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It is commonly assumed that if the optical metric of a dielectric medium is identical to the metric of a
vacuum space-time then light propagation through the dielectric mimics light propagation in the vacuum.
However, just as the curved surface of the Earth cannot be mapped into a flat plane without distortion of
some surface features, so too is it impossible to project the behavior of light from the vacuum into a
dielectric analog residing in Minkowski space-time without introducing distortions. We study the
covariance properties of dielectric analog space-times and the kinematics of a congruence of light in
the analog, and show how certain features can be faithfully emulated in the analog depending on the choice
of projection, but that not all features can be simultaneously emulated without distortion. These findings
indicate conceptual weaknesses in the idea of using analog space-times as a basis for transformation optics,
and we show that a certain formulation of transformation optics closely related to analog space-times
resolves these issues.
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I. INTRODUCTION

Since ancient times, people have struggled with how best
to draw a map. The dawn of the Age of Discovery and its
great seafaring voyages brought with it an urgent growth in
cartographic investigation and prompted the development
of differential and projective geometry. But it has been long
recognized that all maps distort certain surface features, so
that the question of which map to use is answered by which
features one wants to represent and in which manner they
should be represented. Conformal maps such as the
Mercator projection, prominent for use in navigation at
sea, locally preserve angles and shapes at the expense of
distorted areas—making Greenland look bigger than Africa
and South America. Other typical map projections preserve
areas or distances between two points at the expense of
distortions in other features. There are an infinite number of
possible map projections, an infinite number that function
as a compromise between distortions in two desired
features, and an infinite number that do not preserve any
particular feature. Gauss’ Theorema Egregium of 1828
illuminated the reason behind the inability to find a
distortionless map, showing that any map between surfaces
of different curvature will always introduce distortions.
In more recent times, there has been an interest in

mimicking certain aspects of gravitating systems in labo-
ratory settings. For example, similarities between the space-
time metric and the Navier-Stokes equations for a flowing
fluid show that a sonic or surface wave horizon in the
flowing fluid could provide an experimentally accessible

surrogate for the study of near-horizon relativistic effects
including Hawking radiation [1–4].
Light propagation through dielectric media is another

system that could serve as such an analog space-time. The
connection between light propagation in gravitational
systems and light propagation in dielectric media was
recognized in the early days of general relativity when it
was observed that the relativistic deflection of starlight by a
massive object such as the Sun could instead be explained
by an appropriate distribution of refractive media around
the object [5]. It was subsequently shown by Gordon that
the correspondence also holds in the other direction; that
light propagation in certain refracting media can instead be
mathematically described as light propagation through a
curved vacuum space-time with an “optical metric” that is
determined by the optical properties of the medium [6].
Later, Plebanski identified the effective permittivity and
permeability of an arbitrary space-time metric [7], and
these results were used by de Felice to describe a dielectric
representation of Schwarzschild space-time, arguably the
first definite description of an analog black hole [8]. In the
last decade, developments in metamaterials [9–13] have
opened the possibility of physically realizing artificial
media possessing some of the unusual dielectric properties
required to construct a dielectric analog space-time and has
sparked a resurgence of interest in the subject [14–27].
Dielectric analog space-times are obtained as a projec-

tion of a curved vacuum manifold into a dielectric medium
residing in a space-time of different curvature, usually flat
Minkowski space-time, in very much the same manner
that Earth’s curved surface is cartographically projected
onto a flat plane. Gauss’ Theorema Egregium applies
equally to this modern concept of space-time map making;
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consequently, any dielectric analog space-time must nec-
essarily introduce distortions into its representation of light
propagation through the vacuum. This fact seems to be
underappreciated in much of the literature, which has
largely focused on the form of the optical metric and the
coordinate description of optical rays through the analog.
The majority of investigations in the subject have followed
the footsteps of Plebanski and de Felice in identifying the
dielectric properties of the analog and the optical metric
with the vacuum metric, an identification that could
mislead to the assumption that light propagation through
the analog faithfully emulates the behavior of light propa-
gating through the vacuum.
By analyzing the kinematics of a congruence of light in

the analog, we show that the Plebanski analog fails to
emulate physically measurable characteristics such as the
fractional rate of expansion of a transverse cross section of
the congruence. Thus the Plebanski choice of projection
map is actually quite similar to the Mercator projection in
that it preserves the coordinate description of a ray but
introduces distortions into the evolution of the cross-
sectional area of a congruence. As with cartography, there
are an unlimited number of analog projections, and a more
general mapping of vacuum space-times into analog
representations was introduced in Ref. [18]. Using this,
we demonstrate how an expansion-preserving projection
map may be constructed, such that the expansion of a
congruence is faithfully represented in the analog at the
expense of distortions to the optical metric and the
coordinate path of light rays. We also provide a more
detailed analysis of the covariance properties of dielectric
analog space-times and show that the analog system lacks
covariance in the sense that two analogs representing two
different coordinate descriptions of the vacuum space-time
are not themselves related by the same, or even an
associated, coordinate transformation.
Furthermore, Plebanski’s identification of a space-time

metric with effective dielectric properties has been widely
adopted as a basis for the interpretation of transformation
optics (TO) [28–31], and TO has been correspondingly
invoked to undertake studies in analog space-times. We
argue that while dielectric analog space-times and TO are
indeed very closely related, there are subtle differences that
make the analog space-times approach unsuitable as a
rigorous foundation for transformation optics. Aside from
conceptual issues, there are three problems with using
analog space-times as the basis for TO. First, the lack
of any unique or canonical projection from the vacuum to
the analog makes this approach to TO ill-defined. Second,
any useful formulation of TO should be fully covariant,
while analog space-times suffer from covariance issues.
Third, the fact that no analog projection can faithfully
replicate all aspects of light propagation in the vacuum
means that the TO analog simply does not function as
expected.

