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We investigate the Einstein static universe (ESU) and the emergent universe scenario in the framework of
Hořava-Lifshitz-like FðRÞ gravity. We first perform a dynamical analysis in the phase space, and amongst
others we show that a spatially open universe filled with matter satisfying the strong energy condition can
exhibit a stable static phase. Additionally, we examine the behavior of the scenario under scalar
perturbations and extract the conditions under which it is free of perturbative instabilities, showing that
the obtained background ESU solutions are free of such instabilities. However, in order for the Einstein
static universe to give rise to the emergent universe scenario we need to have an exotic matter sector that can
lead the universe to depart from the stable static state and enter into its usual expanding thermal history.
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I. INTRODUCTION

According to the scenario of old big-bang cosmology
based on the theory of general relativity (GR), our Universe
has begun from a finite past including an initial singularity,
which is widely considered as a conceptual disadvantage.
Furthermore, since standard big-bang cosmology was
incapable of solving the horizon, flatness and magnetic
monopole problems at the early Universe the inflation
mechanism was introduced [1]. Finally, in order to describe
the late-time acceleration a small positive cosmological
constant was added, giving rise to the Standard Model of
the Universe, namely ΛCDM cosmology. However, despite
the remarkable achievements of this paradigm, its physical
content, concerning both early and late-time accelerating
phases, is still ambiguous, and moreover amongst others
one still faces the “initial singularity problem.”
Concerning the initial singularity problem, one could try

to confront it through the “emergent universe” scenario [2].
In particular, in such a scenario the universe originates from
a static state, known as “Einstein static universe” (ESU),
and then it enters the inflationary phase, without ever
passing through the big-bang singularity. However, remain-
ing in the GR framework, and despite fine-tuning, pertur-
bation analysis shows that the initial singularity cannot be
completely removed. Indeed, ESU is severely influenced
by the initial conditions such as perturbations which prevail
in the ultraviolet (UV) limit, and it is indeed unstable
against classical perturbations which eventually make it
collapse towards a singularity [3].

In order to alleviate the above problems, alternative
cosmological models have been developed. A first direction
is to introduce new, exotic, forms of matter, which in the
framework of general relativity could provide an explan-
ation of observed Universe behavior [4,5]. A second
direction is to modify the gravitational sector, obtaining
a theory that still possesses GR as a particular limit, while
still being able to describe the Universe at large scales
through the extra gravitational degrees of freedom [6,7].
Indeed, in modified gravity, amongst others, one can cure
the emergent universe scenario, by making a stable Einstein
static universe. Hence, a large amount of activity was
devoted to the study of the stability of the Einstein static
universe in various gravitational modifications, such as
Einstein-Cartan theory [8], Lyra geometry [9], nonconstant
pressure models [10], fðRÞ gravity [11], fðTÞ gravity [12],
loop quantum cosmology [13], massive gravity [14] and
doubly general relativity [15], induced matter theory [16],
braneworld models [17], etc.
One interesting gravitational modification, proposed by

Hořava, is the so-called Hořava-Lifshitz gravity [18]. This
construction was motivated by the observation that the
insertion of higher-order derivative terms in the Einstein-
Hilbert Lagrangian establishes renormalizability, since the
graviton propagator at high energies is modified [19,20].
Nevertheless, this leads to a severe problem, since the
equations of motion involve higher-order time derivatives
and hence the theory includes ghosts. However, since it is
the higher spatial derivatives that improve renormalizability
while it is the higher time derivatives that lead to ghosts,
one could think of constructing a theory that would allow
for the inclusion of higher spatial derivatives only. Indeed,
this is what it is achieved in Hořava-Lifshitz theory [18],
and since higher spatial derivatives are not accompanied by
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higher time ones, in the UV the theory exhibits power-
counting renormalizability but still without ghosts. Such a
theory definitely violates Lorentz invariance; however it
presents GR as an infrared fixed point, where Lorentz
invariance is restored. Application of Hořava-Lifshitz
gravity in a cosmological framework leads to very inter-
esting behavior in agreement with observations [21].
Finally, one can proceed further by construction extensions
such as FðRÞ Hořava-Lifshitz gravity [22], since in such
scenarios one can obtain a unified mechanism for early-
time inflation and late-time acceleration [23].
From the above discussion we deduce that it is worth

