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In this paper, we show the existence of static and rotating universal horizons and black holes in
gravitational theories with broken Lorentz invariance. We pay particular attention to the ultraviolet regime,
and show that universal horizons and black holes exist not only in the low energy limit but also at the
ultraviolet energy scales. This is realized by presenting various static and stationary exact solutions of the
full theory of the projectable Hořava gravity with an extra U(1) symmetry in (2þ 1)-dimensions, which, by
construction, is power-counting renormalizable.
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I. INTRODUCTION

Lorentz invariance (LI) has been the cornerstone of
modern physics and is strongly supported by observations
[1]. In fact, all the experiments carried out so far are
consistent with it, and there is no evidence to show that
such a symmetry needs to be broken at a certain energy
scale, although it is arguable that the constraints in the
matter sector are much stronger than those in the gravita-
tional sector [2].
Nevertheless, there are various reasons to construct

gravitational theories with broken LI. In particular, when
spacetime is quantized, as what we currently understand
from the point of view of quantum gravity [3,4], space and
time emerge from some discrete substratum. Then, LI, as a
continuous spacetime symmetry, cannot apply to such
discrete space and time any more. Therefore, it cannot
be a fundamental symmetry, but instead an emergent one at
the low energy physics. Following this line of thinking,
various gravitational theories that violate LI have been
proposed, such as ghost condensation [5], Einstein-aether
theory [6], and more recently, Hořava theory of gravity [7].
While the ghost condensation and Einstein-aether theory
are considered as the low energy effective theories of
gravity, the Hořava gravity is supposed to be ultraviolet
(UV) complete [7]. In particular, in this theory the LI is
broken in the UV, so the theory can include higher-
dimensional spatial derivative operators. As a result, the

UV behavior of the theory is dramatically improved
and can be made power-counting renormalizable. On the
other hand, the exclusion of higher-dimensional time
derivative operators prevents the ghost instability, whereby
the unitarity problem of the theory, known since 1977 [8],
is resolved. In the infrared (IR), the lower dimensional
operators take over, whereby a healthy low-energy limit is
presumably resulted [9]. Recently, it was shown that the
Hořava theory is not only power-counting renormalizable
but also perturbatively renormalizable [10]. In addition,
it is also very encouraging that the theory is canonically
quantizable in (1þ 1)-dimensional spacetimes with [11] or
without [12] the projectability condition.
However, once LI is broken different species of particles

can travel with different velocities, and in certain theories,
including the Hořava theory mentioned above, they can be
even arbitrarily large. This suggests that black holes may
exist only at low energies [13]. At high energies, any signal
initially trapped inside the horizon may be able to escape
out of it and propagate to infinity, as long as the signal has
sufficiently large velocity (or energy). This seems in a sharp
conflict with current observations that support the existence
of rotating black holes in our Universe [14].
The above situation was dramatically changed in 2011

[15,16], in which it was found that there still exist absolute
causal boundaries, the so-called universal horizons, and
particles even with infinitely large velocities would just
move around on these boundaries and cannot escape to
infinity. The main idea is as follows. In a given spacetime,
a globally timelike scalar field, the so-called khronon [15],
might exist. Then, similar to the Newtonian theory, this
khronon field defines a global absolute time, and all
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particles are assumed to move along the increasing
direction of the khronon, so the causality is well-defined
[cf. Fig. 1]. In such a spacetime, there may exist a surface as
shown in Fig. 2, denoted by the vertical solid line. Given
that all particles move along the increasing direction of the
khronon, from Fig. 2 it is clear that a particle must cross this
surface and move inward, once it arrives at it. This is an
one-way membrane, and particles even with infinitely large
speed cannot escape from it, once they are trapped inside it.
So, it acts as an absolute horizon to all particles (with any
speed), which is often called the universal horizon [15,16].
Since then, this subject has already attracted lots of
attention [17,18].
However, in most studies of universal horizons carried

out so far the khronon plays a part of the gravitational
theory involved [17,18]. To generalize the conception of
the universal horizons to any gravitational theory with
broken LI, recently we considered the khronon as a test
field, and assumed it to play the same role as a Killing
vector, so its existence does not affect the spacetime
considered, but defines the properties of it [19]. By this
way, such a field is no longer part of the gravitational

theory, and it may or may not exist in a given spacetime,
depending on the spacetime considered. Then, we showed
that the universal horizons indeed exist, by constructing
concrete static charged solutions of the Hořava gravity.
Taking the khronon field as a test field, we further showed
that the universal horizons exist and are always inside the
Killing horizons [18] in the three well-known black hole
solutions: the Schwarzschild, Schwarzschild anti-de Sitter,
and Reissner-Nordström. It should be noted that these
solutions are often also solutions of gravitational theories
with the broken LI, such as the Hořava theory [20], and the
Einstein-aether theory [6].
At the universal horizon, a slightly modified first law of

black hole mechanics exists for the neutral Einstein-aether
black holes [21], but for the charged Einstein-aether black
holes, such a first law is still absent [22]. Using the
tunneling method, the Hawking radiation at the universal
horizon for a scalar field that violates the local LI was
studied and found that the universal horizon radiates as a
blackbody at a fixed temperature [23]. A different approach
was taken in [24], in which ray trajectories in such black
hole backgrounds were studied, and evidence was found,
which shows that Hawking radiation is associated with the
universal horizon, while the “lingering” of low-energy ray
trajectories near the Killing horizon hints a reprocessing
there. However, the study of a collapsing null shell showed
that the mode passing across the shell is adiabatic at late
time [25]. This implies that large black holes emit a thermal
flux with a temperature fixed by the surface gravity of the
Killing horizon. This, in turn, suggests that the universal
horizon should play no role in the thermodynamic proper-
ties of these black holes, although it should be noted that in
such a setting, the khronon field is not continuous across
the collapsing null shell. As mentioned above, a globally
defined khronon plays an essential role in the existence of a
universal horizon, so it is not clear how the results
presented in [25] will be affected once the continuity of
the khronon field is imposed. On the other hand, using the
Hamilton-Jacobi method, recently we studied quantum
tunneling of both relativistic and nonrelativistic particles
at Killing as well as universal horizons of Einstein-
Maxwell-aether black holes, after higher-order curvature
corrections are taken into account [26]. Our results showed
that only relativistic particles are created at the Killing
horizon, and the corresponding radiation is thermal with a
temperature exactly the same as that found in general
relativity. In contrary, only nonrelativistic particles are
created at the universal horizon and are radiated out to
infinity with a thermal spectrum. However, different
species of particles, in general, experience different
temperatures.
In this paper, our main purpose is twofold. First, we shall

show that universal horizons exist not only in the low
energy limit, but also in the UV regime. To show this, we
consider solutions of the full theory of Hořava gravity, that
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FIG. 1. (a) The light cone of the event p in special relativity.
(b) The causal structure of the point p in Hořava theory.
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FIG. 2. Illustration of the bending of the ϕ ¼ constant surfaces,
and the existence of the universal horizon in the Schwarzschild
spacetime [18], where ϕ denotes the khronon field, and t and r are
the Painlevé-Gullstrand coordinates. Particles move always along
the increasing direction of ϕ. The Killing vector ζμ ¼ δμt always
points upward at each point of the plane. The vertical dashed line
is the location of the Killing horizon, r ¼ rKH . The universal
horizon, denoted by the vertical solid line, is located at r ¼ rUH,
which is always inside the Killing horizon.
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is, with all the higher-order derivative terms. In general,
these calculations are very cumbersome. To make the
problem tractable, we restrict ourselves to the (2þ 1)-
dimensional case in the framework of the projectable
Hořava theory with an extra U(1) symmetry [27–30]. It
should be noted that in [31], the effects of higher-
order derivative terms on the existence of universal
horizons were studied and found that, if a three-Ricci
curvature squared term is joined in the ultraviolet modi-
fication, the universal horizon appearing in the low
energy limit was turned into a spacelike singularity.
While this is possible, as the universal horizons might
not be stable against nonlinear perturbations [15], the
results presented in this paper show that they do exist
even in the UV regime. Second, we shall show that
universal horizons exist not only in static spacetime, but
also in the ones with rotation. This is important for both
theory and observation, as we expect that the majority of
astrophysical black holes should be the ones with rotation
[14]. In [32], it was shown that rotating universal horizons
exist in the IR limit, in the framework of the nonprojectable
Hořava gravity without the extra U(1) symmetry [33]. In
this paper, we shall show that this is true not only in the IR
limit but also in the UV.
The rest of the paper is organized as follows. In Sec. II,

we give a brief consideration of the stability of the (2þ 1)-
dimensional Hořava theory with both projectability con-
dition and the extra U(1) symmetry, while a more complete
review of the theory in (dþ 1)-dimensions is presented in
Appendix A. In Sec. III, we present various static and
stationary solutions by working in the Painlevé-Gullstrand
(PG) coordinates [34]. The main reason to work with these
coordinates is that the solutions are free of coordinate
singularities across the Killing horizons. However, a price
to pay is that the field equations become mathematically
more complicated. Fortunately, they still allow us to find
analytical solutions in closed forms. In Sec. IV, we study
the locations of Killing and universal horizons, and find
that such horizons indeed exist, even when the higher-order
curvature terms are included. We end this paper with
Sec. V, in which our main conclusions presented. There
are also two more appendixes, Appendixes B and C, in
which some mathematical expressions are presented.
Before proceeding further, we would like to note that the

study of black holes in gravitational theories with the
broken LI is also crucial in the understanding of quantiza-
tion of gravity [3,4] and the nonrelativistic AdS/CFT
correspondence [35–38]. But, such studies are all in its
infancy, and more detailed investigations are highly
demanded.

II. PROJECTABLE HOŘAVA THEORY WITH U(1)
SYMMETRY IN (2þ 1) DIMENSIONS

In the 2þ 1 dimensional spacetimes, the Riemann and
Ricci tensors Rijkl and Rij of the two-dimensional (2d)

leaves of t ¼ constant have only one independent compo-
nent, and are given by [3],

Rijkl ¼
1

2
ðgikgjl − gilgjkÞR;

Rij ¼
1

2
gijR: ð2:1Þ

Then, the potential part of the action of the Hořava theory
up to the fourth-order is given by

LV ¼ 2Λþ g1Rþ 1

ζ2
ðg2R2 þ g3ΔRÞ; ð2:2Þ

where Λ is the cosmological constant, and gn’s are
dimensionless coupling constants, and ζ has the dimension
of ðmassÞ−1. However, in 2d spaces the Ricci scalar R
always takes a complete derivative form. Then, when
N ¼ NðtÞ, the action can be integrated once, and this term
can be expressed as a boundary term. The same is true for
the g3ΔR term. Therefore, in the case with the projectability
condition, without loss of generality, we can always drop
the g1 and g3 terms.
In Appendix A, we provide a brief introduction to the

(dþ 1)-dimensional Hořava theory with the projectability
condition (A4) and the DiffðM;F Þ symmetry (A5). Setting
d ¼ 2 and taking the above potential (with g1 ¼ g3 ¼ 0)
into account, one can obtain the field equations. In
particular, the relativistic case is recovered by setting

ðλ; g2ÞGR ¼ ð1; 0Þ: ð2:3Þ

In addition, one can show that the Minkowski spacetime

ðN;Ni; gij; A;φÞ ¼ ð1; 0; δij; 0; 0Þ ð2:4Þ

is a solution of the field equations with Λ ¼ Λg ¼ 0. Then,
its linear perturbations can be cast in the form,1

N ¼ 1þ ϕ; Ni ¼ ∂iB;

gij ¼ ð1 − 2ψÞδij þ 2∂i∂jE;

A ¼ δA; φ ¼ δφ; ð2:5Þ

where ϕ; B;ψ ; E; δA and δφ represent the scalar perturba-
tions, and the projectability condition requires ϕ ¼ ϕðtÞ.
Using the gauge freedom, without loss of generality, we can
always set [39]

ϕ ¼ E ¼ δφ ¼ 0; ð2:6Þ

which uniquely fixes the gauge. Then, the quadratic action
without matter takes the form,

1In (2þ 1)-dimensions, there are no vector and tensor pertur-
bations [3]. This is true also in the Hořava theory.
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Sð2Þ ¼ ζ2
Z

dtd3x

�
2ð1 − 2λÞð _ψ2 þ _ψ∂2BÞ

þ ð1 − λÞð∂2BÞ2 − 2

�
Aþ 2

g2
ζ2

ψ∂2

�
∂2ψ

�
; ð2:7Þ

where ∂2 ¼ δij∂i∂j. Now, variations of Sð2Þ with respect to
A, B, and ψ yield, respectively,

∂2ψ ¼ 0; ð2:8Þ

ð1 − 2λÞ _ψ þ ð1 − λÞ∂2B ¼ 0; ð2:9Þ

ψ̈ þ 1

2
∂2 _Bþ 1

2ð1 − 2λÞ
�
4
g2
ζ2

∂2ψ þ ∂2A
�

¼ 0. ð2:10Þ

From Eq. (2.8) it can be seen that the scalar ψ satisfies the
Laplace equation. Thus, it does not represent a propagative
mode, and with proper boundary conditions, one can
always set it to zero. Similarly, this is also true for other
scalars. Hence, the spin-0 gravitons are not present in
(2þ 1)-dimensions, similar to the (3þ 1)-dimensional
case [30].

