ

Also, the wave equation (4) governing the scalar field
dynamics can be split into a system of first-order, inho-
mogeneous advection equations, which can be put into the
flux-conservative form (11), and thus be solved using the
same finite volume scheme as for the fluid equations. To
this purpose, we introduce the scalar field variables

η ≔
1

A
∂ϕ
∂r ; ψ ≔

1

N
∂ϕ
∂t : ð16Þ

In terms of the conserved quantities (13)–(16), the scalar
field evolution equation (4) together with the Euler
equations (6) and (8), can be collectively written
as a flux-conservative system of the form (11)
with q ¼ ð ~D; ~S; ~τ; η;ψÞT , F ¼ ðF ~D; F ~S; F~τ; Fη; FψÞT , and
S ¼ ðS ~D; S ~S; S~τ; Sη; Sψ ÞT , where1

F ~D ¼ ~Dv; ð17Þ

F ~S ¼ ~Svþ ~p; ð18Þ

F~τ ¼ ð~τ þ ~pÞv; ð19Þ

Fη ¼ −ψ=A; ð20Þ

Fψ ¼ −η=A; ð21Þ

and

S ~D ¼ −3αNA ~Dðψ þ AvηÞ; ð22Þ

S ~S ¼ 2NA
~p
r
− NA3

m
r2

ð ~Dþ ~τ þ ~Svþ ~pÞ
− 4αNAψ ~S − αNA2ηð ~Dþ ~τ þ 3~Svþ ~pÞ

−
1

2
NA3rðη2 þ ψ2Þð ~Dþ ~τ − ~Sv − ~pÞ; ð23Þ

S~τ ¼ −NA
m
r2

~S − αNAψð3~τ þ ~Svþ 3 ~pÞ
− αNA2ηvð ~Dþ 4~τ þ 4 ~pÞ − NA2rψηð ~Svþ ~pÞ

−
1

2
NArðη2 þ ψ2Þ ~S; ð24Þ

Sη ¼ −2N
ψ

r
; ð25Þ

Sψ ¼ −4παa4NAð ~Dþ ~τ − ~Sv − 3 ~pÞ: ð26Þ

Regarding the spherically symmetric spacetime evolu-
tion within the 3þ 1 formalism, it can be fully determined
from the fluid and scalar field data at each time step by
integrating the Hamiltonian constraint and the lapse
condition

∂m
∂r ¼ r2

2
½η2 þ ψ2 þ 8πa4ð~τ þ ~DÞ�; ð27Þ

∂N
∂r ¼ A2N

�
m
r2

þ 4πra4ð ~pþ ~SvÞ þ r
2
ðη2 þ ψ2Þ

�
; ð28Þ

respectively. The equation resulting from the momentum
constraint,

∂m
∂t ¼ r2

N
A2

ðAηψ − 4πa4 ~SÞ; ð29Þ

which overdetermines the system, is usually discarded.
However, we find it convenient to evolve the metric
function mðt; rÞ through Eq. (29), and employ the
Hamiltonian constraint (27) as a natural monitor of the
accuracy and convergence of the numerical solutions. An
additional test of the numerical code can be performed
by monitoring the evolution of the total baryonic mass,
defined as

Mb ¼
Z

Rs

0

4πr2 ~DaðϕÞ3ð1 − 2m=rÞ−1=2dr; ð30Þ

which is conserved as a consequence of Eq. (8). We refer to
the Appendix for details on convergence tests.

1A flux-conservative formulation of the fluid equations in
STTs can also be found in Refs. [32,33]. Note that their
definitions of conserved variables slightly differs form ours.
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B. Static limit

The static limit of the field equations is of particular
relevance not only because the initial data for our numerical
simulations will consist of static equilibrium solutions, but
also because by studying properties of these equilibrium
solutions, we can gain much insight into the outcome of the
numerical experiments. Therefore, here we briefly describe
the static limit of the field equations, the appropriate
boundary conditions, and the method employed to
solve them.
In the static limit, in terms of the primitive variables, the

equations for the metric functions, scalar field, and fluid
pressure reduce to

dm
dr

¼ 4πr2a4 ~ϵþ r
2
ðr − 2mÞ

�
dϕ
dr

�
2

ð31Þ

d lnN
dr

¼ 4πr2a4 ~p
r − 2m

þ r
2

�
dϕ
dr

�
2

þ m
rðr − 2mÞ ð32Þ

d2ϕ
dr2

¼ 4πra4

r − 2m

�
αð~ϵ − 3 ~pÞ þ rð~ϵ − ~pÞ dϕ

dr

�
−

2ðr −mÞ
rðr − 2mÞ

dϕ
dr

ð33Þ

d ~p
dr

¼−ð~ϵþ ~pÞ
�
4πr2a4 ~p
r−2m

þ r
2

�
dϕ
dr

�
2

þ m
rðr−2mÞþα

dϕ
dr

�
;

ð34Þ

which generalize the Tolman-Oppenheimer-Volkoff equa-
tions of hydrostatic equilibrium. To close the system, an
equation of state (EoS) for the fluid must be specified, and
our choice is described below in Sec. III A.
Given values for the asymptotic amplitude ϕ0 of the

scalar field and the central pressure ~pc of the star,
Eqs. (31)–(34) can be solved subject to the boundary
conditions

mð0Þ ¼ 0; lim
r→∞

NðrÞ ¼ 1; lim
r→∞

ϕðrÞ ¼ ϕ0;

dϕ
dr

ð0Þ ¼ 0; ~pð0Þ ¼ pc; ~pðRsÞ ¼ 0; ð35Þ

where the last equation defines the stellar radius Rs. This
task is simplified by the existence of an analytical solution
of Eqs. (31)–(33) in vacuum [34]. Therefore, it suffices to
solve the system of equations in the stellar interior and
perform a matching to the exterior analytical solution at the
stellar radius. In practice, we integrate Eqs. (31)–(34) with a
fourth-order Runge-Kutta algorithm starting with the
appropriate boundary conditions at r ¼ 0 [cf. Eq. (35)],
supplemented with a guess ϕð0Þ ¼ ϕc, and then iterate on
ϕc until the condition [14]

ϕs − ϕ0 þ
2ψ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ν2s þ 4ψ2

s

p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ν2s þ 4ψ2

s

p
_νs þ 2=Rs

�
¼ 0 ð36Þ

is satisfied up to a given numerical accuracy (see
the Appendix for details). Here, the subscript s indicates
quantities evaluated at Rs; also, ψ s ≔ ðdϕ=drÞs
and _νs ≔ 2ðd lnN=drÞjs ¼ Rsψ

2
s þ 2ms=½RsðRs − 2msÞ�.

Equation (36) follows directly from algebraic manipula-
tion of the matching conditions to the exterior solution. It
also follows that the ADM mass and the scalar charge of
the solution are given by

M ¼ R2
s _νs
2

�
1 −

2ms

Rs

�1
2

× exp

�
−_νsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ν2s þ 4ψ2
s

p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ν2s þ 4ψ2

s

p
_νs þ 2=Rs

��
; ð37Þ

ω ¼ −2Mψ s=_νs; ð38Þ

respectively, where ω is defined from the asymptotic
behavior of the field at spatial infinity, through ϕ ¼ ϕ0 þ
ω=rþOð1=r2Þ [1].