This paper is organized as follows. Section II briefly
reviews the covariant formulation of electrodynamics in
dielectric media. Section III reviews a rigorous theory of
dielectric analog space-times and studies their covariance
properties. In Sec. IV we study the kinematics of light
propagation through the analog, with a particular focus on
the transverse expansion, and show how an expansion-
preserving analog projection map may be constructed for a
particular choice of congruence. In Sec. V we compare
analog space-times with TO, arguing that while they are
closely related they are sufficiently, though subtly, distinct to
have important consequences. Concluding remarks are
given in Sec.VI. Throughout the paperwe provide examples
and illustrative calculations in terms of the Friedmann-
Lamaître-Robertson-Walker (FLRW) analog space-time.
The metric signature is chosen to be ð−þþþÞ and the
speed of light in vacuum is set to c ¼ 1.

II. CLASSICAL ELECTRODYNAMICS
IN COVARIANT FORM

We wish to describe electrodynamics inside dielectric
media residing in a possibly curved space-time M with
metric g. We use a tensorial, exterior calculus formulation
of electrodynamics in dielectric media, the principal
notions of which are reviewed here. A more complete
introduction to tensorial electrodynamics may be found in,
e.g., Refs. [32–34], while a more complete discussion of
our application to electrodynamics in media may be found
in Ref. [35].
In this formulation, components of the vector field pairs

ð~E; ~BÞ and ð ~D; ~HÞ are seen to be components of the field
strength and excitation 2-forms (antisymmetric second-rank
covariant tensors) F¼Fμν and G¼Gμν. In a locally flat
Cartesian frame, F and G have the matrix representations

Fμν ¼

0
BBB@

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

1
CCCA; ð1Þ

and

Gμν ¼

0
BBB@

0 Hx Hy Hz

−Hx 0 Dz −Dy

−Hy −Dz 0 Dx

−Hz Dy −Dx 0

1
CCCA: ð2Þ

Pseudo-Riemannian m-dimensional manifolds such as
M are naturally endowed with an operator called the Hodge
dual that for k < m takes a k-form to an (m − k)-form. For
the purposes pursued herein, we only require the Hodge
dual to act on 2-forms. In the case of a four-dimensional
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space-time, the Hodge dual maps a 2-form into another
2-form and has the following index expression:

⋆αβ
μν ¼ 1

2

ffiffiffiffiffi
jgj

p
ϵαβσρgσμgρν: ð3Þ

Hence, the components of ⋆F in a local Cartesian frame are

ð⋆FÞαβ ¼ 1

2

ffiffiffiffiffi
jgj

p
ϵαβσρgσμgρνFμν

¼

0
BBB@

0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0

1
CCCA: ð4Þ

Maxwell’s homogeneous and inhomogeneous equations
are

dF ¼ 0; ð5aÞ

dG ¼ I ; ð5bÞ

where d denotes the exterior derivative and I is the charge-
current 3-form, though in what follows we assume I ¼ 0.
A complete solution of Maxwell’s equations requires the
specification of a constitutive relation between the fields F
and G. It has been shown that such a constitutive relation
for linear media has the form [36,37]

G ¼ ⋆χF; ð6Þ

where χ contains all the information about the medium
such as permeability and permittivity, while ⋆ separately
contains information about the space-time geometry. In
component form, the constitutive relation reads

Gμν ¼ ⋆μν
αβχαβ

σρFσρ: ð7Þ

The dielectric tensor χμναβ is independently antisymmetric
under index exchange on either μν or αβ, and thus χ has a
maximum of 36 independent parameters. In practice,
further symmetries may be imposed based on thermody-
namic or energy conservation arguments that reduce the
number of independent components to 15. The coordinate-
independent vacuum χ vac is uniquely defined as the trivial
dielectric such that χ vacF ¼ F.
Component-wise expansion of the constitutive Eq. (7) in

a local Cartesian frame recovers the vectorial relations [37]

~D ¼ ¯̄εc ~Eþ b ¯̄γc ~B; ~H ¼ ¯̄μc ~Bþ e ¯̄γc ~E ð8Þ

which can be put into the traditional relations

~D ¼ ¯̄ε ~Eþh ¯̄γ ~H; ~B ¼ ¯̄μ ~Hþe ¯̄γ ~E ð9Þ

where the “traditional” 3 × 3 matrices of permittivity ¯̄ε,
permeability ¯̄μ, and magnetoelectric couplings h ¯̄γ and e ¯̄γ in
Eq. (9), are related to the “covariant” quantities of Eq. (8) as
follows:

¯̄μ ¼ ð ¯̄μcÞ−1; ¯̄ε ¼ ¯̄εc − ðb ¯̄γcÞð ¯̄μÞðe ¯̄γcÞ; ð10aÞ
h ¯̄γ ¼ ðb ¯̄γcÞð ¯̄μÞ; e ¯̄γ ¼ −ð ¯̄μÞðe ¯̄γÞ: ð10bÞ

Thus in a locally flat frame, the components of χ may be
identified as the usual permeability and permittivity, but the
meaning of these concepts is less clear in the general
curvilinear coordinates of curved space-times where the
metric contributes nontrivially to the constitutive relation.

III. DIELECTRIC ANALOG OF A SPACE-TIME

Equations (5) and (6) provide a description of electro-
dynamics in linear, dispersionless, lossless media residing
in possibly curved space-time manifolds. By selecting a
map from one such manifold to another, the behavior of
electromagnetic fields in one manifold may be identified
with electromagnetic fields in another manifold such that
Maxwell’s equations are satisfied in the target manifold. In
particular, on-shell electromagnetic fields in an arbitrary
vacuum space-time may be identified with on-shell sol-
utions in a nonvacuum dielectric residing in Minkowski
space-time, thereby enabling a flat space-time dielectric
representation of a curved space-time in much the same
way that the curved surface of the Earth may be mapped
into a flat cartographic representation.
But as the map-makers of old discovered, there is no

canonical choice of projection map. Indeed, since the
curved space-time and the flat space-time are not isometric,
Gauss’ Theorema Egregium demands that not all features
of the curved space-time can be simultaneously faithfully
represented in the flat space-time, and the choice of
projection map is informed by what features of the curved
space-time one wishes to faithfully represent. Choosing a
coordinate identity as the projection map recovers
Plebanski’s early results [7] that have been used almost
exclusively in the study of dielectric analogs ever since.
Consider the curved vacuum space-time manifold M̂

with metric ĝ. The dielectric properties of this vacuum
space-time are uniquely described by χ̂ ¼ χ vac. We wish to
project on-shell solutions of Maxwell’s equations in M̂ into
on-shell solutions of Maxwell’s equations in a dielectric
medium χ residing in Minkowski space-time M with
metric η, as in Fig. 1. For this purpose, define the analog
projection map

