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The phase transition of a four-dimensional charged AdS black hole solution in the Rþ fðRÞ gravity with
constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics
quite different from that in the canonical ensemble. There exists no critical point for T − S curve while in
former research critical point was found for both the T − S curve and T − rþ curve when the electric charge
of fðRÞ black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the
analog of volume expansion coefficient and isothermal compressibility coefficient when the electric
potential of fðRÞ AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 < Φ < b
while there is no divergence for the case Φ > b. This finding also differs from the result in the canonical
ensemble, where there may be two, one or no divergence points for the specific heat CQ. To examine the
phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic
geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner
scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.
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I. INTRODUCTION

fðRÞ gravity has various applications in both gravitation
and cosmology. For example, it mimics the cosmological
history successfully. One can read the nice reviews [1–3] to
gain an comprehensive understanding. Believing that black
holes in fðRÞ gravity distinguish from those in Einstein
gravity, both the black hole solutions in fðRÞ gravity and
their thermodynamics [4–18] have received considerable
attention.
In our recent paper [18], we investigated the phase

transition of a four-dimensional charged AdS black hole
solution in the Rþ fðRÞ gravity with constant curvature [5]
in the canonical ensemble. To provide a consistent and
unified picture of its critical phenomena, we studied not
only the critical point of T − S curve and T − rþ curve, but
also the divergent behavior of specific heat at constant
charge and scalar curvature of Quevedo’s geometro-
thermodynamics [19].
In this paper, we would like to generalize our recent

research [18] to the grand canonical ensemble. This
generalization is of interest and it is believed that the phase
transition in the grand canonical ensemble will behave quite
differently from that in the canonical ensemble, which
has been witnessed in our former research of charged
topological black holes in Hořava-Liftshitz gravity [20]
and Lovelock Born-Infeld gravity [21] and has also
been witnessed in many other references. So the motivation
is to probe novel characteristics of phase transition for

four-dimensional charged AdS black hole solution in the
Rþ fðRÞ gravity with constant curvature from the per-
spective of the grand canonical ensemble. Our research will
also disclose interesting properties due to fðRÞ gravity.
The organization of this paper is as follows. In Sec. II

we will review briefly four-dimensional charged AdS
black hole solution in the Rþ fðRÞ gravity with constant
curvature. In Sec. III we will investigate the behavior of
temperature and phase transition in grand canonical ensem-
ble. In Sec. IV, we will study both the Weinhold thermo-
dynamic geometry [22] and Ruppeiner thermodynamic
geometry [23] in grand canonical ensemble. Conclusions
will be drawn in Sec. V.

II. REVIEW OF BLACK HOLE SOLUTION
IN THE Rþ f ðRÞ GRAVITY WITH

CONSTANT CURVATURE

In Ref. [5], a four-dimensional charged AdS black hole
solution in the Rþ fðRÞ gravity with constant curvature
was obtained with its thermodynamic quantities, such as
energy, entropy, heat capacity and Helmhotz free energy
discussed. P − V criticality of this solution was investi-
gated in Ref. [14]. Recently, we investigated the coexist-
ence curve and the number densities of black hole
molecules for this black hole solution [17] and studied
its phase transition in the canonical ensemble when the
charge of the black hole is fixed [18].
The corresponding black hole solution reads [5]

ds2 ¼ −NðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ
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where

NðrÞ ¼ 1 −
2m
r

þ q2

br2
−
R0

12
r2; ð2Þ

b ¼ 1þ f0ðR0Þ: ð3Þ

In the above solution, b > 0, R0 < 0. Note that the black
hole solution reduces to the RN-AdS black hole when
b ¼ 1, R0 ¼ −12=l2.
The black hole ADM mass M and the electric charge

Q are related to the parameters m and q respectively as [5]

M ¼ mb; Q ¼ qffiffiffi
b

p : ð4Þ

Its thermodynamic quantities were reviewed in Ref. [14]
as follows

T ¼ N0ðrþÞ
4π

¼ 1

4πrþ

�
1 −

q2

br2þ
−
R0r2þ
4

�
: ð5Þ

S ¼ πr2þb: ð6Þ

Φ ¼
ffiffiffi
b

p
q

rþ
: ð7Þ

T, S, and Φ denote the Hawking temperature, the entropy
and the electric potential respectively. Note that the entropy
here was derived from the Wald method [1,5]. Readers who
are interested in it can further read Section 13.2 of Ref. [1]
and the famous literature [24].

