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We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel
modifications of gravity possessing 2þ 2 propagating degrees of freedom, arising from a Lagrangian that
includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an
effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various
observables. We analyze two specific models and we obtain a cosmological behavior in agreement with
observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration.
Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective
dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these
theories, since they arise solely from the novel, higher-derivative terms.
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I. INTRODUCTION

According to the standard model of cosmology, which is
supported by a huge amount of observations, the expansion
of the universe includes two accelerated phases, at early
and late times respectively. Since this behavior cannot be
described within the standard paradigm of physics, namely
within general relativity and standard model of particles,
physicists try to increase the degrees of freedom of the
theory. In principle there are two ways to achieve it. The
first is to modify the universe content by introducing new,
exotic, fields, such as the inflaton [1,2] or the concept of
dark energy [3,4]. The second is to consider that the extra
degrees of freedom are gravitationally oriented, i.e., that
they arise from a gravitational modification at specific
scales [5,6]. Note that the second approach, apart from the
above cosmological motivation, has a theoretical motiva-
tion too, namely to improve the UltraViolet behavior of
gravity [7,8]. Finally, we mention that the above construc-
tions are not separated by strict boundaries, since one can
completely or partially transform between them, or build
theories where both extensions are used.
In order to construct a gravitational modification one can

add higher-order corrections to the action of general
relativity, as in fðRÞ gravity [9–12], in Gauss-Bonnet
and fðGÞ gravity [13,14], in Lovelock gravity [15,16],
in Weyl gravity [17,18], etc. However, one should ensure
himself that the additional degrees of freedom introduced in
such modifications do not present a ghost behavior or other
kind of catastrophic instabilities, at the background or
perturbation levels. Indeed, Horndeski was able to con-
struct the most general single-scalar field theory with

second-order equations of motion and thus without ghosts
in [19], a construction which was rediscovered in the
framework of Galileon modifications in [20–23]. These
classes of theories involve 2þ 1 propagating degrees of
freedom, that is one extra comparing to general relativity
(see also the extension to beyond Horndeski theories, with
still one extra propagating degree of freedom [24–28]).
Hence, a question arises naturally: can we construct

gravitational modifications beyond the above classes, i.e.
possessing for instance 2þ 2 propagating degrees of
freedom, while still being ghost-free? Indeed, such a
multiscalar modification was developed in [29,30], and it
was shown to be the most general multiscalar tensor theory
in a flat background [31] but not in a general one [32].
Nevertheless, the construction of the most general field
equations for a biscalar [33] or multiscalar theory still
attracts a lot of interest in the literature [34], as well as the
corresponding cosmological and black-hole applications
[35,36].
However, although the construction of ghost-free theo-

ries with 2þ 2 or more propagating degrees of freedom is
obtained relatively easily in the scalar-field language, it
proves to be a harder task if one starts from the pure
gravitational modification formulation. Indeed, in [37] the
authors managed to construct a modified gravity using the
Ricci scalar and its first and second derivatives, which
under a specific Lagrangian choice is free of ghosts,
possessing 2þ 2 degrees of freedom, namely 2 scalar
degrees and 2 tensor ones. These constructions, named
gravitational scalar-tensor theories, are equivalent with
specific cases of generalized bi-Galileon theories, however
whether there is a complete one-to-one correspondence
between them is an open question.
In the present work we are interested in investigating the

cosmological behavior in gravitational scalar-tensor
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theories. In particular, we desire to study the late-time
evolution of a universe governed by such a gravitational
modification, and examine whether we can obtain accel-
eration without the use of an explicit cosmological con-
stant, namely arising solely from the novel terms of the
theory. The plan of the work is as follows: In Sec. II we
present the new gravitational scalar-tensor theories and we
derive the corresponding field equations in a general
background. Then, in Sec. III we apply them in a
cosmological framework, and we explicitly investigate
two specific models. Finally, Sec. IV is devoted to summary
and discussion.