examining the realization of ESU and of the emergent
universe scenario in the framework of Hořava-Lifshitz
gravity and its extensions. The stability issues of the
ESU in the framework of an IR modification of Hořava-
Lifshitz gravity, representing a soft breaking of the
so-called “detailed balance condition,” against linear homo-
geneous scalar perturbations, was explored in [24]. As it is
shown, there exists a large class of stable solutions, for
large regions of barotropic equation-of-state parameter and
model parameters; however the possibility for a transition
to the inflationary era is ambiguous. Additionally, in the
context of original Hořava-Lifshitz gravity such a study
was performed in [25], where it was shown that a stable
ESU can be realized in the presence of a negative
cosmological constant; however although the big-bang
singularity can be avoided the transition from this stable
state to the inflationary era is impossible. On the other
hand, in the case of the generalized version of Hořava-
Lifshitz gravity [26], it was shown that if the cosmic scale
factor satisfies certain conditions initially and if the
equation-of-state parameter approaches a critical value,
the corresponding stable critical point coincides with the
unstable one, and consequently a phase transition to the
inflationary era can be provided [25].
In the present work we are interested in studying the

emergent universe scenario in the framework of a Hořava-
Lifshitz-like FðRÞ gravity, and in particular in investigating
the realization and stability of the Einstein static universe
and the possibility of the phase transition to the inflationary
era. The plan of the manuscript is the following: In Sec. II,
we briefly review Hořava-Lifshitz-like FðRÞ gravity and
we apply it in a cosmological framework. In Sec. III, we
perform a dynamical analysis in the phase space, while in
Sec. IV, we extract the conditions under which the scenario
at hand is stable against scalar perturbations. Finally, Sec. V
is devoted to discussion and conclusions.

II. HOŘAVA-LIFSHITZ-LIKE FðRÞ GRAVITY
AND COSMOLOGY

In this section we review the FðRÞ Hořava-Lifshitz
theory [22] (see also [23,27,28]). In this construction
one starts from the usual Hořava-Lifshitz gravity [18]

and adds the FðRÞ sector [29]; namely one replaces the
Ricci scalar R by arbitrary functions of it.
We start by using the Arnowitt-Deser-Misner (ADM)

formalism in a (3þ 1) space-time [30], writing the
metric as

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

with i, j ¼ 1, 2, 3, where N, Ni and hij are respectively the
lapse function, the shift function and the metric of three-
dimensional spatial hypersurface Σt. In the framework of
standard FðRÞ gravity, the modified action is [23]

SFðRÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
FðRÞ; ð2Þ

with
ffiffiffiffiffiffi−gp ¼ ffiffiffi

h
p

N, where FðRÞ denotes an arbitrary
function of the scalar curvature R. This is given by

R ¼ Rð3Þ þ KijKij − K2 þ 2∇μðnμ∇νnν − nν∇νnμÞ; ð3Þ

where Rð3Þ, Kij and nμ are the three-dimensional
scalar curvature, extrinsic curvature and a unit vector
perpendicular to the three-dimensional spacelike hypersur-
face Σt, respectively. The term Rð3Þ is an object associated
with the spatial metric hij of the hypersurface, and Kij is
defined as

Kij ¼
1

2N
ð _hij −∇ð3Þ

i Nj −∇ð3Þ
j NiÞ: ð4Þ

Hence, one can now write down the action of FðRÞHořava-
Lifshitz gravity as [23,27]

SFð ~RÞ ¼
Z

dtd3x
ffiffiffi
h

p
NFð ~RÞ; ð5Þ

with the extended scalar curvature ~R given by

~R≡ KijKij − λK2 þ 2μ∇μðnμ∇νnν − nν∇νnμÞ
− EijGijklEkl: ð6Þ

In the above expression the running dimensionless constant
λ appears due to the “super-metric,” defined on the hyper-
surface Σt as