P∶M̂ → ~M ⊆ M: ð11Þ

The electromagnetic fields F andG are projected into the
analog with the pullback of P−1, which is denoted ðP−1Þ�.
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Mapping on-shell solutions from M̂ to χ requires satisfac-
tion of the two conditions

Gx ¼ ðP−1Þ�ðĜP−1ðxÞÞ
¼ ðP−1Þ�ð⋆̂P−1ðxÞ ∘ χ̂P−1ðxÞ ∘ F̂P−1ðxÞÞ ð12aÞ

and

Gx ¼ ⋆x ∘ χ x ∘Fx ¼ ⋆x ∘ χ x ∘ ðP−1Þ�ðF̂P−1ðxÞÞ: ð12bÞ

Equations (12a) and (12b) can be solved for the analog
medium (setting χ̂ ¼ χ vac), resulting in [18]

χητ
πθðxÞ ¼ −⋆ητ

λκjxðΛ−1ÞAλjxðΛ−1ÞBκjx⋆̂AB
MN jP−1ðxÞ

× Λπ
MjxΛθ

N jx; ð13Þ

where Λ ¼ dP is equivalent to the Jacobian matrix of the
projection P. Capital latin indices refer to the vacuum
manifold, while lower case greek indices refer to the
Minkowskian analog. Equation (13) gives the parameters
of a dielectric material χ in Minkowski space-time that
supports the electromagnetic field configuration specified
by the projection P. In this sense, the medium χ emulates
the behavior of electromagnetic fields in the curved vacuum
space-time.
Choosing P ¼ Pid ¼ id, the coordinate identity map,

then Λ ¼ I4 and

χητ
πθðxÞ ¼ −⋆ητ

λκjx⋆̂λκ
πθjx: ð14Þ

Expanding the constitutive Eq. (6) for this trivial analog
medium in Minkowski space-time and converting to the
representation of Eq. (9) leads directly to Plebanski’s
results for the effective permeability, permittivity, and
magnetoelectric couplings of a vacuum space-time [7]

¯̄μ ¼ ¯̄ε ¼ −
ffiffiffiffiffiffi−gp
g00

gij; ð15Þ

e ¯̄γ ¼ ðh ¯̄γÞT ¼ −ϵijk
g0j
g00

; ð16Þ

where gij is the purely spatial part of the vacuum space-time
metric and g0j are the time-space components of the metric.
If the permeability and permittivity are isotropic, then the
bianisotropy vector evident in the magnetoelectric coupling
may be identified with a characteristic velocity of the
medium

vj ¼
g0j
g00

: ð17Þ

Note that Eqs. (15)–(17) do not conserve index type since
they are not a covariant representation of the medium.

A. Covariance properties of analog space-times

Analog space-times are not covariant in the sense that
they depend on both the choice of coordinates in M̂ and the
choice of projection, and a coordinate transformation in M̂
does not correspond to a coordinate transformation in the
analog.
On the one hand it is straightforward to see that

Plebanski’s analog model, based on the projection Pid,
leads to analogs that depend on the choice of coordinates in
M̂. Given two coordinate descriptions of M̂ and employing
Pid on each, two analog mediums are calculated and found
to be physically different objects rather than different
coordinate descriptions of the same physical object. For
example, consider FLRW space-time in comoving coor-
dinates ðt; rc; θ;ϕÞ and physical coordinates ðt; rp; θ;ϕÞ,
related by rp ¼ aðtÞrc. If both the comoving and physical
coordinate descriptions of FLRW are projected into the
spherical coordinates of Minkowski space-time with Pid,
then χ c ≠ χp are both already described in the same
Minkowski spherical coordinates and cannot be related
by a coordinate transformation. In particular, suppose JA

0
A

is the Jacobian matrix of a coordinate transformation
R∶M̂ → M̂0 in the vacuum space-time. Then Eq. (14)
would become

χητ
πθðxÞ ¼ −⋆ητ

λκjxJA0
λjxJB0

κjx⋆̂A0B0C
0D0 jRðxÞðJ−1ÞπC0

× jxðJ−1ÞθD0 jx; ð18Þ

where the unprimed index on J is equivalent to an index in
the analog because of the fixed projection map Pid. If the
first two factors of J could be pulled through the leading
⋆ operator such that the ⋆ acted on ⋆̂ as in Eq. (14), then
Eq. (18) would show that χ is related to χ 0 by a coordinate
transformation. But this is clearly not possible so we
conclude that analog space-times based solely on Pid
are not covariant under coordinate transformations.
On the other hand, since the projection map is freely

specifiable, we may find related projections P and P0 such
that the same physical analog is produced, but this is not the
same thing as a coordinate transformation in the analog. Let
R∶M̂ → M̂0 be a coordinate transformation in M̂ with

FIG. 1. An arbitrary curved vacuum manifold M̂ is projected
into a dielectric analog χ residing in Minkowski space-time M.
Electromagnetic fields on M̂ are projected to χ by the pullback
of P−1.
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Jacobian matrix J, and let S∶M → M0 be an independent
coordinate transformation in Minkowski space-time M
with Jacobian matrix L, as depicted in Fig. 2. Given the
analog projection P, χ is given by Eq. (13), which may be
related to the primed quantities by