II. NEW GRAVITATIONAL
SCALAR-TENSOR THEORIES

In this section we briefly review the construction of
gravitational scalar-tensor theories following [37], starting
from the modified gravitational action and resulting in the
corresponding specific biscalar action. Then we derive the
general equations of motion for both metric and scalar
degrees of freedom, in a general background.
The starting point for the construction of new gravita-

tional scalar-tensor theories is the idea to (re-)formulate
generalized scalar-tensor theories only in terms of the
metric and its derivatives, without the use of a scalar field
[37]. Hence, one starts by extending the fðRÞ action to
include derivatives of the Ricci scalar, namely

S ¼
Z

d4
ffiffiffiffiffiffi
−g

p
fðR; ð∇RÞ2;□RÞ; ð2:1Þ

where ð∇RÞ2 ¼ gμν∇μR∇νR. These actions, despite their
higher derivative nature, using double Lagrange multipliers
can be transformed to actions of multiscalar fields coupled
minimally to gravity. A crucial step is the dependence of f
on □R ¼ β. In the case where it does not enter linearly,
namely if fββ ≠ 0, where subscripts denote partial deriv-
atives, then (2.1) can be rewritten in the following form:

S¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
R̂−

1

2
ĝμνð∂μ χ∂ν χþe−

ffiffi
2
3

p
χ∂μϕ∂νϕÞ

−
1

4
½e−

ffiffi
2
3

p
χϕþe−2

ffiffi
2
3

p
χðφβðϕ;ð∇̂ϕÞ2;φÞ−fÞ�

�
; ð2:2Þ

where χ;ϕ are scalar fields and φ≡ fβ (for simplicity, here
and in the following, we set the gravitational constant to
one). In the above expression the hat denotes a frame
conformally related to the original one through

gμν ¼ 1
2
e−

ffiffi
2
3

p
χ ĝμν.

If on the other hand β does enter linearly, namely if
fββ ¼ 0, then the function f can be rewritten as

fðR; ð∇RÞ2;□RÞ ¼ KððR; ð∇RÞ2Þ þ GðR; ð∇RÞ2Þ□R:

ð2:3Þ

If G depends only on R, then through integration by parts
the second term of the above relation can be redefined in
terms of the first one, and thus this case is equivalent to the
G ¼ 0 one. However, in the general case where G ¼
GðR; ð∇RÞ2Þ the above new gravitational scalar-tensor
theory can be transformed to the following biscalar con-
struction [37]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
R̂ −

1

2
ĝμν∇μ χ∇ν χ

−
1ffiffiffi
6

p e−
ffiffi
2
3

p
χ ĝμνG∇μ χ∇νϕþ 1

4
e−2

ffiffi
2
3

p
χK

þ 1

2
e−

ffiffi
2
3

p
χG□̂ϕ −

1

4
e−

ffiffi
2
3

p
χϕ

�
; ð2:4Þ

where now

K ¼ Kðϕ; BÞ; G ¼ Gðϕ; BÞ; ð2:5Þ

with

B ¼ 2e
ffiffi
2
3

p
χgμν∇μϕ∇νϕ: ð2:6Þ

The above action contains two scalar fields, namely χ
and ϕ, however it does so in the specific and suitable
combination in order to be equivalent with the original
higher-derivative gravitational action. Hence, although in
simple fðRÞ theories the conformal transformation leads to
the replacement of the functional degree of freedom of
fðRÞ by a scalar field, in the above constructions the
derivatives of R are not replaced by derivatives of the
scalar-field in a naive way, but only through the above two-
field combination. That is why the authors of [37] named
these theories as “new gravitational scalar-tensor theories,”
in a sense that they can be understood as the pure
gravitational formulations of standard multiscalar-tensor
theories constructed from scalar fields and the metric. Such
theories have not been previously investigated and thus
they may open new paths towards the construction of
gravitational modifications.
In the following we will work with the Einstein-frame

version of the above theories, namely with action (2.4), and
thus for simplicity we drop the hats. Varying (2.4) with
respect to the metric leads to the metric field equations
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Eμν¼
1