III. STATIC AND STATIONARY VACUUM
SOLUTIONS

In this section we are going to study vacuum solutions of
the projectable Hořava theory with the extra U(1) sym-
metry introduced in the last section in (2þ 1)-dimensional
static and stationary spacetimes. Since our main purpose is
to study the existence of universal horizons, which are
always located inside the Killing horizons,2 we shall choose
the gauge such that the solutions do not have coordinate
singularities outside of universal horizons. In the spheri-
cally symmetric spacetimes with a timelike foliation, this is
quite similar to the PG coordinates [34]. Therefore, in this
paper we shall refer such a coordinate system as the PG
coordinates. To proceed further, let us first consider static
spacetimes.

A. Static spacetimes

The general static solutions with the projectability
condition N ¼ NðtÞ can be cast in the form,

N ¼ 1; Ni ¼ δirhðrÞ; gij ¼
�

1

fðrÞ ; r
2

�
;

φ ¼ φðrÞ; A ¼ AðrÞ; ð3:1Þ

in the spatial coordinates xi ¼ ðr; θÞ. Using the U(1)
symmetry, without loss of the generality, we choose the
gauge,

φ ¼ 0; ð3:2Þ

so that Fij
ðφ;nÞ ¼ 0 ¼ fijφ . Then, we find that the quantities

Kij; Rij; πij; FA
ij; Fij and Li are given by Eq. (B1) in

Appendix B. Then, Eqs. (A17), (A18), (A20), (A21),
(A23), (A28), and (A29) reduce, respectively, to
Eqs. (B2)–(B8) given in Appendix B.
When the spacetime is vacuum, Eqs. (B3)–(B7) reduce,

respectively, to

ðλ − 1Þ½h00 − aðrÞh0� þ bðrÞh ¼ 0; ð3:3Þ

ðλ − 1Þ
�
h000 þ 2

r
h00
�
þ cðrÞh0 þ dðrÞh ¼ 0; ð3:4Þ

f0 þ 2Λgr ¼ 0; ð3:5Þ

A0 þ PðrÞAþQðrÞ ¼ 0; ð3:6Þ

A00 þ UðrÞA0 þ VðrÞAþWðrÞ ¼ 0; ð3:7Þ

where a; b; c; d; P;Q;U; V andW are given by Eq. (B9) in
Appendix B.
It should be noted that not all of the above equations are

independent. In fact, Eq. (3.4) can be obtained from
Eqs. (3.3) and (3.5), while Eq. (3.7) can be obtained from
Eqs. (3.6) and (3.5). Therefore, in the present case there are
three independent equations, (3.3), (3.5) and (3.6), for the
three unknowns, f, h and A. In particular, one can first find
f from Eq. (3.5),

fðrÞ ¼ C1 − Λgr2; ð3:8Þ

where C1 is an integration constant. Substituting it into
Eq. (3.3), one can find hðrÞ. Once f and h are known, from
Eq. (3.6), we find that

AðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − Λgr2

q 0
B@A0 −

Z
r Qðr0Þdr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1 − Λgr02
q

1
CA; ð3:9Þ

where A0 is another integration constant. Therefore, our
main task now becomes to solve Eq. (3.3) for h with f
given by Eq. (3.8). Once h is known, the gauge field A can
be obtained by quadrature from Eq. (3.9). To solve
Eq. (3.3), we consider the two cases Λg ¼ 0 and Λg ≠ 0,
separately.

2In this paper we define a Killing horizon as the location at
which the time-translation Killing vector ζμ becomes null. In the
spacetimes with rotations, this coincides with the ergosurface
(ergosphere), while in the static spacetimes it coincides with the
event horizon [18,40].

LIN, SATHEESHKUMAR, and WANG PHYSICAL REVIEW D 93, 124025 (2016)

124025-4



1. Λg = 0

When Λg ¼ 0, we have

fðrÞ ¼ C1 > 0; ð3:10Þ

and Eq. (3.3) simply reduces to

ðλ − 1Þ
�
h00 þ 1

r
h0 −

1

r2
h

�
¼ 0: ð3:11Þ

Therefore, we need to consider the two cases λ ¼ 1 and
λ ≠ 1, separately.
Case with λ ¼ 1: Then, Eq. (3.11) is satisfied identically,

and h is undetermined. This is similar to the (3þ 1)-
dimensional case [41]. Inserting Eq. (3.10) into the
expression for QðrÞ defined in Eq. (B9) with λ ¼ 1, we
find that

QðrÞ ¼ 1

C1

ðhh0 − ΛrÞ; ð3:12Þ

for which Eq. (3.9) yields

AðrÞ ¼ A0

ffiffiffiffiffiffi
C1

p
−

1

2C1

ðh2 − Λr2Þ: ð3:13Þ

Case with λ ≠ 1: In this case, Eq. (3.11) has the general
solutions,

hðrÞ ¼ C2rþ
C3

r
; ð3:14Þ

where C2 and C3 are other integration constants. Inserting
Eqs. (3.10) and (3.11) into Eq. (3.9), we obtain

AðrÞ ¼ A0 −
C2
3

2C1r2
−
ð2λ − 1ÞC2

2 − Λ
2C1

r2: ð3:15Þ

2. Λg ≠ 0

When Λg ≠ 0, it is also found convenient to study the
two cases, λ ¼ 1 and λ ≠ 1, separately.
Case with λ ¼ 1: In this case, Eq. (3.3) yields

hðrÞ ¼ 0: ð3:16Þ

Then, from Eqs. (B9) and (3.8), we find that

QðrÞ ¼ 2g2Λ2
g − ζ2Λ

ζ2ðC1 − Λgr2Þ
r: ð3:17Þ

Inserting it into Eq. (3.9), we obtain

AðrÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − Λgr2

q
− A1; ð3:18Þ

where A1 ≡ 2g2Λg=ζ2 − Λ=Λg. It can be shown that this is
the static Banados-Teitelboim-Zanelli (BTZ) solution with
mass M ¼ −C1, provided that A1 ¼ −1. When A1 ≠ −1,
we provide the main properties of the corresponding
solution in Appendix C.
Case with λ ≠ 1: In this case, Eq. (3.3) takes the form,

r2ðC1 −Λgr2Þ2h00 þC1rðC1−Λgr2Þh0

−
�
C1ðC1− 3Λgr2Þþ

Λgr2ðC1−Λgr2Þ
λ− 1

�
h¼ 0; ð3:19Þ

which has the general solution,

hðrÞ ¼ rðC1 − Λgr2Þ
�
C4Fða; b; 2; zÞ

þ C5

Z
dr

r3ðC1 − Λgr2Þ32Fða; b; 2; zÞ

�
; ð3:20Þ

where z≡ Λgr2=C1, C4 and C5 are constants, Fða; b; c; zÞ
is the hypergeometric function, and now

a≡ 1

4

�
5þ

ffiffiffiffiffiffiffiffiffiffi
λ − 5

λ − 1

r �
; b≡ 1

4

�
5 −

ffiffiffiffiffiffiffiffiffiffi
λ − 5

λ − 1

r �
: ð3:21Þ

Inserting it, together with f given by Eq. (3.8), into
Eq. (3.9), we can obtain A. However, because of the
complexity of h, it is found that no explicit expression
for A can be obtained, except for the case where h ¼ 0 (or
C4 ¼ C5 ¼ 0), for which we find that QðrÞ and AðrÞ are
given exactly by Eqs. (3.17) and (3.18).
In addition, Eq. (3.20) holds only for C1 ≠ 0. When

C1 ¼ 0, Eq. (3.3) has the general solution,

hðrÞ ¼ Cþrδþ þ C−rδ− ; ð3:22Þ

where C� are the integration constants, and

δ� ¼ 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffi
λ − 5

λ − 1

r �
: ð3:23Þ

Note that to have δ� real, the parameter λ must be either
(i) λ < 1 or (ii) λ ≥ 5. Inserting it into Eq. (3.9), we find that

AðrÞ ¼ A0rþ 1 − Λ2 þ
Ĉþ
r2δ−

þ Ĉ−

r2δþ
; ð3:24Þ

with
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Ĉ� ≡ 8∓ðλ − 1Þ½3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 6λþ 5

p ∓ð13 − 3λÞ�
4Λgð3λþ 1ÞC−2

�
;

Λ2 ¼ 1 −
ζ2Λ − 2g2Λ2

g

ζ2Λg
: ð3:25Þ

B. Stationary spacetimes

To find rotating black holes, let us consider the stationary
spacetimes described by

N ¼ 1; Ni ¼ hrðrÞδir þ hθðrÞδiθ;

gij ¼
1

fðrÞ δ
r
iδ

r
j þ r2δθi δ

θ
j : ð3:26Þ

To obtain the general analytic solutions in this case, it is
found very difficult, and instead let us first consider the
case where Rij ¼ 0 ¼ Λg. Then, depending on the values of
λ, we find three classes of solutions. The first class is for
λ ¼ 1, given by

fðrÞ ¼ C1;

hθðrÞ ¼
ha
r2

þ hb;

AðrÞ ¼ 1 − A0 −
h2a
2r2

þ Λr2

2C1

−
hrðrÞ2
2C1

; ð3:27Þ

where C1; ha; hb and A0 are all integration constants, and
similar to the static case the function hrðrÞ is arbitrary.
The second class is for λ ≠ 1, given by

fðrÞ ¼ C1;

hθðrÞ ¼
ha
r2

þ hb;

hrðrÞ ¼
HA

r
þHBr;

AðrÞ ¼ 1 − A0 −
1

2C1r2
ðH2

A þ C1h2a − ΛCr4Þ; ð3:28Þ

where ΛC ≡ Λþ ð1 − 2λÞHB, and C1; HA;HB; ha; hb and
A0 are all constants.
The third class of rotating solutions can be obtained by

considering the ansatz

N ¼ 1; Nμ ¼ hθðrÞδμθ;

gij ¼
1

fðrÞ δ
r
iδ

r
j þ r2δθi δ

θ
j ; ð3:29Þ

for which we find the following rotating solution

fðrÞ ¼ f0 − Λgr2;

hθðrÞ ¼ hB −
hA

2f3=20 r2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf0 − Λgr2Þ

q

þΛgr2

0
B@f0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf0 − Λgr2Þ

q
r

1
CA
3
75;

AðrÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0 − Λgr2

q
þ Λ
Λg

− 2g2Λg

−
3h2AΛg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0 − Λgr2

q
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0

f0−Λgr2

q �
8f5=20

−
h2Aðf0 − 3Λgr2Þ

8f20r
2

; ð3:30Þ

where h0, A0, hA and hB are constants.

