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Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity.
When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD
has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we
conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this
conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and
its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic
gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a
mass gap in the strong phase.
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I. INTRODUCTION

With increasing precision in various measurements and
observations, the general theory of relativity still success-
fully describes all known gravitational phenomena. While
there is as yet no direct evidence for a quantum description
of the gravitational field, there has been a decades-long
effort to unify general relativity with quantum mechanics.
The most naive attempt is to quantize general relativity in a
way similar to other gauge field theories. Unfortunately it
turns out to be nonrenormalizable. Additional terms with
higher mass dimension are generated by quantum loops.
Very early it was realized that in principle these terms
can be incorporated into the action [1]. From a modern
point of view there is no problem to treat general relativity
as an effective quantum description below the Planck mass
MPl [2,3].
There are three operators that are quadratic in the

curvature: R2, RμνRμν, RμναβRμναβ. In four dimensions
the last term can be eliminated due to the Gauss-Bonnet
topological invariant. Including the Einstein-Hilbert term, it
is convenient to organize the quadratic action as follows:
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Z

d4x
ffiffiffiffiffiffi
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with 1
2
CμναβCμναβ ¼ RμνRμν − 1

3
R2 up to the topological

term.1 The R and R2 terms break the conformal gauge
symmetry of the second term, the Weyl tensor term. The
action is characterized by two dimensionless couplings and

one mass scale. The mass scaleM breaks the classical scale
invariance softly. In our later discussion M shall not be
identified with the Planck mass.
When Eq. (1) is considered as a fundamental theory,

rather than the first few terms of a derivative expansion, it
was found that this theory is perturbatively renormalizable
[4,5]. The reason comes from the dominance of the higher-
derivative terms in the UV. Expanding around the flat
background gμν ¼ ημν þ hμν, the gauge-fixed propagator
for the metric fluctuation hμν tends to 1=k4 in the UV times
tensor structures. Renormalizability is also related to how
the classical scale invariance is only broken softly and by
the trace anomaly. The latter corresponds to the logarithmic
running of the two dimensionless couplings.2

It is convenient to consider the running of f22 and the
ratio of couplings w ¼ f22=f

2
0. The one-loop beta functions

are the following [8,9]:
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where am > 0 denotes the matter contribution. With the
same sign contributions from gravity and matter, f22 > 0 is
always asymptotically free. For the coupling ratio w, there
are two roots w2 < w1 < 0 of the beta function. The
coupling ratio approaches the UV fixed point w1 for w
within the UV attractive region w2 < w < 0 (w2 ¼ −5.5,
w1 ¼ −0.023 when ignoring am). w → 0 denotes a strong
coupling limit where the one-loop analysis is not reliable.
So the quadratic action in Eq. (1) is asymptotically free for*bob.holdom@utoronto.ca

†jren@physics.utoronto.ca
1For gravity conventions we use the signature ðþ − −−Þ. The

Riemann tensor is defined as Rλ
κμν ¼ ∂νΓλ

κμ þ Γλ
νσΓσ

κμ − ðμ ↔ νÞ,
and the Ricci tensor is defined as Rκν ¼ Rλ

κλν.

2The Gauss-Bonnet topological term also plays a role in the
renormalizability of the theory, but it does not contribute to the
renormalization group running of these two couplings [6,7].
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f22 > 0, f20 < 0. The magnitudes of the couplings will grow
into the IR at least down to the masses of the massive
gravitational modes, which are determined by M and the
sizes of the couplings. If the couplings are weak on the
scale of the masses then the theory remains perturbative.
The theory is usually considered in this perturbative phase
where M can be identified with the Planck mass MPl.
However the nice UV behavior enjoyed by this higher-

derivative gravity theory comes at a great cost, since a ghost
appears in the spectrum.3 The problem shows up at the
classical level in the Arnowitt-Deser-Misner formalism
[12] where it manifests itself as the Ostrogradski instability
[13,14]. This occurs for a Hamiltonian that has a linear
dependence on some canonical variables, since this implies
unboundedness from below. This happens in a nondegen-
erate higher-derivative theory, where the highest derivative
term can be expressed as a function of other canonical
variables. For quadratic gravity this is the case when
the Weyl tensor term is present. On the other hand the
Weyl term is needed to produce the better-behaved 1=k4

UV behavior in the spin-2 sector, as needed for
renormalizability.
The problem is more directly apparent from the propa-

gator of hμν on a flat background. The tensor structure
projects out spin 2, 1 and 0 degrees of freedom. The
propagator in the spin-2 sector exhibits both a massless
pole for the normal graviton as well as a massive pole at
M2

2 ¼ 1
2
f22M

2 with negative residue. Depending on the
prescription of the iϵ term there are two interpretations of
this massive ghost pole, as either a state of negative norm or
a state of negative energy. The first interpretation was
useful to prove renormalizability [4], but a negative-norm
state is difficult to reconcile with a probability interpreta-
tion and unitarity. In the negative energy interpretation
there is a vacuum instability. A negative-energy ghost that
couples to positive-energy particles implies an infinite
phase space for vacuum decay into collections of ghosts
and normal particles. For the spin-0 sector, the additional
massive pole has positive residue, but the asymptotically
free condition f20 < 0 means that it describes a tachyon
with mass M2

0 ¼ 1
4
f20M

2.
At face value the ghost problem prevents quadratic

gravity from being a possible UV completion of general
relativity. But this conclusion is based on the analysis of a
classical Hamiltonian or on the structure of tree-level
propagators. Basically for any physical process that explic-
itly manifests the ghost problem, there is usually the
implicit assumption that the perturbative analysis reflects
the true physical spectrum. This will be correct when M is
sufficiently large, since as we have mentioned, the theory

remains perturbative. But ifM is sufficiently small then the
running couplings will grow strong at some scale
ΛQG > M. Then the poles appearing in the perturbative
propagators fall into the nonperturbative region and the
arguments based on perturbative modes deserve further
consideration.
It is very instructive to consider another renormalizable

and asymptotically free theory, quantum chromodynamics
(QCD). It has no analog of a parameter likeM in the action
that can prevent the coupling from growing strong, and in
this case we are used to the fact that the physical spectrum
bears no relation to the perturbative degrees of freedom. In
particular the gluon is not in the physical spectrum. This is a
consequence of confinement, but it is also understood more
directly in terms of the behavior of the full gluon propa-
gator. Essentially there is an IR suppression of the
propagator that is sufficient to remove the gluon pole.
It should be noted that when calculations are done in

perturbative QCD, the processes being described involve
high virtuality and the gluon propagator need only describe
far off-shell gluons. In this way there is a factorization; the
calculation of the hard process in a high-energy scattering
event is independent of the IR physics that is responsible
for removing the gluon from the spectrum. With this
understanding the calculation of the hard process can be
performed using the tree-level gluon propagator. The gluon
loosely speaking propagates as a virtual particle but not as a
physical on-shell particle. The theory has only one physical
spectrum and it does not include a gluon. Similarly the full
gluon propagator describes both large- and small-jk2j
behavior and it does not have a pole. The four-momentum
can have arbitrarily large components, but if jk2j is small
then it probes the nonperturbative IR behavior of this
propagator.
We propose here that a similar story holds for the full