χ αβμν ¼ −ðLα0
αLβ0

β⋆α0β0
σ0ρ0 ðL−1Þσσ0 ðL−1Þρρ0 Þ

× ðΛ−1ÞAσðΛ−1ÞBρðJA0
AJB

0
B⋆̂A0B0C

0D0 ðJ−1ÞCC0

× ðJ−1ÞDD0 ÞΛμ
CΛν

D: ð19Þ

Inserting two factors of LL−1, this can be written as

χ αβμν ¼ −Lα0
αLβ0

βð⋆α0β0
σ0ρ0ΛA0

σ0ΛB0
ρ0 ⋆̂A0B0C

0D0 ðΛ−1Þμ0C0

× ðΛ−1Þν0D0 ÞðL−1Þμμ0 ðL−1Þνν0
¼ Lα0

αLβ0
βχα0β0

μ0ν0 ðL−1Þμμ0 ðL−1Þνν0 ð20Þ

with

Λμ0
C0 ¼ Lμ0

μΛμ
CðJ−1ÞCC0 ð21Þ

or in terms of index-free matrix multiplication

Λ0 ¼ LΛJ−1: ð22Þ

Since Λ0 ¼ dP0, this says that by choosing P0 to be the
related projection

P0 ¼ S ∘P ∘R−1 ð23Þ

that makes Fig. 2 commutative, χ and χ 0 will represent the
same physical analog medium. However, the coordinates in
the analog are still completely independent of the coor-
dinates in M̂. One could choose S ¼ id and we see that the
action ofP0 is simply to undo the coordinate transformation
R, which returns us to the original configuration in the
original analog coordinates.
Since the projection is freely specifiable, M̂ may be

represented by an infinite number of physically inequiva-
lent analog media in Minkowski space-time. The projection
into the analog is not unique and there does not exist a
canonical choice of P. Indeed, as we have seen, a single
choice of P is not even possible if one wants different

coordinate descriptions of a vacuum manifold to have the
same physical analog representation. However, this wide
freedom in the choice of P also implies that the analog
model only has meaning when interpreted with respect to
the chosen map. Furthermore, since a curved vacuum
space-time cannot be isometrically mapped into a
Minkowskian analog, not all features of light propagation
in the curved manifold can be simultaneously emulated by
the analog. In subsequent sections it is shown that the
choice of projection map should be informed by which
feature of light propagation one wishes to emulate.

B. Coordinate identity analogs of FLRW space-time

To illustrate the physical inequivalence of analogs
obtained using Pid with different coordinate descriptions
of the same space-time, we consider FLRW space-time in
conformal, comoving, and physical coordinates, and find
that the corresponding analogs are not related by a
coordinate transformation.
Friedmann-Lamaître-Robertson-Walker space-time is

often described by comoving coordinates ðt; rc; θ;ϕÞ with
the line element

ds2 ¼ −dt2 þ aðtÞ2ðdrc2 þ rc2dθ2 þ rc2sin2θdϕ2Þ: ð24Þ

In this form it may be seen that a spatial hypersurface of the
FLRW space-time expands or contracts with time through
the scale factor aðtÞ and may be used to model an
expanding or contracting universe. From Eq. (14), and
Eqs. (7)–(10), the corresponding trivial dielectric analog of
FLRW space-time in comoving coordinates is given by

¯̄μ ¼ ¯̄ε ¼ aðtÞI3; ð25aÞ
h ¯̄γ ¼ e ¯̄γ ¼ 0: ð25bÞ

Thus for this coordinate representation, the analog model is
an isotropic but time-dependent medium.
Alternatively, FLRW is actually a conformally rescaled

formofMinkowski space-time.Defining the conformal time

η ¼
Z

t

0

dt
aðtÞ ; ð26Þ

the FLRW space-time now has the line element

ds2 ¼ aðηÞ2ð−dη2 þ drc2 þ rc2dθ2 þ rc2sin2θdϕ2Þ ð27Þ

and we find that the resulting analog is just empty
Minkowski space-time

¯̄μ ¼ ¯̄ε ¼ I3; ð28aÞ
h ¯̄γ ¼ e ¯̄γ ¼ 0: ð28bÞ

FIG. 2. Commutative diagram of analog space-times in differ-
ent coordinates, showing that the analogs χ and χ 0 may be related
by S, but S is not associated to the coordinate transformation R.
The analog model is not covariant under coordinate transforma-
tions in M̂.
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This result highlights an important feature of dielectric
analog space-times in that, as far as the light cone is
concerned, a dielectric analog actually represents an equiv-
alence class of conformally related space-times. The reason
is that the ⋆ operators in Eq. (13) are conformally invariant
and so χ is also conformally invariant. Thus given a
coordinate description that is conformally related to
Minkowski space-time we should not be surprised that
the analog is just Minkowski space-time.
In the comoving coordinates introduced above, a spatial

hypersurface is seen to expand even though the spatial
coordinate points themselves remain fixed. This implies
that the physical distance between two points of fixed
comoving coordinates is actually increasing [or decreasing
depending on aðtÞ] with time. The physical distance to an
object at fixed comoving coordinate is

rp ¼ aðtÞrc: ð29Þ

An observer would naturally interpret the behavior of
objects at fixed comoving coordinates as moving away
from each other with recessional velocities that are propor-
tional to their distance—a rule known as Hubble’s law. This
Hubble flowmay be conveniently described by the physical
coordinates ðt; rp; θ;ϕÞ with line element

ds2 ¼ −
�
1 −

�
a0ðtÞ
aðtÞ

�
2

rp2
�
dt2 − 2

a0ðtÞ
aðtÞ rpdrpdtþ drp2

þ rp2dθ2 þ rp2sin2θdϕ2: ð30Þ

The same procedure as used before gives the physical
coordinates analog as

¯̄μ ¼ ¯̄ε ¼

0
BBB@

1 0 0

0
aðtÞ2

aðtÞ2−rp2a0ðtÞ2 0

0 0
aðtÞ2

aðtÞ2−rp2a0ðtÞ2

1
CCCA; ð31aÞ

h ¯̄γ ¼ ðe ¯̄γÞT ¼

0
BBB@

0 0 0

0 0 − rpaðtÞa0ðtÞ
aðtÞ2−rp2a0ðtÞ2

0
rpaðtÞa0ðtÞ

aðtÞ2−rp2a0ðtÞ2 0

1
CCCA; ð31bÞ

which is a complicated anisotropic magnetoelectric
medium.
In each of these cases, the target manifold has been

specified as Minkowski space-time with spherical coordi-
nates. It is therefore clear that Plebanski’s approach with
analog projection map Pid results in different physical
analog models for different coordinate descriptions of the
same vacuum space-time.