III. PHYSICAL SETUP

A. Equation of state

Isolated neutron stars are characterized to a good
approximation by a cold equation of state [35], which
encodes relevant information about the nuclear micro-
physics. Here we will assume a polytropic EoS of the form

~pð~ρÞ ¼ Kρ0ð~ρ=ρ0Þγ; ð39Þ

where ρ0 is some reference value for the rest-mass density
and K and γ are dimensionless constants. The energy
density is then determined by the first law of thermody-
namics, with the result

~ϵð~ρÞ ¼ ~ρþ ðγ − 1Þ−1 ~p: ð40Þ

Our choice of polytropic parameters is γ ¼ 3 and
K ¼ 0.005, and we take ρ0 ¼ 1.66 × 1014 g=cm3, which
is of the order of the nuclear saturation density and is a
common choice in the literature. The exponent γ ¼ 3 is a
typical effective polytropic parameter for the core of
neutron stars, according to realistic equations of state
(see e.g. values for Γ1 in Table III of Ref. [36]). The value
of K is chosen in order to guarantee that the model predicts
a maximum neutron star mass consistent with observations
[37]: within GR, this is computed to be 2.03 M⊙, for a star
with central density ~ρc ≃ 12.9ρ0 and compactness
M=Rs ≃ 0.316. Also, the mass-radius relation predicted
by this EoS is in agreement with astrophysical and
experimental constraints (see e.g. Fig. 10 of Ref. [38]).
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Finally, according to this EoS, stars with a compactness
larger than M=Rs ≃ 0.27 (or, alternatively, ~ρc ≳ 8.94ρ0)
have the property that the trace of the energy-momentum
tensor of the fluid, ~T ¼ 3 ~p − ~ϵ, is positive in a region
around the stellar center. This is a crucial property for the
effects we analyze in this work, as discussed in Sec. IVA.
Of course, this simple EoS cannot be said to be entirely

realistic. In particular, (i) it does not match models of the
relatively well-understood microphysics below nuclear
density [39] and (ii) allows for superluminal propagation
of sound, vs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d ~p=d~ϵ

p
> 1 when ~ρ≳ 11.55ρ0, i.e.,

inside stars with M=Rs ≳ 0.305. However, the drawbacks
(i) and (ii) could be avoided by slightly modifying the EoS
at low and high densities, respectively. We have verified
that our main results remain qualitatively unaltered when a
more realistic EoS is adopted. Still, the choice of a simple
γ ¼ 3 polytrope is enough for the purposes of this work.
See Ref. [25] for an analysis of the EoS dependence of the
instability discussed in Sec. IVA.

B. Coupling function

In the following, we will consider two main represen-
tative forms for the function aðϕÞ [or, alternatively, its
logarithmic derivative αðϕÞ defined in Eq. (5)]. They are
motivated by the facts that α0 ≔ αðϕ0Þ is constrained by
solar system experiments to be very close to zero, jα0j ≲
3.4 × 10−3 [12], and that the phenomenon of spontaneous
scalarization depends crucially on the value of β0 ≔ α0ðϕ0Þ.
Specifically, we define:

Model 1ðM1Þ∶ aðϕÞ ¼ ½cosh ð
ffiffiffi
3

p
βðϕ − ϕ0ÞÞ�

1
3β;

αðϕÞ ¼ 1ffiffiffi
3

p tanh½
ffiffiffi
3

p
βðϕ − ϕ0Þ�; ð41Þ

Model 2ðM2Þ∶ aðϕÞ ¼ e
1
2
βðϕ−ϕ0Þ2 ;

αðϕÞ ¼ βðϕ − ϕ0Þ; ð42Þ

where β ∈ R. In both models, we have α0 ¼ 0
2 and β0 ¼ β,

so that they only differ by higher-order terms in
the expansion (2): αM1ðϕÞ − αM2ðϕÞ ¼ −β3ðϕ − ϕ0Þ3þ
O½ðϕ − ϕ0Þ5�. Note that, in practical computations within
these models, the actual value of ϕ0 is irrelevant, since it
can be absorbed in the definition of the scalar field.
Model 2 is the most common in the literature of STTs

since the works by Damour and Esposito-Farèse, providing
the simplest coupling function exhibiting the spontaneous
scalarization effect they unveiled [14].
The motivation behind Model 1 is to provide an

analytical approximation to the coupling function that

arises from a more fundamental3 theory containing a
massless scalar field Φ nonminimally coupled to gravity.
The action describing this theory is usually formulated in
the Jordan frame as

S½~gμν;Φ;Ψm� ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−~g

p �
~R
8π

− ~∇μΦ ~∇μΦ − ξ ~RΦ2

�

þ Sm½Ψm; ~gμν�; ð43Þ

with ξ ∈ R. It can be rewritten in the Einstein frame,
in the form of Eq. (1), by means of a field redefinition
Φ ¼ ΦðϕÞ and a conformal transformation of the metric
~gμν ¼ a2ðϕÞgμν, such that

dϕ
dΦ

¼ 2
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πξð1 − 6ξÞΦ2

p
1 − 8πξΦ2

; ð44Þ

aðϕÞ ¼ ð1 − 8πξΦðϕÞ2Þ−1=2: ð45Þ

From the action (43), an interpretation that loosely
follows is that Newton’s constant (G ¼ 1 in our conven-
tion) gets replaced in this theory by the effective gravita-
tional coupling Geff ¼ GaðϕÞ2, which is enhanced or
diminished from its GR value if ξ > 0 or ξ < 0, respec-
tively. Note also that, for the transformations (44) and (45)
to be well-defined, we must have 8πξΦ2 < 1. For ξ < 0,
this condition is trivially satisfied. For ξ > 0, it implies the
existence of a critical value Φcr ¼ 1=

ffiffiffiffiffiffiffiffi
8πξ

p
, for which

gravity would become “infinitely attractive” in the sense
that Geff ¼ GaðϕÞ2 diverges as Φ → Φcr. It is interesting to
notice that any legitimate Φ ∈ ð−Φcr;ΦcrÞ is mapped to
some ϕ ∈ ð−∞;∞Þ by Eq. (44), so that no restriction to the
scalar field values exists in the Einstein frame description.
Equation (44) can be integrated to obtain ϕðΦÞ and the

inverse relation ΦðϕÞ. Note that, as Φ → 0, ϕ → ϕ0þ
2

ffiffiffi
π

p
ΦþOðΦ3Þ, where ϕ0 is an integration constant.

Ultimately, from Eqs. (44) and (45) we get the coupling
function

αðϕÞ ¼ 4
ffiffiffi
π

p
ξΦðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πξð1 − 6ξÞΦðϕÞ2
p ; ð46Þ

which is plotted in Fig. 1. Note that αðϕ0Þ ¼ 0, α0ðϕ0Þ ¼
2ξ, α00ðϕ0Þ ¼ 0, αð3Þðϕ0Þ ¼ 8ð1 − 12ξÞξ2 and so on.
Therefore, upon identifying ξ ¼ β=2, the coupling func-
tions (41), (42) and (46) all agree to linear order in ϕ − ϕ0.
Moreover, M1 reproduces the qualitative behavior of the
coupling function (46), and shares the distinctive feature

2We have verified that the introduction of a nonzero value for
α0, but still compatible with current constraints, would not affect
the conclusions of our work.

