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In this paper, we show the existence of static and rotating universal horizons and black holes in
gravitational theories with broken Lorentz invariance. We pay particular attention to the ultraviolet regime,
and show that universal horizons and black holes exist not only in the low energy limit but also at the
ultraviolet energy scales. This is realized by presenting various static and stationary exact solutions of the
full theory of the projectable Horava gravity with an extra U(1) symmetry in (2 + 1)-dimensions, which, by

construction, is power-counting renormalizable.
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I. INTRODUCTION

Lorentz invariance (LI) has been the cornerstone of
modern physics and is strongly supported by observations
[1]. In fact, all the experiments carried out so far are
consistent with it, and there is no evidence to show that
such a symmetry needs to be broken at a certain energy
scale, although it is arguable that the constraints in the
matter sector are much stronger than those in the gravita-
tional sector [2].

Nevertheless, there are various reasons to construct
gravitational theories with broken LI In particular, when
spacetime is quantized, as what we currently understand
from the point of view of quantum gravity [3,4], space and
time emerge from some discrete substratum. Then, LI, as a
continuous spacetime symmetry, cannot apply to such
discrete space and time any more. Therefore, it cannot
be a fundamental symmetry, but instead an emergent one at
the low energy physics. Following this line of thinking,
various gravitational theories that violate LI have been
proposed, such as ghost condensation [5], Einstein-aether
theory [6], and more recently, Horava theory of gravity [7].
While the ghost condensation and Einstein-aether theory
are considered as the low energy effective theories of
gravity, the Hofava gravity is supposed to be ultraviolet
(UV) complete [7]. In particular, in this theory the LI is
broken in the UV, so the theory can include higher-
dimensional spatial derivative operators. As a result, the
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UV behavior of the theory is dramatically improved
and can be made power-counting renormalizable. On the
other hand, the exclusion of higher-dimensional time
derivative operators prevents the ghost instability, whereby
the unitarity problem of the theory, known since 1977 [8],
is resolved. In the infrared (IR), the lower dimensional
operators take over, whereby a healthy low-energy limit is
presumably resulted [9]. Recently, it was shown that the
Horava theory is not only power-counting renormalizable
but also perturbatively renormalizable [10]. In addition,
it is also very encouraging that the theory is canonically
quantizable in (1 4 1)-dimensional spacetimes with [11] or
without [12] the projectability condition.

However, once LI is broken different species of particles
can travel with different velocities, and in certain theories,
including the Hofava theory mentioned above, they can be
even arbitrarily large. This suggests that black holes may
exist only at low energies [13]. At high energies, any signal
initially trapped inside the horizon may be able to escape
out of it and propagate to infinity, as long as the signal has
sufficiently large velocity (or energy). This seems in a sharp
conflict with current observations that support the existence
of rotating black holes in our Universe [14].

The above situation was dramatically changed in 2011
[15,16], in which it was found that there still exist absolute
causal boundaries, the so-called universal horizons, and
particles even with infinitely large velocities would just
move around on these boundaries and cannot escape to
infinity. The main idea is as follows. In a given spacetime,
a globally timelike scalar field, the so-called khronon [15],
might exist. Then, similar to the Newtonian theory, this
khronon field defines a global absolute time, and all
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FIG. 1. (a) The light cone of the event p in special relativity.
(b) The causal structure of the point p in Horava theory.

particles are assumed to move along the increasing
direction of the khronon, so the causality is well-defined
[cf. Fig. 1]. In such a spacetime, there may exist a surface as
shown in Fig. 2, denoted by the vertical solid line. Given
that all particles move along the increasing direction of the
khronon, from Fig. 2 it is clear that a particle must cross this
surface and move inward, once it arrives at it. This is an
one-way membrane, and particles even with infinitely large
speed cannot escape from it, once they are trapped inside it.
So, it acts as an absolute horizon to all particles (with any
speed), which is often called the universal horizon [15,16].
Since then, this subject has already attracted lots of
attention [17,18].

However, in most studies of universal horizons carried
out so far the khronon plays a part of the gravitational
theory involved [17,18]. To generalize the conception of
the universal horizons to any gravitational theory with
broken LI, recently we considered the khronon as a test
field, and assumed it to play the same role as a Killing
vector, so its existence does not affect the spacetime
considered, but defines the properties of it [19]. By this
way, such a field is no longer part of the gravitational
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FIG. 2. Tllustration of the bending of the ¢» = constant surfaces,
and the existence of the universal horizon in the Schwarzschild
spacetime [18], where ¢» denotes the khronon field, and ¢ and r are
the Painlevé-Gullstrand coordinates. Particles move always along
the increasing direction of ¢. The Killing vector {# = &/ always
points upward at each point of the plane. The vertical dashed line
is the location of the Killing horizon, » = rgy. The universal
horizon, denoted by the vertical solid line, is located at r = ryy,
which is always inside the Killing horizon.
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theory, and it may or may not exist in a given spacetime,
depending on the spacetime considered. Then, we showed
that the universal horizons indeed exist, by constructing
concrete static charged solutions of the Horava gravity.
Taking the khronon field as a test field, we further showed
that the universal horizons exist and are always inside the
Killing horizons [18] in the three well-known black hole
solutions: the Schwarzschild, Schwarzschild anti-de Sitter,
and Reissner-Nordstrom. It should be noted that these
solutions are often also solutions of gravitational theories
with the broken LI, such as the Horava theory [20], and the
Einstein-aether theory [6].

At the universal horizon, a slightly modified first law of
black hole mechanics exists for the neutral Einstein-aether
black holes [21], but for the charged Einstein-aether black
holes, such a first law is still absent [22]. Using the
tunneling method, the Hawking radiation at the universal
horizon for a scalar field that violates the local LI was
studied and found that the universal horizon radiates as a
blackbody at a fixed temperature [23]. A different approach
was taken in [24], in which ray trajectories in such black
hole backgrounds were studied, and evidence was found,
which shows that Hawking radiation is associated with the
universal horizon, while the “lingering” of low-energy ray
trajectories near the Killing horizon hints a reprocessing
there. However, the study of a collapsing null shell showed
that the mode passing across the shell is adiabatic at late
time [25]. This implies that large black holes emit a thermal
flux with a temperature fixed by the surface gravity of the
Killing horizon. This, in turn, suggests that the universal
horizon should play no role in the thermodynamic proper-
ties of these black holes, although it should be noted that in
such a setting, the khronon field is not continuous across
the collapsing null shell. As mentioned above, a globally
defined khronon plays an essential role in the existence of a
universal horizon, so it is not clear how the results
presented in [25] will be affected once the continuity of
the khronon field is imposed. On the other hand, using the
Hamilton-Jacobi method, recently we studied quantum
tunneling of both relativistic and nonrelativistic particles
at Killing as well as universal horizons of Einstein-
Maxwell-aether black holes, after higher-order curvature
corrections are taken into account [26]. Our results showed
that only relativistic particles are created at the Killing
horizon, and the corresponding radiation is thermal with a
temperature exactly the same as that found in general
relativity. In contrary, only nonrelativistic particles are
created at the universal horizon and are radiated out to
infinity with a thermal spectrum. However, different
species of particles, in general, experience different
temperatures.

In this paper, our main purpose is twofold. First, we shall
show that universal horizons exist not only in the low
energy limit, but also in the UV regime. To show this, we
consider solutions of the full theory of Horava gravity, that
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is, with all the higher-order derivative terms. In general,
these calculations are very cumbersome. To make the
problem tractable, we restrict ourselves to the (2 + 1)-
dimensional case in the framework of the projectable
Hotava theory with an extra U(1) symmetry [27-30]. It
should be noted that in [31], the effects of higher-
order derivative terms on the existence of universal
horizons were studied and found that, if a three-Ricci
curvature squared term is joined in the ultraviolet modi-
fication, the universal horizon appearing in the low
energy limit was turned into a spacelike singularity.
While this is possible, as the universal horizons might
not be stable against nonlinear perturbations [15], the
results presented in this paper show that they do exist
even in the UV regime. Second, we shall show that
universal horizons exist not only in static spacetime, but
also in the ones with rotation. This is important for both
theory and observation, as we expect that the majority of
astrophysical black holes should be the ones with rotation
[14]. In [32], it was shown that rotating universal horizons
exist in the IR limit, in the framework of the nonprojectable
Horava gravity without the extra U(1) symmetry [33]. In
this paper, we shall show that this is true not only in the IR
limit but also in the UV.

The rest of the paper is organized as follows. In Sec. II,
we give a brief consideration of the stability of the (2 + 1)-
dimensional Horava theory with both projectability con-
dition and the extra U(1) symmetry, while a more complete
review of the theory in (d 4 1)-dimensions is presented in
Appendix A. In Sec. III, we present various static and
stationary solutions by working in the Painlevé-Gullstrand
(PG) coordinates [34]. The main reason to work with these
coordinates is that the solutions are free of coordinate
singularities across the Killing horizons. However, a price
to pay is that the field equations become mathematically
more complicated. Fortunately, they still allow us to find
analytical solutions in closed forms. In Sec. IV, we study
the locations of Killing and universal horizons, and find
that such horizons indeed exist, even when the higher-order
curvature terms are included. We end this paper with
Sec. V, in which our main conclusions presented. There
are also two more appendixes, Appendixes B and C, in
which some mathematical expressions are presented.

