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The equivalence between theories depending on the derivatives of R, i.e. fðR;∇R;…;∇nRÞ, and scalar-
multi-tensorial theories is verified. The analysis is done in both metric and Palatini formalisms. It is shown
that fðR;∇R;…;∇nRÞ theories are equivalent to scalar-multi-tensorial ones resembling Brans-Dicke
theories with kinetic terms ω0 ¼ 0 and ω0 ¼ − 3

2
for metric and Palatini formalisms respectively. This result

is analogous to what happens for fðRÞ theories. It is worth emphasizing that the scalar-multi-tensorial
theories obtained here differ from Brans-Dicke ones due to the presence of multiple tensorial fields
absent in the last. Furthermore, sufficient conditions are established for fðR;∇R;…;∇nRÞ theories to
be written as scalar-multi-tensorial theories. Finally, some examples are studied and the comparison of
fðR;∇R;…;∇nRÞ theories to fðR;□R;…;□nRÞ theories is performed.
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I. INTRODUCTION

Alternative scenarios for the standard theory of gravita-
tion have long been proposed in order to circumvent several
problems presented by general relativity (renormalization
[1,2], inflation [3,4], the present-day accelerated expansion
of the Universe [5,6], and so on). As examples of these
proposals, one can cite quadratic Lagrangians on the
Riemann tensor theories [7,8], the Horava-Lifshitz model
[9], braneworldmodels [10–13],ΛCDMmodel [14,15], etc.
Among these propositions, three are of special interest

here. The first one is fðRÞ theories [16–23], which were
presented as an alternative scenario for the standard ΛCDM
model in an attempt to cure the cosmological constant
problem [16]. fðRÞ gravity was also motivated as an
alternative to dark energy models.
The second class of models that we are especially

concerned with in this work is the scalar-tensor theories
[24–27]. In these theories, part of the gravitational inter-
action is described by a scalar field. In the original paper by
Brans and Dicke [24], a scalar field was introduced along
with the metric tensor in an attempt to implement Mach’s
principle. The interest in Brans-Dicke work was renewed
with string theory [20].

An important feature of both fðRÞ and scalar-tensor
theories lies on the fact that they can be proved to be
equivalent (at least at classical level), i.e. a fðRÞ general
model can be cast into the form of a Brans-Dicke theory
with a potential [28,29].
The third category of interest here is the one of theories

including derivatives of the scalar curvatureR [30–36]. They
were inspired by string theory, or motivated by quantum
loop corrections, or as alternatives to dark energy models.
From the point of view of quantum gravity, terms containing
derivatives of scalar curvature (and Riemann and Ricci
tensors) are necessary for the renormalizability of the theory
[37–40], although these terms usually produce unphysical
massive ghost [41,42]. Theories containing derivatives of R
can be seen either as toy models, or as effective theories, or
even as full theories. In any case, the question addressed in
this paper is: Is there a scalar-multi-tensorial equivalent
theory for this class of theories? As far as the authors are
aware, this question has been addressed for the particular
case of fðR;□R;…;□nRÞ theories [43,44]. Here, the
interest is devoted to a more general category of theories,
namely fðR;∇μR;∇μ1∇μ2R;…;∇μ1…∇μnRÞ theories—
henceforth written as fðR;∇R;…;∇nRÞ, or simply as
fðR;∇R;…Þ, for short-hand notation. As it shall be seen,
besides the scalar field other auxiliary tensorial fields must
be introduced. The analysis is restricted to a category of
theorieswith regularHessianmatrix [from this point of view,
fðR;□R;…;□nRÞ theories are singular] and it is performed
both in the metric and Palatini formalisms.
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With the introduction of the scalar-multi-tensorial struc-
ture, the problem of dealing with a single complicated
higher-order field equation is substituted by the task of
analyzing a larger number of field equations but with lower
order of derivatives. This is known to be useful in several
situations. For instance, it is particularly efficient when
one intends to perform numerical analyzes, as in [35].
Moreover, it is simpler to examine the canonical structure
of the theory and study its constraints when auxiliary fields
are defined and a Lagrangian of lower order is considered
[45,46]. In addition, the procedure of order reduction may
facilitate the scrutiny of the eventual unitarity character of
the theory [47].
The paper is organized as follows: In Sec. II, the

equivalence of fðR;∇R;…;∇nRÞ and scalar-multi-
tensorial theories is analyzed in the metric formalism.
For the sake of clarity, the section starts with the analysis
of the fðR;∇RÞ case and is extended in the sequence. In
Sec. III, the analysis is repeated in the Palatini formalism.
In Sec. IV, applications are performed and Sec. V is devoted
to our final remarks.

