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A new scenario for gravitational collapse has been recently proposed by Haggard and Rovelli.
Presenting the model under the name of black hole fireworks, they claim that the accumulation of quantum
gravitational effects outside the horizon can cause the tunneling of geometry from a black hole to a white
hole, allowing a bounce of the collapsing star which can eventually go back to infinity. In this paper, we
discuss the instabilities of this model and propose a simple minimal modification which eliminates them, as
well as other related instabilities discussed in the literature. The new scenario is a time-asymmetric version
of the original model with a time scale for the final explosion that is shorter than m log m in Planck units.
Our analysis highlights the importance of irreversibility in gravitational collapse which, in turn, uncovers
important issues that cannot be addressed in detail without a full quantum gravity treatment.
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I. INTRODUCTION

Regular collapse models where the black hole singularity
is replaced by some smooth geometry have a long history
[1–23]. The leitmotiv of these models is the attempt to
understand issues related to the Hawking information loss
paradox on an effective background spacetime capturing
the idea that black hole singularities must be resolved by
quantum gravity effects. Ideally one would want to justify
the relevant physical features of these models in terms of a
fundamental quantum theoretical description. Lacking a
precise dynamical description of quantum gravity, their key
features are often justified in terms of generic behaviour
that leads to singularity avoidance in simplified symmetry
reduced models of quantum gravity [24–27]. As one would
also expect QFT on curved spacetimes to be a valid
approximation to quantum dynamics in regions where
the gravitational degrees of freedom are well described
by a classical background metric of low curvature in Planck
units, valuable insights should be accessible through semi-
classical methods. Along these lines a necessary viability
criterion for these models is their semiclassical stability:
contributions of quantum fluctuations of a test field in
suitable quantum states1 to the expectation value of the
energy momentum tensor must remain small (in Planck
units) in semiclassical regions. In this article, we study the
semiclassical stability of the recently introduced bouncing
black hole model proposed in [28].2 We find the model to
be strongly unstable under small perturbations and

consequently we propose a simple but nontrivial modifi-
cation that avoids these instabilities without modifying the
key features of the original idea.
The paper is organized as follows. In Sec. II, we review

the definition of the fireworks model. In Sec. III, we study
the semiclassical stability of the fireworks spacetime by
computing the expectation value of the energy momentum
tensor in a suitable state of a quantum test field on that
background. In order to produce analytic expressions, and
thus make clearer our presentation, we will assume that our
quantum test field is a massless scalar field and those
calculations on the Schwarzschild background will be first
done in the approximation where backreaction is neglected;
see Sec. III A. We will argue at the end of this section that
the result remains valid in the 3þ 1 framework where
backscattering is taken into account. In Sec. IV, we propose
a way in which the background of [28] could be modified in
order to avoid these instabilities as well as other ones
described in Sec. V. The new model is a time-asymmetric
version of the original one, where the black hole phase is
followed by an extremely fast explosion with time scale
shorter than m log m in Planck units. Finally, we discuss
the implications of such modifications in Sec. VI.

II. THE FIREWORKS MODEL

The Penrose diagram of the Haggard-Rovelli [28]
proposal for a bouncing black hole is shown in Fig. 1.
This spacetime corresponds to the collapse of a spherical
shell of mass m, and it is constructed in terms of patches
that are isometric to the Schwalzschild, Minkowski, and an
unspecified quantum effective geometry glued together
through transition hypersurfaces. In the last region,
Einstein’s equations are not satisfied with any form of
classical matter; its presence is interpreted as a modification

1Those satisfying the correct boundary conditions that define
gravitational collapse.

2A similar scenario in which the same bouncing process
happens in much shorter time scales by assuming faster-than-
light propagation of a shockwave from the bounce region is
considered in [29,30].
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of the classical dynamics induced by the effect of quantum
gravity fluctuations.
The model can be obtained from the cutting and pasting

of regions easily identified in the Penrose diagram of the
maximally extended Schwarzschild solution of mass m as
follows: One first identifies a point Δ with Kruskal-
Szekeres coordinates ðUΔ ¼ −VΔ; VΔÞ with VΔ > 0 so
that Δ lies in the exterior of the white as well as the black
hole regions. One then chooses a null surface V ¼ Vs such
that VΔ > Vs and a point E with coordinates ðUE ; VE ¼
VsÞ and UE > 0, i.e., E lies on the null surface V ¼ Vs and
in the interior of the black hole region. Finally one picks a
spacelike hypersurface ΣE→Δ connecting Δ to E and
extends this spacelike hypersurface to spacelike infinity
i0 along the hypersurface ΣΔ→i0 defined by the condition
t ¼ 0 in Eddington-Finkelstein coordinates. Region II is the
spacetime region bounded by the null surface V ¼ Vs in the
past and ΣE→Δ ∪ ΣΔ→i0 in the future. There is a partner
region, called region tII, defined in analogy to region II by
the time reflection ðU;VÞ → ð−U;−VÞ. See Fig. 1 (left).
The Carter-Penrose diagram of the fireworks model [Fig. 1
(right)] is obtained by inserting the interpolating regions
IIIþ tIII that complete the spacetime to the future of ΣE→Δ
in region II up to ΣĒ→Δ in region tII. The regions v ≤ vs and
u ≥ us are described by Minkowski region I and region tI,
respectively. The gluing across the null surfaces is done by
demanding continuity of the metric; this leads to a