graviton propagator, and that it is modified in the IR in such
a way that the spin-2 ghost pole is absent. Then the ghost is
not in the physical spectrum, since the existence and
location of poles in the full propagator are statements
about the physical spectrum even though the full propa-
gator displays gauge dependence. With regard to the
vacuum instability mentioned above, this instability can
only occur if negative-energy states do in fact exist in the
physical spectrum. Thus we propose that the theory enters a
distinctly different phase when the parameterM falls below
some critical value ∼ΛQG, with a distinctly different
physical spectrum in this strong phase. Both the spin-2
ghost and the spin-0 tachyon could be absent, or in the case
of the tachyon, large quantum corrections could instead just
change the sign of its mass.
We shall argue thatM controls the size of a mass gap for

the graviton, and that it is only for M ¼ 0 that a normal
massless graviton could emerge in the IR. In that case
general relativity becomes the effective description in the
IR, and MPl is identified with the strong gravity scale ΛQG.

3This is also true of the recent proposals to set M ¼ 0 and to
instead introduce a scalar field with nonminimal gravitational
coupling. M2

PlR can then be generated perturbatively by the
Coleman-Weinberg mechanism [10,11].
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This emergence of the spin-2 massless graviton is not in
contradiction with the Weinberg-Witten theorem [15] since
the fundamental theory is diffeomorphism invariant in the
same sense as general relativity. For nonzero M we shall
discuss different possibilities for how the graviton mass gap
is realized, based on analogies with either dynamical
symmetry breaking or confinement. In addition we argue
that M gives control over a quantum phase transition
between the weak and strong phases as M moves below
ΛQG. This is a feature not present in QCD, and it is
interesting to consider the nature of this phase transition.
One may wonder about how a consistent quantum theory

can emerge when the action is problematic at tree level. We
shall use a path integral as a nonperturbative definition of
the quantum theory, and with this there are explicit effects
that can alter the tree-level analysis. A gauge theory path
integral has a nontrivial measure that is constructed to
uniformly sample the gauge orbits in configuration space.
A similar construction applies to both QCD and gravity. In
QCD it is known that the measure brings in effects related
to the nontrivial structure of the gauge configuration space,
effects that make the proper sampling of gauge orbits
difficult to attain (Gribov copies [16]). These nonlocal,
nonperturbative, but nondynamical effects (effects explic-
itly present in the definition of the theory) are thought to be
themselves capable of the suppression and the removal of
the gluon.
Some speculation about an analogy between quadratic

gravity and QCD (which extends an old analogy between
general relativity and the chiral Lagrangian of QCD) has
occurred before [17,18]. However with the help of a more
recent understanding of nonperturbative QCD, we hope to
provide a more consistent picture of the analogy, including
the fate of the ghost, the emergence of general relativity, the
identification of MPl, the effect of M and so on. We also
highlight similarities in the nonperturbative path integral
definitions of the two theories. Presently we lack more
direct arguments as to why the analogy should hold. Rather
the analogy provides some initial expectations for the
behavior of strong quadratic gravity, and it counters the
negative sentiment towards quadratic gravity that is based
solely on the weak (large-M) theory.
We briefly comment on various other proposals to solve

the ghost problem. Tomboulis considered the loop effects
of N fermions in the large-N limit and found that the ghost
pole was transformed into a pair of complex-conjugate
poles [19], which requires an implementation of the Lee-
Wick prescription [20] for quadratic gravity. Whether
unitarity is achieved remains unsettled [21,22]. There are
various studies of toy models of higher-derivative theories
but it remains doubtful that the ghost problem can be solved
at the perturbative level [14,23–25]. An attempt to impose
additional constraints to avoid the ghost ended up with a
violation of Lorentz invariance [26]. Alternative quantiza-
tion schemes have been considered [27], also very recently

[28]. Other authors go beyond quadratic gravity by con-
sidering a Lorentz-violating modification in the UV [29] or
by proposing to sum up all higher-derivative terms to
produce a ghost-free nonlocal classical action [30–32]. A
nonperturbative proposal relies on a nontrivial renormal-
ization group running of the Planck mass in the UV [33,34].
Similarly if the asymptotic safety scenario can be realized
for gravity then it is hoped that the perturbative ghost pole
is either removed or set to infinite mass [35]. In Ref. [36] it
was argued that quadratic gravity could be formulated on a
lattice in such a way as to be ghost-free and unitary.
The rest of the paper is organized as follows. In Sec. II

we develop a description of the nonperturbative effects in
QCD in a way that we can simply carry over to quadratic
gravity. This apparently leads to a healthy theory when
M ≲ ΛQG. We treat the M ¼ 0 case first and then we go on
to consider the effect of M and a quantum phase transition
controlled by the value of M. In Sec. III we discuss the
measure of the path integral of a gauge theory as an origin
of the nonperturbative effects of interest, and then find
some evidence that the gravity measure is also influenced
by Gribov copies. Finally, we discuss some implications
and questions of this picture of gravity in Sec. IV.

II. PROPAGATORS AND A PHASE TRANSITION

We start with the gluon propagator, by which we mean
the full nonperturbative gluon two-point function. The
propagator is of course gauge dependent, but the different
gauges will have to agree on the existence or not of a
massless gluon pole. For nonperturbative studies it is
common to respect the spacetime symmetries by choosing
a covariant gauge such as Landau gauge (∂μAμ ¼ 0). Then
various approaches to nonperturbative QCD indicate that
the gluon propagator is suppressed in the IR such that the
massless pole is removed. A mass gap develops without a
standard massive pole and without breaking the gauge
symmetries, and it is this phenomenon that is now better
understood. One consequence of the mass gap is that the
light gluon contribution to the running gauge coupling is
removed. This then also resolves the issue of an IR Landau
pole that is naively implied by perturbative analysis.
The lattice studies and typically also the continuum

Schwinger-Dyson studies are performed in Euclidean
space, and thus only probe the gluon propagator for
spacelike momenta, k2 < 0. This is sufficient to see the
absence of a pole at k2 ¼ 0 and it is also sufficient to detect
a nonperturbative violation of positivity, by which we mean
that the propagator has no representation in terms of a
positive spectral density [37]. We note though that a
positive spectral density is not necessarily an expected
property of a gauge field propagator. In particular through a
renormalization group analysis it is found the gluon
propagator falls faster than 1=k2, and this implies a
violation of positivity in the perturbative regime [38,39].
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We mention this here since in quadratic gravity the UV
behavior of the propagator is 1=k4, which thus also violates
positivity. At the tree level the violation is due to the ghost
contribution, but we shall argue that a nonperturbative
violation is also possible without the occurrence of
a ghost.
Returning to QCD, a nonperturbative violation of pos-