3At the classical level it is natural to include the coupling term
ξ ~RΦ2 in the action when generalizing the flat-space theory to a
curved spacetime. From a quantum-field-theory perspective, the
inclusion of such a term can be required by the renormalization of
the scalar field in a curved background [40].
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that limϕ→�∞αðϕÞ ¼ �1=
ffiffiffi
3

p
is finite, which will be

relevant for the interpretation of our results.

IV. RELEVANT PREVIOUS RESULTS

A. (In)Stability of GR-like solutions

Generically, the system of equations (31)–(34) will admit
at least one equilibrium solution, which is close to a
solution in pure GR in the sense that the ratio of its scalar
charge to the stellar mass, ω=M, is of the order of α0. In
particular, if α0 ¼ 0, this solution consists of a scalar field
everywhere equal to its cosmological value ϕ0, and metric
and matter variables satisfying the usual Einstein-Euler
equations. We will call these GR solutions.
The stability of these GR solutions under linear scalar

field perturbations was first analyzed in Ref. [41], and it
was shown that they may possess unstable scalar modes for
a certain range of stellar compactnesses and coupling
constants. Indeed, if we consider ϕ ¼ ϕ0 þ δϕ and treat
δϕ as a small perturbation, then Eqs. (3) and (4) imply, to
first order,

∇μ∇μδϕ ¼ −4πβ0 ~Tδϕ; ð47Þ

where the metric and matter variables are solutions to the
background GR equations.4 Note that Eq. (47) holds both
for M1 and M2, or any model which agrees with them up to
OðδϕÞ in the coupling function αðϕÞ.
The right-hand side of Eq. (47) can be seen as containing

an effective mass squared term, m2
eff ≔ −4πβ0 ~T, and the

fact that this is negative when β0 ~T > 0 suggests the
existence of a tachyonic-like instability. In particular, for
β0 > 0, a necessary condition for the existence of unstable
modes of Eq. (47) is that the trace of the energy momen-
tum-tensor of matter fields, ~T ¼ 3 ~p − ~ϵ, be positive in
some region inside the star. A crucial property of the EoS
we adopted, which is shared by several (but not all) realistic
EoS, is that this condition is satisfied by some neutron stars
which are hydrodynamically stable according to GR. This
opens up a window where predictions from GR and STTs
with β0 > 0 differ, and can potentially be tested.
A numerical search for solutions of Eq. (47) of the form

δϕ ¼ eΩtfðrÞ in a spherically symmetric and static back-
ground, reveals that these solutions exist in the regions in
parameter space shown in Fig. 2. The inverse time scale Ω
of the instability is shown in Fig. 3 as a function of the star’s
central density for β0 ¼ 100. In this case, a first unstable
mode develops for stars with central density ~ρc ≳ 10.38ρ0,
a second unstable mode appears when ~ρc ≳ 12.46ρ0, and a
third one, when ~ρc ≳ 14.80ρ0. Indeed, as we increase the
central density, we find a hierarchy of additional modes
becoming unstable. These unstable modes can be labeled
by a radial overtone number n, as indicated in Fig. 3, which
also measures the number of nodes of the corresponding
function fðrÞ. The n ¼ 0 mode is the fastest growing. We
remark that the existence of more than one unstable mode is
not a particular feature of the β0 > 0 case and can also
occur for sufficiently negative values of β0.
The rate of growth of the unstable modes predicted by

the linear stability analysis can be directly compared with
the outcome of full nonlinear numerical evolutions.
Therefore, as a test of our code, we set initial data

NMC
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M2

–0.4 –0.2 0.0 0.2 0.4

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

φ φ– 0

α (
φ )

FIG. 1. The coupling function (46) as a function of the scalar
field in the Einstein frame is shown in (solid) black, for ξ ¼ 10.
The blue (dashed) and orange (dashed-dotted) lines represent the
coupling functions (41) and (42), respectively, with β ¼ 20. M1
is seen to reproduce the qualitative features of the coupling
function (46). For ϕ ≈ ϕ0, all curves overlap.
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FIG. 2. Shaded blue regions correspond to values of β0 and ~ρc
for which unstable modes of Eq. (47) exist. The gray region on
top indicates configurations which are hydrodynamically unsta-
ble according to GR. The condition ~Tð~ρcÞ > 0 is satisfied above
the horizontal line at ~ρc ≃ 8.94ρ0, which also gives the asymp-
totic limit of the instability region to the right as β0 → ∞. The
vertical lines at β0 ¼ −6 and β0 ¼ 100 highlight values that will
be used in our analysis.

4Note that, at the linear level, scalar field perturbations of GR
solutions are decoupled from metric and fluid perturbations, and
we can restrict attention to the scalar sector. For more general
perturbative analyses, see e.g. [42,43].

HIGHLY COMPACT NEUTRON STARS IN SCALAR-TENSOR … PHYSICAL REVIEW D 93, 124035 (2016)

124035-7



consisting of GR solutions with central densities ranging
from 10.2ρ0 to 12ρ0, and let them evolve according to the
full nonlinear equations in either M1 or M2. We verify that
configurations predicted to be stable simply oscillate
around the equilibrium solution, and that those predicted
to be unstable (i.e., with ~ρc ≳ 10.38ρ0) indeed undergo an
initial phase of exponential growth of the scalar field. This
is due to the fact that the initial field profile is not perfectly
constant, but has fluctuations dictated by the size of the
numerical errors, which are enough to trigger the insta-
bility. The black points in Fig. 3 show the rate of
exponential growth inferred from the numerical data, which
is computed from the time it takes for jϕc − ϕ0j to grow
from 10−14 to 10−3. In this regime of small field amplitudes,
the linear analysis is expected to hold, and indeed we find
agreement between its predictions and the nonlinear evo-
lution to a good extent, as shown in Fig. 3 (see the
Appendix for convergence details).
We refer to [25,41] for more details on the instability

of GR solutions under scalar field perturbations, and to
[44–46] for an interesting quantum counterpart of this
instability.