distributional energy momentum tensor and the standard
interpretation of the null gluing surface as a spherical shell
of massm collapsing to r ¼ 0 in the past and then bouncing
out in the future. The geometry in region IIIþ tIII is not
explicitly defined in the model; however, the absence of
singularities require the putative energy-momentum tensor
to violate energy conditions in region IIIþ tIII. This is
interpreted as a spacetime region where quantum gravity
effects are large.
The resulting spacetime represents the dynamics of a null

infalling shell of total mass m that bounces at r ¼ 0 and
comes out as a null outgoing shell of the same mass. The
point E is the point where the ingoing shell enters (or
touches) the quantum region III, while Δ is considered as
the outmost boundary of the quantum region IIIþ tIII. As
we will recall below, the time scale of the bounce is argued
to be of the order of m2 (in Planck units). This “fast”
process makes the dissipation effects of Hawking radiation
negligible. This is argued to justify the time-symmetric
character of the bouncing scenario.
The spacetime is event-horizon free, but displays a

trapping and an anti-trapping surface. Notice that the past
directed outgoing null rays fromΔ—defining a null surface
that approaches exponentially the trapping surface in the
past—represents what we will call the “past classicality
horizon,” denoted ℋ−: any observer crossing ℋ− will end
up falling into the quantum region IIIþ tIII. More

FIG. 1. Geometry of the black hole fireworks scenario. Left: Kruskal-Szekeres diagram, with the two interesting overlapping regions
shaded with different colors. Right: The resulting completely time-symmetric Carter-Penrose diagram.
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precisely, the domain of dependence DðIIIþ tIIIÞ has a
boundary defined by two null surfaces. We call ℋ− (resp.
ℋþ) the past (resp. future) null component of that
boundary.
To completely specify the model, one has to fix VΔ > 0

in order to fix the position of the pointΔ ¼ ð−VΔ; VΔÞ, and
duration of the process which is parametrized by
ΔV ¼ VΔ − Vs. The condition VΔ > 0 implies that the
quantum region IIIþ tIII extends outside the
Schwarzschild trapping horizon. This is a central concep-
tual point in the proposed model: one is allowing large
quantum effects to leak out of the Schwarzschild horizon
where curvature is low and far from Planckian (herem ≫ 1
in Planck units). In the original paper [28], this is stated by
saying that “there is no reason to trust the classical theory
outside the horizon for arbitrarily long times and suffi-
ciently close to r ¼ 2m”. The authors of [28] propose that
quantum gravitational effects can be accumulated with
“time” and become non-negligible outside the horizon.
Accordingly, they introduced a nonclassicality parameter
defined along the world-line of a stationary observer sitting
at r ¼ rΔ for a proper time τ as

q ¼ l2−b
p ℛτb ð1Þ

where ℛ is a measure of spacetime curvature defined for
concreteness in terms of the Kretschmann invariant ℛ2 ¼
RabcdRabcd ¼ 48m2=r6 and b is a phenomenological
parameter of order unity. For concreteness, we take b¼1
following [28]. The parameter τ is the proper time of the
stationary observer from the crossing of the collapsing shell
to the point Δ (see Fig. 1), that is

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
rΔ

s
Δv; ð2Þ

where v is the standard advanced inertial time at ℐ−. The
quantity q is maximized for

rΔ ¼ 7

3
m: ð3Þ

This means that the quantum region IIIþ tIII extends
macroscopically outside the BH horizon. The bouncing
time is defined to be the value of Δv for which the
nonclassicality parameter (linear in Δv) becomes of order
unity. This happens for

Δv≡ vΔ − vs ∼ τ ∼m2: ð4Þ

Due to the time symmetry of the construction, the observer
at rΔ sees the entire bouncing process happening in a
proper time τtot ¼ 2τ ∼m2. This time scale is very impor-
tant in what follows and is argued to produce possible
experimental observations [31–33].

III. SEMICLASSICAL STABILITY

The question any classical ansatz spacetime has to be
confronted with is whether it admits a physically reason-
able quantum state for the test fields living on it. This
requirement represents the first step toward addressing the
problem of backreaction. More precisely, in those regions
where we can trust the validity of QFT in curved spacetime
one expects the quantum dynamics to be well approximated
by the semiclassical Einstein’s equation,

GabðgabÞ ¼ 8πhTabðgabÞi; ð5Þ

where hTabðgabÞi represents the expectation value of the
stress-energy tensor of the quantum matter fields propa-
gating on the metric gab.
The most famous example is the effect of Hawking

evaporation on a black hole background [34,35]. The
original computation has been made in the fixed back-
ground approximation, completely neglecting the back-
reaction. However, this leads to an infinite amount of
radiated energy from the hole, clearly in contradiction with
energy conservation. Intuitively, one expects the energy
radiated to be balanced by a reduction of the Bondi mass of
the black hole, leading to the evaporation of the hole and
consequently the well-known loss of information paradox
[36]. There are both analytical and numerical works
indicating some general features of the evaporation prob-
lem [37–40]; nevertheless, a complete description remains
unsolved even in the semiclassical regime of Eq. (5).
Indeed, the complete backreaction problem could be