itivity was observed through the study of the Schwinger-
Dyson equations [40,41], although the detailed behavior in
the deep IR was left open. The propagator vanished as a
noninteger power as k2 → 0 for the “scaling solution,”
while it approached a nonvanishing value for the “decou-
pling solution.” In addition to these dynamical effects there
are the nondynamical aspects of nonperturbative QCD
arising from Gribov copies, which is our focus in
Sec. III. The Gribov-Zwanziger approach [42,43] (not
our focus in Sec. III) predicted a vanishing propagator
as k2 → 0, a prediction that was later refined to agree with
the decoupling solution [44]. The most reliable evidence is
provided by lattice studies that implement gauge fixing,
and these studies can potentially capture both the dynami-
cal and nondynamical effects. The results in Landau gauge
confirm the mass gap and in particular have given strong
support for the decoupling solution [45,46].
We shall encode the nonperturbative effects that appear

in the gluon propagator as a real multiplicative factor Fðk2Þ.
Then the propagator is Fðk2Þ=k2 times a tensor factor and a
perturbative correction factor. Imaginary parts can be
absorbed into this last factor. The nonperturbative effect
only operates in the IR and so Fðk2Þ → 1 for k2 → �∞.
Due to the Euclidean space evidence for the decoupling
solution we require that Fðk2Þ=k2 approaches a negative
constant in the k2 → 0− limit. Then Fð0Þ ¼ 0 and
F0ð0Þ < 0. Fðk2Þ must have another zero for k2 > 0

(and not a pole) to recover Fðk2Þ → 1 for k2 → ∞. Thus
with two zeros we have a shape for Fðk2Þ as shown in
Fig. 1(a). The refined Gribov-Zwanziger propagator also
implies this shape for Fðk2Þ.
Another sensible gauge for nonperturbative studies is

Coulomb gauge (∂iAi ¼ 0). It maintains rotational invari-
ance while reflecting the space and time split of a
Hamiltonian formulation. The Gauss law constraint arises

directly from a phase space path integral. In this gauge there
is some evidence that the transverse gluon propagator
vanishes for k2 → 0, both from lattice studies [47] and
from the original Gribov picture [16]. This would mean that
Fðk2Þ takes the shape in Fig. 1(b) in this gauge. Although
distinctly different from Landau gauge, the physical impli-
cations are the same. There is no physical pole and no on-
shell gluon, and there is a nonperturbative violation of
positivity.
Now let us see what happens if we assume that non-

perturbative effects in quadratic gravity operate in a way
similar to QCD. We start with M ¼ 0 in Eq. (1). This is
perturbatively stable if we assume that the classical scale
invariance holds for the matter sector as well. We also focus
on a flat background, in which case the strong gravity scale
ΛQG is the only mass scale. We again encode nonpertur-
bative effects in terms of a factorGðk2Þ, so that the graviton
propagator in a covariant gauge is −Gðk2Þ=k4 times tensor
and perturbative correction factors. From our experience
with QCD we can consider a Gðk2Þ that takes one of two
simple forms, that is the form of Fðk2Þ in Fig. 1(a) or
Fig. 1(b).
In the first case the resulting −Gðk2Þ=k4 is shown in

Fig. 2(a). The −1=k4 behavior has been softened to 1=k2

with positive residue but no mass gap, and a zero now
appears in the propagator at some k2 > 0. The other choice
for the form of Gðk2Þ gives the −Gðk2Þ=k4 as shown in
Fig. 2(b). Here a mass gap for the graviton has arisen as in
QCD. In both cases the physical spectrum has changed in a
way that may be consistent with a healthy theory. The two
possibilities for Gðk2Þ that we have considered are physi-
cally distinct, unlike the two cases for Fðk2Þ that we
considered for QCD. While the two forms for the gluon
propagator correspond to gauge choices, the existence or
not of a massless graviton is a statement about the physical
spectrum.
The first case is of interest because of its implication of a

massless particle with standard 1=k2 behavior in the spin-2
sector. If general covariance is still maintained by the strong
dynamics, as we shall assume, then the complete nonlinear
description of the massless spin-2 particle requires general
relativity. The Planck mass is identified as

0

0

1

k2

F
k2

0

0

1

k2

F
k2

(a) (b)

FIG. 1. The multiplicative factor Fðk2Þ in the gluon propagator, in either Landau gauge (a) or Coulomb gauge (b).
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M2
Pl ¼ −1=G0ð0Þ ∼ Λ2

QG: ð3Þ

At energy far below MPl, the standard nonrenormalizable
theory with a dimensionful coupling emerges, with a
weakly coupled gravitational interaction mediated by this
massless graviton. The linearly rising potential VðrÞ ∼ r as
implied by the 1=k4 propagator in the UV has made a
transition to the Newtonian potential VðrÞ ∼ 1=r as implied
by 1=k2 in the IR.
Similar to the chiral Lagrangian, the IR physics is

expected to be described by a derivative expansion of
the curvature tensors with a leading Einstein-Hilbert term,

SEFT ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PlRþ c1R2þ c2CμναβCμναβ þ� � �
�
:

ð4Þ

The quadratic terms of curvature appearing here have no
direct relation to those in the original quadratic gravity (1).
The order-one coefficients c1; c2;… encode the effects of
strong interactions and a subset are related for example to
the derivative expansion of the full inverse propagator. At
any finite order the inverse propagator may have new zeros,
but this does not mean new particles, since the effective
theory has already broken down at the apparent new
masses. Perturbative corrections in this effective theory
do produce a running of the couplings of higher-derivative
terms, but IR Landau poles, as naively present in the f0 and
f2 couplings of the underlying theory, have been avoided.
This picture of a theory that is weakly interacting in the UV
and IR limits, with only an intermediate region that is
strong, is very analogous to QCD, where in that case it is
the chiral Lagrangian that describes a weak IR theory. The
theory of pions also has no mass gap in the limit of
vanishing current quark masses, but the difference is that
for gravity it is the same field gμν that appears in both the
UV and IR descriptions.
Now let us consider the effect of the mass parameterM in

the original quadratic gravity (1). For very largeM there are
the ghost and tachyon states with mass-squaresM2

2 andM
2
0

as given above. The running couplings f2 and f0 can be

defined by their values at the scale of these masses. These
couplings can be very small but as M decreases these
couplings increase. For larger couplings, M2, M0 can
become of order M, but as M decreases eventually a
new dynamical mass scale ΛQG appears. The naive per-
turbative masses have dropped below ΛQG and we expect
that a quantum phase transition has occurred to a phase with
a different physical spectrum. In the following we consider
two possibilities for the nature of this phase transition, with
both being motivated by known phenomena in gauge
theories. The first is analogous to dynamical symmetry
breaking while the second is analogous to confinement.
The first possibility is suggested by a naive extension to

M ≠ 0 of our previous nonperturbative modification of the
spin-2 graviton propagator forM ¼ 0. WithGðk2Þ behaving
as in Fig. 2(a) the only pole of −Gðk2Þ=ðk2ðk2 −M2

2ÞÞ is at
k2 ¼ M2

2, and with the second zero of Gðk2Þ located to the
right ofM2

2, this pole has a residue of the right sign. What is
originally a massive ghost pole becomes a normal massive
graviton pole. The pole mass may be modified by strong
interactions, but stillM2