IV. UNIVERSAL HORIZONS AND BLACK HOLES
WITHOUT OR WITH ROTATIONS

As mentioned above, the fundamental variables of the
gravitational field in the Hořava theory with DiffðM;F Þ
and Uð1Þ symmetry (A5) are

ðN;Ni; gij; A;φÞ:
In the framework of the universal coupling [42], they are
related to the spacetime line element ds2 via the relations,

ds2 ¼ γμνdxμdxν; ðμ; ν ¼ 0; 1; 2; 3Þ; ð4:1Þ
where γμν is given by Eq. (A13), that is

ðγμνÞ≡
 
−N 2 þN iN i N i

N i γij

!
; ð4:2Þ

where γijγik ¼ δjk, N i ≡ γijN j, and

N ≡ ð1 − a1σÞN; N i ≡ Ni þ Ngij∇jφ;

γij ≡ ð1 − a2σÞ2gij; σ ≡ A −A
N

;

A≡ − _φþ Ni∇iφþ 1

2
Nð∇iφÞð∇iφÞ: ð4:3Þ

Here a1 and a2 are two arbitrary coupling constants.
The solar system tests in (3þ 1)-dimensions require that
they must satisfy the conditions (A37). In particular, for
ða1; a2Þ ¼ ð1; 0Þ, the PPN parameters will be the same as
those given in general relativity [43]. Although in (2þ 1)-
dimensions, no such constraints exist, in order to compare
with those obtained in (3þ 1)-dimensions, we shall impose
these conditions also in the (2þ 1)-dimensional spacetimes
considered in this paper. In particular, we shall only
consider the case with

LIN, SATHEESHKUMAR, and WANG PHYSICAL REVIEW D 93, 124025 (2016)

124025-6



a1 ¼ 1; a2 ¼ 0: ð4:4Þ

Therefore, with the gauge choice φ ¼ 0, Eq. (4.3) reduces
to

N ¼ N − A; N i ¼ Ni; γij ¼ gij: ð4:5Þ

This is also consistent with the one adopted in [27] in
(3þ 1)-dimensions, when the solar system tests were
considered.
On the other hand, the critical point for a universal horizon

to be present is the existence of a globally defined khronon
field ϕ, which is always timelike [44]. Then, the causality is
assured by assuming that all the particles move along the
increasing direction of ϕ. In this sense, ϕ serves as an
absolute time introduced in the Newtonian theory. Setting

uμ ≡ ∂μϕffiffiffiffi
X

p ; ð4:6Þ

one can see that uμ is always timelike, γμνuμuν ¼ −1, where
X ≡ −gαβ∂αϕ∂βϕ. In addition, such defined uμ is invariant
under the gauge transformation,

ϕ ¼ F ð ~ϕÞ; ð4:7Þ

provided that F ð ~ϕÞ is a monotonically increasing (or
decreasing) and otherwise arbitrary function of ~ϕ. Such
defined uμ also satisfies the hypersurface-orthogonal
condition,

u½νDαuβ� ¼ 0; ð4:8Þ

whereDα denotes the covariant derivativewith respect to γμν.
In (2þ 1)-dimensional spacetimes, the most general

form of action of khronon is described as [45]

Sϕ ¼
Z

d2þ1x
ffiffiffiffiffi
jγj

p
Lϕ

¼
Z

d2þ1x
ffiffiffiffiffi
jγj

p
½c1ðDμuνÞ2 þ c2ðDμuμÞ2

þc3ðDνuμÞðDμuνÞ − c4aμaμ�; ð4:9Þ

where aμ ≡ uαDαuμ, and ci’s denote the coupling constants
of the khronon field. However, due to the identity (4.8), not
all the four terms are independent. In fact, from Eq. (4.8)
we find that

ΔLϕ ≡ aμaμ þ ðDμuνÞðDμuνÞ − ðDνuμÞðDμuνÞ ¼ 0:

Then, we can always add this term into Sϕ with arbitrary
coupling constant c0, so that the coupling constants ci inLϕ

can be redefined as

c01 ¼ c1 þ c0; c02 ¼ c2;

c03 ¼ c3 − c0; c04 ¼ c4 − c0: ð4:10Þ

Thus, one can always set one of the terms c01, c
0
3 and c04 to

zero by properly choosing c0. In the following, we shall
leave this possibility open.
Then, the variation of Sϕ with respect to ϕ yields the

khronon equation [46],

DμAμ ¼ 0; ð4:11Þ
where

Aμ ≡ δμν þ uμuνffiffiffiffi
X

p Æν;

Æμ ≡DνJνμ þ c4aνDμuν;

Jαμ ≡ ðc1gαβgμν þ c2δαμδ
β
νþc3δανδ

β
μ − c4uαuβgμνÞDβuν:

ð4:12Þ
From the above expressions, we find

uμAμ ¼ 0; ð4:13Þ
that is, Aμ is always orthogonal to uμ.
Equation (4.11) is a second-order differential equation

for uμ, and to uniquely determine it, two boundary
conditions are needed. These two conditions in stationary
and asymptotically flat spacetimes can be chosen as follows
[18,44]: (i) uμ is aligned asymptotically with the time
translation Killing vector ζμ,

uμ ∝ ζμ: ð4:14Þ
(ii) The khronon has a regular future sound horizon, which
is a null surface of the effective metric [47],

gðϕÞμν ¼ gμν − ðc2ϕ − 1Þuμuν; ð4:15Þ

where cϕ denotes the speed of the khronon given by,

c2ϕ ¼ c123
c14

; ð4:16Þ

where c123 ≡ c1 þ c2 þ c3, c14 ≡ c1 þ c4. It is interesting
to note that such a speed does not depend on the
redefinition of the new parameters c0i given by Eq. (4.10),
as it is expected.
The universal horizon is the location at which uμ and ζμ

are orthogonal [18,44],

γμνuμζν ¼ 0: ð4:17Þ

Since uμ is always timelike, and ζμ is also timelike outside
the Killing horizon, Eq. (4.17) is possible only inside the
Killing horizon, in which ζμ becomes spacelike.
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With all the above in mind, now we are ready to consider
the locations of universal horizons in the solutions found in
the last section for static or stationary spacetimes.

A. Universal horizons and black holes
in static spacetimes

In the static spacetimes of the solutions found in the last
section, the general form of metric is

ds2 ¼−N 2dt2þ 1

fðrÞ ½drþhðrÞdt�2þ r2dθ2; ð4:18Þ

as can be seen from Eqs. (3.1) and (4.5). Following [44], it
can be shown that Eq. (4.11) is equal to

Aμ ¼ 0; ð4:19Þ

in asymptotically flat spacetimes, in which we have

V → 0; N → 1; F → 1; ut → 1;

X → 1; h → 0; ð4:20Þ

as r → ∞. In the following we shall assume that this is also
true to other spacetimes. To simplify Eqs. (4.19), in the
following we only consider the case

c14 ¼ 0; ð4:21Þ

for which the speed cϕ of the khronon field becomes
infinitely large, as one can see form Eq. (4.16). In this case,
the sound horizon of the khronon coincides with the
universal horizon, and the requirement that the khronon
has a regular future sound horizon reduces to that of the
universal horizon.
It can be shown that Eq. (4.19) has only one independent

component, and with the assumption (4.21), it reduces to

V 00

V
þ
�
N 0

N
−

f0

2f
þ 1

r

�
V 0

V
þ cp

r

�
N 0

N
−

f0

2f

�
−

1

r2

þN 00

N
−

f0

2f
−
�
N 0

N

�
2

þ 1

2

�
f00

f

�
2

¼ 0; ð4:22Þ

where V ≡ ur, cp ≡ c13=c123.
The timelike Killing vector ζμ now is given by ζμ ¼ δμt ,

so the location of the universal horizon is at

uμζμ ¼ ut ≡
ffiffiffiffi
G

p
; ð4:23Þ

where

G≡ f−1½N 2ðf þ V2Þ − h2�: ð4:24Þ

Note that G is not necessary to be always non-negative.
However, to have the khronon field well-defined, we must

assume thatGðrÞ ≥ 0 for any r ∈ ð0;∞Þ. Then, one can see
that the location of the universal horizon must be the
minimum of the functionGðrÞ, so that at r ¼ rUH, we must
have [18],

GðrÞjr¼rUH
¼ 0 ¼ G0ðrÞjr¼rUH

: ð4:25Þ

On the other hand, at the Killing horizon r ¼ rKH we
have ζμζμ ¼ 0, or equivalently KðrKHÞ ¼ 0, where

KðrÞ≡N ðrÞ2 − hðrÞ2
fðrÞ : ð4:26Þ

Then, γμν and γμν are given by

γμνðrKHÞ ¼

0
B@

0 hðrÞ=fðrÞ 0

hðrÞ=fðrÞ 1=fðrÞ 0

0 0 r2

1
CA
								
r¼rKH

;

γμνðrKHÞ ¼

0
B@

−fðrÞ=hðrÞ2 fðrÞ=hðrÞ 0

fðrÞ=hðrÞ 0 0

0 0 r−2

1
CA
								
r¼rKH

:

ð4:27Þ

Therefore, in order for the metric to be free from coordinate
singularities across the Killing horizon, we must require
that both hðrKHÞ and fðrKHÞ are finite and nonzero. In the
(3þ 1)-dimensional case, we know that the Schwarzschild
and Schwarzschild-de Sitter solutions satisfy these con-
ditions, but not for the Schwarzschild-anti-de Sitter and
Reissner-Nordström solutions [18]. For the latter, one
needs first to make extensions across those horizons,
and then study the existence of universal horizons inside
of those Killing horizons. In the following, we shall show
that even with such strong conditions solutions that harbor
universal horizons still exist.

1. Λg = 0, λ= 1

In this case the solutions are given by Eqs. (3.10) and
(3.13) with hðrÞ being an arbitrary function. In order to
have the metric regular across the Killing horizon, we
assume that hðrÞ ≠ 0, for which the metric takes the form,

ds2 ¼ −
�
1 − A0

ffiffiffiffiffiffi
C1

p
þ h2 − Λr2

2C1

�
2

dt2

þ 1

C1

ðdrþ hðrÞdtÞ2 þ r2dθ2; ð4:28Þ

where C1 ≠ 0. Rescaling the coordinates, without loss of
generality, we can always set C1 ¼ 1, so the metric takes
the final form,
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ds2 ¼ −
�
Ā0 þ

h2 − Λr2

2

�
2

dt2

þ ðdrþ hðrÞdtÞ2 þ r2dθ2; ð4:29Þ

where Ā0 ¼ 1 − A0. To study the existence of universal
horizons and black holes, let us consider the case where the
function hðrÞ is given by

h ¼ H
rβ

; ð4:30Þ

where β andH are two constants. Then, Eq. (4.22) becomes

V 00

V
þ 1

r

�
1 − 2

H2β þ Λr2þ2β

H2 þ r2βð2Ā0 − r2ΛÞ
�
V 0

V

−
2cp
r2

H2β þ Λr2þ2β

H2 þ r2βð2Ā0 − r2ΛÞ þ
1

r2

× ½H2 þ r2βð2Ā0 − r2ΛÞ�−2½ð2β − 1ÞH4

þ 2H2r2βð2Ā0ð2β2 þ β − 1Þ − βð2β þ 5ÞΛr2Þ
−r4βð4Ā2

0 þ 3Λ2r4Þ� ¼ 0: ð4:31Þ

On the other hand, the scalar and extrinsic curvatures R
and K are given by

R ¼ 8

r2D3
f−H6β2 þ r6βΛðr3Λ − 2Ā0rÞ2

þH4r2β½β þ r2Λþ β2ð2Λr2 − 4Ā0Þ�
−H2r4β½4Ā2

0β
2

− 2Ā0ð2Λr2 − β þ 2β2ð1þ Λr2ÞÞ
þr2Λðβ − 2þ 2Λr2 þ β2ð2þ Λr2ÞÞ�g;

K ¼ 2Hð1 − βÞrβ−1
DðrÞ ;

DðrÞ≡H2 − ðΛr2 − 2Ā0Þr2β: ð4:32Þ

Clearly, to avoid spacetime singularities occurring at finite
and nonzero r, we must assume that DðrÞ ≠ 0 for
r ∈ ð0;∞Þ.