Before proceeding further, we would like to note that the
study of black holes in gravitational theories with the
broken LI is also crucial in the understanding of quantiza-
tion of gravity [3.,4] and the nonrelativistic AdS/CFT
correspondence [35-38]. But, such studies are all in its
infancy, and more detailed investigations are highly
demanded.

II. PROJECTABLE HORAVA THEORY WITH U(1)
SYMMETRY IN (2 + 1) DIMENSIONS

In the 2 4 1 dimensional spacetimes, the Riemann and
Ricei tensors R;j; and R;; of the two-dimensional (2d)
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leaves of ¢ = constant have only one independent compo-
nent, and are given by [3],

1
Rijkl = 5 (Qikgﬂ - gilgjk)R7

1
R;; = Egin'
Then, the potential part of the action of the Horava theory

up to the fourth-order is given by

(2.1)

1
Ly =2A+gR+ z (92R* + g3AR), (2.2)

where A is the cosmological constant, and g,’s are
dimensionless coupling constants, and { has the dimension
of (mass)~!. However, in 2d spaces the Ricci scalar R
always takes a complete derivative form. Then, when
N = N(t), the action can be integrated once, and this term
can be expressed as a boundary term. The same is true for
the g3 AR term. Therefore, in the case with the projectability
condition, without loss of generality, we can always drop
the g, and g; terms.

In Appendix A, we provide a brief introduction to the
(d 4 1)-dimensional Horava theory with the projectability
condition (A4) and the Diff (M, F) symmetry (A5). Setting
d =2 and taking the above potential (with g; = g3 = 0)
into account, one can obtain the field equations. In
particular, the relativistic case is recovered by setting

(4, 92)9% = (1,0). (2.3)

In addition, one can show that the Minkowski spacetime
(NN, g;j,A, ) = (1,0,6,0,0) (24)

is a solution of the field equations with A = A, = 0. Then,
its linear perturbations can be cast in the form,'

N:1+¢, Nl':al'B,
A =5A, ¢ = b, (2.5)

where ¢, B,y, E, 5A and ¢ represent the scalar perturba-
tions, and the projectability condition requires ¢ = ¢(1).
Using the gauge freedom, without loss of generality, we can
always set [39]

¢=E=56p=0, (2.6)
which uniquely fixes the gauge. Then, the quadratic action
without matter takes the form,

'In (2 + 1)-dimensions, there are no vector and tensor pertur-
bations [3]. This is true also in the Horava theory.
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NG / dtd3x{2(1 —24)(y* + y0*B)
+(1_@a¥3y-z(A+2g;m¥>yw},(zw

where 8% = §7/9,0;. Now, variations of S?) with respect to
A, B, and y yield, respectively,

Py =0, (2.8)

(1 =240 + (1 — 2)8*B =0, (2.9)

. l 27 1 @ 2 2 —
w+263+72(1_2/1)(4gzay/+aA =0. (2.10)

From Eq. (2.8) it can be seen that the scalar y satisfies the
Laplace equation. Thus, it does not represent a propagative
mode, and with proper boundary conditions, one can
always set it to zero. Similarly, this is also true for other
scalars. Hence, the spin-0 gravitons are not present in
(2 4+ 1)-dimensions, similar to the (3 + 1)-dimensional
case [30].

III. STATIC AND STATIONARY VACUUM
SOLUTIONS

In this section we are going to study vacuum solutions of
the projectable Horava theory with the extra U(l) sym-
metry introduced in the last section in (2 + 1)-dimensional
static and stationary spacetimes. Since our main purpose is
to study the existence of universal horizons, which are
always located inside the Killing horizons,” we shall choose
the gauge such that the solutions do not have coordinate
singularities outside of universal horizons. In the spheri-
cally symmetric spacetimes with a timelike foliation, this is
quite similar to the PG coordinates [34]. Therefore, in this
paper we shall refer such a coordinate system as the PG
coordinates. To proceed further, let us first consider static
spacetimes.

A. Static spacetimes

The general static solutions with the projectability
condition N = N(#) can be cast in the form,

N=1, N =8h(r), g,-j:<ﬁ,r2),
(3.1)

’In this paper we define a Killing horizon as the location at
which the time-translation Killing vector {# becomes null. In the
spacetimes with rotations, this coincides with the ergosurface
(ergosphere), while in the static spacetimes it coincides with the
event horizon [18,40].

PHYSICAL REVIEW D 93, 124025 (2016)
in the spatial coordinates x' = (r,0). Using the U(1)
symmetry, without loss of the generality, we choose the
gauge,

¢ =0, (3.2)

so that F Zp "= 0= ff,{ . Then, we find that the quantities

Kij,R;j, m;;, Fj, F;; and L; are given by Eq. (BI) in
Appendix B. Then, Eqgs. (A17), (A18), (A20), (A21),
(A23), (A28), and (A29) reduce, respectively, to
Egs. (B2)-(B8) given in Appendix B.

When the spacetime is vacuum, Eqs. (B3)—-(B7) reduce,
respectively, to

(= D)W —a(r)i) + b(Hh=0,  (33)
&—UQW+%W>+dﬂﬂ+ﬂdh:Q (3.4)
£+ 20,8 =0, (3.5)

A+ P(RA +0(r) =0, (3.6)

A" Y UMA + V(DA + W) =0,  (3.7)

where a, b, c,d, P, Q, U,V and W are given by Eq. (B9) in
Appendix B.

It should be noted that not all of the above equations are
independent. In fact, Eq. (3.4) can be obtained from
Egs. (3.3) and (3.5), while Eq. (3.7) can be obtained from
Egs. (3.6) and (3.5). Therefore, in the present case there are
three independent equations, (3.3), (3.5) and (3.6), for the
three unknowns, f, & and A. In particular, one can first find
f from Eq. (3.5),

f(rn)=C, - Agrz, (3.8)
where C; is an integration constant. Substituting it into

Eq. (3.3), one can find A(r). Once f and h are known, from
Eq. (3.6), we find that

A(r):\/Cl—Agrz AO—/r\/% . (39)
1 — gl

where Aq is another integration constant. Therefore, our
main task now becomes to solve Eq. (3.3) for 4 with f
given by Eq. (3.8). Once # is known, the gauge field A can
be obtained by quadrature from Eq. (3.9). To solve
Eq. (3.3), we consider the two cases A; =0 and A, # 0,
separately.
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1 Ay=0
When Ag =0, we have

f(r)y=C, >0, (3.10)
and Eq. (3.3) simply reduces to
G-n(w+iw-Ln) =0, @)
p " . .

Therefore, we need to consider the two cases A =1 and
A # 1, separately.

Case with A = 1: Then, Eq. (3.11) is satisfied identically,
and £ is undetermined. This is similar to the (3 + 1)-
dimensional case [41]. Inserting Eq. (3.10) into the
expression for Q(r) defined in Eq. (B9) with 1 =1, we
find that

1
O(r) = —(hh' = Ar), (3.12)
¢
for which Eq. (3.9) yields
1
A(r):AO\/Cl—f(hz—Arz). (313)
1

Case with A # 1: In this case, Eq. (3.11) has the general
solutions,

C
h(r) = Cor +—2, (3.14)
r

where C, and Cj; are other integration constants. Inserting
Egs. (3.10) and (3.11) into Eq. (3.9), we obtain

2 (2-1)C-A

- - . (.15
20,7 2C, " (3.15)

A(r) = Ay

2.7, #0

When A, # 0, it is also found convenient to study the
two cases, A = 1 and 1 # 1, separately.
Case with 2 = 1: In this case, Eq. (3.3) yields

h(r)=0. (3.16)
Then, from Egs. (B9) and (3.8), we find that
292A§ - CQA
= 7. 3.17
o(r) 2(C a7 (3.17)
Inserting it into Eq. (3.9), we obtain
A(r)ZAm/Cl—Agrz—Al, (318)
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where A; = 2¢,A,/{? — A/A,. Tt can be shown that this is
the static Banados-Teitelboim-Zanelli (BTZ) solution with
mass M = —Cy, provided that A; = —1. When A; # —1,
we provide the main properties of the corresponding
solution in Appendix C.

Case with A # 1: In this case, Eq. (3.3) takes the form,

r2(C1 —Agrz)zh” +C1}"(C1 —Agrz)h'
A (Cr—Ayr?)

—|Ci(Cy=3A,2) + 1

}h =0, (3.19)

which has the general solution,

h(r) = r(Cy — Ayr?) <C4F(a, b;2;z)

dr
e / : > 3.20
: r(Cy = Ayr?)2F(a, b;2;2) (3.20)

where z = A,?/C,, C, and Cs are constants, F(a, b; c;z)
is the hypergeometric function, and now

1 A=35 1 A=35

Inserting it, together with f given by Eq. (3.8), into
Eq. (3.9), we can obtain A. However, because of the
complexity of A, it is found that no explicit expression
for A can be obtained, except for the case where 4 = 0 (or
C4 = C5 = 0), for which we find that Q(r) and A(r) are
given exactly by Eqgs. (3.17) and (3.18).