Gijkl ¼ 1

2
ðhikhjl þ hilhjkÞ − λhijhkl; ð7Þ

while Ekl has been inserted in order to embed the
satisfaction of the detailed balance condition, which is
defined by an action W½hkl� on Σt as
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δW½hkl�
δhij

¼
ffiffiffi
h

p
Eij: ð8Þ

The detailed balance condition was inspired by the con-
densed matter physics [31] and it implies that the potential
term in the Lagrangian of a (Dþ 1)-dimensional theory is
derivable from the variation of the D-dimensional action
[18]. In particular, while the shift variables Niðt;xÞ and
spatial metric hijðt;xÞ are functions of both space and time,
the lapse variable is assumed to be a function of time only,
namely N ¼ NðtÞ, an assumption compatible with the
foliation preserving diffeomorphism.
In the initial formulation of FðRÞ Hořava-Lifshitz

gravity [22,27] Kluson focused on a Lagrangian of a
new class of FðRÞ gravity theories with respect to the
projectability condition, namely

L ¼ N
ffiffiffi
g

p �
2KijGijklKkl

F0ðAÞκ2 − κ2FðAÞ
�
; ð9Þ

where FðAÞ is an arbitrary function of the auxiliary field A,
which is a function of Kij and gij, namely

A ¼
�
EijGijklEkl þ 4κ−4KijGijklKkl

1 − 4κ−4KijGijklKkl

�
: ð10Þ

By setting the typical function FðAÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ A

p
− 1, the

corresponding action S ¼ R dtd3xL reads as

S ¼ −κ2
Z

dtd3x
ffiffiffi
h

p
N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
EijGijklEkl

r

× ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

κ4
ðKijKij − λK2Þ

r
− 1

�
þ Sm; ð11Þ

with κ2 ≡ 32Gπc the gravitational constant, set for sim-
plicity to 1 in the following. In the above action we have
also considered the matter sector characterized by Sm.
Additionally, one could extend this action in a nonproject-
able version [27]. We mention that the scenario of action
(11) is invariant under the foliation preserving diffeo-
morphism and not under the full Dþ 1 diffeomorphism,
which is in contrast to the usual FðRÞ gravity theories.
The linearized version of the action (11) reads

S ¼
Z

dtd3xN
ffiffiffi
g

p �
2

κ2
ðKijKij − λK2Þ− κ2

8
EijGijklEkl

�
;

ð12Þ

which as expected reproduces the original Hořava-Lifshitz
action. On the other hand, note that by choosing λ ¼ μ ¼ 1
in (6), one obtains the usual FðRÞ gravity. Therefore, the
nonlinear action (11) is a form of Hořava-Lifshitz-
like FðRÞ gravity (see [22,23,27]). More precisely, the

Lagrangian density of the action (11) is not of the exact
FðRÞ form with any modified scalar curvature expression.
Instead, it belongs to a class of models where the
Lagrangian depends on the kinetic term KijGijklKkl and
the potential term EijGijklEkl in a different way, and not
only on the sum of the kinetic and the potential terms, as in
the modified scalar curvature (6) (note that such more
general modified Hořava-Lifshitz theories, where the
Lagrangian can depend on the kinetic and potential terms
independently, have also been considered in [23]).
In order to apply the above theory in a cosmological

framework, that is, in order to construct Hořava-Lifshitz-
like FðRÞ cosmology, we impose a Friedmann-Robertson-
Walker (FRW) metric on the 3-hypersurface Σt, namely

hijdxidxj ¼ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdφ2Þ

�
; ð13Þ

where aðtÞ is the scale factor and with k ¼ −1, 0 and 1
corresponding to an open, flat and closed universe, respec-
tively. Furthermore, concerning the matter content of the
universe, we consider it to be a perfect fluid with energy-
momentum tensor in comoving coordinates given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð14Þ

where uα ¼ δ0α is the four-velocity vector of the fluid, and ρ
and p are the energy density and isotropic pressure,
respectively. Under these assumptions, the field equations
derived from action (11) give rise to the Friedmann
equations, which read [32]

H2 ¼ 1

6ð3λ − 1Þð1 − ρÞ2
�
ρ −

1

2
ρ2 þ 6Λw −

12k
a2

þ 6k2

Λwa4

�
;