2
Gμνþ

1

4
gμνgαβ∇α χ∇β χ−

1

2
∇μ χ∇ν χþ

1

4
gμν

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χgαβG∇α χ∇βϕ−

1

2

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χG∇ðμ χ∇νÞϕ

−
ffiffiffi
2

3

r
gαβ∇α χ∇βϕGB∇μϕ∇νϕ−

1

4
gμνe

−
ffiffi
2
3

p
χG□ϕþGBð□ϕÞ∇μϕ∇νϕþ

1

2
e−

ffiffi
2
3

p
χG∇μ∇νϕ−

1

2
∇κðe−

ffiffi
2
3

p
χGδλðμδ

κ
νÞ∇λϕÞ

þ1

4
∇κðe−

ffiffi
2
3

p
χGgμν∇κϕÞ−1

8
gμνe

−2
ffiffi
2
3

p
χKþ1

2
e−

ffiffi
2
3

p
χKB∇μϕ∇νϕþ

1

8
gμνe

−
ffiffi
2
3

p
χϕ¼0; ð2:7Þ

where the parentheses in space-time indices mark symmetrization, and the subscripts in G and K denote partial derivatives
with respect to the corresponding argument (for instance GB ¼ ∂Gðϕ;BÞ

∂B etc). Similarly, a variation of (2.4) with respect to the
scalar fields χ and ϕ leads respectively to their equations of motion, namely

E χ ¼ ▫ χ þ 1

3
e−

ffiffi
2
3

p
χgμνG∇μ χ∇νϕ −

2

3
gμν∇μ χ∇νϕGBgαβ∇αϕ∇βϕþ 1

2

ffiffiffi
2

3

r
∇μðe−

ffiffi
2
3

p
χgμνG∇νϕÞ

−
1

2

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χG□ϕþ

ffiffiffi
2

3

r
GB∇μϕ∇νϕgμν□ϕ −

1

2

ffiffiffi
2

3

r
e−2

ffiffi
2
3

p
χKþ 1

2
e−

ffiffi
2
3

p
χKB

ffiffiffi
2

3

r
gμν∇μϕ∇νϕ

þ 1

4

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χϕ ¼ 0; ð2:8Þ

and

Eϕ ¼−
1

2

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χgμνGϕ∇μ χ∇νϕþ2

ffiffiffi
2

3

r
∇βðgμνGBgαβ∇αϕ∇μ χ∇νϕÞþ

1

2

ffiffiffi
2

3

r
∇νðe−

ffiffi
2
3

p
χgμνG∇μ χÞ

þ1

2
e−

ffiffi
2
3

p
χGϕ□ϕ−2GBð□ϕÞ2−2∇νGB□ϕ∇νϕ−

1

2

ffiffiffi
2

3

r
∇μðe−

ffiffi
2
3

p
χ∇μ χGÞþ

1

2
∇μðe−

ffiffi
2
3

p
χGϕ∇μϕÞ

−
1

2

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χ∇μ χGB∇μBþ1

2
e−

ffiffi
2
3

p
χ∇μGB∇μBþ

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
χGB∇μðe

ffiffi
2
3

p
χ∇μ χ∇νϕ∇νϕÞ

þ2e−
ffiffi
2
3

p
χGB∇μðe

ffiffi
2
3

p
χ∇νϕÞ∇μ∇νϕþ2GBRμν∇μϕ∇νϕþ1

4
e−2

ffiffi
2
3

p
χKϕ−∇νðe−

ffiffi
2
3

p
χKBgμν∇μϕÞ−

1

4
e−

ffiffi
2
3

p
χ ¼ 0: ð2:9Þ

We stress here that despite the fact that the higher-order
term in the action (2.4) naively seems to be problematic, in
the sense that it could lead to higher-order derivatives in the
field equation for ϕ, it proves to be perfectly fine, just like
the corresponding term in simple Horndeski theory [19,23].
Lastly, note that the scenario at hand reproduces standard
general relativity in the case where K ¼ ϕ=2 and G ¼ 0,
and the triviality of the conformal transformation in this

case leads to χ ¼ −
ffiffi
3
2

q
ln 2.

