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Quasinormal frequencies of black hole in the braneworld
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We study scalar, electromagnetic, axial, and polar gravitational perturbations of the four-dimensional
Reissner-Nordstrom-like black holes with a tidal charge in the Randall-Sundrum braneworld in the first
approximation when the tidal perturbations are not taken into account. The quasinormal modes of these
perturbations have been studied in both normal and eikonal regimes. Calculations have shown that the
black holes on the Randall-Sundrum brane are stable against all kinds of perturbations. Moreover, we
determine the greybody factor, giving transmission and reflection of the scattered waves through the
effective potentials. It has been shown that the scalar perturbative fields are the most favorite to reflect the
wave as compared to the other fields. With increasing value of the tidal charge, the ability of the all
perturbative potentials to reflect the waves decreases. Our calculations in low- and high-frequency regimes
have shown that black holes on the braneworld always have a bigger absorption cross section of massless
scalar waves than the Schwarzschild and standard Reissner-Nordstrom black holes.
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I. INTRODUCTION

An early attempt to unify theories of gravitation and
electromagnetism was realized by Kaluza [1] in five-
dimensional theory based on classical general relativity.
That was later extended by Klein [2] with quantum
interpretations. The idea of extra dimensions played a
key role in development of an existing new fundamental
theory of physics, superstring theory (M-theory), which
requires the spacetime to have ten (eleven) dimensions.

Braneworld models were proposed in order to tackle the
hierarchy problem. The question why there is such a large
gap between the electroweak scale at ~1 TeV and the
Planck scale at ~10'® TeV has been addressed in [3]. The
first string realization of low-scale gravity and braneworld
models were given, pointing out the motivation of TeV
strings from the stabilization of mass hierarchy and the
graviton emission in the bulk [4]. Randall and Sundrum
proposed their braneworld models [5,6] where the hier-
archy problem can be addressed, as the large size of the
extra dimension plays crucial role to fill the gap between
the electroweak and Planck effective scales. According to
the Randall-Sundrum model, our Universe is a three-
brane (domain wall) embedded in five-dimensional bulk
spacetime; one extra dimension is large, and the bulk is a
slice of the anti-de Sitter (AdS) spacetime, i.e., spacetime
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with a negative cosmological constant. Later, this model
was further extended by Shiromizu et al. [7]. Reissner-
Nordstrom-like static, a spherically symmetric black hole
solution with a tidal charge parameter (instead of electric
charge), localized on a three-brane in five-dimensional
gravity in the Randall-Sundrum model was obtained,
without finding the bulk metric, by Dadhich et al. [8].
So far, several black hole solutions [9—11], wormholes [12],
and nonuniform stars and gravastars [13] in the Randall-
Sundrum model have been obtained (see reviews [14,15]
and references therein.).

The discovery of the braneworld model opens up a new
window to test modified general relativity. Thus, up to now,
many physical effects related to test the particle motion and
geodesic structure of braneworld black holes [16,17] and
neutron and compact stars [18,19] have been studied.

One of the most important properties of black holes is
their characteristic oscillations, which are called quasinor-
mal modes that carry information about them. The quasi-
normal modes determine, e.g., ringdown of gravitational
waves created while a black hole is born. They are
characterized by black hole parameters being dependent
on initial perturbations. They have complex frequencies—
real and imaginary parts of the quasinormal frequencies
represent frequencies of the real oscillations and their
dissipation rate, respectively.

Recently, the interferometric LIGO detectors have mea-
sured the first ever gravitational wave signals from the
merging of two black holes [20]. Later, it has been shown
that current precision of the experiment leaves some
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possibilities for alternative theories of gravity [21,22].
Cardoso et al. [23] stated that ringdown waveforms indicate
the existence of stable light rings regardless of the existence
of the horizons. According to [24], the ringdown part of
the GW150914 signal has excluded formation of a grav-
astar by the merger of two rotating compact objects. So far,
characteristic ringdown signals (quasinormal modes) of
various black holes have been studied in great detail by a
number of authors within perturbation theory [25-33].