When Λ ¼ 0, we have DðrÞ ¼ H2 þ 2Ā0r2β. Therefore,
for A0 > 0, we always have DðrÞ > 0. In this case, if we
further set H ¼ 2 and β ¼ 1=2, we find that Eq. (4.31) has
the asymptotic solution,

Vjr→∞ →
u0
r
; ð4:33Þ

which satisfies the boundary condition uμ ∝ ξμ at infinity.
But, an analytical solution of Eq. (4.31) for any r is still
absent even in this simple case. The corresponding metric
takes the form,

ds2 ¼ −
�
Ā0 þ

2

r

�
2

dt2 þ
�
drþ 2ffiffiffi

r
p dt

�
2

þ r2dθ2:

ð4:34Þ

Since even in this simple case, analytically solving
Eq. (4.31) is not trivial, instead in the following we shall
use the shooting method first to solve it, and then localize
the positions of the Killing and universal horizons, which
satisfies, respectively, the equation KðrKHÞ ¼ 0, and
(4.25), where KðrÞ is given by Eq. (4.26).
In Fig. 3, we show the curves of GðzÞ, VðzÞ andKðzÞ for

various choices of the parameter cp ≡ c13=c123, and find
the locations of the Killing and universal horizons, denoted,
respectively, by rKH and rUH, where z≡ 1=r. From this
figure one can see that the locations of the universal
horizons depend on cp as it is expected.
When Λ ≠ 0, the mathematics becomes more involved.

In the following we shall consider some representative
choices of the parameter β.
Case 1.a β ¼ −1: In the case, to have DðrÞ ≠ 0 for

r ∈ ð0;∞Þ, we assume that Ā0

Λ−H2 ≤ 0. In Fig. 4, we show
the functions G, V and K and the locations of the Killing
and universal horizons for various choices of cp.
Case 1.b β < −1: In the case, to have DðrÞ ≠ 0 for

r ∈ ð0;∞Þ, we must assume that either Ā0 ≥ 0 and Λ < 0,
or Ā0 ≥ 0, Λ > 0. Then, in Fig. 5 we show the functions G,
V and K and the locations of the Killing and universal
horizons for various choices of cp with β ¼ −2.
Case 1.c 0 > β > −1: In this case, we find that we must

assume that either Ā0 > 0;Λ < 0, or Ā0 > 0;Λ > 0, in

G(z)

V(z)

cp 1

A0
3

5 rKH 13.09

rUH 6.58

(z)

0.2 0.4 0.6 0.8
z

0.2

0.0

0.2

0.4

V(z)

cp 0

A0
3

5

rUH 7.5

G(z)

rKH 13.09

(z)

0.2 0.4 0.6 0.8
z

0.2

0.0

0.2

0.4

0.6

0.8 V(z)

cp 1

A0
3

5
rUH 8.08

G(z)

(z)

rKH 13.09

0.2 0.4 0.6 0.8
z

0.5

1.0

FIG. 3. The functions G; Vð≡urÞ and K vs z≡ 1=r and the locations of the Killing (r ¼ rKH) and universal (r ¼ rUH) horizons, for
the spacetime given by Eq. (4.34) with A0 ¼ 3=5 and various choices of cp.
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order not to have spacetime singularities at a finite and
nonzero r. In Fig. 6, we show the functionsG, V andK and
the locations of the Killing and universal horizons for
various choices of cp with β ¼ −1=2.
Case 1.d β ¼ 0: In the case, we must assume that

2Ā0þH2

Λ ≤ 0, and in Fig. 7 we show the functions G, V

and K and the locations of the Killing and universal
horizons.
Case 1.e β > 0: In this case, we require that Λ < 0.

Then, in Fig. 8 we show the functions G, V and K and
the locations of the Killing and universal horizons
for β ¼ 2.

G(z)

rKH 0.683

rUH 0.576 V(z)1

A0
1

5

cp 1

h(r)=2r

(z)
0.5 1.0 1.5 2.0 2.5

z
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rKH 0.683

rUH 0.5596
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h(r)=2r
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2

FIG. 4. The functions G;Vð≡urÞ and K vs z, for the spacetime given by Eq. (4.29) with Λ ¼ −1, A0 ¼ 3=5, H ¼ 2, β ¼ −1 and
various choices of cp.
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FIG. 5. The functions G;Vð≡urÞ and K vs z, for the spacetime given by Eq. (4.29) with Λ ¼ −1, A0 ¼ 3=5, H ¼ 2, β ¼ −2 and
various choices of cp.
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FIG. 6. The functions G;Vð≡urÞ and K vs z, for the spacetime given by Eq. (4.29) with Λ ¼ −1, A0 ¼ 3=5, H ¼ 2, β ¼ −1=2 and
various choices of cp.
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FIG. 7. The functionsG;Vð≡urÞ andK vs z, for the spacetime given by Eq. (4.29) with Λ ¼ −1, A0 ¼ 3=5,H ¼ 2, β ¼ 0 and various
choices of cp.
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2. Λg = 0, λ ≠ 1

In this case, the solutions are given by Eqs. (3.10), (3.14)
and (3.15). Similar to the last case, without loss of the
generality, we can always set C1 ¼ 1, and the metric takes
the form,

ds2 ¼ −
�
A0 þ

C2
3

2r2
− Λr2

�
2

dt2

þ
�
drþ

�
C2rþ

C3

r

�
dt

�
2

þ r2dθ2: ð4:35Þ

To study these solutions further, let us consider the cases
C3 ¼ 0 and C3 ≠ 0, separately.
When C3 ¼ 0, we assume that C2 ≠ 0. Otherwise, the

metric will be singular across the Killing horizons. Then,
the rescaling,

t → C−1
2 t; A0 → C2A0; Λ → C2Λ; ð4:36Þ

leads the metric to the form,

ds2 ¼ −ðA0 − Λr2Þ2dt2 þ ðdrþ rdtÞ2
þ r2dθ2; ðC3 ¼ 0Þ; ð4:37Þ

from which we find that

R ¼ 2
A0ð3 − 8Λ2r2Þ þ 4A2

0Λþ Λr2 þ 4Λ3r4

ðA0 − Λr2Þ3 ;

K ¼ 2

A0 − Λr2
: ð4:38Þ

Thus, to avoid spacetime singularity at A0 − Λr2 ¼ 0, we
shall assume A0Λ ≤ 0. On the other hand, the Killing
horizon is located at

ðA0 − Λr2KHÞ2 − r2KH ¼ 0; ð4:39Þ

which has real and positive roots only when 1þ 4A0Λ ≥ 0.
Moreover, in the present case Eq. (4.22) reduces to

V 00 þ A0 − 3Λr2

A0r − Λr3
V 0

−
A2
0 þ 2A0cpΛr2 þ ð3 − 2cpÞΛ2r4

ðA0r − Λr3Þ2 V ¼ 0: ð4:40Þ

In Fig. 9, we show the functions G, V and K and the
locations of the Killing and universal horizons for various
choices of the free parameters, as specified in each of the
panels of the figure.
When C3 ≠ 0, the rescaling of the timelike coordinate

and the redefinitions of the parameters,

t → C−1
3 t; A0 → C3A0; Λ → C3Λ;

C1 → 2CA=C3; ð4:41Þ

lead the metric to the form,

ds2 ¼ −
�
A0 þ

CA

r2
− Λr2

�
2

dt2

þ
�
drþ

�
C2rþ

1

r

�
dt

�
2

þ r2dθ2: ð4:42Þ

If C2 ¼ 0 ¼ Λ, this metric becomes asymptotically flat
at spatial infinity, and Eq. (4.22) is given by

C2
Að1 − 2cpÞ − 2A0CAðcp − 2Þr2 − A2

0r
4

r2ðA0r2 þ CAÞ2
V

þ V 00 þ A0r2 − CA

A0r3 þ CAr
V 0 ¼ 0: ð4:43Þ

In Fig. 10, we show the locations of the Killing and
universal horizons.
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FIG. 8. The functionsG;Vð≡urÞ andK vs z, for the spacetime given by Eq. (4.29) with Λ ¼ −1, A0 ¼ 3=5,H ¼ 2, β ¼ 2 and various
choices of cp.
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If C2 and Λ do not vanish at the same time, we find

R ¼ 2

r2DðrÞ3 ½C
2
Að12Λr4 − 8A0r2Þ

− 4C2
A þ CA½r2 − 4ðA2

0 − C2Þr4 − 12Λ2r8

þ ð7C2
2 þ 16A0ΛÞr6� þ r4½4A2

0Λr
4

þ A0ð1þ 3C2
2r

4 − 8Λ2r6Þ þ Λr2ð4Λ2r6 þ C2
2r

4

þ 4C2r2 − 1Þ��;

K ¼ 2C2r2

DðrÞ ; DðrÞ≡ CA þ A0r2 − Λr4: ð4:44Þ

Again, to avoid spacetime singularities at finite but nonzero
r, we must assume that DðrÞ ≠ 0 for r ∈ ð0;∞�. In Fig. 11,
we show the functions G, V and K and the locations of the
Killing and universal horizons.

3. Λg ≠ 0

When Λg ≠ 0, the solutions are mathematically much
involved, and in this subsection we only consider the case
where λ ≠ 1 but C1 ¼ 0. Then, the solutions are given by
Eqs. (3.8), (3.22)–(3.25), for which the extrinsic curvature
is given by
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FIG. 10. The functions G, V and K and the locations of the Killing and universal horizons for the solutions given by Eq. (4.42) with
Cc ¼ 0 ¼ Λ.
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K ¼ r
ζ−λp
2ζ

2ζ
½C−r

λ−5
λp ðλp − ζÞ − Cþðλp þ ζÞ�

×

�
Λ2 − A0r − C2þ

r
5−λ
λp
−1

4Λgð1þ 3λÞ ðζð13þ 3λp

−3λÞ þ 8Þ − C2
−

r
−5þλ
λp

−1

4Λgð1þ 3λÞ ðζð−13þ 3λp

þ 3λÞ − 8Þ
�−1

; ð4:45Þ

where λp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ − 1Þðλ − 5Þp
and ζ ¼ λ − 1. Note that to

have the metric real, as noticed in the last section, we must
have either λ ≤ 1 or λ ≥ 5. When λ ≤ 1, λ should be larger
than − 1

3
so that K remains finite at the spatial infinity.

In particular, for Λg < 0, λ ¼ 1
2
and Cþ ¼ 0, we have

N ðrÞ ¼ Λ2 − A0r −
9C2

2

20Λgr4
;

hðrÞ ¼ C2

r
; fðrÞ ¼ −Λgr2; ð4:46Þ

where we had replaced C− by C2. Then, Eq. (4.22) can be
rewritten as

V 00

V
þ 4

5A0Λgr5 − 9C2
2

9C2
2rþ 20r5ðA0r − Λ2ÞΛg

V 0

V

− ½9C2
2rþ 20r5ðA0r − Λ2ÞΛg�−2½81C4

2ð5cp − 4Þ
þ 180C2

2r
4ΛgðA0ð5cp − 28Þrþ 20Λ2 − 6cpΛ2Þ

þ 400r8Λ2
gðA2

0r
2 − A0cpΛ2rþ cpΛ2

2Þ�: ð4:47Þ

In Fig. 12, we show the functions K, V and G, and
numerically find the radii of the Killing and universal
horizons for λ ≤ 1.
A similar consideration is presented in Fig. 13 for λ ≥ 5.

In particular, in this figure we have chosen λ ¼ 19
3
, Λ2 ¼ 1,

Λg ¼ −1, A0 ¼ −2, C− ¼ 2 and Cþ ¼ 1.
In all the cases considered above, a universal horizon

always exists inside a Killing horizon. To assure that no
coordinate singularities appear across the Killing horizons,
we are forced to use the PG-like coordinates, in which Ni

does not vanishes identically. Although not all of the
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FIG. 11. The functions G, V and K and the locations of the Killing and universal horizons for the spacetimes given by Eq. (4.43) with
C3 ≠ 0, Λ ¼ −1, C2 ¼ 0.
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solutions of the theory can be written in this form, as we
mentioned above, the solutions considered in this paper
indeed all possess these properties.
It is also important to note that the solutions presented

above are the solutions of the full theory, that is, including
the contribution of the higher-order derivative term speci-
fied by the coefficient g2. Therefore, our above results show
that universal horizons and black holes exist not only in the
infrared limit, but also in the ultraviolet limit.