2 ∼M2. Amassivegraviton though is
not a simple concept and the required dynamics here ismuch
less trivial than this simple argument would indicate. In fact
no UV-complete theory of a massive graviton has been
found [48,49]. A massive graviton cannot be described in a
local diffeomorphism-invariant way, and so the appearance
of a massive graviton in a theory that is fundamentally
diffeomorphism invariant suggests a dynamical symmetry
breaking of this symmetry. We see no reason not to expect a
generic set of Lorentz-invariant mass terms for the metric
fluctuation, rather than a set that is tuned to avoid a ghost as
in the Fierz-Pauli theory. There are then six degrees of
freedom, the two transverse modes and four Goldstone
modes, the latter being the three longitudinal modes for the
spin-2 massive graviton and the additional spin-0 ghost.
Since the Goldstone modes are dynamically generated in a
strongly coupled theory they need only exist up to the scale
of the symmetry breaking, which is of order M. The
appearance of the spin-0 ghost suggests that the theory is
not well behaved unless one takes the M → 0 limit, to
thereby recover our previous M ¼ 0 description.

0

0

k2

G
k2

k4

0

0

k2

G
k2

k4

(b)(a)

FIG. 2. The nonperturbative graviton propagator −Gðk4Þ=k4 (blue solid line). (a) and (b) correspond to Gðk2Þ taking the form of (a)
and (b) in Fig. 1. The black dashed line is −1=k4.
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One might wonder a little about the vacuum instability at
M > 0 implied by such a ghost. The question is whether the
allowed values of the four-momenta of this composite
particle are constrained, as for example was the case for a
ghost associated with a Lorentz symmetry breaking cutoff
as discussed in Ref. [50]. Then the vacuum decay ampli-
tude could have a finite rather than an infinite phase space,
and the vacuum instability could become controlled and
possibly safe. Nevertheless there are aspects of this picture
that remain quite mysterious and so we move on to the
second possibility, which to us makes more sense.
This other possibility for the quantum phase transition

seems more analogous to QCD. As M drops below ΛQG ∼
MPl we can consider that the theory enters a confining
phase. By this we mean that all the perturbative propagating
modes that are present in the gravity sector at large M are
removed from the spectrum. These are the spin-2 ghost, the
scalar tachyon and the massless graviton. The graviton in
the confining phase now behaves like the confined gluon, a
mass gap is generated for the graviton without a physical
massive pole appearing in the propagator. It is this type of
mass gap, which occurs in confining gauge theories, that
we wish to highlight as a possibility for the graviton. But
unlike QCD, the size of the mass gap here is controlled by a
parameter M that can be smaller than the strong scale MPl.
Then an interesting window opens up whenM ≪ MPl. For
M2 ≪ jk2j ≪ M2

Pl the propagator goes like 1=k2. The
would-be perturbative behavior in this range is −1=k4,
but as before this is assumed to be reduced by the
nonperturbative effect to 1=k2. And then as k2 → 0 the
propagator tends to a negative constant instead of a pole,
just as for the gluon. For jk2j≳M2

Pl the behavior is −1=k4.
The resulting complete propagator can then be parame-
trized as −GMðk2Þ=k4, with a new form factor GMðk2Þ that
is sensitive to M.
We illustrateGMðk2Þ and −GMðk2Þ=k4 by the red lines in

Figs. 3(a) and 3(b) respectively. For comparison, the blue
line denotes the case at M ¼ 0. In the intermediate region
M2 ≪ jk2j ≪ M2

Pl, we see the approximation to 1=k2

behavior where the two color lines coincide. For smaller
jk2j the deformation becomes significant and the would-be

massless pole is removed due toGMðk2Þ ∼ k4 as k2 → 0 [as
in Fig. 1(b)]. Just like a high-energy gluon, the graviton
propagates as a virtual particle but not as a physical on-shell
particle. For jk2j ≫ M2 the difference with respect to M ¼
0 can be negligible, as would be the case for most practical
purposes if M is of order the inverse of the size of the
Universe. Finally in the limit M ¼ 0, the whole range
below MPl has 1=k2 behavior and an on-shell massless
graviton emerges. This limit appears to be smooth.
Before concluding this section we briefly consider the

possibility that M has some effect other than producing a
graviton mass gap. The idea is that it is the massless spin-0
part of the metric field rather than the spin-2 part that
receives a mass. Since the spin-0 mode is a constrained
degree of freedom in general relativity, this would not
change the propagating degrees of freedom. However this
cannot be achieved in a local way. One possible covariant
term in an effective action that affects the spin-0 mass is
R□−2R, where □

−1 is defined as an integration over a
Green function. This particular term has been studied in the
context of a phenomenological nonlocal modification of
gravity in the IR [51]. There are issues of how causality is
to be implemented.
We have proposed that the parameter M controls the

mass gap for the graviton and we have considered two
different possibilities for the nature of this mass gap. A
quantum phase transition as M moves below ΛQG ∼MPl is
of theoretical interest, but realistically M needs to be very
small or zero. In this regard we should emphasize the
essential difference between our picture and the current
development of massive graviton theories. For the latter,
one of the key features is that diffeomorphism invariance is
broken by a graviton mass and so there is a symmetry that is
only restored in the massless limit. This then leads to the
expectation that the graviton mass is stable under radiative
corrections. In our picture the parameterM that controls the
graviton mass gap appears as a parameter in the underlying
diffeomorphism-invariant theory. M only breaks classical
scale invariance, and so it can receive contributions in the
high-energy regime, where the theory is perturbative, from
any other explicit masses appearing in the matter sector.

0

0

1

k2

G
M

k2

0

0

k2

G
M

k2
k4

(b)(a)

FIG. 3. The factorGMðk2Þ (a) and nonperturbative graviton propagator−GMðk2Þ=k4 (b) whenM ≠ 0 (red solid line). The blue line has
M ¼ 0 and the black dashed line is −1=k4.
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This is the price we have paid for our proposed
UV-complete theory of a graviton mass gap.

III. A FOCUS ON THE MEASURE

If nonperturbative effects in quadratic gravity operate in
a way similar to QCD we have argued that general
relativity, or a modification of it that depends on M, can
emerge in the IR. This is based on assuming that the
nonperturbative multiplicative factors, Fðk2Þ and Gðk2Þ,
which we have introduced into the corresponding propa-
gators, have a similar form. We are far from proving such a
similarity, but we can explore some common nonperturba-
tive features of the two theories. In this section we discuss
how both QCD and quadratic gravity are based on path
integrals over the space of gauge orbits, thus showing a
fundamental similarity regarding the nontrivial measures
and the nontrivial IR effects that are built in. In Sec. III A
we discuss general properties of the measure due to the
effects of Gribov copies and then relate this to the
modification of the gluon propagator in QCD. In
Sec. III B we search for Gribov copies for quadratic gravity.
As a first step we show the existence of a Gribov horizon in
the configuration space of gravity.