framed in a formal approximation procedure where one
starts by evaluating hTabðg0abÞi on a seed background g0ab,
and then inserts the result into semiclassical Einstein
equations (5) in other to find a new metric g1ab: the first-
order quantum corrected background metric. Iterating the
process one can try to find higher-order corrected line
elements eventually converging to a consistent solution gab
of Eq. (5). Every single step is in general a really difficult
task to achieve and the final convergence is not even
guaranteed.
Fortunately, for the present analysis it will be sufficient

to solve a much simpler problem. Indeed, the classical
initial background g0ab—solution of the classical Einstein
equations—is a good zeroth approximation of the quantum
dynamics only if the quantum corrections coming from
hTabðg0abÞi are small in semiclassical regions. This stability
of the seed background under the effects of the propagation
of quantum test fields living on it will be called quantum-
stability property. In the following, we will compute
hTabðg0abÞi for the model of Ref. [28] and show that it
diverges in region tII. The quantum-stability property,
therefore, is not satisfied by the fireworks model.
The computation of hTabðg0abÞi on a given unperturbed

geometry can be already a very difficult task. In fact, there
is in general uncertainties related to the choice of the
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appropriate physical state for the quantum fields and, at the
same time, one needs to appeal to renormalization tech-
niques to eliminate usual UV divergences of QFT in a way
that is consistent with general covariance [41]. Both issues
are more subtle and difficult when the background space-
time is not flat. However, the great symmetry of our
example and its direct relationship with the well-studied
Schwarzschild geometry will allow us to make very precise
statements.

A. Analytic calculation in the 1þ 1 setting

In this section, we use spherical symmetry and we
neglect backscattering as well as the influence of modes
other than s modes. This allows for an effective description
in terms of a 1þ 1 theory. These simplifications make
possible the analytic computation of effects that qualita-
tively remain valid in the 3þ 1 framework. More precisely,
we show that the computation of hTabðg0abÞi in the
framework of the fireworks background presents a diver-
gent behaviour. Quantum fields are represented by a single
massless scalar ϕ satisfying the Klein-Gordon equation,

gab0 ∇a∇bϕ ¼ 0; ð6Þ

with gab0 the background geometry of the fireworks
model in the r − t space. In more detail, the metric in
region IIþ tII is given by

ds20 ¼ −
�
1 −

2m
r

�
dvdu; ð7Þ

where v ¼ tþ r� and u ¼ t − r�, with t the Killing
parameter and

r� ¼ rþ 2m log

�
r
2m

− 1

�
: ð8Þ

In region I, the metric is

ds20 ¼ −dvduin; ð9Þ

where uin ¼ tM − r and v ¼ tM þ r and tM is the inertial
Minkowski time defined by an observer at the center of the
shell. The explicit relation between uin and Schwarzschild
coordinates can be computed from the matching conditions
that follow from demanding continuity of the metric across
the shell, namely

u ¼ uin − 4m log

�
vs − uin − 4m

4m

�
: ð10Þ

B. The state representing gravitational collapse

The fireworks model describes the physics of a collaps-
ing shell that would classically lead to the formation of a

spherical black hole spacetime. This physical situation
imposes clear-cut constraints on the initial conditions of the
quantum state of the field ϕ. On the one hand, the state for
the in-modes of the quantum fields on ℐ− must not be
substantially excited. In other words, aside from the zeroth-
order matter distribution defining the collapsing shell that
will lead to the formation of the trapped regions in the
future, no substantial amount of energy momentum of ϕ is
poured in fromℐ−.3 This is translated into the demand that
the in-modes of the quantum field on ℐ− must be in the
vacuum state. A similar boundary condition must hold also
for the out-modes in the flat interior of the collapsing shell
(region I). Small perturbations of these conditions could be
admitted yet, and this would not change the conclusions
that will follow.
These two conditions are satisfied by the so-called

vacuum in-state jini [42], defined as the unique vacuum
state of the Fock space where positive frequencies are
defined with respect to the mode expansion of solutions of
(6) of the form

ϕin ¼ eiωv; ϕout ¼ eiωuin : ð11Þ

This state corresponds to the required physical condition
that there is no incoming radiation from ℐ− as well as no
outgoing radiation from inside the shell. This state repre-
sents the idealized physical situation one wants to describe
in the context of gravitational collapse.

C. The region of applicability

There is uncertainty on the features of the quantum fields
in the future domain of dependence of region IIIþ tIII as
the effective 1þ 1 geometry is expected not to capture
all the physics of the dynamics of the field through that part
of the spacetime. Therefore, all of the components of
hTabðg0abÞi that we want to compute can be used to describe
the energy momentum expectation value only in region I
and in the portion of region II in the past of ΣE→Δ union the
null outgoing ray u ¼ uΔ starting at Δ and reaching ℐþ.
Nevertheless, whatever might be the dynamics in the

strong quantum region, we expect to be able to predict
without uncertainties at least some of the components of
hTabðg0abÞi for those points to the future of the horizonℋþ.
A closer look shows that, due to the decoupling of in and
out modes for a conformal theory in the present 1þ 1
context, the component hTvvðg0abÞi is independent of the
features of the quantum region IIIþ tIII. Both hTuuðg0abÞi
and hTuvðg0abÞi, on the other hand, will be modified by
quantum gravity effects. In those regions of applicability,
the computation comes out to be a standard computation
[43,44], well illustrated for instance in [45].