II. METRIC FORMALISM

A. Second order gravity theory

Consider an action integral dependent on the scalar
curvature and its first derivative:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇RÞ þ LM�; ð1Þ

where LM is the matter field Lagrangian.
Let S0 be another action integral where scalar and

vectorial fields ξ and ξμ are the fundamental fields and
R and its derivative are considered as parameters:

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðξ; ξμÞ −

∂f
∂ξ · ðξ − RÞ

−
∂f
∂ξμ · ðξμ −∇μRÞ þ LM

�
:

The null variations of the action and independence of the
variations in ξ; ξμ lead to

0
B@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ

1
CA
� ðξ − RÞ
ðξμ −∇μRÞ

�
¼

�
0

0

�
:

The new action S0 will be equivalent to S if

det

0
B@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ

1
CA ≠ 0: ð2Þ

This condition leads to the following field equations:

� ðξ − RÞ
ðξμ −∇μRÞ

�
¼

�
0

0

�
; ð3Þ

showing the equivalence of S and S0 under field equations.
In fact, from (3): ξ ¼ R and ξμ ¼ ∇μR.

It also becomes clear that ∂f
∂ξ and ∂f

∂ξμ are Lagrange

multipliers in S0. This way, these quantities will be replaced
by scalar and vectorial fields, respectively,

ϕ≡ ∂f
∂ξ ; ð4Þ

ϕμ ≡ ∂f
∂ξμ : ð5Þ

Equation (2) ensures that ξ¼ ξðϕ;ϕμÞ and ξν¼ ξνðϕ;ϕμÞ
exist.
With these quantities S0 becomes

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−ϕξ − ϕμξμ þ fðξ; ξμÞ

þ ϕRþ ϕμ∇μRþ LM�:

A potential Uðϕ;ϕμÞ is defined as

Uðϕ;ϕμÞ≡ ϕξðϕ;ϕμÞ þ ϕμξμðϕ;ϕμÞ
− fðξðϕ;ϕμÞ; ξμðϕ;ϕμÞÞ:

The action then reads

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ϕRþ ϕμ∇μR −Uðϕ;ϕμÞ þ LM�; ð6Þ

which is the scalar-vectorial-tensorial equivalent theory
to S. It is clear that no kinetic terms for ϕ and ϕμ are present
in S0.
The coupling with the gradient of the Ricci scalar can be

eliminated by using the identity

ffiffiffiffiffiffi
−g

p
ϕμ∇μR ¼ ∂μð

ffiffiffiffiffiffi
−g

p
ϕμRÞ − ffiffiffiffiffiffi

−g
p ∇μϕ

μR;

and expressing S0, up to a surface term, as

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ΦR −UðΦ;ϕμ;∇μϕ
μÞ þ LM�; ð7Þ

where we have defined a new scalar field,

Φ≡ ðϕ −∇μϕ
μÞ; ð8Þ

and the potential,
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UðΦ;ϕμ;∇μϕ
μÞ≡ ðΦþ∇μϕ

μÞξþ ϕμξμ − fðξ; ξμÞ: ð9Þ

Notice that potential U depends on the new scalar Φ and
the vector field ϕμ.
The theory established by Eq. (7) resembles a Brans-

Dicke theory,

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
φR −

ω0

φ
∇μφ∇μφþ LM

�
;

with ω0 ¼ 0 (which means that no explicit kinetic term for
Φ is present) and a potential for the scalar field, the vector
field and its covariant divergence.

B. Extension to higher order gravity theories

Consider the general action dependence on the scalar
curvature and its derivatives up to order n:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇R;∇2R;…;∇nRÞ þ LM�:

A new action S0 is proposed where scalar and tensorial
fields are introduced, replacing R and its derivatives. In
order to recast the original theory in this new formulation,
Lagrange multipliers are introduced so that the new
action is

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðξ; ξμ; ξμν;…; ξμ1…μnÞ

−
∂f
∂ξ · ðξ − RÞ − ∂f

∂ξμ · ðξμ −∇μRÞ

−
∂f
∂ξμν · ðξμν −∇μ∇νRÞ

− � � � − ∂f
∂ξμ1…μn

· ðξμ1…μn −∇μ1…∇μnRÞ þ LM

�
:

The null variations of the action and the independence of
the variations in ξ; ξμ;…; ξμ1…μn lead to

H

0
BBBBBBBBB@

ðξ − RÞ
ðξμ −∇μRÞ

ðξμν −∇μ∇νRÞ
..
.