A. Gribov copies in gauge theory

A gauge field configuration space has a redundancy,
since a gauge transformation moves any gauge field
configuration AðxÞ along its gauge orbit. So the physical
configuration space can be represented by the space of
gauge orbits, which is the quotient space of the full
configuration space modulo the group of local gauge
transformations. Equivalently one can define a fundamental
modular region (FMR) that intersects each gauge orbit only
once. The path integral for a gauge theory can be defined by
integrating over the FMR, but this definition proves not to
be very practical. Faddeev and Popov (FP) proposed to
insert the following factor of unity to extend the path
integral to the full configuration space,

1 ¼
Z

DUδðFðAUÞÞ detMFðAÞ: ð5Þ

FðAÞ ¼ 0 is the gauge-fixing condition and MFðAÞ ¼
δFðAUÞ=δUjF¼0 is the FP operator.
However as first noticed by Gribov in 1977 [16],

common gauge-fixing conditions do not properly restrict
to the FMR. When considering finite-norm gauge configu-
rations Gribov found that a gauge orbit could have a finite
number of intersections with the gauge-fixing surface. In
particular those gauge conditions that can be expressed as a
variation of a norm functional, such as Landau and
Coulomb gauge, are among those that are guaranteed to
have Gribov copies according to the topological proof of
Singer [52]. The number of intersections in excess of one is

the number of Gribov copies NFðAÞ. Once a gauge fixing
FðAÞ ¼ 0 is chosen, NFðAÞ is gauge invariant, i.e. it
depends only on the orbit. NFðAÞ ≠ 0 is only possible if
the orbit probes the nonlinearities of the theory. On some
such orbit there may be copies infinitesimally close to each
other so that the gauge fixing becomes degenerate and the
FP operator MFðAÞ has a zero eigenvalue. This defines the
location of a Gribov horizon in configuration space.
In the presence of Gribov copies, we must replace the

left-hand side of Eq. (5) by the total number of intersec-
tions, 1þ NFðAÞ, and the generating function is [16]

Z ¼
Z

DA
1

1þ NFðAÞ
δðFðAÞÞj detMFðAÞjeiSðAÞ: ð6Þ

The presence of the absolute value is dictated by the rules of
calculus. For perturbative calculations there is no change
from the FP prescription since NFðAÞ ¼ 0 and detMF > 0
for perturbative fields. In the nonperturbative regime, both
NFðAÞ and the absolute value are important since the
determinant can be negative on some copies. In practice
there is no known way to completely absorb these effects
into a modified action without approximation. As a result,
the Gribov measure may prevent the construction of an
exact BRST invariant gauge-fixed Lagrangian in the non-
perturbative regime.
We note in passing that the naive FP prescription might

still give the right generating function. As found in some
models [53,54], NFðAÞ is even and copies come in pairs
with alternating sign for detMFðAÞ. In this case the signed
intersection number is a topological invariant equal to unity
for all gauge orbits [55]. So if the absolute value is
removed, all copies cancel out and 1=ð1þ NFðAÞÞ should
be replaced by unity. The trouble is that one ends up with a
measure that alternates in sign and this is technically
difficult to handle. Another way to tackle Gribov copies
is to restrict the path integral to the region inside the first
Gribov horizon, which is a region that includes the FMR.
This is much easier to implement and it leads to the Gribov-
Zwanziger action [42,43]. The first Gribov region also
includes a set of copies that are by definition positive sign
copies, detMF > 0. The set of negative sign copies that are
outside this region and that would cancel these positive
sign copies are omitted from the path integral. Thus one is
left to wonder just how accurate such an approximation
can be.
The Gribov measure in Eq. (6) captures effects that are

built into the nonperturbative definition of the theory, and
thus it provides a direct view into nonlocal and topologi-
cally interesting features of the theory. By inspection of the
Gribov equation, which is the condition that copies must
satisfy, NFðAÞ is scale invariant. That is two orbits related
by a scale transformation have the same number of copies.
So in a scale-invariant gauge theory, for example one that is
at a fixed point, Gribov copies would have nontrivial effects
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on all scales in a scale-invariant way.4 On the other hand in
an asymptotically free gauge theory the scaleΛ at which the
coupling grows strong will be the scale at which Gribov
copies are important.
There are also implications of the fact that NFðAÞ is an

integer. In particular NFðAÞ≡ 0 for a certain bounded
region of gauge configurations within the FMR. This region
includes the perturbative regime. Consider a configuration
that can be characterized by a typical momenta k and an
amplitude Ak. SinceNFðAÞ is scale invariant,NFðAÞ should
depend on the scale-invariant ratio Ak=k. From this we
expect thatNFðAÞ becomes nonzero at some critical value of
Ak proportional to k. This may be checked explicitly from
the Gribov equation [54]. By dimensional analysis then
Gribov copies are only important when A2

k ≳ k2=Λ4. On the
other hand, a gauge field fluctuation has typical size A2

k ≈
1=k2 according to the propagator. Thus at large k2 ≫ Λ2 the
size of typical vacuum fluctuations are much smaller than
needed to feel any effect of Gribov copies.
Since the path integral involves ∼ expð−Pkk

2A2
kÞ, the

fluctuations that are large enough to feel Gribov copies are
exponentially suppressed by ∼ expð−k4=Λ4Þ. From this we
conclude that the corrections to the propagator due to
Gribov copies at high k2 are exponentially small. Earlier we
introduced the Fðk2Þ into the gluon propagator to model
nonperturbative effects. If we use this to model the effects
of the measure due to Gribov copies, then the deviation of
Fðk2Þ from unity at large jk2j should be ∼ expð−k4=Λ4Þ.
Thus the extreme nonlocality of Gribov copies makes their
effects extremely soft in the UV.5

However in the IR, the path integral easily samples
configurations with amplitudes above the critical value, at
which point NFðAÞ can grow very quickly. This implies a
suppressed propagator in the IR, with the explicit behavior
in the k2 → 0 limit depending in detail on how NFðAÞ
grows in the large fluctuation region. For Coulomb gauge
and spherically symmetric configurations, a certain power-
law growth was found as a function of Ak=k [54]. This
implied a vanishing gluon propagator in the k2 → 0 limit
with Fðk2Þ ∼ k4, for example as shown in Fig. 1(b).