B. The β0 < 0 case: Spontaneous scalarization

If β0 is sufficiently negative (β0 ≲ −4.35 for our EoS),
there is a range of central densities for which a GR solution
with constant scalar field has unstable scalar modes
(cf. Fig. 2). As we will review below, the onset of the
instability of the GR solution is accompanied by the
appearance of two additional stable equilibrium solutions,

characterized by a nontrivial scalar field profile and scalar
charge of the order of the stellar mass. Therefore, for a fixed
value of β0 < 0, if the stellar compactness increases above
a critical threshold, the star undergoes a phase transition to
a scalarized configuration. This spontaneous scalarization
effect in STTs with β0 < 0 has been extensively studied in
the literature, both for the case of nonminimally coupled
scalar fields, to which M1 is a rough approximation and,
more prolifically, for M2 (see e.g. [24] for a literature
survey). In this section we briefly dwell on the case of
β < 0 in Eqs. (41) and (42) in order to compare it with our
main results in Sec. V.
Before studying the development of the instability

discussed above from a dynamical perspective, it is
instructive to review some properties of static solutions,
in order to determine the possible equilibrium configura-
tions to which the unstable system could in principle settle.
Fixing a value of β, say, β ¼ −6, we construct equilibrium
solutions of Eqs. (31)–(34) in Models 1 and 2 for a range of
central densities. The baryonic mass and the central value
of the scalar field of the solutions are shown as a function of
the central density in Fig. 4. The overall picture is the same
for both models: for low central densities, only one
equilibrium solution exists, the GR solution discussed
above. Then, precisely at the critical density above which
this branch of solutions becomes unstable under scalar field
perturbations (point A in Figs. 2 and 4), another branch of
solutions develops,5 characterized by a nontrivial profile of
the scalar field. We will call this the scalarized branch.
These solutions can be parametrized by their scalar charge
or the difference between the central and the asymptotic
value of the scalar field: from Fig. 4 we see that, as we
move along the scalarized branch, jϕc − ϕ0j increases from
zero to a maximum value, and then decreases to zero as this
branch finally merges with the GR one, at the density above
which the latter is no longer unstable under scalar field
perturbations (point B in Figs. 2 and 4).
Thermodynamic arguments indicate that solutions in the

scalarized branch are stable up to the turning point in the
ð~ρc;MbÞ diagram [17]. Moreover, for a given baryonic
mass, a scalarized configuration always has a smaller total
mass than the corresponding GR solution and, in this sense,
the former is energetically favored over the latter. This is
illustrated in Table I for the (red) points highlighted in
Fig. 4. The fact that scalarized configurations are stable and
energetically favored over the unstable GR solutions
suggests that they are plausible end states of the evolution.
Indeed, full nonlinear numerical simulations have con-
firmed that this is the case. The dynamical transition from

10 11 12 13 14 15
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ρ~c ρ0

Ω
(m

s–
1 )

n=0

n=1

n=2

FIG. 3. Inverse time scale of the instability as a function of the
star’s central density, for β0 ¼ 100. A first unstable mode appears
for stars with central density ~ρc ≳ 10.38ρ0. For ~ρc ≳ 12.46ρ0 and
~ρc ≳ 14.80ρ0, respectively, a second and a third scalar mode
become unstable. The unstable spherical modes can be labeled by
an overtone number n which also measures the number of nodes
in the radial profile of the scalar field and which is represented in
the figure. Black dots indicate the rates of growth inferred from
the numerical evolution of initial data consisting of unstable GR
solutions with central densities ~ρc=ρ0 ∈ f10.4; 10.5; 10.6; 10.7;
11.2; 12g, as described in the main text.

5Actually, two new branches develop, as discussed, e.g., in
Ref. [17]; however, for α0 ¼ 0, they are trivially related by the
transformation ϕ → −ϕþ 2ϕ0, and have the same global proper-
ties, such as mass or (absolute value of the) scalar charge. If
α0 ≠ 0, these solutions are no longer degenerate, but the property
that ω=M ∼ 1 still holds for both.
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an unstable GR configuration to a scalarized one has been
studied numerically both for M2 [47] and for nonminimally
coupled scalar fields [48,49]. In Fig. 5 we show illustrative
results from our numerical simulations. The initial data is
chosen to be a GR solution with ~ρc ¼ 10ρ0, whose
properties are shown in the first row of Table I. The
magnitude of the initial field fluctuation is simply deter-
mined by round-off errors, which are typically of the order
10−16. This is enough, however, to trigger the instability
described in Sec. IVA. The evolution in time of the central
value of the scalar field and the central rest-mass density is
shown in Fig. 5. After an initial phase of exponential

growth, the field settles down to a scalarized equilibrium
configuration, which is consistent with solutions 2 and 3 in
Table I, for Models 1 and 2, respectively. It is worth
emphasizing that although quantitative aspects of the final
configuration, such as total mass or scalar charge, depend
on the details of the coupling function αðϕÞ, the fact that the
final state is a scalarized configuration is generic for
theories with the same value of β0 ¼ α0ðϕ0Þ. As we will
see in the next section, this is no longer true when β0 > 0.

V. THE β0 > 0 CASE: SCALARIZATION VS.
GRAVITATIONAL COLLAPSE

In this section we present our main results regarding the
nonlinear development of the instability discussed in
Sec. IVA for theories with β0 > 0. Given the different
outcomes observed for Models 1 and 2, we present the
results for each of them separately below.

A. Model 1

In Ref. [25], scalarized equilibrium solutions for neutron
stars within the model of nonminimally coupled scalar
fields [cf. Eq. (43)] were already constructed in the β0 > 0
regime (see also Ref. [50]). Here we explore more
thoroughly the properties of these solutions within
Model 1, together with numerical simulations of the stellar
evolution in order to determine the final state of unstable
configurations.
We begin by constructing equilibrium solutions of

Eqs. (31)–(34) in M1 for a range of central densities.
Figure 6 shows the baryonic mass and central scalar field of
these solutions as a function of the star’s central density, in
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FIG. 4. Baryonic mass and central scalar field as functions of
the central rest-mass density for sequences of equilibrium
solutions in M1 (dashed blue) and M2 (solid orange) with
β ¼ −6. For ~ρc ≲ 4.38ρ0 and ~ρc ≳ 11.15ρ0, only the GR branch
of solutions exists, which is the same in both models. For 4.38≲
~ρc=ρ0 ≲ 11.15 (between points A and B; see also Fig. 2), two
extra (degenerate) branches appear, characterized by a nontrivial
scalar field profile and nonzero scalar charge. We highlight
solutions with baryonic mass Mb ¼ 2.3594 M⊙, described in
Table I.

TABLE I. Properties of some equilibrium solutions in STTs
with β ¼ −6, namely, central density, baryonic mass, total mass,
compactness, central scalar field, and scalar charge. The solution
marked with a star is used as initial data for the numerical
simulation shown in Fig. 5.

Solution ~ρc=ρ0 Mb½M⊙� M½M⊙� M=Rs jϕc − ϕ0j jωj½M⊙�
1* 10.0 2.3594 1.9650 0.287 0 0
2 (M1) 9.2061 2.3594 1.9641 0.273 0.095 0.30
3 (M2) 8.0747 2.3594 1.9459 0.209 0.284 1.23
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FIG. 5. Evolution of the central value of the scalar field and of
the star’s central density for the unstable initial data labeled 1 in
Table I, within Models 1 and 2.
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the case of β ¼ 100. Again, for low central densities there is
only the trivial, GR equilibrium solution; then, at a critical
density corresponding to the onset of the instability in the
GR branch (point A0 in Figs. 2 and 6), a scalarized branch
develops. Differently from the β < 0 case, the scalarized
branch does not rejoin the GR one at higher densities, and
the (absolute value of the) scalar charge grows monoton-
ically along it.
Notice, from Fig. 6, the existence of a second and third