ðξμ1…μn −∇μ1…∇μnRÞ

1
CCCCCCCCCA

¼

0
BBBBBBBB@

0

0

0

..

.

0

1
CCCCCCCCA
;

where

H ≡

0
BBBBBBBBB@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ � � � ∂2f

∂ξ∂ξμ1…μn

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ � � � ∂2f

∂ξν∂ξμ1…μn

..

. ..
. � � � ..

.

∂2f
∂ξν1…νn∂ξ

∂2f
∂ξν1…νn∂ξμ � � � ∂2f

∂ξν1…νn∂ξμ1…μn

1
CCCCCCCCCA
:

The new action S0 will be equivalent to S if the determinant
of the Hessian matrix H is non-null, which leads to the
following field equations:

0
BBBBBBBBB@

ðξ − RÞ
ðξμ −∇μRÞ

ðξμν −∇μ∇νRÞ
..
.

ðξμ1…μn −∇μ1…∇μnRÞ

1
CCCCCCCCCA

¼

0
BBBBBBBB@

0

0

0

..

.

0

1
CCCCCCCCA
;

under which S and S0 become equivalent.
Now, let new tensorial quantities ϕðnÞ ¼ fϕ;ϕμ;

…;ϕμ1…μng be introduced:

8>>>>>>>>>>><
>>>>>>>>>>>:

ϕ≡ ∂f
∂ξ ;

ϕμ ≡ ∂f
∂ξμ ;

ϕμν ≡ ∂f
∂ξμν ;

..

.

ϕμ1;…;μn ≡ ∂f
∂ξμ1 ;…;μn

:

ð10Þ

With these quantities S0 becomes

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−ϕξ − ϕμξμ − ϕμνξμν

− � � � − ϕμ1…μnξμ1…μn þ fðξ; ξμ; ξμν;…; ξμ1…μnÞ
þ ϕRþ ϕμ∇μRþ ϕμν∇μ∇νR

þ � � � þ ϕμ1…μn∇μ1…∇μnRþ LM�;

since the condition detH ≠ 0 ensures that ξ ¼
ξðϕ;ϕμ;…Þ;…; ξμ1…μn ¼ ξμ1…μnðϕ;ϕμ;…Þ exist.
Define the potential

Uðϕ;ϕμ;ϕμν;…;ϕμ1…μnÞ
¼ ϕξþ ϕμξμ þ ϕμνξμν

þ � � � þ ϕμ1…μnξμ1…μn − fðξ; ξμ; ξμν;…; ξμ1…μnÞ:
ð11Þ
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The action is then cast into the form

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−Uðϕ;ϕμ;ϕμν;…;ϕμ1…μnÞ

þ ϕRþ ϕμ∇μRþ ϕμν∇μ∇νR

− � � � þ ϕμ1…μn∇μ1…∇μnRþ LM�;

which is the scalar-multi-tensorial equivalent theory to S.
The action S0 above can be rewritten by considering that

ffiffiffiffiffiffi
−g

p
ϕμ1…μn∇μ1…∇μnR

¼ ffiffiffiffiffiffi
−g

p ð−1Þn∇μn…∇μ1ϕ
μ1…μnRþ ∂μS

μ
ðnÞ: ð12Þ

The last term of (12) turns out to be a surface term when
this equation is substituted in the action integral. It follows,
up to surface terms,

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ΦR

−UðΦ;ϕμ;…;ϕμ1…μn ;∇μϕ
μ;…;∇μn…∇μ1ϕ

μ1…μnÞ
þ LM�; ð13Þ

where

Φ≡ ϕ −∇μϕ
μ þ � � � þ ð−1Þn∇μn…∇μ1ϕ

μ1…μn ; ð14Þ

and

U ¼ UðΦ;ϕμ;…;ϕμ1…μn ;∇μϕ
μ;…;∇μn…∇μ1ϕ

μ1…μnÞ
¼ ðΦþ∇μϕ

μ þ � � � þ ð−1Þnþ1∇μn…∇μ1ϕ
μ1…μnÞξ

þ ϕμξμ þ ϕμνξμν þ � � � þ ϕμ1…μnξμ1…μn

− fðξ; ξμ; ξμν;…; ξμ1…μnÞ: ð15Þ

Equation (13) generalizes action (7) by the addition of
multiple tensorial fields. It also resembles a Brans-Dicke
theory with ω0 ¼ 0 and a potential depending on extra
tensorial fields usually absent in the Brans-Dicke descrip-
tion. As before, no kinetic term is present forΦ and in order
to introduce it, the Palatini formalism has to be considered.
This is done in the next section. Meanwhile, the field
equations are derived.
By varying the action with respect to the independent

fields gμν;Φ;ϕμ;…;ϕμ1…μn and ψ , one obtains

ΦGμν − ð∇μ∇νΦ − gμν□ΦÞ þ 1

2
gμνU ¼ κTμν; ð16Þ

R ¼ ∂U
∂Φ ; ð17Þ

∂U
∂ϕρ −∇μ

∂U
∂ð∇μϕ

ρÞ ¼ 0; ð18Þ

..