III. PHASE TRANSITION OF f ðRÞ ADS BLACK
HOLE IN GRAND-CANONICAL ENSEMBLE

To facilitate the calculation of relevant quantities, it is
convenient to reexpress the Hawking temperature as the
function of entropy and electric potential

T ¼ 4b2π − bR0S − 4πΦ2

16π3=2b3=2
ffiffiffi
S

p : ð8Þ

When b ¼ 1, R0 ¼ −12=l2 ¼ 4Λ, Eq. (8) reduces to

T ¼ π − ΛS − πΦ2

4π3=2
ffiffiffi
S

p ; ð9Þ

which is in accord with the result of RN-AdS black
holes [25,26].
With Eq. (8), it is quite easy to obtain

�∂T
∂S

�
Φ
¼ −bð4bπ þ R0SÞ þ 4πΦ2

32π3=2ðbSÞ3=2 ; ð10Þ

�∂2T
∂S2

�
Φ
¼ 12b2π þ bR0S − 12πΦ2

64π3=2b3=2S5=2
: ð11Þ

The solution for ð∂T∂SÞΦ ¼ 0 can be derived as

S1 ¼
−4πðb2 − Φ2Þ

bR0

: ð12Þ

Note that b > 0, R0 < 0, the condition 0 < Φ < b should
be satisfied to ensure that the entropy in Eq. (12) is positive.
For the case Φ > b, no meaningful root satisfies the
equation ð∂T∂SÞΦ ¼ 0. Substituting Eq. (12) into (11), one
can obtain that

�∂2T
∂S2

�
Φ

����
S¼S1

¼ bR4
0

256π3½R0ð−b2 þ Φ2Þ�3=2 > 0: ð13Þ

So there is no critical point for the T − S curve. This finding
differs from our former research, where we found the
critical point for both the T − S curve and T − rþ curve
when the electric charge of fðRÞ black holes is kept fixed
[18], providing one more example that the thermodynamics
in the grand canonical ensemble is quite different from that
in the canonical ensemble.
The Hawking temperature for both the case 0 < Φ < b

and Φ > b is depicted in Fig. 1(a) and 1(b) respectively. As
shown in Fig. 1(a), there exists minimum temperature when
0 < Φ < b. Substituting Eq. (12) into Eq. (8), the minimum
temperature can be obtained as

Tmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−R0ðb2 − Φ2Þ

p
4bπ

: ð14Þ

However, the Hawking temperature increases monotoni-
cally when Φ > b, as can be witnessed in Fig. 1(b).
When the electric potential of fðRÞ AdS black hole is

fixed, the specific heat can be derived as

CΦ ¼ T

�∂S
∂T

�
Φ
¼ 2Sð−4b2π þ bR0Sþ 4πΦ2Þ

4b2π þ bR0S − 4πΦ2
: ð15Þ

Note that the denominator of Eq. (15) is exactly the same as
the numerator of Eq. (10), implying that the divergence of
CΦ corresponds to the minimum Hawking temperature.
When b ¼ 1, R0 ¼ −12=l2 ¼ 4Λ, Eq. (15) reduces to

CΦ ¼ 2S½πð1 − Φ2Þ − ΛS�
−ΛS − πð1 − Φ2Þ ; ð16Þ

reproducing the result of RN-AdS black holes [25].
Substituting Eq. (6) into Eq. (15), one can express the

specific heat into the function of rþ as
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CΦ ¼ 2br2þð−4b2π þ bR0πr2þ þ 4πΦ2Þ
4b2 þ b2R0r2þ − 4Φ2

: ð17Þ

One can also derive the analog of volume expansion
coefficient and isothermal compressibility coefficient as