III. COSMOLOGY IN NEW GRAVITATIONAL
SCALAR-TENSOR THEORIES

The new gravitational scalar-tensor theories presented
above are novel gravitational modifications, and hence it
would be interesting to examine their cosmological appli-
cations. The first thing one should do in order to investigate
the cosmology in a universe governed by such gravitational
theories is to introduce the matter content. Although
incorporating the matter sector in the original Jordan frame

or in the Einstein one would lead to different theories, in
this work we prefer for simplicity to introduce it straight-
away in the action (2.4), leaving the alternative approach
for a future study. Hence, we consider the total action
Stot ¼ Sþ Sm, and thus the metric field equations (2.7)
now become

Eμν ¼
1

2
Tμν; ð3:1Þ

where Tμν ¼ −2ffiffiffiffi−gp δSm
δgμν is the energy-momentum tensor of the

matter perfect fluid. Furthermore, we consider a flat
Friedmann-Robertson-Walker (FRW) spacetime metric of
the form

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð3:2Þ

where aðtÞ is the scale factor, and thus the two scalars are
time-dependent only. Under these considerations, the
metric field equations (2.7) give rise to the Friedmann
equations, namely
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3H2 − ρm −
1

2
_χ2 þ 1

4
e−2

ffiffi
2
3

p
χK

þ 2

3
_ϕ2½ _ϕð

ffiffiffi
6

p
_χ − 9HÞ − 3ϕ̈�GB

−
1

2
e−

ffiffi
2
3

p
χ

�
_B _ϕGB þ ϕ

2
þ _ϕ2ðGϕ − 2KBÞ

�
¼ 0; ð3:3Þ

3H2 þ 2 _H þ pm þ 1

2
_χ2 þ 1

4
e−2

ffiffi
2
3

p
χK

þ 1

2
e−

ffiffi
2
3

p
χ

�
−
ϕ

2
þ _B _ϕGB þ _ϕ2Gϕ

�
¼ 0; ð3:4Þ

where now BðtÞ ¼ 2e
ffiffi
2
3

p
χgμν∇μϕ∇νϕ ¼ −2e

ffiffi
2
3

p
χ _ϕ2,

H ¼ _a=a is the Hubble parameter, and a dot denotes
differentiation with respect to t. In these expressions ρm
and pm are respectively the energy density and pressure of
the matter fluid. Similarly, from the two scalar field
equations (2.8) and (2.9) we respectively obtain their
evolution equations, namely

E χ ¼ ̈χ þ 3H _χ −
1

3
_ϕ2½ _ϕð3

ffiffiffi
6

p
H − 2 _χÞ þ

ffiffiffi
6

p
ϕ̈�GB

þ 1

2
ffiffiffi
6

p e−
ffiffi
2
3

p
χ ½2 _B _ϕGB − ϕþ 2 _ϕ2ðKB þ GϕÞ�

þ 1ffiffiffi
6

p e−2
ffiffi
2
3

p
χK ¼ 0; ð3:5Þ

and

Eϕ ¼ 1

3
e−

ffiffi
2
3

p
χ ½ _ϕð−9H þ

ffiffiffi
6

p
_χÞ − 3ϕ̈�KB

þ 1

6
_Bf3e−

ffiffi
2
3

p
χ _Bþ 4 _ϕ½ _ϕð9H −

ffiffiffi
6

p
_χÞ þ 3ϕ̈�gGBB

þ 1

3
e−

ffiffi
2
3

p
χ ½ _ϕð9H −

ffiffiffi
6

p
_χÞ þ 3ϕ̈�Gϕ

þ
�
e−

ffiffi
2
3

p
χ _B _ϕþ 2

3
_ϕ2½ _ϕð9H −

ffiffiffi
6

p
_χÞ þ 3ϕ̈�

�
GBϕ

− e−
ffiffi
2
3

p
χ _ϕ2KBϕ þ

1

2
e−

ffiffi
2
3

p
χ _ϕ2Gϕϕ − e−

ffiffi
2
3

p
χ _B _ϕKBB

þ
�
4

3
_ϕð9H − 2

ffiffiffi
6

p
_χÞϕ̈ −

1ffiffiffi
6

p e−
ffiffi
2
3

p
χ _B _χ

þ _ϕ2

�
18H2 þ 6 _H − 3

ffiffiffi
6

p
H _χ −

2

3
_χ2 −

ffiffiffi
6

p
̈χ
��

GB

−
1

4
e−2

ffiffi
2
3

p
χKϕ þ

1

4
e−

ffiffi
2
3

p
χ ¼ 0; ð3:6Þ

where we use the notation GBϕ ¼ GϕB ¼ ∂2G
∂B∂ϕ, etc. One can

rigorously verify that the above equations are compatible
with the equations arising from the fact that the total action
is diffeomorphism invariant [33]:

∇μEμν þ 1

2
E χ∇ν χ þ 1

2
Eϕ∇νϕ ¼ 1

2
∇μTμν ¼ 0: ð3:7Þ

Concerning the late-time application of the above equa-
tions, one can see that the Friedmann equations (3.3), (3.4)
can be written in the usual form, namely

H2 ¼ 1

3
ðρDE þ ρmÞ ð3:8Þ

2 _H þ 3H2 ¼ −ðpDE þ pmÞ; ð3:9Þ

defining an effective dark energy sector with energy density
and pressure respectively as:

ρDE ≡ 1

2
_χ2 −

1

4
e−2

ffiffi
2
3

p
χK

−
2

3
_ϕ2½ _ϕð

ffiffiffi
6

p
_χ − 9HÞ − 3ϕ̈�GB

þ 1

2
e−

ffiffi
2
3

p
χ

�
_B _ϕGB þ ϕ

2
þ _ϕ2ðGϕ − 2KBÞ

�
; ð3:10Þ

pDE ≡ 1

2
_χ2 þ 1

4
e−2

ffiffi
2
3

p
χK

þ 1

2
e−

ffiffi
2
3

p
χð _B _ϕGB þ _ϕ2Gϕ −

ϕ

2
Þ: ð3:11Þ

Therefore, in the new gravitational scalar-tensor theories at
hand, we obtain an effective dark-energy sector that
consists of both extra scalar degrees of freedom. Using
the scalar field equations of motion (3.5) and (3.6), one can
straightforwardly see that

_ρDE þ 3HðρDE þ pDEÞ ¼ 0; ð3:12Þ

while the corresponding dark-energy equation-of-state
parameter is given by:

wDE ≡ pDE

ρDE
: ð3:13Þ

Finally, note that the matter energy density and pressure
satisfy the standard evolution equation

_ρm þ 3Hðρm þ pmÞ ¼ 0: ð3:14Þ

In order to examine the cosmological application of the
above construction, we have to consider specific ansatzes
for the functions Kðϕ; BÞ and Gðϕ; BÞ. In the following
subsections we consider two of such examples, correspond-
ing to the first nontrivial extensions of general relativity
possessing 2þ 2 degrees of freedom.
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A. Model 1: Kðϕ;BÞ = ϕ
2 −

ζ
2B and Gðϕ;BÞ= 0

As a first example let us investigate the case where

Kðϕ; BÞ ¼ 1

2
ϕ −

ζ

2
B and Gðϕ; BÞ ¼ 0; ð3:15Þ

with ζ the corresponding coupling constant. We remind the

reader that in FRW geometry we have BðtÞ ¼ −2e
ffiffi
2
3

p
χ _ϕ2.

In this case the Friedmann equations (3.3), (3.4) read

3H2 − ρm −
1

2
_χ2 þ 1

8
e−2

ffiffi
2
3

p
χϕ −

1

4
e−

ffiffi
2
3

p
χðϕþ ζ _ϕ2Þ ¼ 0;

ð3:16Þ

3H2 þ 2 _H þ pm þ 1

2
_χ2 þ 1

8
e−2

ffiffi
2
3

p
χϕ

−
1

4
e−

ffiffi
2
3

p
χðϕ − ζ _ϕ2Þ ¼ 0; ð3:17Þ

while the two scalar field equations (3.5) and (3.6) write as

̈χ þ 3H _χ þ 1

2
ffiffiffi
6

p e−2
ffiffi
2
3

p
χϕ −

1

2
ffiffiffi
6

p e−
ffiffi
2
3

p
χðϕ − ζ _ϕ2Þ ¼ 0;