.

∂U
∂ϕρ1…ρn

þ ð−1Þn∇μn…∇μ1

∂U
∂ð∇μ1…∇μnϕ

ρ1…ρnÞ ¼ 0; ð19Þ

δLM

δψ
¼ 0: ð20Þ

Tμν ≡ 1
2κ ½gμνLMðg;ψÞ − 2 δLM

δgμν � is the energy-momentum
tensor obtained from the matter Lagrangian LM; ψ is the
matter field. General relativity (GR) is recovered when
Φ ¼ 1, ϕρ ¼ ϕρ1ρ2 ¼ � � � ¼ ϕρ1…ρn ¼ 0. The set of equa-
tions above is the generalization of the scalar-tensorial
version of fðRÞ theory in the metric formalism [16].
The absence of a kinetic term for Φ does not imply that

this field carries no dynamics. The coupling of Φ with R
leads to field equations where the dynamics for Φ become
manifest: If the trace of Eq. (16) is considered, then Eq. (17)
can be rewritten as

3□Φþ 2U − Φ
∂U
∂Φ ¼ κT:

A completely analogous result appears in metric fðRÞ
gravity [16].

III. PALATINI FORMALISM

Now the Palatini formalism is developed. In this
approach, the connection and the metric are considered
as independent fields. As a consequence, the variations of
the action will be taken with respect to both Γ and gμν.
Moreover, the matter fields Lagrangian LM does not
explicitly depend on the connection. This is a necessary
condition to recover GR under the particular choice
fðR;∇RÞ ¼ R. This condition implies that all derivation
operators present in the action are built with the Levi-Civita
connection.
Before proceeding to the general Lagrangian

fðR;∇R;∇2R;…;∇nRÞ, the case fðR;∇RÞwill be studied
for clarification of the steps to be followed when the most
general case is analyzed.

A. Second order theory

1. Field equations

The action for this theory is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇RÞ þ LMðg;ψÞ�; ð21Þ

where ∇ρ is the covariant derivative constructed with
Christoffel symbols fτρσg ¼ 1

2
gτλð∂σgλρ þ ∂ρgσλ − ∂λgρσÞ.
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Quantity R is the scalar curvature obtained from the
general connection Γτ

ρσ, i.e.

R ¼ gμνRμν ¼ gμνð∂ρΓ
ρ
μν − ∂μΓ

ρ
ρν þ Γβ

μνΓρ
ρβ − Γβ

ρνΓρ
μβÞ:

ð22Þ

On the other hand, the Ricci scalar is R ¼ gμνRμν ¼
gμνð∂ρfρμνg − ∂μfρρνg þ fβμνgfρρβg − fβρνgfρμβgÞ. The varia-
tion of the action integral is taken with respect to the
metric tensor, the connection and the matter field, leading
to the following equations of motion:

0 ¼ f0ðR;∇RÞRμν −
1

2
fðR;∇RÞgμν

þ
�
δLM

δgμν
−
1

2
gμνLMðg;ψÞ

�
; ð23Þ

0 ¼ ∇̄ρð
ffiffiffiffiffiffi
−g

p
f0ðR;∇RÞgμνÞ; ð24Þ

0 ¼ δLM

δψ
; ð25Þ

where we have defined

f0ðR;∇RÞ≡ ∂f
∂R −∇ρ

∂f
∂∇ρR

: ð26Þ

The bared covariant derivative ∇̄ is defined in terms of the
general connection: ∇̄ ¼ ∂ þ Γ.
The equation of motion resulting from the variation of

the action with respect to the connection is expressed in the
form of Eq. (24) after we use the identity

∇̄αð
ffiffiffiffiffiffi
−g

p
f0ðR;∇RÞgαμÞ ¼ 0; ð27Þ

which is easily verified.
The conformal metric hμν is introduced:

hμν ≡ f0ðR;∇RÞgμν; ð28Þ

satisfying the following properties:

ffiffiffiffiffiffi
−h

p
¼ ½f0ðR;∇RÞ�2 ffiffiffiffiffiffi

−g
p

; ðh≡ det hμνÞ;

hαβ ¼ 1

f0ðR;∇RÞ g
αβ;

and

∇̄ρð
ffiffiffiffiffiffi
−h

p
hαβÞ ¼ 0 ⇒ ∇̄ρhθλ ¼ 0: ð29Þ

The last expression is the metricity condition, which leads
to the following expression for the connection Γβ