B. Universal horizons and black holes
in rotating spacetimes

When spacetimes have rotations, the Killing horizons are
different from the event horizons. The former are often
called ergosurfaces (or ergospheres when the topology is
Sn, where n denotes the dimensions of the horizon), while
the latter is defined by the existence of a null surface of the
normal vector, rμ ≡ ∂μr [40], that is,

γμνrμrνjr¼re
¼ γrrðreÞ ¼ 0: ð4:48Þ

In the following, we shall continuously denote the locations
of the Killing horizons (or ergosurfaces) by rKH, while the
locations of the event horizons by re.
In the rotating spacetimes described by Eqs. (3.26),

(3.27), (3.29) and (3.30), it is reasonable to assume that the
khronon field ϕ depends only on t and r, as all the metric
coefficients are independent of θ. Then, we find that
uμð∝ ϕ;μÞ must take the form uμ ¼ ðutðrÞ; urðrÞ; 0Þ, where
ut ¼ utðurÞ, as now we have γμνuμuν ¼ −1. Note that all of
the three components uμ ¼ ðut; ur; uθÞ in general do not
vanish, due to the rotation, although both of ut and uθ are
not independent, and can be expressed as functions of ur
(or equivalently as functions of ur). With these in mind,
we find that Vð≡urÞ satisfies the following differential
equation:

V 00

V
þ
�
N 0

N
þ 1

r

�
V 0

V
þN 00

N

−
�
N 0

N

�
2

−
1

r2
þ cp

r
N 0

N
¼ 0; ð4:49Þ

which just depends on the function N . To proceed further,
we consider the three classes of solutions, separately.

1. Rij = 0, λ = 1

In this case, the rescaling

r → C1=2
1 r; θ → C−1=2

1 θ; hr → C1=2
1 hr;

ha → C1=2
1 ha; hb → C−1=2

1 hb; ð4:50Þ

brings the metric into the form,

ds2 ¼ −
�
A0 þ

H2
R − Λr2

2

�
2

dt2

þ
�
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

R −
h2a
r2

r
dt

�2

þ r2
�
dθ þ

�
ha
r2

þ hb

�
dt

�
2

; ð4:51Þ

where H2
R ≡ hrðrÞ2 þ h2a

r2 . Recall that hðrÞ is an arbitrary
function of r, and ha hb are the integration constants. Then,
the Killing horizon satisfies the equation,

ð2A0þH2
R−Λr2Þ2− 4ðH2

Rþ 2hahbþh2br
2Þ ¼ 0. ð4:52Þ

Choosing HR ¼ h0
rβ
where h0 is a constant, we have

N ¼ A0 þ
h20
2r2β

−
Λr2

2
; ð4:53Þ

for which we find

R ¼ 16h20ð1 − βÞr2β−2
D3

½2A0r2β þ h20ð1þ βÞ�

þ 8

R2
t
½ðha − 1Þhar2β þ h20ð2β2 þ β − 2Þr2�r2β−4

þ 8

r2Rt
½2A0r2β þ h20ð1 − β2Þ� − 8

r2
;

K ¼ � 2h20ð1 − βÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20r

2−2β − ha
q

D
; ð4:54Þ
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FIG. 13. The functions G, V and K and the locations of the Killing and universal horizons for the spacetimes given by Eq. (4.46) with
λ ¼ 19=3 > 5, Λ ¼ −1.
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but now withDðrÞ≡ h20 þ r2βðΛr2 − 2A0Þ. Again, to avoid
spacetime singularities occurring at a finite and nonzero
radius, we shall choose the free parameters so thatDðrÞ ≠ 0
for r ∈ ð0;∞�. In Figs. 14–19, we show the functions
V;G;K and the locations of the Killing and universal
horizons for various choices of the free parameters, as
indicated in each of the panels of the figures. From these
figures one can see that universal horizons always exist.

2. Rij = 0, λ ≠ 1

In this case, the solutions are given by Eq. (3.28), and the
rescaling,

r → C1=2
1 r; θ → C−1=2

1 θ; ha → C1=2
1 ha;

hb → C−1=2
1 hb; HA → C1HA; ð4:55Þ
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FIG. 14. The functions V;G;K and the locations of the Killing, event and universal horizons in the case λ ¼ 1 of the rotating
spacetimes given by Eq. (4.51) with Λ ¼ 0.
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FIG. 15. The functions V;G;K and the locations of the Killing, event and universal horizons in the case λ ¼ 1 of the rotating
spacetimes given by Eq. (4.51) with Λ ≠ 0 and β ¼ −1.
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FIG. 16. The functions V;G;K and the locations of the Killing, event and universal horizons in the case λ ¼ 1 of the rotating
spacetimes given by Eq. (4.51) with Λ ≠ 0 and β < −1.
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FIG. 17. The functions V;G;K and the locations of the Killing, event and universal horizons in the case λ ¼ 1 of the rotating
spacetimes given by Eq. (4.51) with Λ ≠ 0 and β > −1.
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leads the metric to the form,

ds2 ¼ −
�
A0 þ

H2
A þ h2a
2r2

−
ΛC

2
r2
�

2

dt2

þ
�
drþ

�
HA

r
þHBr

�
dt

�
2

þ r2
�
dθ þ

�
ha
r2

þ hb

�
dt
�
2

: ð4:56Þ

The corresponding scalar and extrinsic curvatures are given
by

R ¼ −
8

r2
þ 64R3

CHBr2ðHA þHBr2Þðh2a þH2
A þ A0r2Þ

þ 8R2
Cðh2a þH2

A − 4HAHBr2 −H2
Br

4Þ þ 16A0RC;

K ¼ 4HBRCr2; ð4:57Þ

where RC ≡ ðh2a þH2
A þ 2A0r2 − Λ0r4Þ−1 and Λ0 ≡ Λþ

H2
Bð1 − 2λÞ.
When ΛC ≠ 0, we can simplify the above metric

further by

t → −
2

ΛC
t; A0 → −

2

ΛC
A0; HA → −

2

ΛC
HA;

HB → −
2

ΛC
HB; ha → −

2

ΛC
ha; hb → −

2

ΛC
hb;

ð4:58Þ

which leads Eq. (4.56) to

ds2 ¼ −
�
1þ CA

r2
þ r2

�
2

dt2

þ
�
drþ

�
HA

r
þHBr

�
dt

�
2

þ r2
�
dθ þ

�
ha
r2

þ hb

�
dt
�
2

; ð4:59Þ

where CA ¼ − ΛC
4
ðH2

A þ h2aÞ. In Fig. 20 we show the
locations of the Killing, event and universal horizons in
this case.
When ΛC ¼ 0, we assume HB ≠ 0. Then, we consider

the cases A0 ≠ 0 and A0 ¼ 0, separately. In particular, when
A0 ≠ 0, the rescaling

t → A−1
0 t; HA → A0HA;

hb → A0hb; ha → A0ha; ð4:60Þ

leads to

ds2 ¼ −
�
1þ CA

r2

�
2

dt2 þ
�
drþHA

r
dt

�
2

þ r2
�
dθ þ

�
ha
r2

þ hb

�
dt

�
2

; ð4:61Þ

where CA ¼ − A0

2
ðH2

A þ h2aÞ. Figure 21 shows the locations
of the Killing and universal horizons.
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FIG. 18. The functions V;G;K and the locations of the Killing, event and universal horizons in the case λ ¼ 1 of the rotating
spacetimes given by Eq. (4.51) with Λ ≠ 0 and β ¼ 0.
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FIG. 19. The functions V, G, K and the locations of the Killing, event and universal horizons in the case λ ¼ 1 of the rotating
spacetimes given by Eq. (4.51) with Λ ≠ 0 and β > 0.
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When A0 ¼ 0, the rescaling,

t → CHt; HA → C−1
H HA;

hb → C−1
H hb; ha → C−1

H ha; ð4:62Þ

leads to

ds2 ¼ −
dt2

r4
þ
�
drþHA

r
dt

�
2

þ r2
�
dθ þ

�
ha
r2

þ hb

�
dt

�
2

; ð4:63Þ

where CH ¼ 2
H2

Aþh2a
. In this case, the equation of V takes the

simple form,

V 00 −
V 0

r
þ ð1 − 2cpÞ

V
r2

¼ 0; ð4:64Þ

and has the solution,

V ¼ rAr
1þ

ffiffiffiffiffiffi
2cp

p
þ rBr

1−
ffiffiffiffiffiffi
2cp

p
: ð4:65Þ

Consider the boundary condition Vð∞Þ → 0, we have
rA ¼ 0, so G is given by

G ¼ 1þ r2Br
2−2

ffiffiffiffiffiffi
2cp

p

r4
−
H2

A

r2
: ð4:66Þ

Clearly, G < 0 as r → ∞, which is not allowed by the
existence of the khronon field in the whole spacetime.
Therefore, in this case the solution must be discarded.

3. Rij ≠ 0

In this case, the solutions are given by Eqs. (3.29) and
(3.30), and the corresponding spacetimes with ai ¼ ð1; 0Þ
describes a spacetime, but the metric at the Killing horizon
located at fðrKHÞ ¼ 0 becomes singular. Therefore, to
study the location of the universal horizon inside it, an
extension of the solution into the internal of the Killing
horizon is needed. Such extension is standard [32], so in the
following we shall not consider it further.

V. CONCLUSIONS

In this paper, we have studied the existence of universal
horizons and black holes in gravitational theories with
broken Lorentz invariance. We have paid particular atten-
tion to the case where the gravitational field is so strong that
the infrared limit does not exist, and the higher-order
derivative terms must be included, in order for the theory
to be UV complete. We have shown that even in the UV
regime both static and rotating universal horizons and black
holes exist. Therefore, universal horizons and black holes
are not only the low energy phenomena but also phenom-
ena existing in the UV regime. To reach this conclusion, we
have first constructed exact solutions of the full theory of
Hořava gravity with the projectability and U(1) symmetry
in (2þ 1)-dimensions, which is power-counting renorma-
lizable [27–30]. To avoid coordinate singularities across the
Killing horizons, we have chosen to work with the PG-like
coordinates [34]. Although this normally makes the field
equations very complicated, we are still able to find
analytical solutions in both static and stationary spacetimes.
Then, we have numerically solved the khronon field
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FIG. 20. The functions V;G;K and the locations of the Killing, event and universal horizons in the case λ ≠ 1 of the rotating
spacetimes given by Eq. (4.59) for ΛC ≠ 0.
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spacetimes given by Eq. (4.61) with ΛC ¼ 0 but A0 ≠ 0.
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equations and identified the locations of the universal
horizons. In all the cases considered, universal horizons
exist and are always located inside the Killing horizons.
With these exact solutions, we hope that the study of

black hole thermodynamics at the universal horizons,
specially the ones with rotations, can be made more
accessible. In the spherically symmetric and neutral case,
the first law of black hole thermodynamics at universal
horizons holds [21], provided that the entropy is still
proportional to the area of the horizon, and the surface
gravity is defined by

κ ≡ 1

2
uαDαðuλζλÞ; ð5:1Þ

which is identical to the one obtained from the peeling
behavior of the khronon field [24], as shown explicitly in
[18]. In the neutral case, the temperature of the black hole
takes its standard form, T ¼ κ=2π [23,24]. However, when
the black hole is charged, such a first law does not exist
[22], if we insist that the temperature of the black hole still
takes its standard form with the surface gravity given as
above, and that the entropy of the black hole is proportional
to its area. In addition, when high-order powers of
momentum appear in the dispersion relation of the particles
emitted through the Hawking radiation process, which
generically is always the case, the temperature of the black
hole at the universal horizon depends on the order of the
powers, although it is still proportional to the surface
gravity κ defined above [26,48].
We also hope that these exact solutions will help us to get

deeper insights into the problem of quantization of the
theory [3,4] and the nonrelativistic AdS/CFT correspon-
dence [35–38]. The studies of these important issues are out
of scope of this paper, and we wish to come back to them in
a different occasion.
Finally, we would like to note that our main conclusion

regarding the existence of universal horizons and black
holes at all energy scales (including the UV regime) should
be easily generalized to other versions of Hořava gravity
[9,13], although in this paper we have considered it only in
the projectable Hořava theory with an extra U(1) symmetry
[27–30]. It is also quite reasonable to expect that this is also
the generic case in other theories of gravity without Lorentz
symmetry.
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APPENDIX A: PROJECTABLE HOŘAVA
THEORY WITH U(1) SYMMETRY IN (dþ 1)

DIMENSIONS

In this Appendix, we give a brief introduction to the
projectable Hořava theory with U(1) symmetry. for detail,
we refer readers to [27–30].