α ¼ 1

Q

�∂Q
∂T

�
Φ
¼ −16b2πrþ

4b2 þ b2R0r2þ − 4Φ2
; ð18Þ

κT ¼ 1

Q

�∂Q
∂Φ

�
T
¼ 4b2 þ b2R0r2þ − 12Φ2

Φð4b2 þ b2R0r2þ − 4Φ2Þ : ð19Þ

Comparing Eqs. (18) and (19) with Eq. (17), one can find
that both α and κT share the same factor 4b2 þ b2R0r2þ −
4Φ2 in their denominators as the specific heat.
It is not difficult to find the condition corresponding to

the divergence of CΦ, α and κT as

4b2 þ b2R0r2þ − 4Φ2 ¼ 0; ð20Þ

which can be analytically solved as

rþ ¼ 2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2 − b2

R0

s
: ð21Þ

Considering the restrictions b > 0, R0 < 0, the above root
make sense physically only when 0 < Φ < b.
Figure 2(a) shows the case of 0 < Φ < b while Fig. 2(b)

shows the case of Φ > b. One can see clearly that the
specific heat CΦ encounters a divergence when 0 < Φ < b
while there is no divergence for the case Φ > b. This
finding also differs from our former research in the
canonical ensemble [18], where there may be two, one
or no divergence points for the specific heat CQ.

Figures 2(c) and 2(d) show that α and κT diverge at the
same place where CΦ does, in accordance with the above
deductions.

IV. THERMODYNAMIC GEOMETRY
OF f ðRÞ ADS BLACK HOLE

To examine the phase structure newly found in Sec. III,
we would like to appeal to thermodynamic geometry tools,
such as Weinhold geometry [22] and Ruppeiner geometry
[23], which has found various applications in probing the
phase structures of black holes [25–39].
Weinhold’s metric [22] was proposed as

gWij ¼ ∂2UðxiÞ
∂xi∂xj : ð22Þ

Utilizing Eqs. (2), (4) and (6), one can express the mass
of the black hole as the function of S and Q as

M ¼ 12b2π2Q2 þ 12bπS − R0S2

24π3=2
ffiffiffiffiffiffi
bS

p : ð23Þ

Then the components of Weinhold’s metric can be
calculated as

gWSS ¼
12b2π2Q2 − 4bπS − R0S2

32π3=2S5=2
ffiffiffi
b

p ; ð24Þ

gWQQ ¼ b3=2
ffiffiffi
π

pffiffiffi
S

p ; ð25Þ

gWSQ ¼ gWQS ¼
−b3=2

ffiffiffi
π

p
Q

2S3=2
: ð26Þ

And Weinhold scalar curvature can be obtained via pro-
gramming as
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FIG. 1. (a) Hawking temperature T vs. S for b ¼ 1.5, Φ ¼ 1, R0 ¼ −12 (b) Hawking temperature T vs. S for b ¼ 1.5, Φ ¼ 2,
R0 ¼ −12;
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FIG. 2. (a) CΦ vs. rþ for R0 ¼ −12, b ¼ 1.5, Φ ¼ 1 (b) CΦ vs. rþ for R0 ¼ −12, b ¼ 1.5, Φ ¼ 2 (c) α vs. rþ for R0 ¼ −12, b ¼ 1.5,
Φ ¼ 1 (d) κT vs. rþ for R0 ¼ −12, b ¼ 1.5, Φ ¼ 1.
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FIG. 3. (a) Weinhold scalar curvature R vs. rþ for b ¼ 1.5, Φ ¼ 1, R0 ¼ −12 (b) Ruppeiner scalar curvature R vs. rþ for b ¼ 1.5,
Φ ¼ 1, R0 ¼ −12;
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RW ¼ 8π3=2S3=2
ffiffiffi
b

p ½96b3π3Q2 − 4b2π2ð8þQ2R0ÞS − 20bπR0S2 − 3R2
0S

3�
ð4b2π2Q2 − 4bπS − R0S2Þ3

; ð27Þ

which can be reexpressed into the function of Φ as

RW ¼ 8b5ð4þ r2þR0Þð8þ 3r2þR0Þ þ 32b3ð−24þ r2þR0ÞΦ2

rþð4b2 þ b2r2þR0 − 4Φ2Þ3 : ð28Þ

Comparing Eq. (28) with Eq. (17), one may find that
Weinhold scalar curvature shares the same factor 4b2 þ
b2r2þR0 − 4Φ2 in the denominator as the specific heat does,
implying it would diverge exactly where the specific heat
diverges. This is also shown intuitively in Fig. 3(a).
Since the Ruppeiner’s metric is conformally connected

to the Weinhold’s metric through the map [40]

dS2R ¼ dS2W
T

: ð29Þ

it is convenient to derive the components of Ruppeiner’s
metric from those of Weinhold’s metric. They can be
calculated as