μν (resem-
bling the Christoffel symbols with gμν replaced by hμν):

Γβ
μν ¼ 1

2
hαβð∂νhαμ þ ∂μhνα − ∂αhμνÞ: ð30Þ

With this expression, a relation between Γβ
μν and fβμνg can

be established,

Γβ
μν¼fβμνgþ1

2

1

f0
gαβðgαμ∂νf0 þgνα∂μf0−gμν∂αf0Þ: ð31Þ

Also a relation between Rμν and Rμν is obtained:

Rμν ¼ Rμν þ
3

2

1

ðf0Þ2∇μf0∇νf0

−
1

2

1

f0
ð∇μ∇νf0 þ∇ν∇μf0 þ gμν□f0Þ; ð32Þ

where □ ¼ ∇ρ∇ρ. For the scalar curvature,

R ¼ Rþ 3

2

1

ðf0Þ2 ð∇μf0∇μf0Þ − 3
1

f0
ð□f0Þ: ð33Þ

Equation (32) will be used in Eq. (23),

f0ðR;∇RÞRμν ¼ κTμν þ
1

2
gμνfðR;∇RÞ; ð34Þ

where Tμν is the energy-momentum tensor. Equivalently,

Rμν ¼
κ

f0
Tμν þ

1

2
gμν

f
f0

−
3

2

1

ðf0Þ2∇μf0ν∇f0

þ 1

2

1

f0
ð∇μ∇νf0 þ∇ν∇μf0 þ gμν□f0Þ ð35Þ

or

Gμν ¼
κ

f0
Tμν −

1

2
gμν

�
R −

f
f0

�

þ 1

f0
ð∇μ∇νf0 − gμν□f0Þ

−
3

2

1

ðf0Þ2
�
∇μf0∇νf0 −

1

2
gμν∇βf0∇βf0

�
; ð36Þ

where Gμν ≡ Rμν − 1
2
gμνR. These are the modified gravi-

tational field equations. It reduces to the GR equations
if fðR;∇RÞ ¼ R.

2. Scalar-vectorial-tensorial theory

We start with scalar and vector fields defined in the
Palatini formalism:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇RÞ þ LM�:

Proceeding exactly as in the metric approach (except that
R appears instead of R) a new action S0 is obtained as
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S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ΦR − UðΦ;ϕμ;∇μϕ
μÞ þ LM�; ð37Þ

where Φ≡ ðϕ −∇μϕ
μÞ and UðΦ;ϕμ;∇μϕ

μÞ≡ ðΦþ
∇μϕ

μÞξþ ϕμξμ − fðξ; ξμÞ. If R is replaced in terms of
R, according to Eq. (33), then we get, up to a surface term,

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦRþ 3

2

1

Φ
∇μΦ∇μΦ

−UðΦ;ϕμ;∇μϕ
μÞ þ LM

�
: ð38Þ

This is a theory that mimics a Brans-Dicke action with
ω0 ¼ − 3

2
. This result is quite similar to the one obtained for

fðRÞ theories [16], where ∂f
∂R is replaced by f0ðR;∇RÞ. As

in the metric approach, an extra vector field is present.

B. Generalization for higher derivatives

Now the general case fðR;∇μR;∇μ1R;…;∇μ1…∇μnRÞ ¼ fðR;∇R;∇2R;…;∇nRÞ will be analyzed.

1. Field equations

In this section, the previous results are generalized to
Lagrangians depending on higher derivatives of the curva-
ture. Previously, it was checked that the comparison of
fðR;∇RÞ theories with fðRÞ gravity led to the substitution
∂f
∂R → ∂f

∂R −∇γ
∂f

∂ð∂γRÞ. The higher order Lagrangian is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇μR;∇μ1R;…;∇μ1…∇μnRÞ

þ LMðg;ψÞ�: ð39Þ

The abbreviation fðR;∇R;∇2R;…;∇nRÞ¼fðR;∇R;;…Þ
will be used from now on, where there is no risk of
confusion.
Variations with respect to gμν, Γ and ψ give results

completely analogous to the second order case: The
equations of motion are precisely Eqs. (23), (24) and
(25) provided that we generalize f0ðR;∇RÞ to
f0ðR;∇R;…Þ as below:

f0ðR;∇ρR;∇ρ1R;…;∇ρ1…∇ρnRÞ

¼ ∂f
∂R −∇ρ

� ∂f
∂∇ρR

�

þ � � � þ ð−1Þn∇ρn…∇ρ1

∂f
∂∇ρ1…∇ρnR

: ð40Þ

Equations (31), (32) and (33) and all results obtained
previously can be directly generalized just by taking f0 as
the complete functional derivative—Eq. (40). Now we turn
to the problem of investigating the equivalence of the

f0ðR;∇R;…Þ-gravity theories with scalar-multi-tensorial
models.