IV. LIGHT PROPAGATION IN FLRW ANALOGS
IN COMOVING COORDINATES

From the time of Eddington [5] and Gordon [6], through
Plebanski [7] and to the present, the study of dielectric
analog space-times has been largely focused on coordinate
descriptions of the geometric optics ray trajectories of light
through the analog, and it appears to have been widely
assumed that this coordinate description suffices as a
faithful representation of light propagation through the
curved space-time M̂. However, a coordinate description of
ray trajectories in the analog is of limited value because the
coordinates in M̂ and the analog coordinates refer to
different metrics. So even if rays in the analog pass through
points with the same coordinate labels as rays in M̂, they
cannot simultaneously replicate all kinematical aspects of
light propagation in M̂, such as the fractional expansion,
shear, and vorticity of a congruence; quantities that carry
characteristic information about the space-time. For exam-
ple, the fractional expansion of a null congruence tells us
about the presence of singularities, trapped surfaces, and
horizons, and so would need to be properly analyzed for
any analog that claimed to replicate such features.
In fact, it turns out that the ability of an analog model to

faithfully emulate these characteristic features is quite
limited. We focus on the fractional expansion of a con-
gruence of light rays in the analog, and find that while
a projection may be found such that the expansion of a
congruence in the analog matches the expansion of a
congruence in M̂, the required map is specific to the
chosen congruence; any other congruence in the analog
will fail to have the correct expansion.
The discussion of light rays falls within the realm of

geometric optics. To arrive at the geometric optics limit in
the analog, one may begin by assuming a solution for the
4-vector potential Aμ ¼ ~Aμe

i
λS and F ¼ dA. Inserting this

into Maxwell’s equations (5a)–(5b) and taking the sta-
tionary phase approximation λ → 0 leads to [35]

Xα
ρ ~Aρ ¼ 0; ð32Þ

where

Xα
ρ ¼ ημνχνα

σρkμkσ; ð33Þ

ημν is the background Minkowski metric, and kμ ¼ ∂μS is
the wave vector. The existence of nontrivial solutions to
Eq. (32) requires detðXα

ρÞ ¼ 0. It turns out that this
determinant condition is satisfied identically, so the sub-
sidiary condition

Hðxα; kβÞ ¼ detðXi
jÞ ¼ 0; ð34Þ

must be satisfied, where the indices i, j only run over the
purely spatial components.
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For impedance-matched media such as that obtained by
projection from a vacuum space-time M̂, H will always be
of the form

Hðxα; kβÞ ¼ BðxαÞk02H2 ð35Þ

whereH can be thought of as a second-order polynomial in
k0, and BðxαÞ is some factor that does not depend on kβ.
The condition H ¼ 0 will be everywhere satisfied on a
solution curve if and only ifH ¼ 0, so the conditionH ¼ 0
becomes the condition H ¼ 0. For impedance-matched
media, H can always be written as

H ¼ 1

2
γμνkμkν; ð36Þ

which is of the same form H assumes in vacuum space-
times, but where γμν would be replaced with the space-time
metric gμν. Thus, in media the tensor γμν is often referred to
as the “optical metric,” but should be understood as
containing information on both the medium parameters
and background metric. SinceHðxα; kβÞ is a function on the
cotangent bundle that vanishes everywhere on a solution
curve, then the exterior derivative of H also vanishes,
dH ¼ 0, leading to Hamilton’s canonical equations

_xα ¼ ∂H
∂kα ;

_kα ¼ −
∂H
∂xα ; ð37Þ

which may be integrated to find the ray trajectories.

A. Particle horizon and redshift in the
trivial FLRW analog

Before showing the failure of the analog to correctly
replicate kinematical aspects of light propagation in M̂, we
first examine some examples where an analog generated by
Pid has potentially interesting properties. Consider the
projection Pid between FLRW space-time in comoving
coordinates and the spherical coordinates of Minkowski
space-time. The optical metric is γμν ¼ gμν, so one might
naively expect light propagation in the analog to fully
mimic light propagation in the vacuum.
The wave vector for a future-directed radially propagat-

ing ray in the analog is

kμ ¼ ð−k0ðt; rÞ; k1ðt; rÞ; 0; 0Þ: ð38Þ

From

H ¼ 1

2

�
k12

aðtÞ2 − k02
�

¼ 0 ð39Þ

we get

k1 ¼ �aðtÞk0; ð40Þ

in which the positive (negative) sign corresponds to out-
going (ingoing) rays. The tangent to the curve is found from
the first of Hamilton’s equations (37) to be

uα ¼
�
k0;�

k0
aðtÞ ; 0; 0

�
: ð41Þ

Meanwhile, the second of Hamilton’s equations (37) pro-
vides an evolution equation for kμ

_kα ¼
�
k02a0ðtÞ
aðtÞ ; 0; 0; 0

�
: ð42Þ

Thus we have a single equation for k0,

−
∂
∂τ lnðk0Þ ¼ k0

∂
∂t lnðaðtÞÞ

¼ k0

�
dt
dτ

�
−1 ∂

∂τ lnðaðtðτÞÞÞ: ð43Þ

But from the first of Hamilton’s equations we know that
dt
dτ ¼ u0 ¼ k0. The solution for k0 is straightforwardly

k0 ¼
a0k0i
aðtÞ ; ð44Þ

and substitution into Eq. (41) yields

uα ¼ a0k0i
aðtÞ

�
1;� 1

aðtÞ ; 0; 0
�
: ð45Þ

For an outgoing ray, one deduces

dr
dt

¼ ur

ut
¼ 1

aðtÞ : ð46Þ

If light commences propagating radially inward from all
points in the analog at some time t0, then the largest radius
in the analog from which an observer at r ¼ 0 has received
a signal at time t is

Z
0

rPH

dr ¼
Z

t

t0

−
dt
aðtÞ : ð47Þ

The above relation replicates the most common definition
of the particle horizon—the most distant point in the
universe from which we have received light since the
big bang. Furthermore, if we consider the frequency of two
successive pulses, separated temporally by an interval Δt,
propagating in the analog and reaching an observer,
then Eq. (46) gives the frequency shift between the two
pulses by
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zþ 1 ¼ ω0

ωðtÞ : ð48Þ

For a detailed derivation of frequency shift and particle
horizon from Eq. (46), see for example section 10 of
Ref. [38]. Note that redshifts in the analog are facilitated by
the time dependence of the medium parameters [39]. The
above results show that at least some of the basic and well-
known effects observed in FLRW space-time can be
replicated in the analog.
Before moving on, it is worth pointing out some generic

features of light propagation in the analog. First, for both
ingoing and outgoing rays uαuα < 0, indicating that light
rays in the analog are time-like. Second, ∇uu ≠ 0 shows
that the light rays are not geodesic with respect to the
background Minkowski space-time, nor is it possible to
find a reparametrization of the curve so as to make it
geodesic. Third, uαkα ¼ 0 is valid in the analog, but it is not
true that ηαβuβ ¼ kα.