ð15Þ

_H ¼ 1

4ð3λ − 1Þð1 − ρÞ2
�
ðρþ pÞðρ − 1Þ þ 8k

a2
þ 8k2

jΛwja4
�

− 3ðρþ pÞH2ð1 − ρÞ−1: ð16Þ

The parameter Λω is the effective cosmological constant,
which similarly to the original version of the Hořava-
Lifshitz model must be negative for the running coupling
parameter λ > 1

3
. We mention that the above equations

include a negative energy density squared term ρ2, which
can have a significant role for the early stage of the
universe. Technically speaking, the presence of the ρ2 term
in the above Friedmann equations is a direct upshot of
nonlinear dependence to a matter source in this modified
gravity theory in the early universe. A detailed discussion
on this subject is presented in [32]. Finally, let us point out
that the value of λ is commonly divided into two ranges,
namely 0 < λ < 1

3
and λ > 1

3
. However, phenomenological
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studies analyzing the observational data suggest that the
value of λ is constrained in a narrow range around λ ¼ 1,
i.e. jλ − 1j≲ 0.02 [33], which was expected since GR is
obtained for λ ¼ 1. Hence, in the following we restrict our
analysis to the regime λ > 1

3
.

The cosmological application of Hořava-Lifshitz-like
FðRÞ gravity proves to have many interesting features
[23]. Amongst others it can provide a unified mechanism
for the description of both the early-time inflation and the
late-time acceleration, or alternatively it can give rise to
bouncing solutions [32] that can cure the initial-singularity
problem. Hence, it would be interesting to study if one can
naturally obtain a stable Einstein static universe in such a
theory. We mention that, as it is well known, the versions of
Hořava-Lifshitz gravity with the projectability condition
suffer from the strong-coupling problem [34]. Although
this can be alleviated by going beyond the projectability
condition [35], the corresponding FðRÞ extension would be
too difficult to allow for an analytical investigation of the
emergent universe scenario. Hence, in the present work we
consider the Hořava-Lifshitz-like FðRÞ gravity with the
detailed balance and projectability condition as a first
approach on the background cosmological evolution, keep-
ing in mind that the investigation of the full theory is
necessary as a next step.

III. DYNAMICAL ANALYSIS OF EINSTEIN
STATIC UNIVERSE

In this section we intend to perform a phase-space
analysis, investigating nonflat Hořava-Lifshitz-like FðRÞ
cosmology as a first-order cosmological dynamical system.
This study will show whether the ESU corresponds to a
solution in which the universe can remain for very large
time intervals. If this is not the case, then the realization of
ESU will be highly improbable without a fine-tuning of the
initial conditions.
Using Taylor expansion in terms of ρ

κ2
(note that we have

set κ2 ¼ 1), the first and second Friedmann equations (15),
(16) can be rewritten as

H2 ¼ 1

6ð3λ − 1Þ
�
ρ −

5

2
ρ2 þ 3Λwðρ2 − ρþ 1Þ

þ6

�
k2

Λwa4
−
2k
a2

�
ð3ρ2 − 2ρþ 1Þ

�
þOðρ3Þ; ð17Þ

and

_H ¼ 1

4ð3λ − 1Þ
�
ðωþ 1Þρð3ρ − 1Þ

þ 8

�
k
a2

þ k2

jΛwja4
�
ð3ρ2 − 2ρþ 1Þ

�
− 3ðωþ 1Þρð1þ ρÞH2 þOðρ3Þ; ð18Þ

where we have neglected terms of the order ρ3 and beyond.
This means that only terms up to the contribution of dark
radiations, i.e. a−4, are kept. Also it is easy to check that in
the leading order approximation, these reproduce the
Friedmann equations in the standard Hořava-Lifshitz grav-
ity model. Additionally, in the above expressions we have
considered the matter fluid to correspond to the standard
barotropic one, with the equation of state of the form
p ¼ ωρ.
Let us now focus on the ESU. This is described by a ¼

a0 and ρ ¼ ρ0, and hence the above Friedmann equations
become

1

6ð3λ − 1Þ
�
ρ0 −

5

2
ρ20 þ 3Λwðρ20 − ρ0 þ 1Þ

þ6

�
k2

Λwa40
−
2k
a20

�
ð3ρ20 − 2ρ0 þ 1Þ

�
¼ 0; ð19Þ

1

4ð3λ − 1Þ
�
ðωþ 1Þρ0ð3ρ0 − 1Þ

þ 8

�
k
a20

þ k2

jΛwja40

�
ð3ρ20 − 2ρ0 þ 1Þ

�
¼ 0: ð20Þ

For the case of a spatially closed universe, i.e. for
k ¼ þ1, Eq. (20) has two roots, namely