3In Appendix B, we study the contrasting situation where an
infinite amount of radiation is sent from infinity: the Hartle-
Hawking state.
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With these preliminary considerations stated, we are now
ready to compute the expectation value of the energy
momentum tensor in the vacuum in-state defined on the
background geometry of the fireworks spacetime. In the
region of interest, and for hTvvðg0abÞi we can simply import
the results from the standard calculation on a background
given by the gravitational collapse of a shell of mass m.
Following for instance [45], see Appendix B, the compo-
nents of the covariant quantum stress-energy tensor are
given by

hinjTuujini ¼
ℏ
24π

�
−
m
r3

þ 3

2

m2

r4
−

8m
ðuin − vsÞ3

−
24m2

ðuin − vsÞ4
�

hinjTvvjini ¼
ℏ
24π

�
−
m
r3

þ 3

2

m2

r4

�

hinjTuvjini ¼ −
ℏ
24π

�
1−

2m
r

�
m
r3
: ð12Þ

While the above equations seem to show that hTabðg0abÞi is
finite everywhere, they do not. The problem is that the
Eddington-Finkelstein coordinates used to compute them
are not well defined at the trapping horizons: the modes are
infinitely oscillating there. A clear analysis of the diver-
gence behavior of the tensor hTabðg0abÞi can be achieved by
using good coordinates close to the trapping horizons. The
expectation value of the energy momentum tensor in our
state can be shown to be regular in whole region II, see for
instance [45]. What about region tII?
Only hTvvðg0abÞi is relevant for the rest of our analysis: as

mentioned above, indeed, it is the only component of the
energy momentum tensor for which (12) can be trusted in
the future of ℋþ independently of the unknown geometry
of region IIIþ tIII. A suitable choice of good coordinates
are the Minkowski null coordinates ðu; voutÞ in terms of
which the metric in region tI takes the form

ds20 ¼ −dudvout: ð13Þ

Continuity of the metric across the outgoing shell
implies

v ¼ vout − 4m log

�
us − vout − 4m

4m

�
: ð14Þ

Since, by definition, hTabðgabÞi is covariant, one finds

hinjTvoutvout jini ¼
�

dv
dvout

�
2

hinjTvvjini

¼
�

us − vout
us − vout − 4m

�
2

hinjTuujini: ð15Þ

In these coordinates and on the outgoing shell,
us − vout ¼ 2r. The above quantity diverges at the white-
hole trapping horizon r ¼ 2m (which in the patchwork

construction of [28] is close to ℋþ) as ðr − 2mÞ−2. This
divergence of hTabi is, as we have just shown, explicit in
the simplified 1þ 1 context.4 However, it is a general
feature that remains valid in the physical 3þ 1 context.
Some references where explicit calculations are given are
[46–48]. All this is implied by the very general result
implying that the Hartle-Hawking state is the only globally
nonsingular state—satisfying the Hadamard condition that
implies the regularity of hTabi—on the maximally
extended Schwarzschild spacetime which is invariant under
Killing time translations [41].
We conclude that in the vacuum in-state the expectation

value of energy-momentum tensor diverges at the trapping
horizon r ¼ 2m close to ℋþ. However, this horizon is
outside the region of validity of our calculation as defined
above: it is completely inside the future domain of
dependence of the quantum region IIIþ tIII.5

Nonetheless, the would-be-divergent component is still
problematic. The reason is that the trapping horizon and
ℋþ get exponentially close to each other along the
generators of ℋþ.
More precisely, let us call rs the value of the radius at the

intersection ofℋþ and the outgoing shell; see Fig. 1. From
the integration of the null geodesic equation, one finds

rs¼ 2m
�
1þW

�
rΔ−2m
2m

exp
�
rΔ−2m
2m

−
Δu
4m

���
; ð16Þ

where W½x� is the Lambert function and Δu ¼ us − uΔ.
Clearly, rs represents the closest point to the past horizon
for which we can trust the expression of hinjTvoutvout jini
given in Eq. (15). Consequently, it also gives the largest
possible value of that component of the energy momentum
tensor. At that point we have

hinjTvoutvout jinijrs
¼ ℏ

24π

�
rs

rs − 2m

�
2
�
−
m
r3s

þ 3

2

m2

r4s

�

∼ −
ℏ

192π

�
exp fΔv=ð4mÞ − ðrΔ − 2mÞ=ð2mÞg

rΔ − 2m

�
2

; ð17Þ

where we used the fact that rs → 2m and that, by
construction,

Δu ¼ Δv: ð18Þ

Demanding the quantum energy-momentum tensor to be
sub-Planckian everywhere, we can find a relation between

4In the same way, one can show that all the components of the
renormalized energy momentum tensor remain finite at the future
horizon (close to ℋ−).