In addition, Eq. (3.20) holds only for C; # 0. When
C, =0, Eq. (3.3) has the general solution,

h(r) = C,r% + C_r%, (3.22)
where C, are the integration constants, and
1 A=5
=—|1x4/—). 2
Oy 2 < . 1) (3.23)

Note that to have 6. real, the parameter A must be either
(i) 4 < lor(ii) 4 > 5. Inserting it into Eq. (3.9), we find that

c,. C.
A(r)=Agr +1=Ay + -+

25 +r2—5+’ (3.24)

with
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o _ SF(A=D)BVZ - 67+ 5F(13 - 34)]
s 4A,(30+ 1)C7? ’
Z_:ZA - 292A§
< VI

A =1 (3.25)

g

B. Stationary spacetimes

To find rotating black holes, let us consider the stationary
spacetimes described by

N=1, N' = h,(r)8. + hy(r)s,,
1
- 25050

To obtain the general analytic solutions in this case, it is
found very difficult, and instead let us first consider the
case where R;; = 0 = A,. Then, depending on the values of
A, we find three classes of solutions. The first class is for
A =1, given by

f(l") = Cl#
hq
hg(l") = 7+hb’
B AR G
22 2c, " 2,

A(r)=1-4 (3.27)

where Cy, h,, h, and A, are all integration constants, and
similar to the static case the function &,(r) is arbitrary.
The second class is for 1 # 1, given by

f(r) = Cl’
h,

h(r) *7+hb7
H

hr(r) :7A+HB’"7
r

1
A(r)=1-A4Ay— W(Hi + Ch2 = Acr*),  (3.28)

where Ac = A+ (1 —21)Hp, and Cy,Hy, Hg, h,, h;, and
Ay are all constants.

The third class of rotating solutions can be obtained by
considering the ansatz

N=1,  Nt=hy(r)s,

rSr 2 50 O
567 + 606,

1
9= 703 (3.29)

for which we find the following rotating solution

PHYSICAL REVIEW D 93, 124025 (2016)
f(r) :fO_Agr27

h
ho(r) = hp = fg;‘zrz l folfo=4,r)
AR f0+\/f0(fo—Ag”2) ’

g r

/ A
A(r) :AO fO—Agr2+A——292Ag
9

3m3A,\/ fo — A,r? arctan ( = _fggrz>

8/0°

_ hi(fo - 3Agr2)

, 3.30
i (3.30)

where hg, Ag, hy and hp are constants.

IV. UNIVERSAL HORIZONS AND BLACK HOLES
WITHOUT OR WITH ROTATIONS

As mentioned above, the fundamental variables of the
gravitational field in the Hofava theory with Diff(M, F)
and U(1) symmetry (A5) are

(N’Nivgij’A’(/’)-

In the framework of the universal coupling [42], they are
related to the spacetime line element ds” via the relations,

ds* =y, dx"dx", (u,v=0,1,2,3), (4.1)
where y,, is given by Eq. (A13), that is
oy (NN N )
Yw) = ) .
! Ni Vij
where 7y = 6}, Ny =7;N/, and
N =(1-a0)N, Ni=N'+Ng'V,gp,
A-A
vij = (1- a26)29ij’ 0= N
) : 1 )
=-¢+N'Vp+ EN(VI(P)(VI'(P)- (4.3)

Here a; and a, are two arbitrary coupling constants.
The solar system tests in (3 4 1)-dimensions require that
they must satisfy the conditions (A37). In particular, for
(ai,a,) = (1,0), the PPN parameters will be the same as
those given in general relativity [43]. Although in (2 + 1)-
dimensions, no such constraints exist, in order to compare
with those obtained in (3 + 1)-dimensions, we shall impose
these conditions also in the (2 4 1)-dimensional spacetimes
considered in this paper. In particular, we shall only
consider the case with

124025-6
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(4.4)

a; =1, a, =0.
Therefore, with the gauge choice ¢ = 0, Eq. (4.3) reduces
to

N:N—A, Ni :Ni, yl]:gl] (45)
This is also consistent with the one adopted in [27] in
(3 + 1)-dimensions, when the solar system tests were
considered.

On the other hand, the critical point for a universal horizon
to be present is the existence of a globally defined khronon
field ¢, which is always timelike [44]. Then, the causality is
assured by assuming that all the particles move along the
increasing direction of ¢. In this sense, ¢ serves as an
absolute time introduced in the Newtonian theory. Setting

u, = a’”Ti , (4.6)
one can see that u, is always timelike, y*“u,u, = —1, where

X= —g“ﬁ[?(,qﬁaﬂqb. In addition, such defined u,, is invariant
under the gauge transformation,

¢ =F (). (4.7)

provided that F(¢) is a monotonically increasing (or
decreasing) and otherwise arbitrary function of $. Such
defined u, also satisfies the hypersurface-orthogonal
condition,

u

M[DDU,M/;] =0, (48)
where D, denotes the covariant derivative withrespecttoy,,.

In (2 4 1)-dimensional spacetimes, the most general
form of action of khronon is described as [45]

S(/) = /d2+1X\/ |7/|£(/,

- / e/ Tllen Dy + ex(Dyu)?

+c3(D*ut)(Dyu,) — cuata,], (4.9)
where a, = u”D,u,, and ¢;’s denote the coupling constants
of the khronon field. However, due to the identity (4.8), not
all the four terms are independent. In fact, from Eq. (4.8)
we find that

ALy = d'a, + (D'u”)(D,u,) — (D*u")(D,u,) = 0.

Then, we can always add this term into S with arbitrary
coupling constant ¢, so that the coupling constants ¢; in £
can be redefined as

PHYSICAL REVIEW D 93, 124025 (2016)

/ /
c; = ¢y + ¢, CH, = Ca,

ch = c3 — co. ) = ¢4 — Co. (4.10)
Thus, one can always set one of the terms ¢/, ¢} and ¢} to
zero by properly choosing c. In the following, we shall
leave this possibility open.

Then, the variation of S, with respect to ¢ yields the
khronon equation [46],

D,A* =0, (4.11)

where

&+ utu,
=%

At =D, J*" + cqa,DFu”,

A A,

J% = (19" g + 025Z5€+C3535ﬁ — cqu®ul g, ) Dyu”.
(4.12)

From the above expressions, we find

u, A =0, (4.13)

that is, A* is always orthogonal to u,.

Equation (4.11) is a second-order differential equation
for u,, and to uniquely determine it, two boundary
conditions are needed. These two conditions in stationary
and asymptotically flat spacetimes can be chosen as follows
[18,44]: (i) u* is aligned asymptotically with the time
translation Killing vector ¥,

ut o g*. (4.14)
(i1) The khronon has a regular future sound horizon, which
is a null surface of the effective metric [47],

(@) _

G = G — (Cé - Du,u,, (4.15)

where ¢, denotes the speed of the khronon given by,

Cc
2 123
CHp=—"1,

4.16
- (4.16)

where c1p3 = ¢1 + ¢, + ¢3, €14 = ¢1 + ¢4. It is interesting
to note that such a speed does not depend on the
redefinition of the new parameters ¢} given by Eq. (4.10),
as it is expected.

The universal horizon is the location at which u* and ¥
are orthogonal [18,44],

Yt = 0. (4.17)
Since u* is always timelike, and ¢{* is also timelike outside
the Killing horizon, Eq. (4.17) is possible only inside the
Killing horizon, in which {# becomes spacelike.
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With all the above in mind, now we are ready to consider
the locations of universal horizons in the solutions found in
the last section for static or stationary spacetimes.

A. Universal horizons and black holes
in static spacetimes

In the static spacetimes of the solutions found in the last
section, the general form of metric is

52 =—-N2di* + [dr+ h(r)df]* +r*do*, (4.18)

b
f(r)
as can be seen from Egs. (3.1) and (4.5). Following [44], it
can be shown that Eq. (4.11) is equal to

At =0, (4.19)

in asymptotically flat spacetimes, in which we have

V-0,
X—-1,

N =1,
h—0,

F-1, u, — 1,

(4.20)

as r — oo. In the following we shall assume that this is also
true to other spacetimes. To simplify Eqgs. (4.19), in the
following we only consider the case
Cly = O, (421)
for which the speed c, of the khronon field becomes
infinitely large, as one can see form Eq. (4.16). In this case,
the sound horizon of the khronon coincides with the
universal horizon, and the requirement that the khronon
has a regular future sound horizon reduces to that of the
universal horizon.
It can be shown that Eq. (4.19) has only one independent
component, and with the assumption (4.21), it reduces to

L R YA N
v \W2f N o2f) P
N// f/ Nl f//2_
*V‘ﬁ‘(ﬁ) +5(7) -

whereVEur,CpECl3/C123.