1. The gauge symmetries

The Hořava theory is based on the perspective that
Lorentz symmetry should appear as an emergent symmetry
at long distances, but can be fundamentally absent at short
ones [49]. In the latter regime, the system exhibits a strong
anisotropic scaling between space and time,

x → lx; t → lzt; ðA1Þ

where z ≥ 3 in the (3þ 1)-dimensional spacetime [7,50].
At long distances, higher-order curvature corrections
become negligible, and the lowest order terms R and Λ
take over, whereby the Lorentz invariance is expected to be
“accidentally restored,” where R denotes the three-
dimensional Ricci scalar, and Λ the cosmological constant.
Because of the anisotropic scaling, the gauge symmetry of
the theory is broken down to the foliation-preserving
diffeomorphism, DiffðM;F Þ,

~t ¼ t − fðtÞ; ~xi ¼ xi − ζiðt;xÞ; ðA2Þ

for which the lapse function N, shift vector Ni, and
3-spatial metric gij transform as

δN ¼ ζk∇kN þ _Nf þ N _f;

δNi ¼ Nk∇iζ
k þ ζk∇kNi þ gik _ζ

k þ _Nif þ Ni
_f;

δgij ¼ ∇iζj þ∇jζi þ f _gij; ðA3Þ

where _f ≡ df=dt, ∇i denotes the covariant derivative with
respect to gij, Ni ¼ gikNk, and δgij ≡ γijðt; xkÞ − gijðt; xkÞ,
etc. From these expressions one can see that N and Ni play
the role of gauge fields of the DiffðM;F Þ. Therefore, it is
natural to assume that N and Ni inherit the same depend-
ence on space and time as the corresponding generators [7],

N ¼ NðtÞ; Ni ¼ Niðt; xÞ; ðA4Þ

which is often referred to as the projectability condition.
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Due to the DiffðM;F Þ diffeomorphisms (A2), one more
degree of freedom appears in the gravitational sector—a
spin-0 graviton. This is potentially dangerous, and needs to
decouple in the IR regime, in order to be consistent with
observations. A very promising approach along this direc-
tion is to eliminate the spin-0 graviton by introducing two
auxiliary fields, the Uð1Þ gauge field A and the Newtonian
prepotential φ, by extending the DiffðM;F Þ symmetry
(A2) to include a local Uð1Þ symmetry [27],

Uð1Þ⋉DiffðM;F Þ: ðA5Þ

Under this extended symmetry, the special status of time
maintains, so that the anisotropic scaling (A1) can still be
realized, and the theory is UV complete. Meanwhile,
because of the elimination of the spin-0 graviton, its IR
behavior can be significantly improved. Under the
DiffðM;F Þ, A and φ transform as

δA ¼ ζi∂iAþ _fAþ f _A;

δφ ¼ f _φþ ζi∂iφ: ðA6Þ

Under the local Uð1Þ symmetry, the fields transform as

δαA ¼ _α − Ni∇iα; δαφ ¼ −α;

δαNi ¼ N∇iα; δαgij ¼ 0; δαN ¼ 0; ðA7Þ

where α is the generator of the local Uð1Þ gauge symmetry.
For the detail, we refer readers to [27,28].
The elimination of the spin-0 graviton was done initially

in the case λ ¼ 1 [27,28], but soon generalized to the case
with any λ [29,30,51], where λ denotes a coupling constant
that characterizes the deviation of the kinetic part of action
from the corresponding one given in GR with λGR ¼ 1. For
the analysis of Hamiltonian consistency, see [27,52].

2. Universal coupling with matter and field equations

The basic variables in the HMT setup are

ðA;φ; N; Ni; gijÞ; ði; j ¼ 1; 2;…; dÞ; ðA8Þ

and the total action of the theory in (dþ 1)-dimensions can
be written in the form,

S ¼ ζ2
Z

dtddxN
ffiffiffi
g

p ðLK − LV þ Lφ þ LA þ ζ−2LMÞ;

ðA9Þ

where g ¼ detðgijÞ, ζ2 ¼ 1=ð16πGÞ, and

LK ¼ KijKij − λK2;

Lφ ¼ φGijð2Kij þ∇i∇jφÞ þ ð1 − λÞ½ðΔφÞ2 þ 2KΔφ�;

LA ¼ A
N
ð2Λg − RÞ: ðA10Þ

Here Δ≡ gij∇i∇j, Λg is a coupling constant with dimen-
sion of ðlengthÞ−2, the Ricci and Riemann tensors Rij and
Ri
jkl all refer to the d-dimensional metric gij, and

Kij ¼
1

2N
ð−_gij þ∇iNj þ∇jNiÞ;

Gij ¼ Rij −
1

2
gijRþ Λggij: ðA11Þ

LV is an arbitrary DiffðΣÞ-invariant local scalar functional
built out of the spatial metric, its Riemann tensor and spatial
covariant derivatives, without the use of time derivatives.
LM is the Lagrangian of matter fields, which is a scalar

not only with respect to the DiffðM;F Þ symmetry (A2), but
also to the Uð1Þ symmetry (A7). When the gravity is
universally coupled with matter, it is given by [42]

SM ¼
Z

dtddxN
ffiffiffi
g

p
LMðA;φ; N; Ni; gij;ψnÞ

¼
Z

ddþ1x
ffiffiffiffiffi
jγj

p
~LMðγμν;ψnÞ; ðA12Þ

where γ ≡ detðγμνÞðμ; ν ¼ 0; 1;…; dÞ, and ψn collectively
stands for matter fields, minimally coupled to the (dþ 1)-
dimensional metric γμν, defined as

ðγμνÞ≡
 
−N 2 þN iN i N i

N i γij

!
;

ðγμνÞ ¼
 
− 1

N 2
N i

N 2

N i

N 2 γij − N iN j

N 2

!
; ðA13Þ

where γijγik ¼ δjk, N i ≡ γijN j, and

N ¼ ð1 − a1σÞN; N i ¼ Ni þ Ngij∇jφ;

γij ¼ ð1 − a2σÞ2gij; σ ¼ A −A
N

;

A≡ − _φþ Ni∇iφþ 1

2
Nð∇iφÞð∇iφÞ: ðA14Þ

Here a1 and a2 are two arbitrary constants. It is should be
noted that the line element

ds2 ¼ γμνdxμdxν ¼ −N 2dt2

þ γijðdxi þN idtÞðdxj þN jdtÞ ðA15Þ

is invariant not only under the gauge transformations (A2),

STATIC AND ROTATING UNIVERSAL HORIZONS AND … PHYSICAL REVIEW D 93, 124025 (2016)

124025-19



but also under the U(1) transformations (A7). In terms of
~LM, the (dþ 1)-dimensional energy-momentum tensor Tμν

is given by

Tμν ≡ 1ffiffiffiffiffijγjp δð ffiffiffiffiffijγjp
~LMðγαβ;ψnÞÞ
δγμν

: ðA16Þ

The variations of the total action with respect toN andNi

yield the Hamiltonian and momentum constraints, given,
respectively, by,

Z
ddx

ffiffiffi
g

p ½LK þ LV − φGij∇i∇jφ − ð1 − λÞðΔφÞ2�

¼ 8πG
Z

ddx
ffiffiffi
g

p
Jt; ðA17Þ

∇j½πij − φGij − ð1 − λÞgij∇2φ� ¼ 8πGJi; ðA18Þ

where

Jt ≡ 2
δðNLMÞ

δN
; Ji ≡ −N

δLM

δNi ;

πij ≡ δðNLKÞ
δ_gij

¼ −Kij þ λKgij: ðA19Þ

Variation of the action (A9) with respect to φ and A yield

GijðKij þ∇i∇jφÞ þ ð1 − λÞΔðK þ ΔφÞ ¼ 8πGJφ;

ðA20Þ

R − 2Λg ¼ 8πGJA; ðA21Þ

which will be referred, respectively, to as the φ- and
A-constraint, where

Jφ ≡ −
δLM

δφ
; JA ≡ 2

δðNLMÞ
δA

: ðA22Þ

On the other hand, the dynamical equations now read3

1

N
ffiffiffi
g

p f ffiffiffi
g

p ½πij − φGij − ð1 − λÞgijΔφ�g;t

¼ −2ðK2Þij þ 2λKKij −
2

N
πkði∇kNjÞ

þ∇k

�
Nk

N
πij − ð1 − λÞFk

φgij
�

− 2ð1 − λÞ½ðK þ ΔφÞ∇i∇jφþ KijΔφ�

þ 2ð1 − λÞ∇ði½∇jÞφðK þ ΔφÞ� þ 1 − λ

N
Δφ∇ðiNjÞ

þ 1

2
ðLK þ Lφ þ LAÞgij þ Fij þ Fij

φ þ Fij
A

þ 8πGN ij; ðA23Þ

where ðK2Þij ≡ KilKj
l ; fðijÞ ≡ ðfij þ fjiÞ=2, and

Fij ≡ −
1ffiffiffi
g

p δð ffiffiffi
g

p
LVÞ

δgij
;

Fij
φ ¼

X3
n¼1

Fij
ðφ;nÞ;

Fi
φ ¼ ðK þ∇2φÞ∇iφþ Ni

N
Δφ;

Fij
A ¼ 1

N
½ARij − ð∇i∇j − gijΔÞA�; ðA24Þ

with nS ¼ ð2; 0;−2;−2Þ, and Fij
ðφ;nÞ are given by [28],

Fij
ðφ;1Þ ¼

1

2
φfð2K þ∇2φÞRij − 2ð2Kj

k þ∇j∇kφÞRik

− 2ð2Ki
k þ∇i∇kφÞRjk

−ð2Λg − RÞð2Kij þ∇i∇jφÞg;

Fij
ðφ;2Þ ¼

1

2
∇k

�
φGik

�
2Nj

N
þ∇jφ

�

þφGjk

�
2Ni

N
þ∇iφ

�
− φGij

�
2Nk

N
þ∇kφ

��
;

Fij
ðφ;3Þ ¼

1

2
f2∇k∇ðifjÞkφ −∇2fijφ − ð∇k∇lfklφ Þgijg; ðA25Þ

where

fijφ ¼ φ

�
ð2Kij þ∇i∇jφÞ − 1

2
ð2K þ∇2φÞgij

�
: ðA26Þ

The tensor N ij is defined as

N ij ¼ 2ffiffiffi
g

p δð ffiffiffi
g

p
LMÞ

δgij
: ðA27Þ

The conservation laws of energy and momentum of
matter fields read, respectively,

3Note that the dynamical equations given here differ from
those given in [30] because here we took Ni as the fundamental
variable instead of Ni as what we did in [30]. The subtle is that Ni
now are functions of gij via the relations Ni ¼ gijNj, once Ni are
considered as the fundamental variables, or vice versa. Of course,
they are equivalent, if one consistently uses either Ni or Ni to
carry out the derivation of all the field equations.
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Z
ddx

ffiffiffi
g

p �
_gklN kl −

1ffiffiffi
g

p ð ffiffiffi
g

p
JtÞ;t þ

2Nk

N
ffiffiffi
g

p ð ffiffiffi
g

p
JkÞ;t

−2 _φJφ −
A

N
ffiffiffi
g

p ð ffiffiffi
g

p
JAÞ;t

�
¼ 0; ðA28Þ

∇kN ik −
1

N
ffiffiffi
g

p ð ffiffiffi
g

p
JiÞ;t −

Jk

N
ð∇kNi −∇iNkÞ

−
Ni

N
∇kJk þ Jφ∇iφ −

JA
2N

∇iA ¼ 0: ðA29Þ

Introducing the normal vector nν to the hypersurface
t ¼ constant,

nμ ¼ −N δtμ; nμ ¼ 1

N
ð1;−N iÞ; ðA30Þ

one can decompose Tμν as [53],

ρH ≡ Tμνnμnν;

si ≡ −Tμνðδμi þ nμniÞnν;
sij ≡ Tμνðδμi þ nμniÞðδνj þ nνnjÞ; ðA31Þ

in terms of which, the quantities Jt, Ji, JA, Jφ and N ij are
given by [42],

Jt ¼ 2Ω3ðσÞ
�
−ρH

δN
δN

þ δN i

δN
si þ 1

2
N

δγij
δN

sij
�
;