Since there is still room open for alternative theories of
gravity, we aim to study in this paper perturbations of the
black holes localized in the Randall-Sundrum braneworld.
We concentrate on their stabilities, scattering effects, and
quasinormal modes. After this work was almost completed,
electromagnetic perturbations of a current braneworld
solution by Molina et al. [34] appeared in arXiv. Despite
the fact that some our results of the quasinormal frequen-
cies of the electromagnetic perturbations are repeating the
results of [34], we keep them in order to compare them with
profiles of scalar and gravitational perturbations. Moreover,
we study the scattering and absorption problems in the
electromagnetic case as well. The paper is organized as
follows: In Sec. II we briefly describe the spacetime
geometry and its main properties. In Sec. III the equations
for scalar, electromagnetic, axial, and polar gravitational
perturbations are introduced. We give some numerical
results, such as quasinormal frequencies obtained by the
sixth order WKB method in low and large multipole
number limits, and stability analysis in Sec. IV. In
Sec. V the classical scattering problem is solved by using
the standard S-matrix. In Sec. VI we study the absorption
cross section of massless scalar waves by the braneworld
black hole in comparison with the Schwarzschild and
Reissner-Nordstrom black holes. Finally, we present some
concluding remarks in Sec. VII. Throughout the paper, we
use the geometric system of units c =G =% =1 and a
spacelike signature (—, +, +, +).

II. BLACK HOLE IN THE BRANEWORLD

We focus on the static, spherically symmetric black hole
geometry localized on a braneworld described by the line
element [8]

d 2
ds? = —f(r)de® + ]Tr) 1 2d6* + Psin?0dg?, (1)
r
where
oM p
f(r):1—7+p’ (2)

and f is a constant parameter. One can see from (2) that
if =0 the spacetime metric (1) reduces to the
Schwarzschild one. Moreover, for f > 0, the spacetime
metric (1) is identical to the Reissner-Nordstrom black hole
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one with two horizons, with both smaller than the one of the
Schwarzschild black hole (0 < r_ < r, <2M). However,
in the braneworld,  can have negative value (f < 0) too. In
this case, the black hole has only one horizon which is
always bigger than the one of the Schwarzschild black hole,

ro =M+ \/M?>=f>2M. (3)

In this paper we consider the latter case, # < 0. Therefore,
in order to guarantee its negativity we introduce new
notation f = —Q*, where Q* is always positive, Q* > 0,
and is called the tidal charge (brane tension) parameter [8].
Black hole entropy is determined by horizon area as

s=24 A= (M VMR @)

:4”:

where A is the horizon area. The Hawking temperature is
given by

__ Jirig
2n(M +/M*+ Q%)

As one see from (5), unlike in the case of the Reissner-
Nordstrom black hole, that the nonvanishing tidal charge
parameter leads to an increase of the black hole entropy and
decrease of the Hawking temperature.

T

(5)

III. PERTURBATION EQUATIONS
IN BRANEWORLD SPACETIME

A. Scalar and electromagnetic perturbations

By considering perturbation terms dependent on time as
~exp(iwt) and separating angular and radial perturbations
by introducing the tortoise coordinate dx = dr/f, we
obtain a Schrodinger-like wave equation as follows:

(ﬁ + 0)2)Zi =ViZ;, (6)

dx?

where i = 0, 1 represent scalar and electromagnetic per-
turbations, respectively. For the massive scalar perturba-
tions with mass m of the black hole on the brane, we have
the potential

Vo :f[l(l;; b +J:+m2}

_ f[za ), 2(Mrrj— ), mz} |

(7)

72
where prime (“”’) denotes the derivative with respect to r.
Here, [ is the multipole number which represents the
spherical harmonic index and takes only nonnegative
integers for scalar perturbations.
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For the electromagnetic perturbations, the potential reads

v, =D (8)

r

where the multipole number / for electromagnetic pertur-
bations takes only natural numbers.

The potentials for the scalar (7) and electromagnetic (8)
perturbations can be written in a compact form as

vo=s[ v a-a(Law)] o

where s =0 and s =1 correspond to the scalar and
electromagnetic perturbations, respectively. Of course, in
the case of the electromagnetic perturbations in the stan-
dard situations we assume massless photons, i.e., m = 0.

B. Gravitational perturbations

It is well known that the simplest way of studying the
gravitational perturbations around black holes is to intro-
duce the first order perturbations. If the considered black
hole is not a vacuum solution of the Einstein equations, the
perturbation equations are governed by the equation
OR,, = —0E,,. In the case of a black hole localized on a
three-brane in five-dimensional gravity, R, and E,, are the
Ricci tensor and the projection of the five-dimensional
Weyl tensor on the brane, respectively. The gravitational
perturbations of the higher dimensional black holes can be
easily obtained by using the master equations presented in
[35]. However, the black hole solution in the brane [8] was
found without finding the five-dimensional bulk metric.
Therefore, we adopt the simplifying assumption 6E,, = 0
that can be justified at least in a region where the
perturbation energy does not exceed the threshold of the
Kaluza-Klein massive modes [28]. Moreover, the fact that
the gravitational perturbative field cannot travel deep into
the bulk [36] supports the above assumption.