�
1

a20

�
1;2

¼ jΛwj
2

 
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

gðωÞ
jΛwjg0

s !
; ð21Þ

with gðωÞ and g0 defined as

gðωÞ≡ ð3ρ20 − ρ0Þðωþ 1Þ
g0 ≡ ð6ρ20 − 4ρ0 þ 2Þ: ð22Þ

These two solutions correspond to two critical points. As
we can straightforwardly see, for any barotropic parameter
ω apart from ω ¼ −1, namely apart from a simple
cosmological constant, both solutions (21) become unphys-
ical since they lead to ð 1a2

0

Þ
1;2

< 0. Similarly, for ω ¼ −1 the

two critical points (21) become

�
1

a20

�
1

¼ 0;

�
1

a20

�
2

¼ −jΛwj; ð23Þ

which are both unphysical. Hence, none of these critical
points signals the presence of an ESU in closed geometry,
and thus they do not deserve further investigation.
For the case of an open universe, i.e. for k ¼ −1, Eq. (20)

has two roots, namely
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�
1

a20

�
1;2

¼ jΛwj
2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

gðωÞ
jΛwjg0

s !
; ð24Þ

where

gðωÞ≡ ð3ρ20 − ρ0Þðωþ 1Þ
g0 ≡ −ð6ρ20 − 4ρ0 þ 2Þ: ð25Þ

Equation (24) will result in two real solutions provided that

3½ðωþ 1Þ þ 2jΛwj�ρ20
þ ½9ðωþ 1Þ þ 4jΛwj�ρ0 þ 2jΛwj ≥ 0: ð26Þ

For the case ω ¼ −1 the above inequality holds for any
value of ρ0 > 0 and jΛwj, and thus we obtain two critical
points, namely

�
1

a20

�
1

¼ 0;

�
1

a20

�
2

¼ jΛwj; ð27Þ

and thus only the latter is physical. By replacing it in (19)
we obtain the corresponding energy density as

ðρ0Þ2 ¼
39jΛwj − 1

104jΛwj − 5

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð4788jΛwj − 210Þ
ð1 − 39jΛwjÞ2

s #
:

ð28Þ

Both of them are physically acceptable [i.e. ðρ0Þ2 > 0] with
the condition

jΛwj > 3: ð29Þ

However, in order to be consistent with the expansion in
terms of powers of ρ in the background dynamic equations
(17) and (18), we keep only the minus branch of (28). On
the other hand, for ω < −1 and ω > −1, by requiring the
physical condition ρ0 > 0, we obtain the following bounds
on the value of jΛwj, namely

−
ωþ 1

2
< jΛwj < −ðωþ 1Þ; ð30Þ

and

0 < jΛwj <
5ðωþ 1Þ

2
; ð31Þ

respectively, along with the common lower bound on the
value of ρ0:

ρ0 ≥
1

6ð2jΛwj þ ωþ 1Þ f−9ðωþ 1Þ þ 4jΛwj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81ðωþ 1Þ2 þ 48jΛwjðωþ 1Þ − 32jΛwj2

q
g: ð32Þ

Hence, in summary, both solutions of (24) are physical
when the constraints (30)–(32) are fulfilled. Finally, by
inserting the solutions (24) into Eq. (19) we acquire