Ji ¼ −Ω3ðσÞ
�
−ρH

δN
δNi

þ δN k

δNi
sk þ 1

2
N

δγkl
δNi

skl
�
;

N ij ¼ 2Ω3ðσÞ
N

�
−ρH

δN
δgij

þ δN k

δgij
sk þ 1

2
N

δγkl
δgij

skl
�
;

JA ¼ 2Ω3ðσÞ
�
−ρH

δN
δA

þ δN k

δA
sk þ 1

2
N

δγkl
δA

skl
�
;

Jφ ¼ −
1

N

�
1ffiffiffi
g

p ðB ffiffiffi
g

p Þ;t −∇i½BðNi þ N∇iφÞ�

−∇iðNΩ5siÞ
�
; ðA32Þ

where Ω≡ 1 − a2σ, and

B≡ −Ω3ðσÞ
�
a1ρH −

2a2ð1 − a2σÞ
N

skðNk þ N∇kφÞ

− a2ð1 − a1σÞð1 − a2σÞgijsij
�
; ðA33Þ

and

δN
δN

¼ 1þ 1

2
a1ð∇kφÞ2;

δN i

δN
¼Ω
N

�
NΩ∇iφþ 2a2ðNiþN∇iφÞ

�
σþ 1

2
ð∇kφÞ2

��
;

δγij
δN

¼ 2a2Ω
N

�
σþ 1

2
ð∇kφÞ2

�
gij;

δN
δNi

¼ a1∇iφ;

δN k

δNi
¼Ω
N
fNΩδikþ 2a2ðNkþN∇kφÞ∇iφg;

δγkl
δNi

¼ 2a2Ω
N

gkl∇iφ;

δN
δgij

¼−a1
�
Nði∇jÞφþ 1

2
Nð∇iφÞð∇jφÞ

�
;

δN k

δgij
¼−

2a2Ω
N

ðNkþN∇kφÞ
�
Nði∇jÞφþ 1

2
Nð∇iφÞð∇jφÞ

�
;

δγkl
δgij

¼ 1

2
Ω2ðδikδjl þ δilδ

j
kÞ

−
2a2Ωgkl

N

�
Nði∇jÞφþ 1

2
Nð∇iφÞð∇jφÞ

�
;

δN
δA

¼−a1;

δN i

δA
¼−

2a2Ω
N

ðNiþN∇iφÞ;
δγij
δA

¼−
2a2Ω
N

gij: ðA34Þ

For the gauge φ ¼ 0, the above expressions reduce to

δN
δN

¼ 1;
δN i

δN
¼ 2a2σΩ

N
Ni;

δγij
δN

¼ 2a2σΩ
N

gij;

δN
δNi

¼ 0;
δN k

δNi
¼ Ω2δik;

δγkl
δNi

¼ 0;
δN
δgij

¼ 0;

δN k

δgij
¼ 0;

δγkl
δgij

¼ 1

2
Ω2ðδikδjl þ δilδ

j
kÞ;

δN
δA

¼ −a1;
δN i

δA
¼ −

2a2Ω
N

Ni;

δγij
δA

¼ −
2a2Ω
N

gij; ðφ ¼ 0Þ: ðA35Þ
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Inserting the above expressions into Eq. (A32), we find that

Jt ¼ 2Ω3

�
−ρH þ 2a2σΩ

N
Nisi þ a2σΩð1 − a1σÞgijsij

�
;

Ji ¼ −Ω5si;

N ij ¼ ð1 − a1σÞΩ5sij;

JA ¼ 2Ω3

�
a1ρH −

2a2Ω
N

Nksk − a2Ωð1 − a1σÞgijsij
�
;

Jφ ¼ −
1

N

�
1ffiffiffi
g

p ðB ffiffiffi
g

p Þ;t −∇i½BðNi þ N∇iφÞ� −∇iðNΩ5siÞ
�
; ðφ ¼ 0Þ: ðA36Þ

Note that the solar system tests (with d ¼ 3) lead to the constraints [42],

ja1 − 1j < 10−5; ja2j < 10−5: ðA37Þ

In particular, for

ða1; a2Þ ¼ ð1; 0Þ; ðA38Þ

the corresponding parameterized post-Newtonian (PPN) parameters can take the same values as those given in GR.

APPENDIX B: SOME QUANTITIES IN 2þ 1 DIMENSIONAL STATIC SPACETIMES

The quantities Kij, Rij, πij, FA
ij, Fij and Li for the static spacetimes (3.1) are given by,

Kij ¼
2h0f − f0h

2f2
δriδ

r
j þ rhδθi δ

θ
j ;

K ¼ 2rh0f − rhf0 þ 2fh
2rf

;

Rij ¼ −
f0

2rf
δriδ

r
j −

1

2
rf0δθi δ

θ
j ;

R ¼ −
f0

r
;

πij ¼
1

2rf2
½ðλ − 1Þrð2fh0 þ f0hÞ þ 2λhf�δriδrj þ

1

2f
½2rðλ − 1Þhf þ λrð2h0f − hf0Þ�δθi δθj ;

FA
ij ¼

2fA0 − Af0

2rf
δriδ

r
j þ

1

2
rð2rA00f þ rA0f0 − Af0Þδθi δθj ;

Fij ¼ −
1

2r3f

�
g2
ζ2

ð4rff00 − rf02 − 4ff0Þ þ 2Λr3
�
δriδ

r
j −

1

2r

�
g2
ζ2

ð4r2ff000 þ 2r2f00f0 − 8f00f − 3rf02 þ 8ff0Þ þ 2Λr3
�
δθi δ

θ
j ;

LK ¼ −
1

r2

�
λrhfð2h0f − hf0Þ þ ðλ − 1Þ

�
r2h02f2 þ h2f2 − r2hh0ff0 þ 1

4
r2h2f02

��
;

Lφ ¼ 0;

LA ¼ A
�
2Λg þ

f0

r

�
;

LV ¼ 2Λþ g2f02

ζ2r2
: ðB1Þ

For the static spacetimes described by Eqs. (3.1), (A17), (A18), (A20), (A21), (A23), (A28), and (A29) reduce,
respectively, to
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Z
f3=2dr

�
λh2
�
2
h0

h
−
f0

f

�
þ ðλ − 1Þrh2

�
h02

h2
−
f0h0

fh
þ f02

4f2
þ 1

r2

�
−
g2f02 þ 2ζ2Λr2

ζ2rf2

�
¼ −8πG

Z
rJtdrffiffiffi

f
p ; ðB2Þ

ðλ − 1Þh
�
h00

h
−
f00

2f
−
f0h0

2fh
þ f02

2f2
þ h0

rh
−

1

r2

�
þ hf0

2rf
¼ 8πGJr; ðB3Þ

�
h000 þ 2

h00

r
− h0

�
f00

f
−
3f02

4f2
þ 1

r2

�
− h

�
f00

2rf
þ f000

2f
−
5f00f0

4f2
þ f0

2r2f
þ 3f03

4f3
−

f02

2rf2
þ 1

r3

��
ðλ − 1Þ

− Λg

�
h0

f
þ h
rf

−
f0h
2f2

�
¼ −

8πG
f

Jφ; ðB4Þ

f0 þ 2Λgr ¼ −8πGrJA; ðB5Þ

ðλ − 1Þh2
�
2
h00

h
−
f00

f
þ 5f02

4f2
þ h02

h2
−
2f0h0

fh
−
f0

rf
−

1

r2

�
þ 2ð2λ − 1Þ hh

0

r
−

g2f
ζ2r2

�
4f00 −

f02

f
− 4

f0

r

�
þ 2

�
A0f
r

þ AΛg − Λ

�

¼ 16πG
f

N r; ðB6Þ

ðλþ 1Þh02 − ð2λþ 1Þ hh
0f0

f
þ ð5λþ 1Þh2 f02

4f2
þ ðλ − 1Þh2

�
4h0

rh
−
f0

rf
−

1

r2

�
−
g2f2

ζ2

�
4f000

rf
þ 2

f00f0

rf2
−
8f00

r2f
−
3f02

r2f2
þ 8f0

r3f

�

þ 2

�
A00f þ A0f0

2
þ ΛgA − Λ

�
þ λh2

�
2h00

h
−
f00

f

�
¼ 16πGr2N θ; ðB7Þ

where

Ji ¼ ðJr; 0; 0Þ; N ij ¼
1

f
N rδ

r
iδ

r
j þ r2N θδ

θ
i δ

θ
j : ðB8Þ

The functions a, b, c, d, P, Q, U, V and W appearing in Eqs. (3.3)–(3.7) are given by

aðrÞ≡ f0

2f
−
1

r
; bðrÞ≡ f0

2rf
− ðλ − 1Þ

�
f00

2f
−

f02

2f2
þ 1

r2

�
; cðrÞ≡ −ðλ − 1Þ

�
f00

f
−
3f02

4f2
þ 1

r2

�
−
Λg

f
;

dðrÞ≡ −ðλ − 1Þ
�
f000

2f
−
5f0f00

4f2
þ f00

2rf
þ 3f03

4f3
−

f02

2rf2
þ f0

2r2f
−

1

r3

�
þ Λg

�
f0

2f2
−

1

rf

�
; PðrÞ≡ Λg

r
f
;

QðrÞ≡ ðλ − 1Þ
�
rhh00

f
−
rf0hh0

f2
þ rh02

2f
þ 5rf02h2

8f3
−
rf00h2

2f2
−
f0h2

2f2
−
h2

2f

�
þ ð2λ − 1Þ hh

0

f
−
g2
ζ2

�
2f00

r
−
2f0

r2
þ f02

2rf

�
− Λ

r
f
;

UðrÞ≡ f0

2f
; VðrÞ≡ Λg

f
;

WðrÞ≡ ðλ − 1Þ
�
2hh0

rf
−
f0h2

2rf2
−

h2

2r2f

�
þ ð5λþ 1Þ f

02h2

8f3
þ ð2λþ 1Þ f

0hh0

2f2
−
g2
ζ2

�
2f000

r
−
4f00

r2
þ f00f0

rf
−

3f02

2r2f
þ 4f0

r3

�

þ ðλþ 1Þ h
02

2f
þ λ

�
hh00

f
−
f00h2

2f2

�
−
Λ
f
: ðB9Þ
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APPENDIX C: THE MAIN PROPERTIES OF THE
SOLUTION WITH Λg ≠ 0, λ= 1 AND A1 ≠ −1

In this case, the metric (A37) with a1 ¼ 1, a2 ¼ 0 reads

ds2 ¼ −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1 − Λgr2
q

− Ā1

�
2

dt2 þ dr2

C1 − Λgr2

þ r2dθ2; ðC1Þ

where Ā1 ¼ −ðA1 þ 1Þ=A0 ≠ 0. To have the metric coef-
ficients real for r ∈ ½0;∞Þ, we must assume that C1 ≥ 0,

and Λg < 0. Then, we find that the scalar curvature R is
given by

R ¼ 2Λg

3C1 − 3Λgr2 − Ā1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − Λgr2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − Λgr2

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − Λgr2

q
− Ā1

� ; ðC2Þ

which shows that the corresponding spacetime is singular at

both C1 − Λgr2 ¼ 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 − Λgr2

q
− Ā1 ¼ 0. Then, the

physical meaning of the solution is unclear, if there is any.
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[7] P. Hořava, Phys. Rev. D 79, 084008 (2009).
[8] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[9] P. Horava, Classical Quantum Gravity 28, 114012 (2011);

T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).

[10] A. O. Barvinsky, D. Blas, M. Herrero-Valea, S. M.
Sibiryakov, and C. F. Steinwachs, Phys. Rev. D 93,
064022 (2016).

[11] B.-F. Li, A. Wang, Y. Wu, and Z.-C. Wu, Phys. Rev. D 90,
124076 (2014).

[12] B.-F. Li, V. H. Satheeshkumar, and A. Wang, Phys. Rev. D
93, 064043 (2016).

[13] A. Wang, Phys. Rev. Lett. 110, 091101 (2013); J.
Greenwald, J. Lenells, J. X. Lu, V. H. Satheeshkumar,
and A. Wang, Phys. Rev. D 84, 084040 (2011); J.
Greenwald, J. Lenells, V. H. Satheeshkumar, and A. Wang,
Phys. Rev. D 88, 024044 (2013).