B. Congruence expansion

Despite the fact that the projectionPid results in an optical
metric γμν ¼ gμν, light propagation in the analog does not
faithfully replicate all aspects of light propagation in the
vacuum. The reason is that although the optical metric is
identical to the vacuum metric, most physical measures of
light propagation in the analog are actuallymadewith respect
to the backgroundMinkowskimetric, such as the kinematical
decomposition of a congruence. This decomposition pro-
vides physically meaningful measures such as the fractional
rate of expansion of the cross section of a laser beam, and in
curved space-times is instrumental in determining the exist-
ence of trapped surfaces and horizons. As such, we focus on
the fractional rate of expansion of a radial congruence of light
propagating through the analog, and find that projectingwith
Pid does not reproduce the vacuum rate of expansion.
Furthermore, we find that although it is possible to construct
a projection tailored such that the expansion is preserved, it
can only be preserved for a single choice of congruence at a
time. Preserving the expansion for a different choice of
congruence requires a different projection.

1. Expansion of a radial congruence in FLRW

Before analyzing the expansion of a congruence in the
analog, we first find the expansion in the vacuum space-
time that we are attempting to emulate. We again consider
future-directed radially propagating rays. In the vacuum,
these rays are null geodesics for which uAkA ¼ 0 and
kA ¼ gABuB. It may be shown that the evolution of a
congruence centered on the curve uA is governed by uA;B
[40]. The expansion is the fractional rate of change of the
transverse cross section of the congruence, which is equal
to the trace of the projection of uA;B into the transverse
subspace. The light cone at every point is spanned by both

outgoing and ingoing rays, meaning that the transverse
subspace is only two dimensional. One may find a
projection operator from the inherited metric on the trans-
verse subspace [40,41]

hAB ¼ gAB þ uAvB þ uBvA: ð49Þ

In the literature, vA is typically introduced as an “auxiliary”
null vector such that uAvA ¼ −1. The expansion of the
vacuum congruence about uA is

Θu ¼ hABuA;B ð50Þ

from which we find the expansion of radially outgoing and
ingoing rays to be, respectively,

Θu ¼
2a0k0iðra0ðtÞ þ 1Þ

raðtÞ2 ; ð51aÞ

Θv ¼
2a0k0iðra0ðtÞ − 1Þ

raðtÞ2 : ð51bÞ

2. Expansion of a radial congruence in the analog

By contrast, we have said that rays in the analog follow
nongeodesic time-like curves with respect to the back-
ground metric, so it is tempting to examine the kinematics
of light in media with the formalism for time-like con-
gruences [40]. However, with the advent of metamaterials
that offer a great degree of control over light propagation,
we find the need for an analysis that can track a congruence
that smoothly varies from null to time-like, and even to
space-like. The light cone at every point is still defined by a
set of two linearly independent rays—left/right or ingoing/
outgoing rays. Thus the transverse subspace is still two
dimensional, as would be expected for say, the cross section
of a laser beam.
The projection operator defined by Eq. (49) made use of

the fact that kμ ¼ gμνuν in the vacuum, a relation that does
not hold in the analog. It is therefore necessary to be
cognizant of index placement in the analog, and to
construct a more general projection operator. It was
previously mentioned that H could be considered as a
second-order polynomial in kμ. Thus at every point we
actually have two solutions, corresponding to ingoing and
outgoing rays. Let the pairs ðuα; kαÞ and ðvα;lαÞ denote the
tangent vector and wave covector for outgoing and ingoing
rays, respectively, which satisfy

uαkα ¼ 0; uαlα ≠ 0; ð52aÞ

vαlα ¼ 0; vαkα ≠ 0: ð52bÞ

With these fields, the projection operator generalizes
to [42]
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hβα ¼ δαβ −
lβuα

lσuσ
−
kβvα

kσvσ
: ð53Þ

One may readily verify that uβhβα ¼ vβhβα ¼ hβαkα ¼
hβαlα ¼ 0, and also that hμβhβα ¼ hμα. Since hβα is
orthogonal to both uβ and vβ the transverse subspace is
still only two dimensional, which is confirmed by the trace
hαα ¼ 2. This construction of hβα follows directly from
Maxwell’s equations in media and is equally applicable to
congruences that are null, time-like, or space-like with
respect to the background metric.
Using this projection operator to calculate the transverse

fractional expansion of a congruence in the analog with uα

and vα as in Eq. (45), one finds

Θu ¼ −Θv ¼ hβαuβ ;α ¼
2a0k0i
raðtÞ2 ; ð54Þ

which disagrees with the vacuum expansion found in
Eqs. (51a)–(51b).

C. Expansion-replicating analog model

We have found that an analog model based onPid fails to
correctly mimic the fractional rate of expansion of the
congruence despite the fact that the optical metric and
the coordinate description of light curves are the same as in
the original space-time. Since the projection is freely
specifiable, it is natural to ask whether a different choice
of projection could reproduce the correct expansion rate at
the expense of the optical metric and coordinate description
of curves.
The quantity Bα

β ¼ uα;β governs the evolution of the
separation between the curve with tangent uα and a nearby
curve in the congruence [40]. Let

B̄α
β ¼ hμαhβνuμ;ν ð55Þ

be the projection of Bα
β into the transverse subspace,

thereby describing the purely transverse evolution of the
congruence. The fractional expansion is the trace of B̄α

β, so
by calculating B̄α

β in both the vacuum and the analog we
may find a condition that determines an expansion-
preserving projection.
Expanding the covariant derivative, we have

B̄A
B ¼ hMAhBNðuM;N þ ΓM

NCuCÞ; ð56Þ

in vacuum, and

B̄α
β ¼ hμαhβνðuμ;ν þ Γμ

νγuγÞ; ð57Þ

in the analog, where capital latin indices refer to the
vacuum space-time M̂, lowercase greek indices refer to
the analog in Minkowski space-time M, while ΓM

NC and

Γμ
νγ are the Christoffel symbols for M̂ andM, respectively.