branches of scalarized solutions that detach from the GR
branch at higher densities. In fact, as we increase the central
density for a fixed value of β > 0, we find a hierarchy of
such solutions, each new branch characterized by a scalar
field profile with a higher number of nodes. The appearance
of these “excited” solutions (observed also in Ref. [50]) has
an equivalent in the linear stability analysis as well, as
discussed in Sec. IVA. Indeed, at each critical density
where a scalarized branch starts, we find a new scalar mode
of the GR solution becoming unstable (see Fig. 3). We will
refer to each of these scalarized branches by an assigned
radial overtone number n, corresponding to the number of
nodes in the radial profile of the scalar field.
Our numerical experiments indicate that solutions in the

n ¼ 0 scalarized branch are stable up to the turning point in

the ð~ρc;MbÞ diagram of Fig. 6, which is consistent with
thermodynamic expectations. Moreover, we find that stable
scalarized configurations have lower total mass than
unstable GR solutions with the same baryonic mass, as
can be seen by comparing, e.g., solutions 1 and 2 in
Table II. The expectation that unstable GR solutions may
settle to these scalarized configurations is corroborated by
our numerical simulations. In particular, in Fig. 7 we show
the evolution of the initial data labeled 1 in Table II, which
consists of a GR solution with ~ρc ¼ 11.2ρ0. The scalar
field, whose central value is displayed in the upper panel of
Fig. 7, goes through a phase of exponential growth, starting
from an initial value dictated by the size of round-off errors.
The rate of exponential growth inferred from the numerical
data is consistent with the prediction from the linear theory,
as was shown in Fig. 3. After the field reaches a value of the
order of 10−2, its growth is quenched and it oscillates
around a value consistent with solution 2 in Table II. Since
the final central value of the scalar field is much smaller

FIG. 6. Baryonic mass and central scalar field as functions of
the central rest-mass density for a sequence of equilibrium
solutions in M1, with β ¼ 100. For ~ρc ≲ 10.38ρ0 (point A0 in
Fig. 2), only the GR solution exists. Above this value, a branch of
scalarized solutions develops, along which the absolute value of
the scalar charge increases monotonically. As the central density
increases, we see more branches of scalarized solutions devel-
oping from the unstable GR branch. An overtone number n is
assigned to each of them. We highlight some solutions with
baryonic massMb ¼ 2.4304 M⊙ (points 1 to 4, in red) andMb ¼
2.4529 M⊙ (points 5 and 6, in blue), described in Table II.

TABLE II. Properties of some equilibrium solutions withMb ¼
2.4304 M⊙ (solutions 1 to 4) and Mb ¼ 2.4529 M⊙ (solutions 5
and 6) in M1 with β ¼ 100. Solutions marked with stars are used
as initial data for numerical simulations.

Solution ~ρc=ρ0 Mb½M⊙� M½M⊙� M=Rs jϕc − ϕ0j
1* 11.20 2.4304 2.01058 0.302 0
2 11.4251 2.4304 2.01053 0.304 0.023159
3 12.2279 2.4304 2.01056 0.311 0.039036
4 14.3890 2.4304 2.01132 0.325 0.027827
5* 12.0 2.4529 2.02461 0.309 0
6 13.4600 2.4529 2.02469 0.320 0.017240
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FIG. 7. Evolution of the central value of the scalar field and of
the star’s central density for an initial unstable equilibrium
solution (solution 1 in Table II).
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than the example shown in Sec. IV B, the relative size of the
oscillations in the present case is much larger than what is
seen in Fig. 5.
An important difference from the β < 0 case discussed in

Sec. IV B is that the maximum baryonic mass of the n ¼ 0
scalarized branch is now lower than that of the GR branch.
This is consistent with the interpretation that, when β > 0

in M1, the effective gravitational coupling Geff ¼ GaðϕÞ2
is larger in regions with large field amplitudes, and not-as-
massive scalarized stars are supported without undergoing
gravitational collapse. Also, this immediately indicates that
there is a set of unstable GR solutions that cannot evolve to
stable, scalarized configurations while conserving baryonic
mass, and must meet a different fate. In Fig. 8 we show
snapshots of the numerical evolution of an unstable GR
solution with ~ρc ¼ 12ρ0 (solution 5 of Table II). We see
from Fig. 6 that there are no stable scalarized solutions with
the same baryonic mass as this one. In accordance with this,
our numerical simulations show that this configuration
collapses to a black hole, in a time scale dictated by the
growth rate of the unstable mode.
It is opportune to mention the criterion we adopt to

decide when a star has collapsed to a black hole, which is
based on the behavior of the metric functions. Our slicing
choice—polar slicing—has the good property of avoiding
the physical singularity at r ¼ 0; however, it does not
capture the formation of an apparent horizon, which would
be a direct evidence of black hole formation. Instead, as we
approach the formation of an event horizon, the lapse
function N exponentially shrinks to zero. This causes a
slice stretching effect, which reflects on the rapid

development of large gradients in the radial metric com-
ponent A, ultimately leading the code to crash [51].
Nonetheless, the characteristic behavior of the metric
components in this gauge as a star collapses is enough
for our purpose of determining the fate of initially unstable
configurations. An example can be seen in the upper panels
of Fig. 8.
Finally, it is interesting to notice that the n ¼ 1 scalarized

branch in Fig. 6 also seems to have a small stable portion, in
which the solutions have a marginally smaller total mass
than a solution in the GR branch with the same baryonic
mass. However, due to the proximity to the turning point,
we were not able to determine from numerical simulations
whether these solutions could be the end state of unstable
GR configurations.
Our results reveal that the end state of the instability

discussed in Sec. IVA may vary from spontaneous scala-
rization to gravitational collapse in Model 1. In particular,
they show that spontaneous scalarization is not unique to
theories with β0 < 0 but can also happen in theories with
β0 > 0. We discuss some implications of these results
in Sec. VI.

B. Model 2

In Ref. [26], the evolution of unstable GR-like configu-
rations was investigated within a slight variant of Model 2,
where a nonzero but small value of α0 was implicitly
included. The outcome of the simulations was shown to be
collapse to a black hole, although some long-lived oscil-
lating configurations were also reported. Here, we present
the results of similar numerical analyses. Our setup slightly
differs from the one in Ref. [26], in particular because the
initial data chosen in that work, which consists of a solution
to the Einstein-Euler equations and a constant scalar field
profile, is not an actual equilibrium solution when α0 ≠ 0,
and this introduces spurious dynamics in the evolution.
Notwithstanding, our numerical simulations mostly agree
with their results: unstable GR solutions are seen to
undergo gravitational collapse.
We can gain additional understanding on this result from

an energy balance analysis of static equilibrium configu-
rations. Indeed, scalarized equilibrium solutions in Model 2
display a startling different behavior from those in Model 1.
Sequences of equilibrium configurations, obtained by
solving Eqs. (31)–(34), are shown in Fig. 9 for M2 with
β ¼ 100, although there is a similar behavior for any β > 0.
Unlike what we have seen so far, scalarized equilibrium
solutions exist even for values of the central density for
which the GR solution does not possess any unstable scalar
mode. In fact, a hierarchy of solutions is found for
~ρc ≳ 8.94ρ0, i.e., for central densities such that
~Tð~ρcÞ > 0. Again, each scalarized branch is characterized
by a number of nodes in the radial profile of the scalar field,
and a radial overtone number n is assigned accordingly.
Similarly to M1, these scalarized branches detach from the
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FIG. 8. Snapshots of the time evolution of the metric functions
A and N, of the rest-mass density ~ρ and the scalar field ϕ for an
initial unstable equilibrium solution (solution 5 in Table II).
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GR branch at values of ~ρc for which some spherical scalar
mode of the GR solution becomes unstable. This is clearly
visible in Fig. 9 for the scalarized branches with n ¼ 0,
n ¼ 1, and n ¼ 2, but holds for higher overtones as well.
However, differently from M1, these branches develop
toward lower densities, approaching in different ways the
critical central density ~ρc ≃ 8.94ρ0.