The timelike Killing vector {* now is given by {* = &,
so the location of the universal horizon is at

(4.22)

" =u, =G, (4.23)

where
G = fIUN2(f + V?) = K. (4.24)

Note that G is not necessary to be always non-negative.
However, to have the khronon field well-defined, we must

PHYSICAL REVIEW D 93, 124025 (2016)

assume that G(r) > 0 for any r € (0, o). Then, one can see
that the location of the universal horizon must be the
minimum of the function G(r), so that at r = ryp, we must
have [18],

G(r)

=0=G'(r) (4.25)

|r:rUH |r:rUH .

On the other hand, at the Killing horizon r = rgy we
have {#{, = 0, or equivalently XC(rgy) = 0, where

— )2 — h(”)2
K(r)y=N(r) 70 (4.26)
Then, y,, and y** are given by
0 h(r)/f(r) 0
YV rxw) = | h(r)/f(r) 1/f(r) 0 ;
0 0 r? r=r
=f(r)/h(r)* f(r)/h(r) O
" (rgw) = f(r)/h(r) 0 0
0 0 r2 .
(4.27)

Therefore, in order for the metric to be free from coordinate
singularities across the Killing horizon, we must require
that both h(rgy) and f(rgy) are finite and nonzero. In the
(3 4+ 1)-dimensional case, we know that the Schwarzschild
and Schwarzschild-de Sitter solutions satisfy these con-
ditions, but not for the Schwarzschild-anti-de Sitter and
Reissner-Nordstrom solutions [18]. For the latter, one
needs first to make extensions across those horizons,
and then study the existence of universal horizons inside
of those Killing horizons. In the following, we shall show
that even with such strong conditions solutions that harbor
universal horizons still exist.

L A=0, =1

In this case the solutions are given by Eqgs. (3.10) and
(3.13) with h(r) being an arbitrary function. In order to
have the metric regular across the Killing horizon, we
assume that i(r) # 0, for which the metric takes the form,

ds? ( A /Gy 4! Ar)dz

+ C_ (dr + h(r)dt)® + r*d6, (4.28)
1

where C; # 0. Rescaling the coordinates, without loss of

generality, we can always set C; = 1, so the metric takes

the final form,

124025-8
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W= Ar%\?
ds2 = — (AO + T) dtz

+ (dr + h(r)dt)?* + r?do?, (4.29)
where Ay = 1 —A,. To study the existence of universal
horizons and black holes, let us consider the case where the
function h(r) is given by

h:

H
—, 4.30
> (4.30)

where f and H are two constants. Then, Eq. (4.22) becomes

|7
AN
V+r

H?p + ArP?+% 1%
H> + P24, - r*AN)| V

2¢c, H’B+ ArH% 1
TR H (245 — r*A) + 2
x [H* + rP(2Ay — r*N)|2[(28 — 1)H*
+2H* P (2A0 (25> + p = 1) = B(2p + 5)Ar?)
—r*P(4A% + 3A%r*)] = 0.

(4.31)

On the other hand, the scalar and extrinsic curvatures R
and K are given by

8

R = g {=HB + rPA(rPA — 24,r)?

r2
+ H PP [p+ rPA + B2 (2Ar7 — 4A,))
— H*rP[4A2p*
—2A0(2AF% — B+ 26%(1 + Ar?))
+r2A(B =2+ 2Ar + B2(2 + AP))]},
2H(1 - p)rF!
S h

D(r) = H?> — (Ar? —2A,)r?’. (4.32)

Clearly, to avoid spacetime singularities occurring at finite
and nonzero r, we must assume that D(r) #0 for
r € (0, ).
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When A = 0, we have D(r) = H? + 2A,r*. Therefore,
for Ay > 0, we always have D(r) > 0. In this case, if we
further set H = 2 and f# = 1/2, we find that Eq. (4.31) has
the asymptotic solution,

Ug

V] - —, (4.33)
r

r—0o0

which satisfies the boundary condition u# o« &* at infinity.
But, an analytical solution of Eq. (4.31) for any r is still
absent even in this simple case. The corresponding metric
takes the form,

2 2\ 2 2w
ds*=—(Ag+—| dt=+ (dr +—=dt | + r-do-.
r \r

(4.34)

Since even in this simple case, analytically solving
Eq. (4.31) is not trivial, instead in the following we shall
use the shooting method first to solve it, and then localize
the positions of the Killing and universal horizons, which
satisfies, respectively, the equation K(rgy) =0, and
(4.25), where IC(r) is given by Eq. (4.26).

In Fig. 3, we show the curves of G(z), V(z) and K(z) for
various choices of the parameter ¢, = cy3/c}y3, and find
the locations of the Killing and universal horizons, denoted,
respectively, by rgy and ryy, where z = 1/r. From this
figure one can see that the locations of the universal
horizons depend on ¢, as it is expected.

When A # 0, the mathematics becomes more involved.
In the following we shall consider some representative
choices of the parameter f.

Case 1.a = —1: In the case, to have D(r) # 0 for
r € (0,0), we assume that Aé?# < 0. In Fig. 4, we show
the functions G, V and K and the locations of the Killing
and universal horizons for various choices of c,.

Case 1.b f < —1: In the case, to have D(r) # 0 for
r € (0, 00), we must assume that either Ay > 0 and A < 0,
or AO > 0, A > 0. Then, in Fig. 5 we show the functions G,
V and K and the locations of the Killing and universal
horizons for various choices of ¢, with f = 2.

Case 1.c 0 > > —1: In this case, we find that we must
assume that either A, > 0,A <0, or Ay >0,A >0, in

/ - /
e T ,/” !
08¢ V(Z), //I -7V /
0.4} 0.6} 6@ ;K@ Lo K@)
/7
0.4} =130 7 , ,
0.2¢ ron=175 // =0 0.5+ ., -~ //
h 0.2, 7 Ap=2 / rin = 13.09 cp=1
0.0 0.0 ) . ron =808 ,7 Aﬂ:%
’ 02 047 06 08 SN IS ‘ z
-0.2+ -02F  Tve--- ~02___ 04 0.6 0.8

FIG. 3.

the spacetime given by Eq. (4.34) with A, = 3/5 and various choices of c,.
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riu = 0.683 .
ol Aeoi run = 0.576 V(Z)/ L 2F A= 7kn = 0.683 Vo 2 A=-l 1k = 0.683 Vo)
;m _ % P A= l, run = 0.5596 j e A=t o - 0,529 .
.7 G B -~ G) Prae
1t cp=-1 e 1t cp=0 g 1F cp=1 -
h(=2r - h@=2r /:/ h=2r - 6@
0 e ) — L __Z 0 T N L __Z 0 — == > /Z
0.5 1.0 1.57=-2:0---25-~ 0.5 1.0 1.57=-20---25—~ 0.5 1.0 1.57=2:0--25 -~
K(2) K(z) K(z)
-1t -1

-1t

FIG. 4. The functions G, V(=u") and K vs z, for the spacetime given by Eq. (4.29) with A = -1, Ag =3/5, H=2, f = -1 and

various choices of ¢,,.

K
rin = 0.759 va nd rgi = 0.759
2p 2 ,:: oy 7 2p A= i = 0739 Vo 2p A= o = 0.6596
=5 e Ay=1 rn=0674 7 A=1 ’/_,/
1P e=- o 6@ 1L e=0 Pr - o 1 =1 . -V
h(r)=2r* \ - x@) hr)=2r . -7 o W) =27 .\ - ;,/———Cﬂ
0 05 10 15 20 25 05 10 13 20 25 0 05 10 13 20 2sko Z
-1t -1t -1
FIG. 5. The functions G, V(=u") and K vs z, for the spacetime given by Eq. (4.29) with A = -1, Ay =3/5, H =2, f = -2 and

various choices of c¢,,.

=1
[ _ [ A=-1 A=-1
2 Ao=z i =0.456 2 e it = 0.439 2 - 1k = 0.439
¢p=-1 ron =0.576 e run = 0.576 v °Ts run = 0,407
1k V@ _ 1 e=0 @ 1k cp=1 V(z)
nr=2vr - — -
- hry=2Vr . G M =2vVr "
0 — _H—‘—”—‘\—\; y 0 — —r—x—"""'—‘——\>‘ /Z R SN 6@ VA
0.5 1.0 1.5 20--25____ 0.5 1.0 1.5 20--25____ 0.5 1.0 1.5 20--25____
K(z) K(z) K(2)
-1t -1t ‘ it

FIG. 6. The functions G, V(=u") and K vs z, for the spacetime given by Eq. (4.29) with A = -1, Ay =3/5,H =2, = —1/2 and

various choices of c,,.

order not to have spacetime singularities at a finite and
nonzero r. In Fig. 6, we show the functions G, V and K and
the locations of the Killing and universal horizons for
various choices of ¢, with = —1/2.

Case 1.d p=0: In the case, we must assume that

and K and the locations of the Killing and universal

horizons.
Case l.e > 0: In this case, we require that A < 0.