Let P∶M̂ → ~M ⊆ M be the sought-after analog projection
map, with associated Jacobian Λ ¼ dP. The ingoing
and outgoing rays in the analog are related to those in
M̂ by

uα ¼ Λα
AuA; lα ¼ ðΛ−1ÞAαlA; ð58aÞ

vα ¼ Λα
AvA; kα ¼ ðΛ−1ÞAαkA ð58bÞ

from which it follows that the projection operator trans-
forms as

hμα ¼ Λα
AðΛ−1ÞMμhM

A ð59Þ

and

uμ;ν ¼ Λμ
MðΛ−1ÞNνu

M
;N þ ððΛ−1ÞNν∂NΛμ

MÞuM: ð60Þ

Finally, one can recast the analog B̄α
β in Eq. (57) in terms

of quantities in M̂ as [42]

B̄α
β ¼ Λα

AðΛ−1ÞBβhMAhBN ½uM;N þ �ΓM
NSuS�; ð61Þ

with

�ΓM
NS ¼ ðΛ−1ÞMμΛ

ν
NΛγ

S
aΓμ

νγ þ ðΛ−1ÞMμ∂NΛμ
S: ð62Þ

The above relations show that B̄α
β is not quite the

same as a simple mapping of B̄A
B from the vacuum to the

analog since �ΓM
NS is not necessarily the same as ΓM

NS.
Taking the trace of Eqs. (56) and (61) we are able to
compare vΘ ¼ B̄A

A and aΘ ¼ B̄α
α as quantities in M̂. One

finds

vΘ ¼ B̄A
A ¼ hMN ½uM;N þ ΓM

NSuS�; ð63aÞ
aΘ ¼ B̄α

α ¼ hMN ½uM;N þ �ΓM
NSuS�: ð63bÞ

Hence, in order to have an analog that correctly replicates
the expansion of a congruence aΘ ¼ vΘ, we must satisfy
the condition

hMN ½�ΓM
NS − ΓM

NS�uS ¼ 0: ð64Þ

Now, if one wished to have an analog that correctly
replicates the expansion for all congruences then one
would have to satisfy the stronger condition

�ΓM
NS ¼ ΓM

NS; ð65Þ

which says that P pulls Γμ
νγ from the Minkowski back-

ground of the analog into ΓM
NS. However, by Gauss’

Theorema Egregium such a map cannot exist because the
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curved space-time M̂ and the flat Minkowski background
of the analog are not isometric. Therefore, we have found
that a single map cannot satisfy Eq. (64) for all con-
gruences. The best one can hope for is to satisfy Eq. (64) for
a given choice of congruence.
As an example, we seek the map that will preserve the

expansion of the radially outgoing congruence with tangent
vector given by Eq. (45), e.g.

uA ¼
�
a0k0i
aðtÞ ;

a0k0i
aðtÞ2 ; 0; 0

�
; kA ¼ gABuB; ð66aÞ

vA ¼
�
a0k0i
aðtÞ ;−

a0k0i
aðtÞ2 ; 0; 0

�
; lA ¼ gABvB: ð66bÞ

Given the symmetries of the space-time and the congru-
ence, we suspect that the desired projection from FLRW to
the analog has the form

ðtM; rM; θM;ϕMÞ ¼ PðtM̂; rM̂; θM̂;ϕM̂Þ
¼ ðtM̂; fðtM̂ÞrM̂; θM̂;ϕM̂Þ; ð67Þ

with the associated Jacobian

Λα
A ¼

0
BBB@

1 0 0 0

f0ðtÞrM̂ fðtÞ 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð68Þ

Since tM ¼ tM̂ we denote both by t. Equation (64) provides
the differential equation

2a0k0iðaðtÞf0ðtÞ − fðtÞa0ðtÞÞ
aðtÞ2fðtÞ ¼ 0; ð69Þ

which has the solution

fðtÞ ¼ c1aðtÞ; ð70Þ

where c1 is an integration constant. Thus, for the particular
choice of congruence made above we have found an
expansion-preserving map. For any other choice of con-
gruence we would have to go through the same procedure,
for which the outcome would be the specification of a
totally different analog projection map.

V. DIELECTRIC ANALOG SPACE-TIMES
AND TRANSFORMATION OPTICS

One of the pioneering formulations of transformation
optics was based on Eqs. (15) and (16); in other words, on
Plebanski’s analog space-times model using Pid as the
projection [30]. However, we argue that, while closely
related, analog space-times are not the same thing as TO.

The typical explanation of TO is that one starts in
Minkowski space-time and performs a coordinate trans-
formation which results in a new metric describing a curved
space-time; this curved space-time metric is then matched
to a dielectric medium via Eqs. (15) and (16). This
explanation is problematic because the space-time curva-
ture is a diffeomorphism invariant, so it is not possible to
use a coordinate transformation to generate a curved space-
time and associated metric. One could instead argue that the
mechanism being employed is a map into a curved space-
time that has the desired properties, and a subsequent
projection into an analog medium. Such an argument
actually bypasses the initial coordinate transformation
because it implies that there exist curved vacuum manifolds
that possess all possible variations of light propagation, and
it is merely a matter of identifying the desired vacuum
manifold and projecting to an analog. But we have
just shown that analog space-times suffer from three
serious issues that make them a poor choice as the basis
for TO.
(1) There is no canonical choice of projection map, so

any formulation of TO based on this approach is not
unique.

(2) Analog space-times are not covariant under coor-
dinate transformations, while any useful formulation
of TO should be covariant.