B. Gribov copies in gravity

Gravitation reflects the dynamics of the spacetime
continuum and it is described by a theory invariant under

coordinate transformations. Taking the metric gμν to be the
fundamental dynamical field, under coordinate transforma-
tions it transforms as

gμνðxÞ ¼
∂x0α
∂xμ

∂x0β
∂xν g

0
αβðx0Þ: ð7Þ

The general covariance can also be described as a gauge
transformation of the metric field with pullback diffeo-
morphism [56]. The full metric is split as gμν ¼ ḡμν þ hμν
and hμν is treated as a dynamical symmetric tensor field on
the manifold equipped with metric ḡμν. For an infinitesimal
coordinate transformation x0μ ¼ xμ þ ξμ, the corresponding
gauge transformation of hμν is the Lie derivative along ξμ

δξhμν ¼ Lξgμν ¼ ∇̄νξμ þ ∇̄μξν

þ ξρ∇̄ρhμν þ hμρ∇̄νξ
ρ þ hρν∇̄μξ

ρ; ð8Þ

where ∇̄μ is the covariant derivative with respect to ḡμν
and ξμ ¼ ḡμνξν.
With a background ḡμν and a gauge-fixing condition

FðhμνÞ ¼ 0, the quantum theory of gravity can be defined
by the path integral in analogy to a gauge theory in a
background field gauge,

Z ¼
Z

Dh
1

1þ NFðhÞ
δðFðhÞÞj detMFðhÞjeiSQGðgÞ: ð9Þ

MFðhÞ ¼ δFðhξÞ=δξjF¼0 is the FP operator and ξ denotes
the gauge transformation in Eq. (8). This construction of
the measure only involves the symmetry of the theory
rather than the explicit form of the action. Since quadratic
gravity is asymptotically free, if Gribov copies exist they
will produce a nonperturbative effect in the IR through the
presence of NFðhÞ in the measure. The Gribov problem in
the gravity has been rather sparsely studied [57,58]. As a
first step along this line we will examine the Gribov horizon
equation, the infinitesimal version of the Gribov equation,
with respect to some background ḡμν. This requires a
solution to FðδξhμνÞ ¼ 0 for some hμν and some ξμ.
This is the same as finding a zero eigenvalue of the FP
operator.
First we consider de Donder gauge where

FðhÞ ¼ ∇̄μhμν − 1
2
∇̄νh ¼ 0. The flat background is the

first case to consider, and the Gribov horizon equation
in this gauge is as follows:

∂μ∂μξν þ ∂μξρ∂ρhμν −
1

2
∂νξ

ρ∂ρhþ ∂μhμρ∂νξ
ρ

− ∂νhμρ∂μξρ þ ∂μðhρν∂μξ
ρÞ ¼ 0: ð10Þ

As expected there are no copies when hμν ¼ 0. In analogy
to Gribov’s approach to QCD, we study static spherically
symmetric metrics and require that hμν has a finite norm

4An approximation that introduces a mass scale would fail to
describe this. Proposals to deal with Gribov copies usually
introduce a mass scale into some modified action. This is a
failure of the approximation given that Gribov copies are
intrinsically scale invariant.

5This is to be contrasted with the power-law corrections that
are present for example in the Gribov-Zwanziger approach. There
the propagator has a pair of complex-conjugate poles on the
complex k2 plane, and this would imply power-law corrections in
the UV that are excluded by our argument.
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N ¼
Z

d3x
ffiffiffiffiffiffi
−ḡ

p
hμνhμν; ð11Þ

calculated with respect to the background metric. It turns
out to be difficult to find a nontrivial solution of Eq. (10)
such that hμν has a finite norm and ξμ is well behaved. The
equation (10) is linear in ξμ, but since ξμ represents an
infinitesimal transformation it should be a bounded
function.
We now note that in de Donder gauge, FðhÞ ¼ 0 is not

obtained as the vanishing gauge variation of the norm
function. Thus in this sense it is not the analog of the
Landau gauge or covariant background field gauges in
QCD, where the gauge-fixing plane is a collection of
stationary points of the norm. In gravity the variation of the
norm functionN turns out to be nonlinear in hμν. Requiring
that this variation vanishes defines a nonlinear gauge-fixing
condition for gravity, which we could call the norm gauge.
In the following we derive the Gribov horizon equations in
norm gauge and in this case we have more success in
solving these equations.
We consider a flat background and a static choice for hμν.

The line element is ds2 ¼ ds2ḡ þ ds2h where

ds2ḡ ¼ −dt2 þ dr2 þ r2dθ2 þ r2 sinðθÞ2dϕ2;

ds2h ¼ iðrÞdt2 þ 2kðrÞdtdrþ hðrÞdr2: ð12Þ

ds2h retains the same form under the infinitesimal trans-
formation generated by ξμ ¼ ðαðrÞ; βðrÞ; 0; 0Þ, where

δiðrÞ ¼ βðrÞi0ðrÞ;
δkðrÞ ¼ β0ðrÞkðrÞ þ α0ðrÞðiðrÞ − 1Þ þ βðrÞk0ðrÞ;
δhðrÞ ¼ 2β0ðrÞðhðrÞ þ 1Þ þ 2α0ðrÞkðrÞ þ βðrÞh0ðrÞ: ð13Þ

The norm function is

N ¼ 4π

Z
drr2ðhðrÞ2 þ iðrÞ2 − 2kðrÞ2Þ: ð14Þ

If we require that the norm function vanishes under the αðrÞ
and βðrÞ variations separately, this gives two nonlinear
gauge-fixing conditions.

k0ðrÞ½rþ rhðrÞ − riðrÞ� þ kðrÞ½2þ 2hðrÞ − 2iðrÞ
þ rh0ðrÞ − ri0ðrÞ� ¼ 0; ð15Þ

4hðrÞ þ 4hðrÞ2 − 4kðrÞ2 þ 2rh0ðrÞ þ 3rhðrÞh0ðrÞ
− riðrÞi0ðrÞ − 2rkðrÞk0ðrÞ ¼ 0: ð16Þ

The first can be solved trivially with kðrÞ ¼ 0, and we will
adopt this in the following.
Making a further infinitesimal transformation on

Eq. (15) using Eq. (13) gives the first Gribov horizon

equation. This equation does not depend on βðrÞ and it can
be reduced to

α0ðrÞ ¼ 1

r2½1þ hðrÞ − 2iðrÞ þ iðrÞ2 − hðrÞiðrÞ� : ð17Þ

The case iðrÞ ¼ 0 and hðrÞ ¼ 0 would imply that αðrÞ is
not bounded and so cannot represent an infinitesimal
transformation. A strategy then is to choose a trial iðrÞ
and then use the second gauge-fixing condition (16) to
solve for hðrÞ. The latter must be done numerically. The
goal is to find iðrÞ and hðrÞ having a finite norm N in
Eq. (14) and that result in a bounded αðrÞ from Eq. (17). In
fact we find that there is a whole family of solutions of this
type, with iðrÞ ¼ −1=ðrþ r2Þ being one example. Note
that such configurations are of finite norm even though they
are singular at r ¼ 0.
The second Gribov horizon equation can be similarly

derived from the second gauge-fixing condition (16). It
only depends on βðrÞ,

β00ðrÞ½4rþ 10rhðrÞ þ 6rhðrÞ2� þ β0ðrÞ½8þ 24hðrÞ
þ 16hðrÞ2 þ 12rh0ðrÞ þ 15rhðrÞh0ðrÞ − riðrÞi0ðrÞ�
þ βðrÞ½4h0ðrÞ þ 8hðrÞh0ðrÞ − ri0ðrÞ2 þ 3rh0ðrÞ2
þ 2rh00ðrÞ þ 3rhðrÞh00ðrÞ − riðrÞi00ðrÞ� ¼ 0: ð18Þ