2. Scalar-multi-tensorial theory

If the scalar, tensorial fields and the potential U are
defined as in the metric approach—Eqs. (10) and (11)—the
action integral (39) takes the form

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ΦR

−UðΦ;ϕμ;…;ϕμ1…μn ;∇μϕ
μ;…;∇μn…∇μ1ϕ

μ1…μ2Þ
þ LM�; ð41Þ

up to surface terms, where Φ and UðΦ;ϕμ;…Þ are those in
Eqs. (14) and (15). Equation (41) describes a theory
analogous to a Brans-Dicke theory with ω0 ¼ − 3

2
:

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦRþ 3

2

1

Φ
∇μΦ∇μΦ

−UðΦ;ϕμ;…;ϕμ1…μn ;∇μϕ
μ;…;∇μn…∇μ1ϕ

μ1…μnÞ

þ LM

�
:

Just like in the metric approach, extra tensorial fields are
present establishing a significant difference with respect to
Brans-Dicke theory.
The field equations are finally obtained for the scalar-

tensor action:

ΦGμν þ
3

2

1

Φ

�
∇μΦ∇νΦ −

1

2
gμν∇ρΦ∇ρΦ

�

− ð∇μ∇νΦ − gμν□ΦÞ þ 1

2
gμνU ¼ κTμν; ð42Þ

R − 3
1

Φ
□Φþ 3

2

1

Φ2
∇ρΦ∇ρΦ −

∂U
∂Φ ¼ 0; ð43Þ

∂U
∂ϕρ −∇μ

∂U
∂ð∇μϕ

ρÞ ¼ 0; ð44Þ

..

.

∂U
∂ϕρ1…ρn

þ ð−1Þn∇μn…∇μ1

∂U
∂ð∇μ1…∇μnϕ

ρ1…ρnÞ ¼ 0;

ð45Þ
δLM

δψ
¼ 0: ð46Þ

As an opposition to the metric approach, the presence of
the kinetic term for Φ does not imply that this field carries
dynamics. If one takes the trace of Eq. (42) and the
resulting expression for R is replaced on Eq. (43), one finds
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2U − Φ
∂U
∂Φ ¼ κT;

and it is clear that this is a constraint equation for Φ.
The same occurs in the context of fðRÞ theories—see
e.g. Ref. [16].

IV. APPLICATION: THE STAROBINSKI-
PODOLSKY ACTION

The following system will be analyzed:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ c0

2
R2 þ c1

2
∇μR∇μRþ LM

�
; ð47Þ

i.e.

fðR;∇μRÞ ¼ Rþ c0
2
R2 þ c1

2
∇μR∇μR; ð48Þ

which implies

fðξ; ξμÞ ¼ ξþ c0
2
ξ2 þ c1

2
ξμξ

μ:

The condition

det

0
B@

∂2f
∂ξ2

∂2f
∂ξ∂ξμ

∂2f
∂ξν∂ξ

∂2f
∂ξν∂ξμ

1
CA ¼ det

�
c0 0

0 c1gμν

�
≠ 0

is satisfied as long as c0 ≠ 0, c1 ≠ 0. Under these con-
straints, the theory from action (47) is nonsingular.
Starobinski-Podolsky action could be made equivalent to
a theory of the type fðR;□RÞ up to a surface term after an
integration by parts; however, the resulting fðR;□RÞ-
theory would be singular.