In this subsection we present a general formalism for
gravitational perturbations in a static, spherically symmet-
ric background, following Chandrasekhar’s method [37].
With the notation (x°, x!,x%, x*) = (¢, ¢, r,0), the spheri-
cally symmetric, time-independent metric with small per-
turbations can be written in the form

ds? = =2t a2 4 VW) (dep — qodt — godr — q3d0)?
+ @2uatom) gy2 4 p2(p3t0u3) g2 (10)

where

e? = r’sin®0,

e = 2, (11)

& = ().
e = £(1).

and ¢qg, 9>, q3, OV, Oy, Oy, and Sus are nonvanishing
small perturbation terms. The first three small quantities
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(90> g2, q3) characterize axial tensor perturbations with odd
parity, while the small quantities (év, Sy, Op,, Ou3)
correspond to the polar tensor perturbations with even
parity. Below, we briefly present these perturbations for the
braneworld black hole [8].

1. Axial perturbations

The axial perturbations with perturbation terms g, ¢»,
and g5 are governed by the relation

SR, = 0. (12)

We write the linearized axial gravitational perturbation
equations from (12) in the form

(rzfQ23sin39),3 = —r4sin39Q0270, (5R12 = O), (13)

r2sin30

(szQ23Sin3‘9).2 = f

where Q.5 = g4 — qp4- By considering the perturbation
terms depending on time as ~ exp(iwf) and introducing the
new notation Q by the relation

QO3,0’ (5R13 - O)? (14)

Q = r*fQysin’0 = r* f(g23 — q3,)sin°0,  (15)
we can write Egs. (13) and (14) as follows:

1 00

A0 00 —iwgo, + ©*qs, (16)
f o0 .
250 or (@403 + w?gs. (17)

In order to eliminate g3 from these equations, we differ-
entiate Egs. (16) and (17) with respect to the coordinates 6
(x*) and r (x?), respectively. Then, we obtain

o (fo0\ .. [ 1 00
49 (]9 399 (1 oY
" or <r2 8}’) +sin 98«9 (Sin39 89)

+w2r—2Q:O (18)
7 .

Eq. (18) can be separated to the radial and angular
variable differential equations by choosing the function
Q as Q(r,0) = Q(r)Cl_féz(Q), where Cl_féz(G) are the
Gegenbauer polynomials, related to the Legandre function
P,(0) as

C;0%(0) = (P — Py cot6)sin6. (19)
By substituting Q(r) = rZ<2_) and introducing the tortoise

coordinate dr, = dr/f, we obtain a Schrodinger-like wave
equation
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d2
(ﬁ*‘”z)Z(f) = vz, (20)

where — and + denote axial and polar gravitational
perturbations, respectively. Potential for the axial gravita-
tional perturbations reads

ye) :f{l(lﬂ: D) +3(fr2— D)

r

+4x(p-p,)|. (21)

where p = —T! and p, = T’ are energy density and radial
pressure of the fluid, respectively, with G}/87 =

T, = diag{p, p,. pg. py}. Here, p = —p, = =0"/(8zr*).
Then, Eq. (21) for the axial gravitational perturbations of
the black hole on the brane takes the form

. (1+1) 2(3Mr+ 20
Vé):f(ﬂ ) _ 2 rr4 o] (22)

In the limit Q* = 0 this potential coincides with the Regge-
Wheeler potential for the Schwarzschild black hole [38].

2. Polar perturbations

In the case of polar perturbations with even parity, v,
oy, 6y, and Sus in the metric functions are considered
nonvanishing. Polar perturbations are examined by vanish-
ing the following Ricci and Einstein tensors: 0Ry,, 6R;,
OR»3, 0R11, and 6Gy, (see Ref. [37] for details). Moreover,
in order to separate r and 6 variables one may introduce the
following notations:

6v = N(r)P,(cos ). (23)
Suy = L(r)P(cos ), (24)

Sus = [T(r)P,+ V(r)Pgg). (25)
Sy = [T(r)P;+ V(r)Pgcotd]. (26)

Then, we obtain the following perturbation equations in
terms of the new radial functions N(r), L(r), T(r), and
V(r) in the form

N’ =aN + bL + cX, (27)

1 1
L’:<a—+l/>N+<b——1/>L+cX, (28)
r r

1 1
X’——(a———l—l/)N— <b+——21/>L
r r

- (c L u) X, (29)

r

/o

where prime (“"”) denotes the derivative with respect to r
and X =nV and n = (I — 1)(! + 2)/2. Furthermore,
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n—+1

a= s (30)

1 n f nrf? re?
h=———+" — 31
r rf+2f+ 4f2+f2’ (31)

1 1 rf? re?