As illustrated in Table III, all scalarized solutions in this
case have a higher total mass for a fixed baryonic mass than
the GR one, which suggests they all are unstable, and likely
unphysical. This is in agreement with the numerical results
of Ref. [26], which exhibited no sign of spontaneous
scalarization, and with our own numerical experiments,
which we discuss below. Before that, however, let us try to
understand why scalarized equilibrium solutions in M2
with β > 0 are so different from the β < 0 case and from
M1 with β > 0. The crucial equations here are (33) and
(34), which we repeat below:

ϕ00 ¼ 4πrA4

r − 2m

�
αð~ϵ − 3 ~pÞ

ðIÞ
þ rð~ϵ − ~pÞϕ0

�
−

2ðr −mÞ
rðr − 2mÞϕ

0

~p0 ¼ −ð~ϵþ ~pÞ
�
4πr2A4 ~p
r − 2m

þ r
2
ϕ02 þ m

rðr − 2mÞ þ αϕ0
ðIIÞ�

;

with a prime denoting derivative with respect to r. Let us
consider Model 2, where αðϕÞ ¼ βϕ (we set ϕ0 ¼ 0 for
definiteness), and assume, with no loss of generality, that
ϕc > 0. Near r ¼ 0, for a sufficiently large value of jβj,
term (I) dominates in the first equation. If
β ~Tc ¼ βð3 ~pc − ~ϵcÞ > 0, then ϕ00 < 0 and ϕ0 < 0 near the
origin. The difference between the β < 0 and β > 0 cases
arises from the feedback between terms (I) and (II): if
β < 0, term (II) is positive, and contributes to a more rapid
decrease of the pressure, lessening the weight of (I);
however, if β > 0, term (II) is negative, and can increase
(or, at least, delay the decay of) the pressure. [Note that the
right-hand side of the second equation would be strictly
negative if it was not for term (II).] This reinforces term (I),
making ϕ0 even more negative. This positive feedback
continues until the other terms eventually start dominating.
This argument is consistent with our findings that some
equilibrium solutions for M2 show a “pathological” behav-
ior, in the sense that ϕ0 can increase negatively by orders of
magnitude in a small spatial region near the origin, and the
pressure is not necessarily a monotonically decreasing
function of r [52]. It is also consistent with the tentative
interpretation in terms of a field-dependent effective cou-
pling constant Geff ¼ GaðϕÞ2: when β > 0, gravity is
“stronger” in regions with large field amplitudes, and
scalarized configurations need more pressure to be sup-
ported; however, since the scalar field is sourced by
pressure, this induces an increase in the scalar field
amplitude and a strengthening of gravity, leading to the
positive feedback we described. The different behavior
displayed by M1 is likely related to the fact that αðϕÞ—
which determines the coupling of the scalar field to
matter—is bounded in this case (see Fig. 1), and Geff
increases only polynomially with ϕ as ϕ → ∞, instead of
exponentially as in M2.
From our numerical experiments with various initial

data, consisting both of unstable GR solutions and

FIG. 9. Baryonic mass and central scalar field as functions of
the central rest-mass density for a sequence of equilibrium
solutions in M2, with β ¼ 100. We only display the scalarized
solutions found with jϕc − ϕ0j < 0.3, but additional solutions
exist beyond this point. Each scalarized branch is characterized
by the number of nodes in the scalar field profile, as indicated in
the lower panel for the first five branches. Note that solutions with
nonzero scalar charge are found for ~ρc < 10.38ρ0 (point A0;
cf. Fig. 2), i.e., before the onset of instability in the GR branch. A
vertical line at ~ρc ¼ 8.94ρ0 highlights the central density above
which the trace of the energy-momentum tensor is positive at the
stellar center. We also highlight some solutions with baryonic
mass Mb ¼ 2.4304 M⊙ (points 1 to 3, in red) and additional
solutions with ~ρc ¼ 11.20ρ0 (points 4 to 6, in blue), which are
described in Table III.

TABLE III. Properties of some equilibrium solutions with
Mb ¼ 2.4304 M⊙ (solutions 1 to 3) and ~ρc ¼ 11.2ρ0 (solutions
1 and 4 to 6) in M2 with β ¼ 100. Solutions marked with stars are
used as initial data for numerical simulations.

Solution ~ρc=ρ0 Mb½M⊙� M½M⊙� M=Rs jϕc − ϕ0j
1* 11.20 2.4304 2.01058 0.302 0
2 10.9493 2.4304 2.01087 0.312 0.055
3 14.4841 2.4304 2.01142 0.327 0.023
4* 11.20 2.43611 2.01435 0.313 0.050
5* 11.20 2.39877 1.99273 0.325 0.081
6* 11.20 2.32321 1.94928 0.332 0.104
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scalarized solutions in any branch, we always find that the
system evolves towards gravitational collapse. Some exam-
ples are displayed in Fig. 10, where we show the time
evolution of initial data labeled 1, 4, 5 and 6 in Table III. We
plot the maximum value of AðrÞ, and the central value of
the lapse, Nðr ¼ 0Þ, as a function of time in these four
cases. As we discussed in Sec. VA, the first quantity
diverges and the second one goes to zero as we approach
the formation of an event horizon. This is seen to happen
for all configurations, including the GR solution with ~ρc ¼
11.2ρ0 which was shown to undergo spontaneous scalari-
zation in Model 1 (see Fig. 7). Notice, additionally, that the
time scale of the collapse is shorter for higher overtone
solutions.