�
30jΛwj þ 3ωþ 1

2

�
ρ20 − ð21jΛwj þ ωÞρ0

þ 12jΛwj �
9

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΛwj2g20 − jΛwjg0gðωÞ

q
¼ 0; ð33Þ

the solution of which will provide the corresponding ρ0 for
each solution. Since analytical solutions are impossible, we
solve (33) numerically and in Table I we present the real
and positive results for some representative values of Λw.
Note that we focus on the negative-sign branch, since only
this branch is consistent with −1 < ω ≤ 1=3. Hence, we
deduce that from the two static solutions in (24), only the
positive branch is compatible with −1 < ω ≤ 1=3, namely

�
1

a20

�
2

¼ jΛwj
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

gðωÞ
jΛwjg0

s !
: ð34Þ

In order to study the stability of this critical point,
inspired by the first-order dynamical system approach
[36,37], we consider the following two auxiliary variables,

y1 ¼ a; y2 ¼ _a; ð35Þ

which obey the following equations:

_y1 ¼ y2 ¼ f1ðy1; y2Þ; ð36Þ

_y2 ¼
1

4ð3λ − 1Þ
�
ðωþ 1Þρð3ρ − 1Þy1

þ 8ð3ρ2 − 2ρþ 1Þ
�
k
y1

þ k2

y31jΛwj
��

þ ½1 − 3ðωþ 1Þρðρþ 1Þ� y
2
2

y1
¼ f2ðy1; y2Þ: ð37Þ

TABLE I. The physical values of ρ0 arising numerically from
(33), for the negative-sign branch, for various values of ω and Λw.

jΛwj ¼ 1
40

jΛwj ¼ 1
60

jΛwj ¼ 1
80

jΛwj ¼ 1
100

ω ¼ −2=3 0.423 0.413 0.407 0.404

ω ¼ 0 0.407 0.403 0.402 0.404

ω ¼ 1=3 0.404 0.403 0.408 0.417
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As usual, by deriving the eigenvalues square ϑ2 of the
Jacobian matrix

Jðf1ðy1; y2Þ; f2ðy1; y2ÞÞ ¼
 ∂f1∂y1

∂f1∂y2
∂f2∂y1

∂f2∂y2

!
; ð38Þ

one can deduce the stability of the critical points. If ϑ2 < 0
then the corresponding critical point can be interpreted as a
stable center point. Since, as it was mentioned above, for
the closed universe there is no physically accepted static
solution, in the following we focus on the open case.
In the case of ω ¼ −1, after a simple calculation we

acquire

Critical point

�
1

a20

�
2

¼ jΛwj;

⇒ ϑ2 ¼ ð−12ρ20 þ 8ρ0 − 4Þ jΛwj
ð3λ − 1Þ ; ð39Þ

and thus it implies the stability of ESU corresponding to the
physical critical point ðy1; 0Þ, since ϑ2jðρ0Þ2 < 0. In order to
see this feature more transparently, in the upper graph of
Fig. 1 we depict the phase-space behavior for the open

geometry for ω ¼ −1. Additionally, in order to verify the
stability of the ESU in an alternative way, we add a small
deviation to the scale-factor value ð 1a2

0

Þ2 ¼ jΛwj and in the

lower graph of Fig. 1 we depict its evolution, as it arises
numerically from (36). As we observe the universe exhibits
small oscillations around the scale-factor value of the ESU,
without deviating from it, as expected.
In the case of ω ≠ −1, we acquire

ϑ2 ¼ 1

4ð3λ − 1Þ
�
ðωþ 1Þð3ρ20 − ρ0Þ

þ8ð3ρ20 − 2ρ0 þ 2Þ
�
1

a20
−

3

jΛwja40

��
; ð40Þ

with a0 given in (34) and ρ0 arising from (33), i.e. from
Table I. In Table II we provide the corresponding values of
ϑ2. As we observe, ϑ2 < 0 for all values of jΛwj, ω and (a0,
ρ0) consistent with 0 ≤ ρ0 < 1 and−1 < ω ≤ 1=3, and thus
we deduce that the ESU is stable.However, although a stable
ESU is easily realized, in order to obtain a full realization of
the emergent universe scenario we need an additional
mechanism that could make the universe deviate from
ESU after a large time interval, and enter into the usual
expanding thermal history. This would be possible only in
the presence of an exotic matter sector, with an equation-of-
state parameter outside the range −1 < ω ≤ 1=3.