5One can try to interpolate the black hole patch with the white
hole one by an effective metric, see for example [30]. This is
however not relevant for our discussion.
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the two parameters of the models, namely rΔ and Δv.
In fact, (ℏ ¼ 1)

jhinjTvoutvout jinij < 1 ð19Þ

implies

�
rΔ
2m

− 1

�
e
rΔ
2m−1 >

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
768πm

p e
Δv
4m

⇒
rΔ
2m

− 1 > W

�
1ffiffiffiffiffiffiffiffiffiffi

768π
p

m
e
Δv
4m

�
: ð20Þ

The longer the lifetime Δv of the hole, the more the
quantum region must extend out of the classical horizon (as
parametrized by rΔ) in order for the stress-energy tensor to
be sub-Planckian along ℋþ. In particular, if, as estimated
in [28], rΔ ¼ 7

3
m [see Eq. (3)], condition (20) implies

Δv≲m log m: ð21Þ

That is, if we do not want trans-Planckian behaviors of the
renormalized quantum stress-energy tensor, the lifetime of
the hole has to be so short that the model would already be
ruled out by present observations. For instance, the char-
acteristic time τ ¼ m logðmÞwould be of about 10 minutes
for the central supermassive black hole in our Milky Way.
For the same black hole, one could try to tune the parameter
rΔ to allow a lifetime of orderm2; however, a simple look at
Eq. (22) shows that this would imply extending the
quantum region outside of the horizon to include almost
the whole of the observable universe.

IV. ASYMMETRIC FIREWORKS

The issues presented in the previous section constrain the
white hole lifetime to be much shorter than the one defined
in the original paper. Similar constraints can be found from
simple classical considerations.6 In all cases, the problems
are related to the instability due to the presence of a white
hole horizon: infinite blueshift of perturbations that are well
behaved at ℐ−. Our argument is related to those classical
instabilities if we replace the concept of perturbations by
quantum fluctuations in the in-vacuum. However, an
important point is that, in all cases, the constraints concern
the lifetime of the white hole horizon only. The lifetime of
the black hole horizon (which is the one constrained by
observations) can be freely set without running into the
present type of instabilities.
This can be easily seen from Eq. (16). The relevant

parameter for our discussion is the Δu that we identified
with Δv, due to the choice made originally in [28] to place
the point Δ on the surface t ¼ 0. Discarding the

identification (18) and following exactly the same pro-
cedure, the crucial bound in Eq. (21) now becomes

Δu≲m log m: ð22Þ

A possible way out, therefore, is to abandon the time-
symmetric nature of the bounce in the original form of the
fireworks model. More precisely, to avoid the time-sym-
metric conditionΔu ¼ Δv one can modify the construction
of the spacetime (Sec. II) by choosing the outgoing
bouncing shell to come out at a retarded time Us different
from −Vs. The resulting spacetime, depicted in Fig. 2,
differs from the original one as if the point Δ has been
moved away from the t ¼ 0 surface along a curve r ¼ rΔ.
In particular, one can choose the value ofUs such that the

quantum stability requirement, expressed by Eq. (22), is
satisfied. Moreover, the analysis of the nonclassicality
parameter presented at the end of Sec. II is still precisely
valid, and so are Eq. (3) and (4). The accumulation of
quantum gravitational effects outside the horizon that
allows the black-hole-to-white-hole transition has not been

FIG. 2. Geometry of a asymmetric bouncing scenario. The
parameter Δv ∼m2 captures both the accumulation time for
quantum gravitational effect outside the horizon and the lifetime
of the hole. The parameter Δu, on the other hand, represents the
lifetime of the white hole and it is forced by the arguments
presented in the text to be of order m log m.

6Personal communications with Eugenio Bianchi and Matteo
Smerlak.
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modified, and the above instabilities are removed simply by
shortening the lifetime of the white hole horizon.
In Sec. VI, we will largely discuss the nature and the

consequences of time asymmetry introduced in our modi-
fication of the model. Here we just want to emphasize that
the lifetime of the whole process (from collapse to
annihilation) remains of the order of m2 as in the original
model, much shorter than the m3 time scale predicted by
Hawking evaporation.7 This implies that the nature of the
time asymmetry is not a dissipative effect due to the
Hawking evaporation as one could intuitively expect:
the energy radiated after a time of the order of m2 is just
of the order of the Planck mass mP. The Hawking effect is
negligible and the processes discussed here are basically
nondissipative.

V. BLACK-HOLE-TO-WHITE-HOLE
INSTABILITY

The modification proposed also removes another related
type of instability studied in [49–53]. The idea is the

following. Since a white hole is attractive, any small
perturbation of ambient matter will be accelerated toward
it. At the same time, since no matter can cross the white
hole horizon, after a sufficiently long time, a macroscopic
mass will be accreted onto an arbitrarily thin shell close to
the horizon and will produce, when interacting with any
object coming out from the white hole, a new collapse into
a future singularity.
The interaction between any small matter perturbation of

mass ν sent for instance along the null geodesic v ¼ vΔ and
the outgoing mass m shell at r ¼ rs can be described by a
Dray–’t Hooft geometry [54] [Fig. 3 (left)]. The spacetime
for v > vΔ and u > us is a Schwarzschild geometry with
mass μ, given as a function of the initial parameterm, ν and
the radius rs by