ð3:18Þ

ζϕ̈þ 1

3
ζ _ϕð9H −

ffiffiffi
6

p
_χÞ − 1

4
e−

ffiffi
2
3

p
χ þ 1

2
¼ 0: ð3:19Þ

Hence, in this case the effective dark-energy energy density
and pressure (3.10), (3.11) become

ρDE ¼ 1

2
_χ2 −

1

8
e−2

ffiffi
2
3

p
χϕþ 1

4
e−

ffiffi
2
3

p
χðϕþ ζ _ϕ2Þ; ð3:20Þ

pDE ¼ 1

2
_χ2 þ 1

8
e−2

ffiffi
2
3

p
χϕ −

1

4
e−

ffiffi
2
3

p
χðϕ − ζ _ϕ2Þ: ð3:21Þ

The above equations do not accept analytical solutions,
and hence in order to investigate the cosmological evolu-
tion we perform a numerical elaboration. We consider the
matter sector to be dust, and thus we set pm ≈ 0.
Additionally, in order to acquire a consistent cosmology
in agreement with observations, we set the present values of
the density parameters to Ωm0 ¼ ρm0

3H2 ≈ 0.3 and ΩDE0 ¼
ρDE0
3H2 ≈ 0.7 [38]. Finally, as usual it proves convenient to use
the redshift z ¼ −1þ a0=a as the independent variable,
setting the current scale factor a0 to 1.
In Fig. 1 we present the cosmological evolution for the

parameter choice ζ ¼ 10, focusing on various observables.
In particular, in the upper graph we depict the evolution of
the matter and dark energy density parameters, and as we
observe it is in agreement with the observed one [38]. In the
middle graph of Fig. 1 we depict the evolution of the dark-
energy equation-of-state parameter wDE. As we can see, it
presents a dynamical behavior, and at late times it almost

stabilizes in a value very close to the cosmological-constant
one, as expected from observations. Finally, in the lower
graph of Fig. 1 we depict the evolution of the deceleration
parameter q ¼ −1 − _H=H2, where we can clearly see the
passage from deceleration (q > 0) to acceleration (q < 0)
in the recent cosmological past, as it is required from
observations.
In summary, the cosmological behavior of the scenario at

hand is in agreement with observations. We stress here that
we have not considered an explicit cosmological constant,
and thus the obtained acceleration arises solely from the
novel, higher-derivative terms of the gravitational scalar-
tensor theories.
Let us now investigate how the model parameter ζ affects

the behavior of the dark-energy equation-of-state parameter
wDE. In Fig. 2 we present the evolution of wDE for various
values of ζ [we consider ζ > 0 in order for the ϕ field not to
exhibit an effective ghost behavior in (3.16)]. As we
observe, wDE lies in the quintessence regime and with
increasing ζ its final value comes closer to the cosmologi-
cal-constant value −1.

B. Model 2: Kðϕ;BÞ= ϕ
2 and Gðϕ;BÞ= ξB

As a second example we consider the case where

Kðϕ; BÞ ¼ 1

2
ϕ and Gðϕ; BÞ ¼ ξB; ð3:22Þ

with ξ the corresponding coupling constant [in FRW

geometry we have BðtÞ ¼ −2e
ffiffi
2
3

p
χ _ϕ2]. Thus, the

Friedmann equations (3.3), (3.4) become

FIG. 1. The late-time cosmological evolution, for Model 1, for
the parameter choice ζ ¼ 10 (in units where the gravitational
constant is set to one), having imposed Ωm0 ≈ 0.3, ΩDE0 ≈ 0.7 at
present, and having set the present scale factor a0 ¼ 1. As
independent variable we use the redshift z ¼ −1þ a0=a. In
the upper graph we depict the evolution of the matter and dark
energy density parameters. In the middle graph we present the
evolution of the dark-energy equation-of-state parameter wDE. In
the lower graph we depict the evolution of the deceleration
parameter q.
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3H2 − ρm −
1