VI. DISCUSSION

Some highly compact neutron stars that are stable
according to general relativity would be subject to an
instability in some scalar-tensor theories of gravity with
β0 > 0. In this work, we investigated the nonlinear devel-
opment of such instability. Before discussing our results
and their implications, let us briefly review the properties of
the systems in which this instability arises. These are
neutron stars in the core of which the pressure surpasses
one third of the energy density, i.e. the trace of the fluid’s
energy-momentum tensor is positive at the stellar center.
This condition, which is unachievable by free or weakly
interacting particles, can be fulfilled by strongly interacting
systems such as neutron stars. For different equations of
state, this condition translates into a minimum required

compactness; interestingly, however, this minimum com-
pactness depends only weakly on the equation of state,
being around ðM=RsÞmin ∼ 0.265 [25]. For a 2 M⊙ star this
would require a radius Rs ≲ 11 km, which is consistent
with predictions of several realistic equations of state and
the current observational constraints [38].
On the other hand, the lowest possible value of β0 > 0

for which this instability can occur depends on the
maximum allowed compactness of a GR-stable star, which
in turn is highly EoS-dependent. In particular, for the
polytropic EoS employed in this work, this would be
β0;min ≃ 15, as seen from Fig. 2. It is interesting to notice
that β0;min can approach zero for some other physical,
although somewhat artificial, systems, such as spherical
shells of matter [53].
In order to determine the actual observational signatures

of this instability, it is essential to understand its nonlinear
development. As discussed in the main text, only the linear
piece of the coupling function αðϕÞ is relevant for the linear
stability analysis, but in order to solve the full nonlinear
problem, we must specify its full form. In this work we
focused on two representative coupling functions, dis-
played in Eqs. (41) and (42). The first one (Model 1)
approximates analytically the case of the more fundamental
action (43), while the second one (Model 2) is a simple but
popular model that truncates αðϕÞ to linear order.
The appearance of unstable scalar modes in the GR

solution is accompanied by the appearance of additional
equilibrium solutions with nonzero scalar charge. In
theories with β0 < 0, it is well known that, for any unstable
GR solution, there is a stable, energetically favored
scalarized solution with the same baryonic mass, to which
the unstable configuration evolves (cf. Sec. IV B).
Remarkably, the prediction that a given unstable star would
undergo spontaneous scalarization relies only on the value
of β0, although the properties of the final state do depend on
the full form of the coupling function.
In striking contrast with the β0 < 0 case, we find that the

very outcome of the instability in theories with β0 > 0 is
sensitive to higher-order terms in the coupling function.
Our results for the representative coupling functions (41)
and (42) are described in Sec. V. In particular, for Model 1
we find that scalarized configurations exist that are stable
and energetically favored over some unstable GR solutions,
and we numerically confirm that the former are the final
state of the latter’s evolution. For other unstable GR
solutions (those with high enough mass), however, we
show that there are no stable equilibrium solutions to which
they can evolve, and that they eventually undergo gravi-
tational collapse (cf. Sec. VA). On the other hand, for
Model 2, our numerical simulations corroborate previous
results [26], which found no evidence of spontaneous
scalarization and that the end state of the instability would
generically be collapse to a black hole. This is endorsed by
an energy balance analysis of the existing equilibrium
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FIG. 10. Evolution of the maximum value of AðrÞ, and the
central value of the lapse, Nðr ¼ 0Þ, for some unstable equilib-
rium solutions (solution 1, 4, 5 and 6 in Table III).
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solutions, whereby we show that scalarized solutions in
these theories have higher total mass than the GR ones
(cf. Sec. V B). Interestingly, we have verified that, if we
consider coupling functions with higher-order polynomial
terms in Eq. (2), it is possible to interpolate between the
qualitative behavior of Model 2 and Model 1 [52].
Our results suggest observational signatures that could

be searched for in order to probe STTs with β0 > 0. In these
theories, young neutron stars, which typically have lower
masses, would be identical to the ones in GR (or very
similar, if α0 ≠ 0 but small). However, if these stars are
formed in a material-rich environment, they will gradually
increase their mass and compactness due to accretion and
may eventually become sufficiently compact in order to
develop unstable scalar modes. In Model 1 (or similar
models), the unstable star is expected to spontaneously
scalarize, giving rise to the characteristic observational
imprints. These include changes in the orbital dynamics
[15], in the redshift of surface atomic lines [54], and in the
gravitational wave emission [47] and spectrum [55]. Note
that these results have been worked out for the β0 < 0 case,
but the details when β0 > 0 still need to be investigated. On
the other hand, in Model 2 (or similar models), the unstable
star is expected to undergo gravitational collapse. In this
case, the mere observation of a stable neutron star above a
certain critical compactness could be used to impose new
constraints. Additionally, highly massive neutron stars are
possible outcomes of the coalescence and merger of binary
neutron star systems, which are target sources for gravi-
tational wave detectors such as Advanced LIGO. The
effects discussed here for STTs with β0 > 0 might be
relevant both in the coalescence stage if an effect akin to
dynamical scalarization [20,21] takes place, and for the
after-merger dynamics of the system. We hope that these
possibilities will be explored in future work.
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APPENDIX: NUMERICAL METHODS

In this Appendix we describe the numerical techniques
employed to solve the Cauchy problem for the scalar-
tensor-Euler system consisting of Eqs. (3), (4), (6), and (8),
in a spacetime split according to the 3þ 1 formalism, with
initial data constrained by the system itself in the static

limit. In spherical symmetry, the problem reduces to 1þ 1
dimensions. The spatial radial coordinate r is discretized
using a uniform grid with Nr þ 1 nodes ri ¼ iΔr,
i ∈ f0; 1; 2;…; Nrg, with Δr ≔ rmax=Nr, where rmax ∈
Rþ is the outer boundary of the numerical domain. The
time coordinate is also discretized in a uniform grid with
Nt þ 1 nodes tn ¼ nΔt, n ∈ f0; 1; 2;…; Ntg, with
Δt ≔ tmax=Nt, where tmax ∈ Rþ is the maximum given
coordinate time for a simulation.

1. Initial data

For all our simulations, the initial data consists of static
equilibrium stars, described by solutions of Eqs. (31)–(34)
subject to the boundary conditions (35). We compute them
numerically by a shooting-like method, as follows. First,
we integrate Eqs. (31)–(34) from r ¼ 0 with conditions
mð0Þ ¼ 0, ϕð0Þ ¼ ϕc, ϕ0ð0Þ ¼ 0, ~pð0Þ ¼ ~pc, and
Nð0Þ ¼ Nc, where ϕc is a guessed value for the central
field and Nc is an arbitrary value that will be fixed
a posteriori. For the first grid points, we employ sec-
ond-order Taylor expansions in order to regularize
Eqs. (31)–(34) around r ¼ 0. The integration is performed
with a fourth-order accurate Runge-Kutta algorithm up to
the surface of the star, r ¼ Rs, defined by ~pðRsÞ ¼ 0, or
equivalently, ~ρðRsÞ ¼ 0. We refine the step size of the
integrator until ~ρðRsÞ=~ρc < 10−11. With the quantities
computed at Rs, we calculate the left-hand side of
Eq. (36). We iterate the value of ϕc and repeat the
above procedure until this quantity vanishes, within a
numerical tolerance of the order 10−15. For r > Rs, we
integrate Eqs. (31)–(33) only, up to r ¼ rmax. If rmax is
sufficiently large, we should have NðrmaxÞ ≈ 1=AðrmaxÞ,
corresponding to an asymptotically flat spacetime. To
ensure that this condition is satisfied, we rescale NðrÞ
by 1=½AðrmaxÞNðrmaxÞ�. We have verified that the initial
data is second-order self-convergent.