(3) Most concerningly, analog space-times do not
fully replicate the behavior of light propagation in
the vacuum. Thus any transformation medium ob-
tained as the analog of a space-time with the desired
light propagation would simply fail to work as
expected.

Instead, it has been shown that a more consistent and
fully covariant formulation of TO can be obtained through
what has been termed a corporeal transformation
[36,37,43]

T ∶M → ~M ⊆ M ð71Þ

as depicted in Fig. 3. The key difference is that we begin
and end in the same space-time manifold rather than
projecting from one manifold to a different manifold.
The dielectric medium ~χ can be solved for in exactly the

FIG. 3. In transformation optics, the space-time manifold,
metric, and coordinates all remain unchanged under the corporeal
transformation T . An initial distribution of electromagnetic fields
on M are transformed by the pullback of T −1, and only have
support in ~M ¼ T ðMÞ ⊆ M.
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same manner as finding an analog space-time, but Eq. (13)
becomes instead

~χητ
πθðxÞ ¼ −⋆ητ

λκjxðΛ−1ÞαλjxðΛ−1Þβκjx⋆αβ
μνjT −1ðxÞ

× Λπ
μjxΛθ

νjx ð72Þ

where the only change is that everything refers to the same
coordinate system on the same manifold M.
Physically this makes more sense. For all intents and

purposes we cannot engineer the space-time; instead, the
space-time remains fixed and we simply introduce the
presence of dielectric media to manipulate the fields, an
operation described by the corporeal transformation. The
corporeal transformation is also not a coordinate trans-
formation since the introduction of media should not have
anything to do with coordinates; thus this basis for TO is
fully covariant under coordinate transformations [43].
This formulation resolves the three major issues enu-

merated above. First, since there is no additional projection
map involved, the transformation medium is unique for a
given corporeal transformation. Second, this formulation of
TO is fully covariant under coordinate transformations, as
depicted in Fig. 4. In particular, given a coordinate trans-
formation R with Jacobian matrix J in the vacuum, the
corporeal transformation T , metric, and Hodge dual can all
be reexpressed in the new coordinates as T 0, g0, and ⋆0, and
it follows that

~χητ
πθðxÞ ¼ −ðJη0ηJτ0 τ⋆η0τ0

λ0κ0 ðJ−1Þλλ0 ðJ−1Þκκ0 Þ
× ðJγ0 λðΛ−1Þα0 γ0 ðJ−1Þαα0 ÞðJδ0 κðΛ−1Þβ0δ0 ðJ−1Þββ0 Þ
× ðJσ0αJρ0β⋆σ0ρ0

μ0ν0 ðJ−1Þμμ0 ðJ−1Þνν0 Þ
× ðJψ 0

μΛπ0
ψ 0 ðJ−1Þππ0 ÞðJω0

νΛθ0
ω0 ðJ−1Þθθ0 Þ

¼ −Jη0ηJτ
0
τ⋆η0τ0

λ0κ0 ðΛ−1Þα0λ0 ðΛ−1Þβ0 κ0⋆α0β0
μ0ν0

× Λπ0
μ0Λθ0

ν0 ðJ−1Þππ0 ðJ−1Þθθ0
¼ Jη

0
ηJτ

0
τ ~χη0τ0

π0θ0 ðJ−1Þππ0 ðJ−1Þθθ0 : ð73Þ

So unlike the case for analog space-times, a coordinate
change in the initial TO vacuum corresponds to the same
coordinate change in the transformation medium. Third,
since TO only refers to a single space-time there is no
question about which metric kinematical aspects of light

propagation are referred to. The kinematics of a congruence
in the transformation medium follows exactly from the
corporeal transformation and is not compromised by an
intermediary step in a nonphysical curved space-time.
Two final remarks about the formulation of TO discussed

here are that the initial configuration need not be vacuum
[44], and that it allows one to do TO in curved space-times,
not just in Minkowski space-time [43,45].

VI. CONCLUSION

By examining the kinematical properties of dielectric
analog space-times, we have shown that the projection of a
curved space-time M̂ into a dielectric analog residing in a
space-time of different curvature, such as Minkowski
space-time, is limited in its ability to faithfully represent
all aspects of light propagation in M̂. This is reminiscent of
the challenge faced by cartographers when representing a
curved surface on a flat sheet, and follows directly from
Gauss’ Theorema Egregium which forbids distortion-free
mappings between nonisometric spaces.
Although such mappings are well defined, with tensorial

field quantities mapped with well-defined differential
geometry operations, analog space-times are found to be
noncovariant under coordinate transformation in the sense
that the analog model is coordinate dependent. Two analogs
representing two different coordinate descriptions of the
same space-time are not necessarily the same physical
device described in concomitantly related coordinates.
Relying solely on the Plebanski model of coordinate
identification projection Pid would result in two com-
pletely different physical devices representing the same
space-time.
This helps to highlight the fact that there is no canonical

choice of projection map P; an infinite number of projec-
tions are possible, and which projection one chooses to
employ must be guided by which features of vacuum light
propagation one wishes to exhibit in the analog. This is
nicely illustrated by looking at an analog of FLRW in
different guises. It was found that Plebanski’s model of
FLRW could reproduce some notion of the particle horizon
and redshift, but completely failed to adequately represent
the kinematical properties of a congruence of light rays, in
particular the expansion of a transverse cross section of the
congruence. It is possible to construct a projection map P
such that the expansion is preserved for a given choice of
congruence at the expense of distortions in the optical
metric and coordinate description of light rays, but not for
all congruences simultaneously.
Last, the lack of canonical choice of projection, issues

with covariance under coordinate transformations, and the
simple fact that the analog does not fully represent light
propagation in the vacuum, all cast doubt on the viability of
the dielectric analog space-times approach as a basis for
transformation optics. Instead, these issues can be simulta-
neously resolved by simply assuming that TO is formulated

FIG. 4. In transformation optics, a coordinate transformationR
in the vacuum configuration corresponds to the same coordinate
transformation in the transformation media χ . Thus TO is fully
covariant under coordinate transformations.
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entirely as corporeal transformations on a single manifold.
Such transformations do not touch the metric or the
coordinates and only act to actively modify fields; these
have a straightforward interpretation as the insertion of a
field-modifying medium.
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