Then, in Fig. 8 we show the functions G, V and K and

the locations of the Killing and universal horizons

A 2 . . . —
M’T’LH <0, and in Fig. 7 we show the functions G, V for f=2.
rku=vV2 ,’/
2F run = 1.0905 V@ 2F
1f 1f
0 -rf’\\ . , ) ="\
05 \ 1.0 1.5 2.0 2.5 0.5
—1faA=1 N —1F A=l
! N !
F o= Ny b A=-3
2 cp=-1 \\\~_‘ K(z) 2 cp=0 -
_3,h(r):2 ————————— _3,/1(r):2 hn=2 T T Tmm————

FIG.7. The functions G, V(=u") and K vs z, for the spacetime given by Eq. (4.29) with A = —1, A, = 3/5, H = 2, # = 0 and various

choices of c,,.
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A=-1

FIG. 8.
choices of c,.

2. 0,=0, A #1

In this case, the solutions are given by Eqgs. (3.10), (3.14)
and (3.15). Similar to the last case, without loss of the
generality, we can always set C; = 1, and the metric takes
the form,

C2 2
ds? = — (AO + —32 - Arz) di?
2r

C 2
+ {dr + (Czr + —3> dt] +r2do*.  (4.35)
r

To study these solutions further, let us consider the cases
C; =0 and C5 # 0, separately.

When C; = 0, we assume that C, # 0. Otherwise, the
metric will be singular across the Killing horizons. Then,
the rescaling,

t— Cgll‘, AO - C2A0, A— C2A, (436)
leads the metric to the form,
ds®> = —(Ag — Ar?)2de* + (dr + rdt)?
+ r2de?, (C;=0), (4.37)
from which we find that
L Ag(3—8A?) +4AFA + Art + 40!
N (AO - Ar2)3 ’
2
K=—"-__ 4.38
AO - Ar2 ( )

Thus, to avoid spacetime singularity at Ay — Ar? = 0, we
shall assume AgA < 0. On the other hand, the Killing
horizon is located at

(Ag = Arky)? —rky =0, (4.39)

which has real and positive roots only when 1 4+ 4A5A > 0.
Moreover, in the present case Eq. (4.22) reduces to

PHYSICAL REVIEW D 93, 124025 (2016)

A=-1

Ao=—-05

Ap=-05 ! %2 /.
cp=0 =1 *@
h(r) =272 1E Mn=2r7
! V) V(z)
- "‘"Z 0 — = . v -_—Z
02 04 06 08&_-10 02 04 06 08&_-10

The functions G, V(=u") and K vs z, for the spacetime given by Eq. (4.29) with A = —1, A, = 3/5, H = 2, = 2 and various

A0—3Ar2
V// V/
JrAor—/\r3
A2 +2A0c,Ar? + (3 =2¢, A%
A 2A0c, A B 20 )N (4 40)
(Agr — Ar)

In Fig. 9, we show the functions G, V and K and the
locations of the Killing and universal horizons for various
choices of the free parameters, as specified in each of the
panels of the figure.

When C; # 0, the rescaling of the timelike coordinate
and the redefinitions of the parameters,

t— C3't, A = GA,

C1 = 2C4/Cs,

AO ad C3A0,
(4.41)

lead the metric to the form,

C 2
ds* = — (Ao +2- Ar2> dr*
r

1 2
+ [dr + (Czr + —) dt] + r*dé”. (4.42)
r

If C, =0 = A, this metric becomes asymptotically flat
at spatial infinity, and Eq. (4.22) is given by

Ci(1 =2¢,) —2A0Cs(c, —2)r* — Ajr! v
r2(Agr? + Cy)?
A0r2 - CA

Vit ——=V' =0. 443
+ +A0r3 + CAr ( )

In Fig. 10, we show the locations of the Killing and
universal horizons.
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run = 5.296
20 [ riu = 6.83
10t r V(z)
0.8 z
—10t L
20 [ A=1/8
cp=1
10t Foa=0
0.1
-10¢ [ ron=6.123 ‘\\ T *@)
rku =8 ==
_o0t t

FIG. 9. The functions G, V and K and the locations of the Killing and universal horizons for the solutions given by Eq. (4.37) with
C5; = 0 for various choices of the free parameters.

If C, and A do not vanish at the same time, we find

Again, to avoid spacetime singularities at finite but nonzero
r, we must assume that D(r) # 0 for r € (0, co]. In Fig. 11,
we show the functions G, V and K and the locations of the

R = %()3 [C3(12A7* — 8Ayr?) Killing and universal horizons.
r*D(r)
2 2 2 4 2,8
—4CA+CA[T’ —4(A0—C2)r — 12A%rF 3. Ag#o
2 6 AIAA2 A 4 . .
+ (7C5 + 16A0A)r°] + r*[4AGAF When A, # 0, the solutions are mathematically much
+ Ag(1 4 3C2r* — 8A2r0) + Ar2(4A21° + C2r involved, and in this subsection we only 'cons1der the case
5 where 4 # 1 but C; = 0. Then, the solutions are given by
+4C,yr* = 1)]], Egs. (3.8), (3.22)—(3.25), for which the extrinsic curvature
20,12 is given by
K="22_.  D(r)=Cy+Ag? - Ar*. (4.44)
D(r)
4F A=0 G(z) I’ I‘
cool V@) ) /
3p 1 R i N 7z 201 V@) /
Ag=1 N I = c L R LR L L L LY.
20 v 2 4 6 80 === o 5o 2
1 P [ A=0 \\ / —20F Ao So i
=S Ca= % N =0.887 /I K@ 1 \\\ /I
0p== 1 o N e / —40[ Ca=5 S rn=0947 4
1t r Ao= \\ run = 0.426 /I _60t Ao = N ron = 03698/
ep=1 AN // cp=1 So /K@
-2t . R -80t S-e-t
- I’ !
4t A'Ol - o J G(2) ! rgu = 0.947 G(z) K(z) '
=3 i =0.724 / V@ / 20F =0.2236 /
3t Ag=1 run = 0.447 / S b At et LR U= V(2) h
LI ! K(z) \2\ 4 6 8/ 10 ~35 7
= /
1 ’ V(z) J _5f A=0 \\\ H _20F A=0 )
0 b=z e i e Ci=p N =087/ ge PN: . /
=2 3,0 4 2 _10f a1 N rw=031s ) A0=1 /
- Tt cp=0 \\\ /// ~60¢ \C'):O ///
—at -15t Se-s -80¢ -7

FIG. 10. The functions G, V and K and the locations of the Killing and universal horizons for the solutions given by Eq. (4.42) with

C,=0=A.
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G =1/100 G(z)

6F A=-1 6
I
Cy=1/10
t / I [
4 Ao=2 4
2 2t
0 oy VA 0
2 4 6 /) 8
—2F sy =0201 N )/ T2 -ozie N
_4f rgn = 0.3315 AN ,/ —4f rxn=03315 S

FIG. 11.
Cy#0,A=—1,C,=0.

—p
rx i=5
K = 24« [C_rlp (ﬂ’p - C) - C+(1P + C)]
=]
Ay — Agr — C2 L(C(13+32
T (T3 P
EEA |
rir
-32) +8) — C* (C(-13 434,

4A,(1+434)

+32) - 8)} o (4.45)

where 1, = - —5) and { = A — 1. Note that to
here 4, A—=1)(A=5) and { =1 — 1. Note th

have the metric real, as noticed in the last section, we must
have either 1 < 1 or 4 > 5. When 1 < 1, 4 should be larger

than —% so that K remains finite at the spatial infinity.

In particular, for A, <0, A =1 and C, =0, we have

9C2
./\/(r) = Az —Aor—ZOT;’A,
h(r) = % Fr) = <Ag2 (446)

rgn = 3.11

21 nu=252

\
(] \

-

Foom=02260 N /
[ =03315 s ’

The functions G, V and K and the locations of the Killing and universal horizons for the spacetimes given by Eq. (4.43) with

where we had replaced C_ by C,. Then, Eq. (4.22) can be
rewritten as

v SAAS —9C: V!

J— _|_ J—

1% 9C3r +20r° (Agr — Ay)A, V
— [9C3r + 20/ (Agr — Ay)A,|2[81CH(5¢, — 4)
+ 180C3 A (Ao(5c, — 28)r + 20A; — 6¢,Ay)
+ 4008 AZ(A3r? — Agc, Aor + ¢, A3)].

(4.47)

In Fig. 12, we show the functions X, V and G, and
numerically find the radii of the Killing and universal
horizons for 1 < 1.

A similar consideration is presented in Fig. 13 for 1 > 5.
In particular, in this figure we have chosen 4 = 1_79, A, =1,
Aj=-1,Ay=-2,C_=2and C. = 1.