μ ¼ rs
rs − 2m

ν: ð23Þ

It is clear now that if rs < 2μ the outgoing shell is captured
inside the new black hole horizon and cannot escape to
infinity: any small perturbation ν interacting with the
bouncing shell will cause the system to recollapse into a
black hole of mass μ; see Fig. 3 (right). Thus, no fireworks

FIG. 3. Left: The Dray–’t Hooft geometry. Four Schwarzschild patches with different masses are glued together along null shells
which intersect at a radius rs. The condition for the geometries to be glued smoothly generates a relation between the four masses and rs.
Right: The death of a white hole. A white hole emits all its mass m along a massive null shell at the retarded time us. A small massive
perturbation ν is sent at the advanced time vΔ into the white hole geometry and interact with the outgoing shell at r ¼ rs. At the
interaction point we have a Dray–’t Hooft geometry with m ¼ m, M ¼ 0, M ¼ mþ ν. The last mass μ is uniquely determined by the
constraint which leads to Eq. (23): μ ¼ rs=ðrs − 2mÞν. If rs is lower then 2μ, the emerging shell is captured in the future black hole
horizon of the new geometry generated by the interaction and cannot escape to infinity. The white hole is dead re-collapsing into a
black hole.

7In doing this simple comparison between time scales, we are
making a little abuse of notation. For a more precise statement,
see the precise analysis reported in Appendix A.
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can be seen from infinity. The model is, however, still valid
if rs > 2μ or equivalently if

rs > 2ðmþ νÞ: ð24Þ

From Eq. (16), we get

Δu
4m

<

�
rΔ − 2ðmþ νÞ

2m

�
log

�
rΔ − 2m

2ν

�
; ð25Þ

and assuming ν ≪ m we find again

Δu≲m log

�
m
ν

�
: ð26Þ

The tunneling process is strongly unstable under perturba-
tions if Δu, the lifetime of the white hole, is bigger then of
order m log m. This argument could surely be discussed
together with the other issues that have forced us to
consider an asymmetric bouncing scenario, but presented
in this way the different time scales involved become clear.
This has been extensively discussed in a recent paper by
Barceló et al. [55] in the context of the original symmetric
model. The asymmetric modification that we have intro-
duced here also cures this instability.

VI. SMASHING WATCHES

In this section, we want to discuss the physical conse-
quences of the introduction of a time asymmetry in the
model. The bouncing process can be described by a
quantum field in the jini vacuum state on ℐ− evolving
into a final state jouti on ℐþ. Both states represent an
idealized flat initial geometry with an infinitely diluted, but
sharply defined, spherical shell carrying mass m. More
precisely, from the point of view of an observer at infinity,
the in and the out classical data are just equivalent.
On the other hand, the semiclassical analysis of the

dynamics of the state jini across the spacetime tells us that
the state in the future must be very different from what it
was in the past. We have actually shown that the compo-
nents of hTabðg0abÞi are perfectly smooth for u < uΔ while
they are dangerously diverging in some regions to the
future u > uΔ. These divergences can be cured by modi-
fying the background in consistency with this time asym-
metry. We have achieved this by shortening the lifetime of
the white hole in Sec. IV; see Fig. 2.
Nevertheless, in doing so we have preserved the equiv-

alence of the past and future classical data. The point we
want to emphasize here is that the time-asymmetric nature
of the inner spacetime needed to avoid instabilities should
imply strong modifications also in the classical final out
description of the model, that can be very different from the
simple mean field approximation proposed by the fireworks
model.

One can illustrate the point in terms of the nonclassi-
cality parameter q, Eq. (1). Recall that the idea is that
quantum effects accumulate from v ¼ vs along the world
line of a stationary observer at rΔ until the quantity q
becomes of order one at v ¼ vΔ. This happens after a time
of the order of m2. Let us now run the process backward in
time. This inverse process is still a bounce now described
by an initial state given by jouti evolving into jini. Its
dynamics is given by the time reversal of the original one.
However, as q only knows about the local geometry, one
finds that for the reverse process q is far from unity at Δ.
This means that something must be very different for the
later observer; something else (not explicitly stated in the
model of Fig. 2) must contribute to the nonclassicality so
that it builds up very much quicker in the inverse process.
If correct, the cause of the shortening of time scales in the

future of the bounce must be found in the details of the
quantum state of the system beyond the mean-field
approximation implicitly used when proposing a back-
ground geometry. Notice that the future observer is exposed
to quantum gravitational effects coming from the would-be-
singularity—whatever replaces the singularity predicted by
the classical theory, i.e. region IIIþ tIII. These effects must
be important enough to drastically reduce the lifetime of the
white hole from m2 to m log m.
But then if these quantum gravitational effects are so

strong, why should we trust a semiclassical description at
all in the vicinity of the white hole? Why should the
spacetime become classical again so quickly with the mass
m entirely carried by a spherical bouncing shell? It is hard
to address these questions without a full quantum dynami-
cal treatment.
Nevertheless, the standard collapse process strongly