A suitable solution to this equation would give a second
Gribov horizon independent of the first. The two horizons
would correspond to two gauge-fixing degeneracies with
respect to different gauge transformations and there is no
requirement that these horizons exist for the same hμν. But
in fact we find that they do; there are iðrÞ and hðrÞ that we
found from the first horizon equation that also yield a
numerical solution for βðrÞ from Eq. (18) that is bounded.
[A slight difference in this case is that β0ðrÞ is not bounded.]
Thus we have found finite-norm solutions in norm gauge

that satisfy one or both of the horizon equations. This
indicates that the gauge-fixing condition has become
degenerate, or in other words that a pair of Gribov copies
are connected by some infinitesimal coordinate transfor-
mation ξμ. Then we would also expect pairs of copies on
either side of the horizon that are connected by finite
transformations. Thus we find evidence for Gribov copies
in gravity in a covariant gauge based on a norm function
just as in QCD. And by the same analogy we can expect
that the number of copies NFðhÞ is finite for finite-norm
configurations.
There is another similarity with the gauge theory, namely

that NFðhÞ is scale invariant. A scale transformation can be
implemented as a combined Weyl rescaling of the metric
and a coordinate transformation such that ds2 → λ2ds2 and
hμνðxÞ → hμνðλxÞ. The Lie derivative (8) transforms homo-
geneously as does the gauge-fixing condition FðhÞ ¼ 0. In
norm gauge the latter is due to the norm itself being
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homogeneous in hμν. Thus the Gribov horizon equation
also transforms homogeneously, as seen for example in
Eq. (18), which will thus have solutions related by scale
transformations. Similarly the full Gribov equation will
have the same property. Thus two gauge orbits related by a
scale transformation have the same number of copies,
meaning that NFðhÞ is scale invariant.
Interestingly there is a family of background metrics

with naked timelike singularities, including the negative-
mass Schwarzschild metric and the nakedly singular
Reissner-Nordstrom metric, where a Gribov horizon exists
even for vanishing hμν, in both de Donder gauge and norm
gauge. This means the gauge-fixing fails even in the
perturbative regime upon these backgrounds. The fact that
a perturbative quantum theory of gravity cannot be defined
on such nakedly singular backgrounds may be an interest-
ing result on its own. We shall return to this in the next
section.
The existence of Gribov horizons for certain spherically

symmetric and static metrics in a covariant gauge provides
us with some evidence for the fundamental similarity
between quadratic gravity and QCD. In gravity much less
is known about the nature of the FMR or the shape of
Gribov horizons, but the path integral should again be
affected by the 1=ð1þ NFðhÞÞ factor in the measure. The
basic properties of this factor that we discussed for
asymptotically free gauge theories should continue to hold
here. Thus we expect that the Gribov measure does not
produce power-law corrections in the UV and in particular
that the perturbative propagator is approached exponen-
tially quickly in the UV. This means that the nonperturba-
tive physics that we are discussing is not associated with
vacuum condensates or complex-conjugate poles in propa-
gators or anything else that would imply power-law
corrections.
In the IR the Gribov measure effectively reduces the size

of the metric field configuration space, which is manifested
as a suppressed propagator. We have used the similarity to
QCD to suggest a propagator suppression by a factor of
−k2 for jk2j ≪ Λ2

QG and M ¼ 0. Studies that could shed
more light on the nature of the space of gauge orbits, such
as solutions of the full Gribov equation, could further test
the similarity with QCD. Perhaps most decisive would be a
lattice formulation of an asymptotically free theory of
gravity in complete analogy to lattice studies of QCD.
So far all our discussions are based on the original metric

field, with additional degrees of freedom hidden in higher-
derivative propagators. A common practice is to make
explicit these degrees of freedom via the auxiliary field
method. With the introduction of a symmetric tensor field
fμν, the Weyl tensor term can be replaced by a kinetic
mixing term fμνGμν (Gμν is the Einstein tensor) and a mass
term ðfμνfμν − f2Þ. Expanding around the flat background,
the quadratic action has a kinetic mixing between hμν and
fμν. When M is large, the diagonal basis gives rise to the

expected particle content in the perturbative phase, i.e. the
normal graviton and massive spin-2 ghost. With decreasing
M the kinetic mixing becomes more important. When
M ≲MPl, this implies not only strong dynamics for both
fields but also a strong interaction between the two sectors.
As we discussed in this section, the nontrivial measure in
the path integral plays a crucial role for the nonperturbative
physics in the IR. Given the strong mixing, the two-fields
language becomes less convenient to conduct an analogy
with QCD for the nonperturbative modification of the
propagators.
Finally we give two examples for the nonperturbative

multiplicative factor Fðk2Þ as displayed in Fig. 1,

ðaÞ k2

k2 þ b=ðk2 − aÞ ;

ðbÞ erfðaÞ − erfðbk2Þ − erfð−bk2 þ aÞ
erfðaÞ : ð19Þ

erfðxÞ is the error function. a; b > 0 in each case gives the
qualitative shape in Fig. 1(a) while the a → 0 limit in each
case gives Fig. 1(b). Case (a) with a; b > 0 corresponds to
the refined Gribov-Zwanziger propagator with complex-
conjugate poles in the complex k2 plane [44]. Complex-
conjugate poles also appear in the perturbative modification
of the graviton propagator as proposed in Ref. [19]. Case
(b) instead has exponentially small effects in the UVas we
expect from Gribov copies. In fact the deviation from unity
is suppressed by expð−b2k4Þ for large jk2j as we discussed
above. It is also an entire function, which brings in some
connection with the recent study of nonlocal field theory in
Ref. [59]. Nonlocal propagators in a perturbative context
would imply associated acausal effects, but the nonlocality
in our propagators is occurring where there is no perturba-
tive description. In the case of gravity this is near MPl, and
in the low-energy effective theory these nonlocal effects are
encoded in the higher-derivative terms in the derivative
expansion.

IV. IMPLICATIONS AND SPECULATIONS

We first consider the quantum effects that an asymp-
totically free theory of gravity can have on the matter
sector. In our picture these effects are quite minimal, since
there is only a limited range of energies close to the Planck
mass where the gravitational interactions are strong. This
can produce order-one multiplicative effects on the running
of the matter couplings as they run through this region, but
outside this region the gravity contributions are perturba-
tive. Thus a normal QFT description of the matter sector
persists on super-Planckian energy scales. Any problems
with the matter sector, such as the existence of UV Landau
poles for the Uð1Þ hypercharge coupling or the Higgs
quadratic coupling, should be solved within the matter
sector. To insist that all couplings be asymptotically free in
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a theory with elementary scalar fields turns out to be a
very nontrivial requirement. Extensions of the standard
model where the ratios of all couplings, including scalar
couplings, approach a UV fixed point have been studied,
both for UV unstable [60] and UV stable [61] cases. Non-
Gaussian fixed points (UV unstable) have also been
considered [62].
For the rest of this section we consider the more direct