In all the cases considered above, a universal horizon
always exists inside a Killing horizon. To assure that no
coordinate singularities appear across the Killing horizons,
we are forced to use the PG-like coordinates, in which N’
does not vanishes identically. Although not all of the

[\S)
T

! -~

~a -

1t —1t

L N L L
0.1 02 0.3\\0.4//0.5 0.6

N N AY N N
01 02 03~04/,05 06
N 7’

~- ~—-

FIG. 12. The functions G, V and K and the locations of the Killing and universal horizons for the spacetimes given by Eq. (4.46) with

A<Z<1, A=-1.
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v<z)___‘L .
7 A T T~ - o
Z
I\ 2 3 /4 N 2
/ \
\ / N
Ar=1 \ _ A =1 \
-5t ? \ cp=-1 // Ag=-2 -5 Al =1 \ P
Ag=-1 \ , Cc.=2 g =~ \ 4
_ N , 1= N
=5 N , Ci=1 3 N
~ 4 ~
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FIG. 13.
A=19/3>5 A=—I.

solutions of the theory can be written in this form, as we
mentioned above, the solutions considered in this paper
indeed all possess these properties.

It is also important to note that the solutions presented
above are the solutions of the full theory, that is, including
the contribution of the higher-order derivative term speci-
fied by the coefficient g,. Therefore, our above results show
that universal horizons and black holes exist not only in the
infrared limit, but also in the ultraviolet limit.

B. Universal horizons and black holes
in rotating spacetimes

When spacetimes have rotations, the Killing horizons are
different from the event horizons. The former are often
called ergosurfaces (or ergospheres when the topology is
S” where n denotes the dimensions of the horizon), while
the latter is defined by the existence of a null surface of the
normal vector, r, = 8ﬂr [40], that is,

7”””,¢”u|r:r) =y"(r,) =0. (4.48)

In the following, we shall continuously denote the locations
of the Killing horizons (or ergosurfaces) by rxy, while the
locations of the event horizons by r,.

In the rotating spacetimes described by Egs. (3.26),
(3.27), (3.29) and (3.30), it is reasonable to assume that the
khronon field ¢ depends only on ¢ and r, as all the metric
coefficients are independent of 0. Then, we find that
u,(cx ¢ ,) must take the form u, = (u,(r), u.(r),0), where
u, = u,(u,), as now we have y**u,u, = —1. Note that all of
the three components u* = (u',u”, u’) in general do not
vanish, due to the rotation, although both of u" and u? are
not independent, and can be expressed as functions of u,
(or equivalently as functions of u#"). With these in mind,
we find that V(=u") satisfies the following differential
equation:

V// U 1 V/ "
7+ < + r) +o—

PHYSICAL REVIEW D 93, 124025 (2016)

1
ran=0964 |/

run = 0.622 /I

The functions G, V and K and the locations of the Killing and universal horizons for the spacetimes given by Eq. (4.46) with

which just depends on the function . To proceed further,
we consider the three classes of solutions, separately.

1 R;=0, A=1

In this case, the rescaling

r— C}/zr, 60— Cl_l/zﬁ, h, — C}/zh,,

hy = C\h,. by — C7'hy, (4.50)

brings the metric into the form,

HZ —A 2\ 2
ds? = —<A0 +R2r> dr

2 h2 ?
dr £1\|H ——2d
+ [ r R 2 t]
h 2
+7r? [d6+ (—;—i—hb)dt} , (4.51)
r

2 . .
where H} = h,(r)? +"%. Recall that h(r) is an arbitrary
function of r, and h, h,, are the integration constants. Then,
the Killing horizon satisfies the equation,

(2A0+ H% — Ar?)? —4(H% + 2h,hy, + h3r?) =0.  (4.52)

Choosing Hp = % where A is a constant, we have

h(z) Ar?

:A _
N 0+2r2ﬂ 2’

(4.53)

for which we find

L 16R(1 - f)E?

R o [240r% + B3 (1 + p)]
8
+ o [(hy = V)hr® + B3(2B% + = 2)rr¥~*
t
8
+ 2R, 2407 + h5(1 = )] 2
201 —
K=+ =P (4.54)

NI
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FIG. 14. The functions V,G, K and the locations of the Killing, event and universal horizons in the case 4 = 1 of the rotating

spacetimes given by Eq. (4.51) with A = 0.

but now with D(r) = h3 + r?#(Ar* — 24,). Again, to avoid

spacetime singularities occurring at a finite and nonzero

2. R;=0,1#1

In this case, the solutions are given by Eq. (3.28), and the

radius, we shall choose the free parameters so that D(r) # 0 rescaling,
for r € (0, 00]. In Figs. 14-19, we show the functions
V,G,K and the locations of the Killing and universal
horizons for various choices of the free parameters, as r— C{/ zr, 0 — Cl_l/ 29, h, = C}/ zha,
indicated in each of the panels of the figures. From these _12
figures one can see that universal horizons always exist. hy = C " hy, Hy — CiHy, (4.55)
Vo)
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FIG. 15. The functions V,G, K and the locations of the Killing, event and universal horizons in the case 4 = 1 of the rotating

spacetimes given by Eq. (4.51) with A #0 and g = —1.
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FIG. 16. The functions V, G, K and the locations of the Killing, event and universal horizons in the case 4 = 1 of the rotating
spacetimes given by Eq. (4.51) with A #0 and g < —1.
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FIG. 17. The functions V, G, K and the locations of the Killing, event and universal horizons in the case 4 = 1 of the rotating

spacetimes given by Eq. (4.51) with A #0 and g > —1.
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FIG. 19. The functions V, G, K and the locations of the Killing, event and universal horizons in the case A = 1 of the rotating

spacetimes given by Eq. (4.51) with A #0 and f > 0.

leads the metric to the form,

Hi+hi Ac ,)\?
dsz——<A0+ A2r2 c1_7Cr2> dr?

H 2
+ [dr + <—A + H3r> d;}
r

h 2
+r? {d@ + <r—§ + hh> dt} : (4.56)

The corresponding scalar and extrinsic curvatures are given
by

8
R = =+ 64RLH yr* (Hy + Hyr®) (R, + Hy + Agr?)
+8R%(hg + H} — 4H,Hpr® — Hyr') + 16A0R.

K = 4HyzR 12, (4.57)

where Re = (h% + H% +2Agr? — Agr*)™! and Ay = A+
HZ(1=22).

When A-#0, we can simplify the above metric
further by

2 2
t_)_A_Ct’ A0—>—A—CA0, HA_)_A_CHA’
2 2 2
Hp— ——Hg,  hy———h,,  hy———h,,
B Ac B - Ac b Ac b

(4.58)

which leads Eq. (4.56) to
C 2
ds® = —(1 +—? + r2> dr’
r

H 2
+ {dr + (—A—l- Hﬂ)dt]
r

2
+ r? [d& + (% + hb> dz] , (4.59)
where C, = —%(Hi +h2). In Fig. 20 we show the
locations of the Killing, event and universal horizons in
this case.
When As = 0, we assume Hy # 0. Then, we consider
the cases Ay # 0 and A, = 0, separately. In particular, when
Aq # 0, the rescaling

t—)Aalt, HA —)A()HA,
l’lb g AOhb’ ha = tha, (460)
leads to
C.\2 H 2
ds* = —(1 +—§‘> dr* + <dr+—Adt>
r r
h 2
+7? [a’& + (7“ + h,,) dt] , (4.61)

where Cy = — % (H3 + h2). Figure 21 shows the locations
of the Killing and universal horizons.
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FIG. 21. The functions V, G, K and the locations of the Killing, event and universal horizons in the case 4 = 1 of the rotating

spacetimes given by Eq. (4.61) with A = 0 but Ay # 0.

When A, = 0, the rescaling,

t — Cyt, H, — Cy'Hy,
hy, = Cglhy, hy = Cilhy,, (4.62)
leads to
dr? H, 2
ds? = ——+ [dr+*‘dz]
r r
h 2
+r? {d@ + <—§ + hb> dt} : (4.63)
r
where Cy = ﬁ In this case, the equation of V takes the
A a

simple form,

1% 14
=0 (4.64)

Vi—-—4+(1-2
r ( cp)
and has the solution,

V= rArHV 2 4 rBrl_ 2, (4.65)
Consider the boundary condition V(o) — 0, we have
ry =0, so G is given by

Gt gt VI HY

r4 r2 :

(4.66)

Clearly, G <0 as r - oo, which is not allowed by the
existence of the khronon field in the whole spacetime.
Therefore, in this case the solution must be discarded.

3.R; #0

In this case, the solutions are given by Egs. (3.29) and
(3.30), and the corresponding spacetimes with a; = (1, 0)
describes a spacetime, but the metric at the Killing horizon
located at f(rgy) =0 becomes singular. Therefore, to
study the location of the universal horizon inside it, an
extension of the solution into the internal of the Killing
horizon is needed. Such extension is standard [32], so in the
following we shall not consider it further.

V. CONCLUSIONS

In this paper, we have studied the existence of universal
horizons and black holes in gravitational theories with
broken Lorentz invariance. We have paid particular atten-
tion to the case where the gravitational field is so strong that
the infrared limit does not exist, and the higher-order
derivative terms must be included, in order for the theory
to be UV complete. We have shown that even in the UV
regime both static and rotating universal horizons and black
holes exist. Therefore, universal horizons and black holes
are not only the low energy phenomena but also phenom-
ena existing in the UV regime. To reach this conclusion, we
have first constructed exact solutions of the full theory of
Horava gravity with the projectability and U(1) symmetry
in (2 + 1)-dimensions, which is power-counting renorma-
lizable [27-30]. To avoid coordinate singularities across the
Killing horizons, we have chosen to work with the PG-like
coordinates [34]. Although this normally makes the field
equations very complicated, we are still able to find
analytical solutions in both static and stationary spacetimes.
Then, we have numerically solved the khronon field

124025-17



LIN, SATHEESHKUMAR, and WANG

equations and identified the locations of the universal
horizons. In all the cases considered, universal horizons
exist and are always located inside the Killing horizons.