[14] R. Narayan and J. E. McClintock, Mon. Not. R. Astron. Soc.
419 (2012) L69; B. P. Abbott et al., Phys. Rev. Lett. 116,
061102 (2016).

[15] D. Blas and S. Sibiryakov, Phys. Rev. D 84, 124043 (2011).
[16] E. Barausse, T. Jacobson, and T. P. Sotiriou, Phys. Rev. D

83, 124043 (2011).
[17] J. Bhattacharyya, A. Coates, M. Colombo, and T. P.

Sotiriou, arXiv:1512.04899; J. Bhattacharyya, M. Colombo,
and T. P. Sotiriou, arXiv:1509.01558; M. Tian, X. Wang,
M. F. da Silva, and A. Wang, arXiv:1501.04134; P. Horava,
A. Mohd, C. M. Melby-Thompson, and P. Shawhan, Gen.
Relativ. Gravit. 46, 1720 (2014); T. Sotiriou, I. Vega, and

D. Vernieri, Phys. Rev. D 90, 044046 (2014); C. Eling and
Y. Oz, J. High Energy Phys. 11 (2014) 067; M. Saravani,
N. Afshordi, and R. B. Mann, Phys. Rev. D 89, 084029
(2014); A. Mohd, arXiv:1309.0907; B. Cropp, S. Liberati,
and M. Visser, Classical Quantum Gravity 30, 125001
(2013).

[18] K. Lin, O. Goldoni, M. F. da Silva, and A. Wang, Phys. Rev.
D 91, 024047 (2015).

[19] K. Lin, E. Abdalla, R. G. Cai, and A. Wang, Int. J. Mod.
Phys. D 23, 1443004 (2014).

[20] J. Greenwald, A. Papazoglou, and A. Wang, Phys. Rev. D
81, 084046 (2010); J. Greenwald, V. H. Satheeshkumar, and
A. Wang, J. Cosmol. Astropart. Phys. 12 (2010) 007; J.
Greenwald, J. Lenells, J. X. Lu, V. H. Satheeshkumar, and
A. Wang, Phys. Rev. D 84, 084040 (2011); A. Borzou, K.
Lin, and A. Wang, J. Cosmol. Astropart. Phys. 02 (2012)
025.

[21] P. Berglund, J. Bhattacharyya, and D. Mattingly, Phys. Rev.
D 85, 124019 (2012).

[22] C. Ding, A. Wang, and X. Wang, Phys. Rev. D 92, 084055
(2015).

[23] P. Berglund, J. Bhattacharyya, and D. Mattingly, Phys. Rev.
Lett. 110, 071301 (2013).

[24] B. Cropp, S. Liberati, A. Mohd, and M. Visser, Phys. Rev. D
89, 064061 (2014).

[25] F. Michel and R. Parentani, Phys. Rev. D 91, 124049
(2015).

[26] C. Ding, A. Wang, X. Wang, and T. Zhu, arXiv:1512.01900.
[27] P. Horavaand and C. M. Melby-Thompson, Phys. Rev. D 82,

064027 (2010).
[28] A. Wang and Y. Wu, Phys. Rev. D 83, 044031 (2011).
[29] A. M. da Silva, Classical Quantum Gravity 28, 055011

(2011).
[30] Y.-Q. Huang and A. Wang, Phys. Rev. D 83, 104012

(2011).
[31] Y. Misonoh and K.-i. Maeda, Phys. Rev. D 92, 084049

(2015).
[32] T. P. Sotiriou, I. Vega, and D. Vernieri, Phys. Rev. D 90,

044046 (2014).
[33] D. Blas, O. Pujolas, and S. Sibiryakov, J. High Energy Phys.

04 (2011) 018.

LIN, SATHEESHKUMAR, and WANG PHYSICAL REVIEW D 93, 124025 (2016)

124025-24

http://dx.doi.org/10.1103/RevModPhys.83.11
http://dx.doi.org/10.1103/RevModPhys.83.11
http://dx.doi.org/10.12942/lrr-2005-5
http://dx.doi.org/10.1088/0264-9381/30/13/133001
http://dx.doi.org/10.1088/1126-6708/2004/05/074
http://dx.doi.org/10.1103/PhysRevD.64.024028
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1088/0264-9381/28/11/114012
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1103/PhysRevD.93.064022
http://dx.doi.org/10.1103/PhysRevD.93.064022
http://dx.doi.org/10.1103/PhysRevD.90.124076
http://dx.doi.org/10.1103/PhysRevD.90.124076
http://dx.doi.org/10.1103/PhysRevD.93.064043
http://dx.doi.org/10.1103/PhysRevD.93.064043
http://dx.doi.org/10.1103/PhysRevLett.110.091101
http://dx.doi.org/10.1103/PhysRevD.84.084040
http://dx.doi.org/10.1103/PhysRevD.88.024044
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://dx.doi.org/10.1103/PhysRevD.83.124043
http://arXiv.org/abs/1512.04899
http://arXiv.org/abs/1509.01558
http://arXiv.org/abs/1501.04134
http://dx.doi.org/10.1007/s10714-014-1720-4
http://dx.doi.org/10.1007/s10714-014-1720-4
http://dx.doi.org/10.1103/PhysRevD.90.044046
http://dx.doi.org/10.1007/JHEP11(2014)067
http://dx.doi.org/10.1103/PhysRevD.89.084029
http://dx.doi.org/10.1103/PhysRevD.89.084029
http://arXiv.org/abs/1309.0907
http://dx.doi.org/10.1088/0264-9381/30/12/125001
http://dx.doi.org/10.1088/0264-9381/30/12/125001
http://dx.doi.org/10.1103/PhysRevD.91.024047
http://dx.doi.org/10.1103/PhysRevD.91.024047
http://dx.doi.org/10.1142/S0218271814430044
http://dx.doi.org/10.1142/S0218271814430044
http://dx.doi.org/10.1103/PhysRevD.81.084046
http://dx.doi.org/10.1103/PhysRevD.81.084046
http://dx.doi.org/10.1088/1475-7516/2010/12/007
http://dx.doi.org/10.1103/PhysRevD.84.084040
http://dx.doi.org/10.1088/1475-7516/2012/02/025
http://dx.doi.org/10.1088/1475-7516/2012/02/025
http://dx.doi.org/10.1103/PhysRevD.85.124019
http://dx.doi.org/10.1103/PhysRevD.85.124019
http://dx.doi.org/10.1103/PhysRevD.92.084055
http://dx.doi.org/10.1103/PhysRevD.92.084055
http://dx.doi.org/10.1103/PhysRevLett.110.071301
http://dx.doi.org/10.1103/PhysRevLett.110.071301
http://dx.doi.org/10.1103/PhysRevD.89.064061
http://dx.doi.org/10.1103/PhysRevD.89.064061
http://dx.doi.org/10.1103/PhysRevD.91.124049
http://dx.doi.org/10.1103/PhysRevD.91.124049
http://arXiv.org/abs/1512.01900
http://dx.doi.org/10.1103/PhysRevD.82.064027
http://dx.doi.org/10.1103/PhysRevD.82.064027
http://dx.doi.org/10.1103/PhysRevD.83.044031
http://dx.doi.org/10.1088/0264-9381/28/5/055011
http://dx.doi.org/10.1088/0264-9381/28/5/055011
http://dx.doi.org/10.1103/PhysRevD.83.104012
http://dx.doi.org/10.1103/PhysRevD.83.104012
http://dx.doi.org/10.1103/PhysRevD.92.084049
http://dx.doi.org/10.1103/PhysRevD.92.084049
http://dx.doi.org/10.1103/PhysRevD.90.044046
http://dx.doi.org/10.1103/PhysRevD.90.044046
http://dx.doi.org/10.1007/JHEP04(2011)018
http://dx.doi.org/10.1007/JHEP04(2011)018


[34] P. Painleve, C. R. Acad. Sci. (Paris) 173, 677 (1921); A.
Gullstrand, Ark. Mat. Astron. Fys. 16, 1 (1922).

[35] S. Kachru, X. Liu, and M. Mulligan, Phys. Rev. D 78,
106005 (2008); S. Sachdev, Annu. Rev. Condens. Matter
Phys. 3, 9 (2012).

[36] K. Lin, F.-W. Shu, A. Wang, and Q. Wu, Phys. Rev. D 91,
044003 (2015); F.-W. Shu, K. Lin, A. Wang, and Q. Wu, J.
High Energy Phys. 04 (2014) 056.

[37] S. Janiszewski, A. Karch, B. Robinson, and D. Sommer, J.
High Energy Phys. 04 (2014) 163.

[38] S. Basu, J. Bhattacharyya, D. Mattingly, and M. Roberson,
Phys. Rev. D 93, 064072 (2016).

[39] T. Zhu, Q. Wu, A. Wang, and F.-W. Shu, Phys. Rev. D 84,
101502(R) (2011).

[40] M. Visser, arXiv:0706.0622v3.
[41] J. J. Greenwald, V. H. Satheeshkumar, and A. Wang, J.

Cosmol. Astropart. Phys. 12 (2010) 007.
[42] K. Lin, S. Mukohyama, A. Wang, and T. Zhu, Phys. Rev. D

89, 084022 (2014).

[43] C. M. Will, Theory and Experiment in Gravitational
Physics, revised version (Cambridge University Press,
Cambridge, 1993); Living Rev. Relativ. 9, 3 (2005).

[44] D. Blas and S. Sibiryakov, Phys. Rev. D 84, 124043
(2011).

[45] T. Jacobson, Proc. Sci., QG-PH2007 (2007) 020.
[46] A. Wang, arXiv:1212.1040.
[47] C. Eling and T. Jacobson, Classical Quantum Gravity 23,

5643 (2006).
[48] J. Bhattacharyya, Ph.D. thesis, University of New

Hamphshire, 2013.
[49] T. G. Pavlopoulos, Phys. Rev. 159, 1106 (1967); S. Chadha

and H. B. Nielsen, Nucl. Phys. B217, 125 (1983).
[50] M. Visser, Phys. Rev. D 80, 025011 (2009); arXiv:

0912.4757.
[51] K. Lin, A. Wang, Q. Wu, and T. Zhu, Phys. Rev. D 84,

044051 (2011).
[52] J. Kluson, Phys. Rev. D 83, 044049 (2011).
[53] P. Anninos, Living Rev. Relativ. 4, 2 (2001).

STATIC AND ROTATING UNIVERSAL HORIZONS AND … PHYSICAL REVIEW D 93, 124025 (2016)

124025-25

http://dx.doi.org/10.1103/PhysRevD.78.106005
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
http://dx.doi.org/10.1103/PhysRevD.91.044003
http://dx.doi.org/10.1103/PhysRevD.91.044003
http://dx.doi.org/10.1007/JHEP04(2014)056
http://dx.doi.org/10.1007/JHEP04(2014)056
http://dx.doi.org/10.1007/JHEP04(2014)163
http://dx.doi.org/10.1007/JHEP04(2014)163
http://dx.doi.org/10.1103/PhysRevD.93.064072
http://dx.doi.org/10.1103/PhysRevD.84.101502
http://dx.doi.org/10.1103/PhysRevD.84.101502
http://arXiv.org/abs/0706.0622v3
http://dx.doi.org/10.1088/1475-7516/2010/12/007
http://dx.doi.org/10.1088/1475-7516/2010/12/007
http://dx.doi.org/10.1103/PhysRevD.89.084022
http://dx.doi.org/10.1103/PhysRevD.89.084022
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://dx.doi.org/10.1103/PhysRevD.84.124043
http://arXiv.org/abs/1212.1040
http://dx.doi.org/10.1088/0264-9381/23/18/009
http://dx.doi.org/10.1088/0264-9381/23/18/009
http://dx.doi.org/10.1103/PhysRev.159.1106
http://dx.doi.org/10.1016/0550-3213(83)90081-0
http://dx.doi.org/10.1103/PhysRevD.80.025011
http://arXiv.org/abs/0912.4757
http://arXiv.org/abs/0912.4757
http://dx.doi.org/10.1103/PhysRevD.84.044051
http://dx.doi.org/10.1103/PhysRevD.84.044051
http://dx.doi.org/10.1103/PhysRevD.83.044049
http://dx.doi.org/10.12942/lrr-2001-2