suggests irreversibility already at the classical level.
Gravitational collapse is like breaking a watch. This can
be intuitively seen, from the classical point of view, by
considering the standard spacetime depicting the gravita-
tional collapse of a spherical shell (put the diagram on the
right of Fig. 3 upright). Initial states given by the shell plus
smooth matter and geometry perturbation atℐ− are special,
they are “low-entropy” states representing our “watches.”
They come in different types depending on the details of the
initial state. This states are bound to evolve into very
complicated final states: smashed watches. This is clear
from the fact that only a very precise fine tuning of the
features of the state at ℐþ ∪ iþ ∪ H would evolve back-
wards to our nice watch at ℐ− (those final states are
measure zero in the phase space of possible final states).
The previous irreversibility mechanism becomes even

more apparent if quantum gravity is brought into the
discussion. Everything that crosses the horizon ℋ− will
end up at the would-be-singularity exciting degrees of
freedom that were not available at low energies. The phase
space regions available for these falling degrees of freedom
can become dramatically larger with the potential effect of
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further increasing the irreversibility of the overall process.
Concretely, as the shell approaches r ¼ 0 more and more
degrees of freedom get excited: from known standard model
degrees of freedom (quark-gluon plasma phase, Hagedorn
exponential growth of available degrees of freedom, etc.) to
beyond standard model degrees of freedom and all the way
down to Planck scale. At that ultimate fundamental level, in
an approach like LQG, quantum geometries are degenerate:
the phase space of available “geometries” at the Planck
scale includes a huge number of configurations (micro-
states) which are simply overlooked in the low energy
coarse graining associated with the semiclassical back-
ground geometry proposed to describe the process.8 All this
implies the type of irreversibility proper to systems that
satisfy the second law of thermodynamics.
In view of all this, we find no reason to discard scenarios

where the spacetime does not become semiclassical so
quickly to the future of the bounce and where the initial

mass m shell dissolves into a quantum substance after the
bounce. The details can only be described in the context of
full quantum gravity. This very uncertain state of affairs is
represented in Fig. 4.

VII. CONCLUSIONS

We have explored certain instabilities of the fireworks
scenario proposed in [28] and have proposed a simple way
to resolve them. These instabilities are all associated with
the presence of a white hole trapping horizon that is
sufficiently long lived. General considerations demand
the gravitational collapse (even in the fast scenario of
fireworks where Hawking radiation does not play an
important dynamical role) to be time asymmetric and it
is precisely by allowing such asymmetry that the insta-
bilities are resolved. In this way, the black hole phase lasts a
time of order m2 followed by an extremely fast explosion
where the mass m is radiated back to infinity in a time
shorter than m logðmÞ in Planck units (10−4s for a solar
mass BH, 10−9s for a lunar mass BH). The same consid-
erations of the irreversible nature of the gravitational
collapse lead to uncertainties in the description of the
details of this late bounce. A more precise (not yet
available) quantum gravity description of the dynamics
across the would-be-singularity could shed light on these
details. It is possible that, despite these uncertainties, the
scenarios discussed here could lead to some generic
observable phenomenology (for instance the m logðmÞ
explosion scale). We leave this question to the experts.
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APPENDIX A: LIFETIMES

In this Appendix, we compare natural time scales that
appear in the collapse models. As recalled in Sec. II, there is
the time scale, introduced in [28], defined as the proper
time τ that an observer sitting just outside the horizon at rΔ
has to wait in order to allow quantum gravitational effects
to pile up until q ¼ 1 in that region. This time scale, of
order m2, is referred to as the lifetime of the black hole in
[28]. However, when one talks about “lifetime” in black
hole physics, one would rather refer to the retarded time
elapsed at ℐþ between an initial u0 (roughly defined by
detection of the first Hawking quantum), and the complete
evaporation of the hole us (in our case). More precisely u0
can be identified with the retarded time at which the
entanglement entropy at ℐþ starts departing significantly
from zero. The results of [59] show that this happens for

FIG. 4. Geometry of a general asymmetric scenario. The region
where the semiclassical analysis breaks down is shaded. The
metric outside is isomorphic to Schwarzschild with mass m.

8These microstates are responsible for black hole entropy in
LQG [56] and have been argued to provide a simple, natural
resolution of Hawking’s information loss paradox in [57] in the
more conservative framework where Hawking evaporation is the
main quantum effect for BHs with m ≫ 1 [58].
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the retarded time corresponding to the collapsing shell
shrinking to r ¼ 3m. We can write

τlife ¼ us − u0 ¼ Δuþ ðuΔ − u0Þ: ðA1Þ

The second term can be calculated from the diagrams (the
result is the same in different models); the result is

τlife ¼ Δuþ Δvþ 4

3
mþ 4m logð3Þ: ðA2Þ

This means that, to leading scaling order, the lifetime
defined in this way coincides with the one used in [28]. It is
driven by Δv when it is chosen to scale with m faster than
linearly. In the present models we have τlife ∼ τ ∼m2 if
Δv ∼m2.

APPENDIX B: THE HARTLE-HAWKING STATE

In this Appendix, we recall the basic formulas (used in
the main text) that allow to compute the renormalized
expectation value of the energy momentum tensor in 1þ 1
dimensions. Moreover, we compute for completeness the
analog of the Hartle-Hawking quantum state in the fire-
works background. This state leads to a regular expectation
value of the energy momentum tensor in the semiclassical
part of the spacetime. It has the well-known thermal
properties outside the collapsing shell. However, this state
does not represent the physics of gravitational collapse as it
does not satisfies the vacuum boundary conditions neither
at ℐ− nor inside the collapsing shell as the following
calculation shows.
To do this, let us first recall some basic relations [45].