2
_χ2 þ 1

8
e−2

ffiffi
2
3

p
χð1 − 2e

ffiffi
2
3

p
χÞϕ

þ ξ _ϕ3ð
ffiffiffi
6

p
_χ − 6HÞ ¼ 0; ð3:23Þ

3H2 þ 2 _H þ pm þ 1

2
_χ2 þ 1

8
e−2

ffiffi
2
3

p
χð1 − 2e

ffiffi
2
3

p
χÞϕ

−
1

3
ξ _ϕ2ð

ffiffiffi
6

p
_ϕ _χþ6ϕ̈Þ ¼ 0; ð3:24Þ

while the two scalar field equations (3.5) and (3.6) read as

̈χ þ 3H _χ þ 1

2
ffiffiffi
6

p e−2
ffiffi
2
3

p
χð1 − e

ffiffi
2
3

p
χÞϕ

−
ffiffiffi
6

p
ξ _ϕ2ðH _ϕþ ϕ̈Þ ¼ 0; ð3:25Þ

ξ _ϕf2ð−6H þ
ffiffiffi
6

p
_χÞϕ̈

þ _ϕ½−6 _H þ 3Hð−6H þ
ffiffiffi
6

p
_χÞ þ

ffiffiffi
6

p
̈χ�g

þ 1

8
e−2

ffiffi
2
3

p
χð1 − 2e

ffiffi
2
3

p
χÞ ¼ 0: ð3:26Þ

Therefore, in this case the effective dark-energy energy
density and pressure (3.10), (3.11) write as

ρDE ¼ 1

2
_χ2 −

1

8
e−2

ffiffi
2
3

p
χð1 − 2e

ffiffi
2
3

p
χÞϕ

− ξ _ϕ3ð
ffiffiffi
6

p
_χ − 6HÞ; ð3:27Þ

pDE ¼ 1

2
_χ2 þ 1

8
e−2

ffiffi
2
3

p
χð1 − 2e

ffiffi
2
3

p
χÞϕ

−
1

3
ξ _ϕ2ð

ffiffiffi
6

p
_ϕ _χþ6ϕ̈Þ: ð3:28Þ

In Fig. 3 we depict the cosmological evolution for the
parameter choice ξ ¼ −1. In the upper graph we show the
behavior of the matter and dark energy density parameters,
which is in agreement with the observed one [38]. In the
middle graph of Fig. 3 we depict the evolution of the dark-
energy equation-of-state parameter wDE, which presents a
dynamical behavior, and at late times it almost stabilizes in
a value very close to the cosmological-constant one, as
expected from observations. Finally, in the lower graph of
Fig. 3 we present the evolution of the deceleration
parameter, from which we can see the passage from
deceleration to acceleration. Similarly to Model 1 of the
previous subsection, we mention that the onset of accel-
eration is a pure effect of the novel, higher-derivative terms
of the gravitational scalar-tensor theories.
In order to see how the model parameter ξ affects the

behavior of wDE, in Fig. 4 we present the evolution of wDE
for various values of ξ. As we can see, for large negative
ξ-values wDE lies in the quintessence regime, while for
small negative values it exhibits the phantom-divide cross-
ing and lies below −1 at current times. Although this
phantom behavior might be a signal that the ϕ field behaves
effectively as a ghost, this does not need necessarily to be
the case since ϕ-field’s effective kinetic energy in (3.23)
has a complicated form depending on the time-derivatives
of both fields as well as of the scale factor, and thus the
phantom behavior can result even if the fields behave as
canonical ones [39]. Clearly, the safe procedure to inves-
tigate this issue is to perform a detailed Hamiltonian
analysis, a task that lies beyond the scope of the present
work and thus it is left for a future project.

FIG. 2. The evolution of the dark-energy equation-of-state
parameter wDE as a function of the redshift z ¼ −1þ a0=a,
for six values of the model parameter ζ (in units where the
gravitational constant is set to one), having imposed Ωm0 ≈ 0.3,
ΩDE0 ≈ 0.7 at present, and having set the present scale factor
a0 ¼ 1.