A. Metric formalism

The tensorial fields ϕ;ϕμ are

ϕ≡ ∂f
∂ξ ¼ ð1þ c0ξÞ ⇒ ξ ¼ ðϕ − 1Þ

c0
;

ϕμ ≡ ∂f
∂ξμ ¼ c1ξμ ⇒ ξμ ¼ ϕμ

c1
; ð49Þ

and the potential U is given by

Uðϕ;ϕμ;ϕμνÞ ¼ ϕξþ ϕμξμ − fðξ; ξμÞ

¼ ðϕ − 1Þ2
2c0

þ ϕμϕμ

2c1
: ð50Þ

The action integral S0 ¼ S0ðϕ;ϕμ; R;∇μRÞ is promptly
obtained by substituting Eq. (50) into (6). Then, one uses
the definition of Φ, Eq. (8), to obtain

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦR −

1

2c0
ðΦþ∇μϕ

μ − 1Þ2

−
ϕμϕμ

2c1
þ LM

�
:

By extracting the variation of this action, one gets the
field equations as being precisely Eqs. (16), (17), (18) and
(20) with Eq. (50) replacing U. Combining the equation of
motion obtained in the way described previously, results in
the following set of coupled equations for the scalar-
vectorial part of S0:

− 3□Φ − κT − 2

�
1

2c0
ðΦþ∇νϕ

ν − 1Þ2 þ ϕμϕμ

2c1

�

þ Φ
1

c0
ðΦþ∇βϕ

β − 1Þ ¼ 0;

ϕμ

c1
−∇μ

�
1

c0
ðΦþ∇γϕ

γ − 1Þ
�
¼ 0:

The action (47) can be rewritten, up to surface terms, as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ c0

2
R2 −

c1
2
R□Rþ LM

�
: ð51Þ

This action is singular according to the approach consid-
ered here. A similar action was analyzed by Wands in [44].
In his case, he introduced two scalar fields instead of scalar
and vector fields. If the field equations were analyzed in his
context, it would be possible to check that the two scalar
fields would be dynamical fields [48]. Here, the field
equations indicate that only Φ and ϕ0 are dynamical
quantities while ϕi satisfy constraint equations. So, in both
cases there are just two additional degrees of freedom,
showing the physical consistency between Wands’
approach and ours.

B. Palatini formalism

The starting point is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ c0

2
R2 þ c1

2
∇μR∇μRþ LM

�
:

The tensorial fields are defined as above and the calcu-
lations lead to the following expression for S0:

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦR −

1

2c0
ðΦþ∇μϕ

μ − 1Þ2

−
ϕμϕμ

2c1
þ LM

�
:

Substituting R in terms of R leads to
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S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦRþ 3

2Φ
∇μΦ∇μΦ

−
1

2c0
ðΦþ∇μϕ

μ − 1Þ2 − ϕμϕμ

2c1
þ LM

�
:

The field equations are specified from (48), (26) and
(23)–(25) and lead to the following coupled equations for
the scalar-vectorial part of S0:

Φ ¼ c0
∇βϕ

β − 1

�
κT −

ϕμϕμ

c1
−

1

c0
ð∇βϕ

β − 1Þ2
�
;

ϕμ

c1
−∇μ

�
1

c0
ðΦþ∇γϕ

γ − 1Þ
�
¼ 0:

The first equation is a constraint equation for Φ. Therefore,
only ϕ0 satisfies a dynamical equation. This is different
from what is obtained in the metric approach where both
quantities are dynamical.

C. Generalization: Starobinsky-Podolski-higher-order
action

The previous system may be generalized to

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ c0

2
R2 þ c1

2
∇μR∇μR

þ � � � þ cn
2
∇μ1…∇μnR∇μ1…∇μnRþ LM

�
;

which implies

fðξ; ξμ;…Þ
¼ ξþ c0

2
ξ2 þ c1

2
ξμξ

μ þ � � � þ cn
2
ξμ1…μnξμ1…μn :

The condition

detH ¼ det

0
BBBBB@

c0 0 � � � 0

0 c1gμν � � � 0

..

. ..
. . .

. ..
.

0 0 � � � cnðgμνÞn

1
CCCCCA

≠ 0

is satisfied as long as c0 ≠ 0; c1 ≠ 0;…; cn ≠ 0.
The results and conclusions are analogous to the pre-

vious one, where the potential takes the form

U ¼ UðΦ;ϕμ;…;ϕμ1…μn ;∇μϕ
μ;…;∇μn…∇μ1ϕ

μ1…μnÞ

¼ 1

2c0
ðΦþ∇μϕ

μ

þ � � � þ ð−1Þnþ1∇μ1…∇μnϕ
μn…μ1 − 1Þ2

þ ϕμϕμ

2c1
þ � � � þ ϕμ1…μnϕμ1…μn

2cn
:

When considering the second order case, it was seen that
by partial integration the higher order term ∇μR∇μR could
be written as R□R. Hence, one might wonder if it would be
possible to proceed in a similar way for the generalized case
and obtain an action with only R□nR terms. The answer is
no: If the term ∇μ1∇μ2R∇μ1∇μ2R is considered, by partial
integration it is possible to verify that a Ricci tensor
appears, i.e.