gravitational implications of asymptotically free quadratic
gravity when M ¼ 0. As curvatures increase the higher-
order terms in a derivative expansion become more
important, as in the standard picture, but at sufficiently
high curvatures the theory simplifies and higher-derivative
terms past four are absent. In the far UV the couplings are
arbitrarily small and then there are only small quantum
gravity fluctuations. The theory could be fundamentally
defined around flat spacetime, for example on a lattice with
sufficiently small lattice spacing. To incorporate the quan-
tum gravity corrections around some other background, an
effective action with the small scale corrections integrated
out down to the typical curvature scale of this other
background should be used. If this scale is still well above
MPl, then we can expect these quantum corrections to be
small, and so the classical description could be a good
approximation. If this type of picture from asymptotically
free gauge theories is correct for gravity then it leads one to
take more seriously classical solutions of quadratic gravity
in regions of curvature above MPl, for example to address
the singularity problems of general relativity.
The classical analysis of the action in Eq. (1) is usually

done when M is identified with MPl, and for spherically
symmetric solutions it yields three classes of solutions at
r ¼ 0 [63]. One class is simply the isolated Schwarzschild
solution while another class is nonsingular at r ¼ 0. The
third class is singular, but in Ref. [64] it was found that the
number of parameters that characterize this class of
solutions at r ¼ 0 matches the number that are expected
at large r in a four-derivative theory. This then leads to a
rather generic set of solutions that only deviate from the
Schwarzschild solution by exponentially small terms at
large r. At smaller r these solutions have no horizon, but
instead large curvatures turn on close to where the horizon
would have been. The singularity at r ¼ 0 in this vacuum
solution is timelike, and a complete solution of this type
was obtained numerically in Ref. [64]. Such solutions were
studied further in Ref. [65].
Our present picture (with M ¼ 0) is somewhat different.

In the small-curvature region we expect that the classical
solutions of interest are determined by the derivative
expansion theory in Eq. (4), where the Einstein-Hilbert
term dominates. For super-Planckian curvatures it is the
fundamental pure quadratic action that controls the sol-
utions. In these two limits we have suggested that the
quantum corrections are small and then the solutions
should resemble those of the previous studies. But for

Planck-sized curvatures the quantum corrections are
expected to be large. Thus a strongly interacting shell
should appear at some radius in the spherically symmetric
solutions, that otherwise could be similar to the previous
analyses. For the Schwarzschild-like solution, this shell
should appear deep inside the interior of the black hole. For
the horizonless solutions, the strong shell should appear
close to where the horizon would have been. For smaller r
the curvature of the vacuum solution increases and the
description should become more classical. In the purely
classical analysis there was no reason to stop at a four-
derivative description of the interior region, so our
present picture puts these strong horizonless objects on a
firmer footing.6

When we consider the gravitational field around any
spherical mass, the derivative expansion (4) describes the
large-r region. We can expect that this will generate
corrections to the gravitational potential, at the very least
by terms that are exponentially small. This is due to the
effectively massive modes, in particular modes with pos-
itive m2 ∼M2

Pl, that the derivative expansion implies. Thus
Yukawa-type corrections appear to be quite generic, but it is
typical to assume that they are always insignificant. The
surprise from the horizonless solutions in the classical
analysis is that the Yukawa terms can become significant
just where the standard gravitational potential approaches
order one. When the massive modes turn on, the curvatures
quickly become large, the derivative expansion breaks
down and the strong gravity regime is entered. It seems
to us that the effect of massive modes should be taken into
account in the description of gravitational collapse, and that
this will have a bearing on deciding what actually does
form: black holes or strong horizonless objects.
As for other implications of a UV-complete theory, one

might wonder whether a super-Planckian scattering experi-
ment could in principle probe the region where the hard
scattering process is under the theoretical control of an
asymptotically free theory. This is the obvious analog of pp
scattering at the LHC, where perturbative QCD calculations
are instrumental for standard model predictions. The
analogs of factorization, parton distribution functions,
parton showers, and hadronization could seemingly all
be carried over to the gravity description. In analogy with
perturbative QCD, to the extent that a hard process can be
defined to be independent of the strong IR physics, that
hard process involves virtual gravitons that are far off shell
(with 1=k4 behavior) and which are thus insensitive to the
strong IR physics that has altered their on-shell behaviors.
But we run into a major difference for super-Planckian

scattering in gravity, and that is the formation of black
holes. In fact a detailed picture is already emerging [66]

6The timelike singularity in this case does not suffer from the
perturbative gauge-fixing problem mentioned in the previous
section.
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where it is purported that when
ffiffiffi
s

p
≫ MPl, semiclassical

black holes of mass around
ffiffiffi
s

p
dominate the production

cross section. At least under some conditions a description
of the formation of closed trapped surfaces is given without
needing knowledge of the super-Planckian theory [67].
Considering also the possible loss of unitarity due to the
black hole information problem, this leads to a completely
different and still incomplete picture compared to the
manifestly unitary, jet-like final states from high-energy
scattering in QCD. In view of this conundrum it could be of
interest to consider the production of strong horizonless
objects in super-Planckian scattering as well.
We turn to another distinctive aspect of our theory. This

is the fact that upon increasing the parameterM sufficiently,
there is a phase transition to a theory that is manifestly
unstable. This leads to the question of whether the M ¼ 0
theory could be pushed into instability somehow within the
theory itself, in particular for example in a region of
sufficiently large curvature. In principle the metric fluctua-
tions around different background metrics could have an
altered spectrum, and for backgrounds with super-
Planckian curvatures it could be possible that the spectrum
picks up unstable modes. One possibility is that the
curvature acts like an IR cutoff, effectively eliminating
the strong interaction effects that removed the ghost in the
first place. An example of an IR cutoff that could do this
occurs for a compact universe with size much smaller than
1=MPl. This would likely exhibit an instability. A universe
at temperature T ≫ MPl might as well.
In our study of Gribov copies, we found that Gribov

horizons did not tend to disappear in the case of asymp-
totically flat background metrics with localized high
curvatures. In fact for certain metrics the effects of
Gribov copies became even more pronounced by afflicting
the perturbative fluctuations; that is the Gribov horizon
existed for vanishing hμν. So in this case the curvature does
not act like an IR cutoff to remove the nonperturbative
physics. But the fact that the perturbative quantum

description is itself breaking down around such back-
grounds (at least for the gauges we considered) could
itself be a sign that the spectrum has changed. The
backgrounds in question have naked, timelike singularities.
We thus entertain the possibility that unstable modes

could develop under conditions of high curvatures of a type
that are approaching timelike singularities. Such conditions
may be quite generic during the final stages of gravitation
collapse [68], and they could occur in the super-Planckian
scattering example. If an unstable mode develops within the
region of high curvature then the analog of vacuum decay
can occur, where positive- and negative-energy modes are
spontaneously created with arbitrarily high momenta while
conserving total energy. The interesting point is that the
negative modes are confined to propagate within the region
where they can exist, whereas the positive modes can
escape and “hadronize” into normal gravitons and other
particles. The negative modes will instead interact with
positive-energy matter and thus lower the energy of this
normal matter in the high-curvature region. The net result
could be an explosive release of energy that should reduce
the curvature and take the region away from the quantum
instability. Such a burst of energy in gravitational collapse
may be of interest as a source for ultra high-energy cosmic
rays [69].
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