With these exact solutions, we hope that the study of
black hole thermodynamics at the universal horizons,
specially the ones with rotations, can be made more
accessible. In the spherically symmetric and neutral case,
the first law of black hole thermodynamics at universal
horizons holds [21], provided that the entropy is still
proportional to the area of the horizon, and the surface
gravity is defined by

uD,(w,). (5.1)

K=

N[ —

which is identical to the one obtained from the peeling
behavior of the khronon field [24], as shown explicitly in
[18]. In the neutral case, the temperature of the black hole
takes its standard form, T = k/2x [23,24]. However, when
the black hole is charged, such a first law does not exist
[22], if we insist that the temperature of the black hole still
takes its standard form with the surface gravity given as
above, and that the entropy of the black hole is proportional
to its area. In addition, when high-order powers of
momentum appear in the dispersion relation of the particles
emitted through the Hawking radiation process, which
generically is always the case, the temperature of the black
hole at the universal horizon depends on the order of the
powers, although it is still proportional to the surface
gravity k defined above [26,48].

We also hope that these exact solutions will help us to get
deeper insights into the problem of quantization of the
theory [3,4] and the nonrelativistic AdS/CFT correspon-
dence [35-38]. The studies of these important issues are out
of scope of this paper, and we wish to come back to them in
a different occasion.

Finally, we would like to note that our main conclusion
regarding the existence of universal horizons and black
holes at all energy scales (including the UV regime) should
be easily generalized to other versions of Hotava gravity
[9,13], although in this paper we have considered it only in
the projectable Horava theory with an extra U(1) symmetry
[27-30]. It is also quite reasonable to expect that this is also
the generic case in other theories of gravity without Lorentz
symmetry.
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APPENDIX A: PROJECTABLE HORAVA
THEORY WITH U(1) SYMMETRY IN (d + 1)
DIMENSIONS

In this Appendix, we give a brief introduction to the
projectable Horava theory with U(1) symmetry. for detail,
we refer readers to [27-30].

1. The gauge symmetries

The Horava theory is based on the perspective that
Lorentz symmetry should appear as an emergent symmetry
at long distances, but can be fundamentally absent at short
ones [49]. In the latter regime, the system exhibits a strong
anisotropic scaling between space and time,

X — /X, t— 4, (Al)
where z > 3 in the (3 + 1)-dimensional spacetime [7,50].
At long distances, higher-order curvature corrections
become negligible, and the lowest order terms R and A
take over, whereby the Lorentz invariance is expected to be
“accidentally restored,” where R denotes the three-
dimensional Ricci scalar, and A the cosmological constant.
Because of the anisotropic scaling, the gauge symmetry of
the theory is broken down to the foliation-preserving
diffeomorphism, Diff(M, F),
t=1t—f(t), ¥ =x' =it x), (A2)
for which the lapse function N, shift vector N’, and
3-spatial metric g;; transform as

SN = "V N + Nf + Nf.
SN; = N V&5 + VN, + gkt + Nif + N, f,

89;j = Vil; + Vil + f9i), (A3)
where f = df /dt, V; denotes the covariant derivative with
respect to g;;, N; = giN*, and 8g;; = y;; (1. x*) = g;; (1. x%),
etc. From these expressions one can see that N and N’ play
the role of gauge fields of the Diff (M, F). Therefore, it is
natural to assume that N and N’ inherit the same depend-
ence on space and time as the corresponding generators [7],

N = N(1),

N’ = Ni(1,x), (A4)

which is often referred to as the projectability condition.
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Due to the Diff(M, F) diffeomorphisms (A2), one more
degree of freedom appears in the gravitational sector—a
spin-0 graviton. This is potentially dangerous, and needs to
decouple in the IR regime, in order to be consistent with
observations. A very promising approach along this direc-
tion is to eliminate the spin-0 graviton by introducing two
auxiliary fields, the U(1) gauge field A and the Newtonian
prepotential ¢, by extending the Diff(M,F) symmetry
(A2) to include a local U(1) symmetry [27],

U(1)xDiff(M, F). (A5)

Under this extended symmetry, the special status of time
maintains, so that the anisotropic scaling (A1) can still be
realized, and the theory is UV complete. Meanwhile,
because of the elimination of the spin-O graviton, its IR
behavior can be significantly improved. Under the
Diff(M, F), A and ¢ transform as

SA = ('0,A + fA + fA,

o = fip +C'00. (A6)
Under the local U(1) symmetry, the fields transform as

5,A=d—NVa,
5aNi - Nv,-a,

0.0 = —a,

5agij =0, (A7)

where a is the generator of the local U(1) gauge symmetry.
For the detail, we refer readers to [27,28].

The elimination of the spin-0 graviton was done initially
in the case 4 = 1 [27,28], but soon generalized to the case
with any 4 [29,30,51], where 4 denotes a coupling constant
that characterizes the deviation of the kinetic part of action
from the corresponding one given in GR with A5 = 1. For
the analysis of Hamiltonian consistency, see [27,52].

2. Universal coupling with matter and field equations

The basic variables in the HMT setup are

(A,@,N,Ni,gij), (i,j:1,2,...,d), (Ag)

and the total action of the theory in (d + 1)-dimensions can
be written in the form,

S =27 / dtdxN\/g(Lx — Ly + L, + L4+ 2 Ly).

(A9)

where g = det(g;;), ¢* = 1/(162G), and
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LK - KUKU —/,{Kz,

A

(1 =2)[(Ag)* +2KAg],

(A10)

Here A = ¢"/V,V;, A, is a coupling constant with dimen-
sion of (length)™, the Ricci and Riemann tensors R;; and
R;kl all refer to the d-dimensional metric g;;, and

.,
Ki; = ﬁ<_gi/’ + ViN; + V;N;),

1
Gij = Rij — 5 9ijR + Aygyj.

5 (A11)

Ly is an arbitrary Diff(Z)-invariant local scalar functional
built out of the spatial metric, its Riemann tensor and spatial
covariant derivatives, without the use of time derivatives.
Ly is the Lagrangian of matter fields, which is a scalar
not only with respect to the Diff (M, F) symmetry (A2), but
also to the U(1) symmetry (A7). When the gravity is
universally coupled with matter, it is given by [42]

SM—/dtdde\/gﬁM(A,(p,N,Ni,gin//n)

:/dd+1x\/|y|Z:M(7;w;V/n)v

where y = det(yw)(,u, v=0,1,...,d), and vy, collectively
stands for matter fields, minimally coupled to the (d 4 1)-
dimensional metric y,,, defined as

N2+ NN, N,
(rw) = L

(A12)

Ni yl_]
SER
HV) —
() (M . NN,>, (A13)
5oy
where Yy, = 8}, N; = y,;N7, and
N = (1-a6)N, N =N+ NgiV;p,
A-—A
Vij = (1- ‘126)2917’ o= N
. ; 1 ;
= _¢+vai(ﬂ+§N(vl§0)(vi¢)- (A14)

Here a; and a, are two arbitrary constants. It is should be
noted that the line element

ds* =y, dx'dx" = —N?dr*
+y,(dx' + Nidt)(dx) + Nidt)  (Al5)

is invariant not only under the gauge transformations (A2),
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but also under the U(1) transformations (A7). In terms of
Ly, the (d + 1)-dimensional energy-momentum tensor 7',
is given by

= L S/ Lurapsvra))

VI Y

The variations of the total action with respect to N and N'
yield the Hamiltonian and momentum constraints, given,
respectively, by,

(A16)

/ dx\/glLx + Ly =9GNV jp = (1 = 2)(Ap)?]