∇μ1∇μ2R∇μ1∇μ2R

¼ R□2Rþ R∇μ1ðRμ2μ1∇μ2RÞ þ ∂μS
μ
ð2Þ: ð52Þ

For high order terms the situation is even more complicated
because there appears Riemann tensors too. Thus, in the
generalized case there is no equivalence between
fðR;∇R;…;∇nRÞ and fðR;□R;…;□nRÞ theories.

V. FINAL REMARKS

The equivalence of fðR;∇R;…Þ theories and scalar-
multi-tensorial models has been studied in both metric and
Palatini formalisms. It has been demonstrated that, besides
the scalar field usually obtained in the equivalence of fðRÞ
gravity to scalar-tensor theories, it is also necessary to
introduce a tensorial field for each order of derivative of the
scalar curvature. Moreover, it has been verified that when
defining the scalar field as a functional derivative, only
the scalar field Φ is coupled to the scalar curvature.
The other tensor fields are minimally coupled to the
gravitational field.
Both metric and Palatini approaches show that the scalar-

multi-tensorial theory from fðR;∇R;…Þ gravity is a
generalization of Brans-Dicke theory with ω0 ¼ 0 or
ω0 ¼ − 3

2
, respectively. Here, beside the scalar field Φ

introduced in Brans-Dicke theories, tensorial fields are
also present in the potential U, this being a significant
difference from the regular Brans-Dicke approach. In the
metric formalism, although no kinetic term for Φ is present
in S0, this does not mean that no dynamics is carried by Φ.
In the Palatini approach, the opposite situation is found:
even in the presence of the kinetic term, a constraint
equation is obtained for Φ. These results are known on
fðRÞ gravity and are also valid for fðR;∇R;…Þ theories.
It should be emphasized that fðR;∇R;…Þ theories are

not the same as those coming from fðR;□R;…Þ
Lagrangians [44]. The former may differ from the last
by terms involving the Ricci and Riemann tensors, as
shown, for instance, in Eq. (52). Nevertheless, in particular
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cases fðR;∇R;…Þ gravity may reduce to fðR;□R;…Þ
models by taking appropriate contractions of indexes, e.g.
fðR;∇2RÞ ¼ gðR; gμν∇μ∇νRÞ. When this is the case, the
resulting theory is likely to have a singular Hessian matrix
so that the formalism developed in this work may not be
directly applicable.
The field equations for fðRÞ and fðR;∇R;…Þ gravities

in the Brans-Dicke form1 exhibit the same structure under
the generalization of f0 to a functional derivative. Despite
this similarity, almost all generic results of fðRÞ gravity
must be rederived for specific applications such as cosmol-
ogy and the weak-field limit. An exception occurs with the
Ehlers-Geren-Sachs (EGS) cosmology theorem [49]. The
EGS theorem states that if all observers see an isotropic
radiation (like CMB) in the Universe then the space-time is
isotropic and spatially homogeneous and therefore it is
described by the FLRW metric. As shown in Refs. [50,51],
this theorem is valid for any scalar-tensor theory regardless
the potential structure U ¼ UðΦ;ϕμ;…;∇μϕ

μ;…Þ. Thus,
for any fðR;∇R;…Þ gravitational theory the description of
a universe filled by an isotropic CMB must be necessarily
done with the FLRW line element. This fact was actually
used in Ref. [35] as an attempt to describe dark energy
dynamics with a theory coming from an Einstein-Hilbert-
Podolsky action of the type fðR;∇μRÞ ¼ Rþ c1

2
∇μR∇μR.

A substantial difference between fðRÞ and fðR;∇R;…Þ
actions concerns their propagation modes. For example,
besides the massless mode, the Starobinsky action has only
one massive mode of propagation corresponding to a
positive square mass [2]. On the other hand, Starobinski-
Podolsky action presents positive (massive mode), negative
(tachyon mode) and complex square masses [42]. These
features lead to important consequences such as instabil-
ities or lack of unitarity and, in principle, they could be used
to constrain the physical actions. These aspects are under
consideration by the authors.
As a future work, it would be interesting to explore

the consequences of fðR;∇R;…Þ gravity to cosmology.
Following a program similar to the one developed in the
fðRÞ context [16], one might study the general features
of fðR;∇R;…Þ cosmology in both metric and Palatini
formalisms. This preliminary investigation would be an
important step towards addressing more specific cosmo-
logical issues such as the present-day acceleration and the
inflationary period.
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