Any 1þ 1 spacetime is conformally flat and can therefore
be written as

ds2 ¼ −e2ρdxþdx− ðB1Þ

for some function ρ and a double null coordinate system
x�. The mean value of the covariant stress-energy tensor on
some state jΨi can be defined as

hΨjT��jΨi ¼ −
ℏ
12π

ðð∂�ρÞ2 − ∂2
�ρÞ

þ hΨj∶T��∶jΨi; ðB2Þ

where ∶T��∶ is the normal ordered stress-energy tensor.
The off-diagonal term is given by

hΨjTþ−jΨi ¼ −
ℏ
12π

∂þ∂−ρ: ðB3Þ

While hΨjTμνjΨi is covariant under a coordinate
transformation x� → ξ�, the normal ordered stress tensor
transforms as

hΨj∶Tξ�ξ�∶jΨi ¼ hΨj∶Tx�x�∶jΨi − ℏ
24π

fx�; ξ�g; ðB4Þ

where

fx�; ξ�g ¼ d3x�=dξ3�
dx�=dξ�

−
3

2

�
d2x�=dξ2�
dx�=dξ�

�
2

ðB5Þ

is the Schwarzian derivative.
The terms that are independent of the state jΨi are

vacuum polarization contributions stemming from the
conformal anomaly. For example, by identifying xþ → v
and x− → u in the Schwarzschild region with metric (7),
they become:

−
ℏ
12π

ðð∂�ρÞ2 − ∂2
�ρÞ ¼

ℏ
24π

�
−
m
r3

þ 3

2

m2

r4

�

−
ℏ
12π

∂þ∂−ρ ¼ −
ℏ
24π

�
1 −

2m
r

�
m
r3
:

1. The in-state

The jini state is defined with respect to the mode
expansion in terms of

ϕin ¼ eiωv; ϕout ¼ eiωuin : ðB6Þ

Inside the collapsing shell this state coincides with the
Minkowski vacuum: the vacuum polarization vanishes and
the normal ordered contribution vanishes. Outside the
collapsing shell, we have

hinjTuujini ¼
ℏ
24π

�
−
m
r3

þ 3

2

m2

r4

�
−

ℏ
24π

fuin; ug

hinjTvvjini ¼
ℏ
24π

�
−
m
r3

þ 3

2

m2

r4

�

hinjTuvjini ¼ −
ℏ
24π

�
1 −

2m
r

�
m
r3
; ðB7Þ

where we have explicitly written the vacuum polarization
terms (B6). Using Eq. (10), one can compute the
Schwarzian derivative term and obtain (12).

2. The Hartle-Hawking-like state

Take the vacuum state jHi of the Fock space where
positive frequencies are defined with respect to the mode
expansion of solutions of (6) of the form

ϕin ¼ eiωV; ϕout ¼ eiωU; ðB8Þ

where U and V are the Kruskal coordinates for the black
hole geometry. We compute are the components of the
covariant stress-energy tensor of this state in the
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Minkowski patch of the spacetime defining the inside of the
collapsing shell (at least the one connected with the
Schwarzschild one without touching the quantum region)
which is described by the metric

ds2 ¼ −dvduin: ðB9Þ

3. Outside the collapsing shell

Outside the collapsing shell and all over its classical
chronological future, one has

hHjTuujHi ¼ hHjTvvjHi

¼ ℏ
768πm2

�
1 −

2m
r

�
2
�
1þ 4m

r
þ 12m2

r2

�

hHjTuvjHi ¼ −
ℏ
24π

�
1 −

2m
r

�
m
r3

: ðB10Þ

Notice that these are well behaved in regular coordinates at
the past horizon; see (15). At large r → ∞, we recover the
energy momentum tensor of a thermal bath:

hHjTuujHi ¼ hHjTvvjHi ¼ ℏ
768πm2

hHjTuvjHi ¼ 0: ðB11Þ

4. Inside the collapsing shell

In the Minkowski patch of the spacetime, the first term
on the right-hand side of Eq. (B2) is zero and, moreover, by

definition the state jHi is such that hHj∶TUU∶jHi ¼
hHj∶TVV∶jHi ¼ hHj∶TUV∶jHi ¼ 0. Therefore, we find

hHjTuinuin jHi ¼ −
ℏ
24π

fU; uing

¼ ℏ
768πm2

�
1 −

8m
ðuin − vsÞ

þ 48m2

ðuin − vsÞ2
�

hHjTvvjHi ¼ −
ℏ
24π

fV; vg

¼ ℏ
768πm2

hHjTuinvjHi ¼ 0; ðB12Þ

where we used the matching conditions

u ¼ −4m log

�
−

U
4m

�

¼ uin − 4m log

�
vs − uin − 4m

4m

�

V ¼ 4m exp

�
v
4m

�
: ðB13Þ

For large r → ∞, we recover the thermal fluid in (B11).
The collapsing shell in this state is initially filled up with
radiation at hawking temperature. Due to the contraction of
the shell, one gets a divergence of the energy momentum
tensor when the shell crosses the origin at uin ¼ vs.
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