gRMM ¼ −12b2π2Q2 þ 4bπSþ R0S2

2Sð4b2π2Q2 − 4bπSþ R0S2Þ
; ð30Þ

gRQQ ¼ −16b2π2S
4b2π2Q2 − 4bπSþ R0S2

; ð31Þ

gRMQ ¼ gRQM ¼ 8b2π2Q
4b2π2Q2 − 4bπSþ R0S2

: ð32Þ

When b ¼ 1, R0 ¼ −12=l2 ¼ 4Λ, Eqs. (30)–(32) reduce to

gRMM ¼ −3π2Q2 þ πSþ ΛS2

2Sðπ2Q2 − πSþ ΛS2Þ ; ð33Þ

gRQQ ¼ −4π2S
π2Q2 − πSþ ΛS2

; ð34Þ

gRMQ ¼ gRQM ¼ 2π2Q
π2Q2 − πSþ ΛS2

; ð35Þ

which are equivalent to that in literature [26] of RN-AdS
black holes.
The Ruppeiner scalar curvature can be derived via

programming as

RR ¼ AðS;QÞ
ð4b2π2Q2 − 4bπS − R0S2Þ3ð4b2π2Q2 − 4bπSþ R0S2Þ

; ð36Þ

where

AðS;QÞ ¼ −1280b7π7Q6 þ 64b6π6Q4ð8 − 7Q2R0ÞSþ 128b5π5Q2ð6þQ2R0ÞS2 þ 16b4π4Q2R0ð20 − 3Q2R0ÞS3
− 336b3π3Q2R2

0S
4 þ 4b2π2R2

0ð4 − 9Q2R0ÞS5 þ 16bπR3
0S

6 þ 3R4
0S

7: ð37Þ
It can be reexpressed into the function of Φ as

RR ¼ Bðrþ;ΦÞ
πr2þð4b2 þ b2r2þR0 − 4Φ2Þ3ð−4b2 þ b2r2þR0 þ 4Φ2Þ ; ð38Þ

where

Bðrþ;ΦÞ ¼ −b7r4þR2
0ð4þ r2þR0Þð4þ 3r2þR0Þ þ 4b5Φ2½−192þ r2þR0ð−80þ 84r2þR0 þ 9r4þR2

0Þ�
þ 16b3Φ4½−32þ r2þR0ð−8þ 3r2þR0Þ� þ 64bΦ6ð20þ 7r2þR0Þ: ð39Þ

Comparing Eq. (38) with Eq. (17), one may find that the Ruppeiner scalar curvature shares the same factor 4b2 þ
b2r2þR0 − 4Φ2 in the denominator as the specific heat does, implying it would diverge where the specific heat diverges. It
can also be witnessed from Fig. 3(b). Our study of fðRÞ AdS black holes proves again the Ruppeiner metric provides an
excellent tool to probe the phase structures of black holes.
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V. CONCLUSIONS

In this paper, we investigate the phase transition of
four-dimensional charged AdS black hole solution in the
Rþ fðRÞ gravity with constant curvature in the grand
canonical ensemble. It is shown that the thermodynamics in
the grand canonical ensemble is quite different from that in
canonical ensemble [18]. There exists minimum temper-
ature when 0 < Φ < b while the Hawking temperature
increases monotonically when Φ > b. There is no critical
point for the T − S curve, differing from the result in
canonical ensemble, where we found critical point for both
the T − S curve and T − rþ curve when the electric charge
of fðRÞ black holes is kept fixed [18].
Moreover, we derive the explicit expression for the

specific heat, the analog of volume expansion coefficient
and isothermal compressibility coefficient when the electric
potential of fðRÞ AdS black hole is fixed. They share the
same factor 4b2 þ b2r2þR0 − 4Φ2 in the denominator and
thus share the same divergent point. The specific heat CΦ
encounters a divergence when 0 < Φ < b while there is no
divergence for the case Φ > b. This finding also differs
from the result in the canonical ensemble [18], where there

may be two, one, or no divergence points for the specific
heat CQ.
To examine the phase structure of fðRÞ AdS black hole

newly found in the grand canonical ensemble, we appeal to
thermodynamic geometry tools which has found various
applications in probing the phase structures of black holes.
We derive the analytic expressions for both the Weinhold
scalar curvature and Ruppeiner scalar curvature. It is shown
that they diverge exactly where the specific heat CΦ
diverges, proving again the Ruppeiner metric provides an
excellent tool to probe the phase structures of black holes.
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