2. Evolution of the scalar-tensor-fluid system

Given the nonlinear nature of the dynamic scalar-tensor-
Euler system, it is expected to generically develop shocks
and rarefaction waves, which imply the development of
unbounded gradients in the fluid variables even starting
from smooth initial data. Since the usual finite differences
schemes assume certain smoothness of the solution, they
fail to handle fluid shocks. On the other hand, finite volume
schemes together with high resolution shock capturing
(HRSC) methods are alternative approaches which can
consistently deal with discontinuous solutions. They are
based on the discretization of the evolution equations in
their integral flux-conservative form, which thus requires
the definition of conservative variables to be evolved in a
mesh of Nr finite volume cells, the ith cell centered at
ri − Δr=2, i ∈ f1; 2;…; Nrg (see, for instance, Ref. [31]).
The particularities of a HRSC method depend on the way it
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reconstructs primitive variables on the cell interfaces and
then solves the Riemann problem arising at each interface.
We have implemented a HRSC method based on the
standard Harten-Lax-van Leer-Einfeldt approximate
Riemann solver with a linear piecewise reconstructor of
variables. For technical details on this method, we refer the
reader to the specialized literature, Ref. [56] for instance
(see also Ref. [57] for a revisit of the spherically symmetric
case and a description of the usual regularization of the
coordinate singularity at r ¼ 0).
Using this method, we solve the fluid-scalar-field evolu-

tion system written in the hyperbolic flux-conservative form
(11) with q ¼ ð ~D; ~S; ~τ; η;ψÞT , and F and S given by
Eqs. (17)–(26). For the time evolution, we employ a third-
order accurateRunge-Kutta integrator, which guarantees that
the Total Variation Diminishing condition is satisfied [31].
No artificial dissipation was needed. For all the results
presented in this work, we use a typical spatial resolution
Δr of the order of 10−4rmax, while the time step size Δt is
constrained by the Courant-Friedrichs-Lewy condition
Δt=Δx¼ κCFL< 1, whichwe ensure by setting κCFL ¼ 0.25.
Concerning the evolution of the metric functions, we

discretize Eq. (29) on the original grid ðtn; riÞ, and integrate it
simultaneously with the fluid, using the same third-order
Runge-Kutta algorithm. This determines the metric
function Aðtn; riÞ through the relation Aðtn; riÞ ¼ ½1−
2mðtn; riÞ=ri�−1=2. In turn, the lapse function Nðtn; riÞ is
updated at every time step by integrating Eq. (28) in space by
means of a second-order quadrature scheme. Whenever
needed, values of the metric functions N and A at the finite
volume cell centers are interpolated by a second-order
Lagrange polynomial.

a. Boundary conditions

At the inner boundary, given by r ¼ 0, we impose the
usual regularity conditions due to the spherical symmetry
of the problem: the quantities ~D, ~τ and ψ are even functions
of r at all times, whereas ~S and η are odd functions. We
implement these conditions through second-order
Lagrange interpolations using two ghost cells at the left
edge of the domain.
At the outer boundary of the domain, at r ¼ rmax, we

demand an outgoing flow condition for the fluid, meaning
∂rqjrmax

¼ 0 at all times, whereas for the scalar field we
impose [58]

�
Aηþ Aψ þ ϕ − ϕ0

r

�����
rmax

¼ 0; ðA1Þ

which follows from the outgoing wave condition

ϕðt; rÞ →r→∞
ϕ0 þ Fðt − rÞ=r, where F is an arbitrary func-

tion of the retarded time. Note that Eq. (A1) is strictly valid
only in a flat spacetime, but becomes a good approximation
when rmax is sufficiently large, and the field amplitude is

small. In particular, we have chosen rmax such that
rmax=Rs > 20, in which case the field amplitude ϕðrmaxÞ
is typically of order 10−5.

b. Vacuum region

Outside of the star, the fluid variables should in principle
vanish, but a special treatment is required when HRSC
methods are employed. These methods are generically
unable to handle thevacuum scenario because, in thevariable
reconstruction stage, the relation between primitive and
conservative variables must be inverted, and this trans-
formation becomes singular in vacuum. In order to alleviate
this issue, we have implemented the standard atmosphere
artifice, which consists in setting up ad hoc a constant, very
small baryon density outside the star at all times, so that the
HRSCmethod still works in the exterior, while the effects on
the stellar dynamics are negligible. We follow the usual
implementation described, e.g., in Sec. VI of Ref. [59], with
an atmosphere density ρatm of the order of 10−11 ~ρc, where ~ρc
is a given stellar central density, and a criterion to reset the
density to the atmosphere value whenever it drops below
fthresρatm, where fthres ∼ 102 − 104.

3. Convergence tests

In order to check the self-convergence of the numerical
solutions, it is useful to monitor the preservation of the
Hamiltonian constraint H ¼ 0 and the scalar field wave
equation constraint C ¼ 0 at each time step, where

H ≔ ∂rm −
r2

2
½η2 þ ψ2 þ 8πa4ð~τ þ ~DÞ�; ðA2Þ

C ≔ ∂rϕ − Aη: ðA3Þ

A usual test consists in evaluating the L1-norm of the
deviations of the constraints from zero at each time step,
where L1½f� ≔

R rmax
0 jfðrÞjdr, and then comparing this

quantity for two consecutive resolutions Δr and Δr=2.
A self-convergence factor κ can be defined as κ ≔
L1½f�Δr=L1½f�Δr=2, where f is either H or C. The solution
is said to be self-convergent if κ > 1 and the order of
convergence is

ffiffiffi
κ

p
. For every simulation presented here,

except when gravitational collapse is imminent, we
have made sure that our numerical solutions are indeed
self-convergent to a constrained solution of the scalar-
tensor-Euler system. In particular, in Fig. 11, we show
L1½H� and L1½C� for two consecutive resolutions in the case
of spontaneous scalarization within Model 1 with β ¼ 100
(see Fig. 7). From the figure we infer κ ≃ 2.5 for the
Hamiltonian constraint and κ ≃ 4 for the wave equation
constraint.
For initial data consisting of hydrodynamically stable

GR solutions with unstable scalar modes, a complementary
convergence test consists in the direct comparison of the
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rate of exponential growth of the scalar field obtained
numerically, against the one predicted by the linear analysis.
We infer the growth rate from the numerical data by
computing Ω ¼ ðlnϕðbÞ

c − lnϕðaÞ
c Þ=ðtðbÞ − tðaÞÞ, where tðaÞ

is the time such that ϕðaÞ
c ≔ jϕcðtðaÞÞ − ϕ0j ¼ 10−14 and tðbÞ

is such that ϕðbÞ
c ≔ jϕcðtðbÞÞ − ϕ0j ¼ 10−3. Let ΔΩq be the

absolute difference of the predicted growth rate and the one
obtained numerically with a spatial resolution Δr=q,
q ∈ f1; 2g, where Δr ¼ 10−4rmax. For the same case

discussed above (see Figs. 7 and 11), we have ΔΩ1 ¼
0.0818 and ΔΩ2 ¼ 0.0167. Therefore, the convergence
factor is ΔΩ1=ΔΩ2 ∼ 4.9, indicating convergence to
order ≳2.
Yet another check of our numerical machinery consists

in monitoring the baryonic mass, defined in Eq. (30), which
should be conserved in time due to Eq. (8). For the
particular case of gravitational collapse of initial data 6
in Table III (see also Fig. 10), in Fig. 12 we show the trend
of the total baryonic mass approaching a constant value as
we increase the grid resolution. In particular, for the highest
resolution, we have a variation of the baryonic mass of less
than 1 part in 105.
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