= 872G / dix\/qJ", (A17)
vj[”ij - §0gij - (1= /I)gijvzfﬂ} =38nGJ;, (A18)
where
Jtz 6(N£M), JiE—NM—M,
ON ON'
. O(NL - i,
i = OWER) g + 2K g (A19)
5gij

Variation of the action (A9) with respect to ¢ and A yield
(A20)

R—2A, = 82GJ,, (A21)

which will be referred, respectively, to as the ¢- and
A-constraint, where

6Ly

S(NLy)
7 ’

0A

~
III

JAEz

(A22)

On the other hand, the dynamical equations now read’

*Note that the dynamical equations given here differ from
those given in [30] because here we took N’ as the fundamental
variable instead of N; as what we did in [30]. The subtle is that N;
now are functions of g;; via the relations N; = g; ij ,once N' are
considered as the fundamental variables, or vice versa. Of course,
they are equivalent, if one consistently uses either N' or N; to
carry out the derivation of all the field equations.
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\/—{\/_[ =G — (1 -2)g"Agl},

y 2
—2(K?) 4+ 2AKK — Nﬂk(’VkN”

Nk .
+ Vk Wﬂ'u - (1 _A>F/(;glj
—2(1 = D)[(K + Ap)ViVig + KiiAg]
F2(1 = )VIVIp(K + Ag)] + 1 agViN)

+§(£K—|—£¢,—I—£A)g”+F”—I—Fﬁ,{—l—FX

482G (A23)
where (K?)V = K”Kf,f = (fij+ fji)/2, and
p L O/ELy)
\/_ 39ij
ZF
(p.n)’
i 2 i N’
F{ =5 ART = (VIVI = gIA)A (A24)

with ng = (2,0,-2,-2), and F{} = are given by [28],

F

) (p{(ZK + V2)RY — 22K} + VIV, )R

— 2(2Ki + ViV, )R
—(2A, — R)(2K'T + ViVig)},

i 1 2N
1] _ ik =77
FW)_2 { G <N+v1)
_ (2Ni . . [2N*
+(pQ’k( N (p) - ¢GY <T + Vk(p> }

—V2fd = (Vi V £ gy, (A25)

\vG )k

where
fi = (p{(zm +ViVig) —%(2K +V2p)g” } (A26)

The tensor NV is defined as

Nij:iw. (A27)

NI

The conservation laws of energy and momentum of
matter fields read, respectively,
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/ddx\/g[gkz/\fkl—%(\/?]] N \/—(\/‘Jk)r
-2¢J, - \/_(\/'JA) ] =0, (A28)
VN,k——f<fJ) (ka VNk)

- %vkﬂ +J,Vip - ﬁViA =0. (A29)

Introducing the normal vector n, to the hypersurface
¢ = constant,

1

nﬂ:—N(SL, n :N(l _Nl) (A30)
one can decompose T,w as [53],
pH = T,ul/n”ny’
5i = _T/w(gil + nn;)n”
sij = T (8] + nn;) (8% + n*n;), (A31)

in terms of which, the quantities J, J;, J,, J,, and \V;; are
given by [42],

1= 2030 { 5/\/ 5/\/, § 1/\/%31},
=00 { o 6./\/ 51\/;( k+;N§xl kl}’
3
e o ‘ffg/ o 573 “h,
= 203 ){—pyiﬁ/jtég" ¢ ;N?A"l "l},
o= =5 T BV~ VBV V)
v (Ngzssi)} (A32)

where Q = 1 — a,0, and

2a,(1 — ay0)

N s*(Ny + NV,)

5=-2(0){ o -

—ay(1 —a0)(1 —aza)gijsij}, (A33)
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and

N 1

SN =1 +2a1(vk€0)
SN, Q 1 2
N N{NQV,<0+2a2(N +NVZ¢)[ E(cho) ]}
Orii 2a,Q 1

51\;: ]\2, [ E(vk(/’) }sz,
SN ;
o,V
N, Q
6Nk v {NQS} +2a,(N + NV, p)Vig},
Oy _ 2a,Q j

= VI N

5N, N IV
N - 1 ; ;
| LA Nl

Jij 2
N 2a,Q . 1 ‘ .
Ve 20 N9 [N+ T W)

t
oy 1 i o is)
5;1- :592(6k6§ + 6167)

1

20,8 . 1 . .
_ 2P NGV g+~ N(Vig) (Vig) |,
N 2

SN
AT
SN, 2a,Q
Oy 2a,Q

For the gauge ¢ = 0, the above expressions reduce to

6./\/ - 5-/\[1 - 261269 6]/1] _ Zazo'Q
SN SN N ¢ N N I
5 5 . 5 P
N0 Moy S Ny
6Nl 5Nl 5N, 59”
5Nk 5}/kl 1 A .
=0, = —Q2(5.5] + 5i5)),
5gij 5gij 2 ( k l+ 1 k)
SN SN, 2a,Q
-~ — —a ) o, T T T i
5A ! SA N
57/11 26129
= —0). A35
A N i (9 =0) (A35)
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Inserting the above expressions into Eq. (A32), we find that

2a,0Q . .

J! :293{—pH—|— a}zvd N;s' + a,0Q(1 —alo')gijs”},

Ji= -t

N =(1-a,0)Qs,

2a,€ .

Ja= 293{611%{ - C;\zj ¢ (1- alﬁ)gzjs”},

1 1 . ) .
1y =3 { S BB, VB - N - @ . =0 (A%)

Note that the solar system tests (with d = 3) lead to the constraints [42],
la; — 1| < 1073, la,| < 1073, (A37)
In particular, for
(a1.a,) = (1,0), (A38)

the corresponding parameterized post-Newtonian (PPN) parameters can take the same values as those given in GR.

APPENDIX B: SOME QUANTITIES IN 2 4 1 DIMENSIONAL STATIC SPACETIMES

The quantities K;;, R;;, 7;j, F4 ;> Fij and £; for the static spacetimes (3.1) are given by,
zh/ /
K;; = S h — 7 06 + rh&?s9,
212 7
K- 2rh' f —rhf 4+ 2fh
B 2rf ’
f/ rSr 1 0 O
Rij = _ﬂélﬁj —5 f/(sl(;)‘],
!
rR—_1
P
1 1
mi = 2—f2[(/1 - 1)r2fh' + f'h) + 2ﬂhf]5i’5§ +ﬁ[2r(l —Dhf +ArQ2Wf - hf’)]b‘f)éf,
!/ !
F,lqj o 2fA2 fAf 5r5r (27’Aﬁf+ rA/f/ Af/)(sleé?’
1 1
Fij=-3 7 sz (4rff" —rf’> —4ff") +2Ar3] 8167 — — [4’2 @2 ff" 202 " f' = 8f"f = 3rf + 8ff") + 2Ar° | 5187,
B .
1
Lg=-— {ﬂrhf(Zh’f— hf')+(A-1) <r2h’2f2 +h2f2 —rPhh' ff! +Zr2h2f’2)],
r
L,=0,
/
Ly = <2A —I—f>
12
Ly = 2A+g€22fr2 (B1)

For the static spacetimes described by Egs. (3.1), (A17), (A18), (A20), (A21), (A23), (A28), and (A29) reduce,
respectively, to
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Wof W f? 2+ 22Ar? Jid
/f3/2dr{/1h2<2— f7>+(/1 ) hZ(__f +f ) M}:_gﬂ(; u, (BZ)

w2 fn ap 2rf? NG
h// /A /h/ 12 / h ]
(A_l)h<7_§_f_]2€fh+;f2+ >+%:8”Gﬁ’ Y

. W . f// 3 f/2 1 f” fl/l B 5 f// f/ f/ 3 f/3 f/2 1 B
2w (= ) (G G e ) e

W h fh\ _ 8aG
_Ag<f+rf_2fz> G .

'+ 2A,r = =82Grly, (BS)

" 11 12 12 17,/ / 1 12 ! A’
(A— )h2<2h— A +h —ﬂ—i—l)juz(zﬂ—l)@—@(f”—f— f>+2<—f+AA A)

ho f  4f fhoorf o o f
167G
= N, B6
7 (B6)
o hh/f/ 2f/2 B 2(4_H_L/_i) _gz—fz<4f/// f”f/_gi”_ﬁ 8_]”)
(A4+1)h? = (22+1) 7 + (54 + 1)h 4f2+(/1 Dz — g R rf+ Yo r2f2+r3f
+2 <A” f+ A/zf/ + AA - A) + Ah? (ZZ” J;:) 162G’ N, (B7)
where
J= (00, Ny= %N,&{&; N (BS)

The functions a, b, ¢, d, P, Q, U, V and W appearing in Egs. (3.3)—(3.7) are given by

an=L_1 =L (ﬂ_l)<f_”_f_’2+%>’ C(F)E_M_l)<l_3f’2+%>_%’

2f r 2rf 2f 2f? foo4r
w2 B ) e
=L, V=2
W(r)z(z—1)<2f;’/—§;;22—2}r’§f>+(51+1)J;jf§2+(2a+1)@?-%<%W—4r—é”+fg—23rf;;+4_f>

(x+1)’§+a<h;’”—’¥f>—?. (B9)
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APPENDIX C: THE MAIN PROPERTIES OF THE
SOLUTION WITH A, #0,A=1 AND A, # -1

In this case, the metric (A37) with a; = 1, a, = 0 reads

/ - \? dr?
d52:—< Cl—Agrz—A1> dt2+(;1_71\gr2
+ 12de?, (C1)

where A; = —(A; + 1)/Ay # 0. To have the metric coef-
ficients real for r € [0, 00), we must assume that C; > 0,

PHYSICAL REVIEW D 93, 124025 (2016)

and Ag < 0. Then, we find that the scalar curvature R is
given by

3C1 - 3Aqr2 _Al Cl —Agr2
R=2A, ‘ v —
\/C]—Ag}"z(\/C]—Agrz—Al)

which shows that the corresponding spacetime is singular at
both C; — A, =0and |/Cy — A,r* = A; = 0. Then, the

physical meaning of the solution is unclear, if there is any.
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