IV. SCALAR PERTURBATIONS AND
STABILITY CONDITIONS

In this section we perform an analysis of the scalar
perturbations in Hořava-Lifshitz-like FðRÞ gravity in a
cosmological framework. In particular, we desire to extract
conditions under which the scenario at hand is free of
perturbative instabilities, and hence physical.1 In order to
achieve this, we linearly perturb Eqs. (17) and (18) around
the static states (19) and (20). Applying the following
perturbations in the scale factor and matter density,4 2 0 2 4

0.40

0.42

0.44

0.46

0.48

0.50

t

a

–2

–1.5 –1.0 –0.5 0.0

Y1

Y
2

0.5 1.0 1.5

–1

0

1

2

FIG. 1. The phase diagram in ða; _aÞ or ðy1; y2Þ space (upper
graph) and the evolution of the scale factor in terms of time (lower
graph) for the spatially open cosmology, with equation-of-state
parameter ω ¼ −1. We have set λ ¼ 1 and jΛwj ¼ 5, while for ρ0
we have used the values obtained numerically from the negative-
sign branch of (28), namely ρ0 ¼ 0.148.

TABLE II. The eigenvalues corresponding to the ESU critical
points (a0, ρ0) obtained from (34) and the values of ρ0 given in
Table I, for λ ¼ 1.

jΛwj ¼ 1
40

jΛwj ¼ 1
60

jΛwj ¼ 1
80

jΛwj ¼ 1
100

ω ¼ − 2
3

ϑ2 ¼ −0.37 ϑ2 ¼ −0.32 ϑ2 ¼ −0.3 ϑ2 − 0.28

ω ¼ 0 ϑ2 ¼ −0.86 ϑ2 ¼ −0.82 ϑ2 ¼ −0.78 ϑ2 ¼ −0.76
ω ¼ 1

3
ϑ2 ¼ −1.1 ϑ2 ¼ −1.06 ϑ2 ¼ −1.01 ϑ2 ¼ −0.98

1Note that stability in this section is used in a different sense
than that of the dynamical system framework, as in the previous
section. In particular, in dynamical system analysis an unstable
solution is one that cannot attract the universe; however it is
completely physical. On the other hand, in perturbation analysis,
a solution with perturbative instabilities implies that it is ill
behaved and not physical.
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aðtÞ → a0ð1þ δaðtÞÞ;
ρðtÞ → ρ0ð1þ δρðtÞÞ; ð41Þ

linearizing using

ð1þ δaðtÞÞn ≃ 1þ nδaðtÞ;
ð1þ δρðtÞÞn ≃ 1þ nδρðtÞ; ð42Þ

and imposing the background Friedmann equation (19) in
order to eliminate background quantities, we obtain

ρ0δρðtÞ
�
1 − 5ρ0 þ 6Λwðρ0 − 1Þ

þ 12

�
2k
a20

−
k2

Λwa40

�
ð1 − 3ρ0Þ

�

¼ −δaðtÞ
�
24

�
k
a20

−
k2

Λwa40

�
ð1 − 2ρ0 þ 3ρ20Þ

�
: ð43Þ

Similarly, perturbing Eq. (18), linearizing, and imposing
(19) in order to eliminate background quantities, we
acquire

δä ¼ 1

4ð3λ − 1Þ
�
ρ0δρ

�
ðωþ 1Þð2ρ0 − 1Þ

þ 8k
a20

ρ0ð1þ ωÞ − 16

�
k
a20

þ k2

jΛwja40

�
ð1 − 3ρ0Þ

�

− δa
�
16

�
k
a20

þ 2k2

jΛwja20

�
ð1 − 2ρ0 þ 3ρ20Þ

��
: ð44Þ

Thus, using (43) in order to find ρ0δρ in terms of δa, and
substituting into (44), leads to the following differential
equation:

δä −
ðA × B × C −DÞ

ð3λ − 1Þ δa ¼ 0; ð45Þ

where we have defined

A≡ −ð6ρ0Λω þ ρ0 þ 1Þ þ 24k
a20

ð1þ 3ρ20Þ

−
12k2

Λwa40
ð1 − 3ρ0Þ þ 36

�
Λω −

4k
a20

þ 2k2

Λwa40

�
2

þ
�
5 − 6Λω þ 72k

a20
−
36k2

a20

�
ρ0

·
�
ρ0 − 12Λω þ 48k

a20
−

24k2

Λwa40

�
; ð46Þ

B≡ 2

�
k
a20

−
k2

jΛwja40

�
ð1 − 2ρ0 þ 3ρ20Þ; ð47Þ

C≡ 3ð1þ ωÞð2ρ0 − 1Þ − 48

�
k
a20

þ k2

jΛwja40

�
ð1 − 3ρ0Þ;

ð48Þ

and

D≡ −4
�
k
a20

þ 2k2

jΛwja40

�
ð1 − 2ρ0 þ 3ρ20Þ: ð49Þ

Hence, from the differential equation (45) we deduce that in
order to have a stable ESU against scalar perturbations in
the framework of Hořava-Lifshitz-like FðRÞ gravity, the
following condition must be satisfied:

ðA × B × C −DÞ
3λ − 1

< 0: ð50Þ

As usual, the instabilities-absence condition (50) must be
applied in the background solutions of the model, extracted
in the previous section. Since we are dealing with an
Einstein static universe, these solutions were characterized
only by a0, ρ0, k, with ω and Λw the model parameters, and
were summarized in expressions (27), (28), and (34) and
Table I. Since in the case of a closed universe ESU was not
realized, we focus on the case of open geometry. For the
case ω ¼ −1, by setting the background configuration
ða0; ρ0Þ from Eqs. (27) and (28), subject to the constraint
(29), and substituting them into Eqs. (46)–(49), we
immediately find that inequality (50) holds. Similarly, in
the case ω ≠ −1, substituting the values of a0 and ρ0 from
(34) and Table I into (46)–(49) we deduce that inequality
(50) is satisfied too. Hence, in summary, we can see that the
ESU obtained in the previous section is free of perturbative
instabilities.

V. REMARKS AND CONCLUSIONS

In this work we performed an investigation of the Einstein
static universe (ESU) in the framework of Hořava-Lifshitz-
like FðRÞ gravity. Such a gravitational modification is
obtained by employing higher-order R-terms, keeping both
the detailed balance and projectability conditions, and
although contrary to the usual FðRÞ gravity it is not fully
Dþ 1 diffeomorphism invariant, in the limit of linear
approximation it recovers the usual Hořava-Lifshitz counter-
part. Hence, we were interested in examining whether
the cosmological application of this theory allows for
the realization of ESU, which is the basic concept in the
realization of the emergent universe scenario. If this is the
case, then the initial-singularity problem of standard big-
bang cosmology can be alleviated.
As a first step we performed a dynamical analysis of

Hořava-Lifshitz-like FðRÞ cosmology in the phase space.
We showed that in the case of closed geometry there is no
stable physically meaningful ESU, while in the case of
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open geometry the ESU can be an attractor in the presence
of both exotic and usual matter. However, the most
physically interesting result was that in the case of open
geometry ESU is stable and thus it can be realized.
Nevertheless, in order to obtain a full realization of the
emergent universe scenario we need an additional mecha-
nism that could make the universe deviate from ESU after a
large time interval, and enter into the usual expanding
thermal history, which can be obtained only through an
exotic matter sector with an unconventional equation-of-
state parameter.
As a second step we examined the behavior of ESU

under scalar perturbations, desiring to extract the condi-
tions under which the scenario at hand is free of perturba-
tive instabilities such as ghosts or Laplacian instabilities.
Our analysis showed that the background ESU solutions
are free of perturbative instabilities.
The above results imply that ESU can be safely realized

in the framework of Hořava-Lifshitz-like FðRÞ cosmology;

however the emergent universe scenario is not straightfor-
ward in such a gravitational modification, since an exotic
form of matter is required. Hence, within the same theory
we have both a cosmological advantage, namely that we
alleviate the initial-singularity problem, as well as a
theoretical advantage, namely that the underlying theory
has an improved renormalizable behavior in the UV. These
features make the above construction a good candidate for
the description of nature that is worthy of further
investigation.
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