FIG. 3. The late-time cosmological evolution, for Model 2, for
the parameter choice ξ ¼ −1 (in units where the gravitational
constant is set to one), having imposed Ωm0 ≈ 0.3, ΩDE0 ≈ 0.7 at
present, and having set the present scale factor a0 ¼ 1. As an
independent variable we use the redshift z ¼ −1þ a0=a. In the
upper graph we depict the evolution of the matter and dark energy
density parameters. In the middle graph we present the evolution
of the dark-energy equation-of-state parameter wDE. In the lower
graph we depict the evolution of the deceleration parameter q.
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IV. CONCLUSIONS

New gravitational scalar-tensor theories are novel mod-
ifications of gravity possessing 2þ 2 propagating degrees
of freedom. Although similar models had been constructed
in the scalar-field language, for instance in biscalar or bi-
Galileon models, it is not straightforward to develop them
in the pure gravitational language. However, such a con-
struction is indeed possible using the Ricci scalar and its
first and second derivatives under a specific Lagrangian that
is free of ghosts [37]. The crucial point is that although in
simple fðRÞ theories the conformal transformation leads to
the replacement of the functional degree of freedom of
fðRÞ by a scalar field, in the above constructions the
derivatives of R are not replaced by derivatives of the
scalar-field in a naive way, but only through a specific and
suitable two-field combination.
In this work we investigated the cosmological applica-

tions of new gravitational scalar-tensor theories.
Introducing the matter sector and considering a homo-
geneous and isotropic geometry, we extracted the
Friedmann equations, as well as the evolution equations
of the new extra scalar degrees of freedom. In such a
scenario, we obtain an effective dark energy sector that
consists of both extra scalar degrees of freedom, and hence
we can determine various observables, such as the dark-
energy and matter density parameters, the dark-energy
equation-of-state parameter and the deceleration parameter.

We analyzed two specific models, corresponding to the
first non-trivial extensions of general relativity possessing
2þ 2 degrees of freedom. As we showed, the resulting
cosmological behavior is in agreement with observations,
i.e. we obtain the transition from the matter to the dark
energy era, with the onset of cosmic acceleration.
Moreover, the equation-of-state parameter of the effective
dark energy sector can be stabilized in a value very close to
the cosmological-constant one. The most interesting feature
is that such a behavior arises solely from the novel, higher-
derivative terms of the gravitational scalar-tensor theories,
since we have not considered an explicit cosmological
constant. Additionally, we saw that for a particular range of
the model parameters, the dark-energy equation-of-state
parameter can exhibit the phantom-divide crossing in the
recent cosmological past and currently lie in the phantom
regime, which might be the case according to observations.
This feature reveals the capabilities of new gravitational
scalar-tensor theories, since the phantom behavior could be
obtained even if the fields behave as canonical ones.
The above features indicate that the new gravitational

scalar-tensor theories provide an interesting candidate for
modified theories of gravity. Hence it would be worthy to
perform detailed investigations on their applications. First,
one should perform a detail confrontation with observa-
tional data from Type Ia Supernovae (SNIa), baryon
acoustic oscillations (BAO), and cosmic microwave back-
ground (CMB) observations, to constrain the possible
classes of such modifications. Additionally, one should
perform a complete phase-space analysis, in order to extract
information about the global late-time behavior of the
above scenarios. Moreover, an extensive analysis of the
perturbations is a necessary task that could bring these
constructions closer to detailed data such as those related to
the growth index and the large-scale structure. Furthermore,
one should examine the black hole solutions in the
framework of new gravitational scalar-tensor theories, in
order to obtain additional information on their novel
features. Finally, one could try to analyze further extensions
along this direction, using for instance terms of the form
ð∇μ∇νRÞ2 ¼ ∇μ∇νR∇μ∇νR. These projects are left for
near-future investigations.
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FIG. 4. The evolution of the dark-energy equation-of-state
parameter wDE as a function of the redshift z ¼ −1þ a0=a,
for five values of the model parameter ξ (in units where the
gravitational constant is set to one), having imposed Ωm0 ≈ 0.3,
ΩDE0 ≈ 0.7 at present, and having set the present scale
factor a0 ¼ 1.
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