=—4— “ 2
c r+rf+4f2+f2 (32)

After making some simplifications, we obtain the
Schrodinger-like equation for “ 4 family in (20), where

the wave function Zgr) reads

Z = i — k(L + VD), (33)
with

2r
ARy ey G4

The potential for the polar perturbations reads

f
Vs = o 2r(1 4+ 2rf K + f(rK" — 4K')
+ KQA+ 12f = Trf + F2f")], (35)
where

K- 2r
S 20+ D) =2f +rf”

(36)

and A = (I —1)(I+2)/2. For the gravitational perturba-
tions, the multipole number [/ takes all natural numbers
starting from 2. For the braneworld black hole, the potential
of the polar gravitational perturbations reads

v 2f
r*20% + r(3M + Air))

5 [PA+ Q*B], (37)

where
A =9M3 +9M?ar + 3MA*r* + 22(A+ 1)}, (38)

B =802+ 10Q*(3M + Ar)r
+r2[36M?* + 2M (114 =3)r + A(A—6)r?].  (39)

In the limiting case Q* =0 one recovers the Zerilli
potential for the polar gravitational perturbations of the
Schwarzschild black hole [39].

One can see from Fig. 1 that the effective potential for the
scalar perturbations is dominant in comparison with the
other ones, while axial and polar gravitational perturbations
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FIG. 1. Dependence of effective potentials for the scalar (red),
electromagnetic (cyan), axial (blue), and polar (black) gravita-
tional perturbations on the tortoise coordinate x (dx = dr/f(r))
for the fixed values of the tidal charge parameter Q*/M? = 0.5
and multipole number [ = 2.

have effective potentials with the smallest height among
them. It is well known that an increase in the value of
the multipole number [ increases the height of the
potential [40].

IV. QUASINORMAL MODES

A. Method and numerical results

The Schrodinger-like wave equations (6) and (20) are
solved as usual, imposing appropriate boundary conditions.
Considering the wave is purely incoming at the event
horizon and outgoing at the spatial infinity:
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Z(r) ~ e7'ox,
Z(r) ~ e,

atx - 0(r - ry),

at x — oo(r — o). (40)

Solving the Schrodinger-like wave equations with the
effective potentials (7), (8), (22), and (37) analytically is
impossible. Therefore, we use the WKB method that was
applied for the first time for calculation of quasinormal
modes of black holes by Schutz and Will [41]. Afterwards,
to increase its accuracy, the method was extended up to the
third order by Iyer and Will [42] and up to the sixth order by
Konoplya [43]. The sixth order WKB method for solving
the Schrodinger-like wave equation governing the quasi-
normal modes of black holes implies the relation

(@ =V(rg) &, 1
TW+;A]_H5, (41)

where ry is the value of the radial coordinate r correspond-
ing to the maximum of the potential V(r), j is the order of
the WKB corrections, and A]- is the correction term
corresponding to the jth order. One can find the expressions
of A; in [42,43]. The prime "’ stands for the derivative
with respect to the tortoise coordinate x, and n is the
overtone number.

In Tables I and II quasinormal frequencies of the scalar,
electromagnetic, axial, and polar gravitational perturbations
of the braneworld black hole are given.

One can see from the numerical results presented in
Tables I and IT and Fig. 2 that an increase in the value of the

TABLE I. Quasinormal frequencies for the scalar and electromagnetic (EM) perturbations for the black hole on the brane for several

values of the tidal charge parameter Q*/M?>.

Scalar perturbations

0 /M?* = 0.7

0" /M? = 1.0

0" /M? = 2.0

0.0996 —10.0965
0.2649 —10.0940
0.4378 —10.0928
0.2341 —10.2967
0.4163 —10.2843
0.5956 —10.2807
0.3799 —10.4916
0.5661 —10.4775
0.7489 —10.4713

EM perturbations

n ! 0" /M? =0.1 Q" /M* = 0.4
0 0 0.1086 — 10.1003 0.1037 — 10.0984
1 0.2881 — 10.0972 0.2755 — 10.0956
2 0.4758 — 10.0962 0.4552 — 10.0945
1 1 0.2592 — 10.3053 0.2455 —10.3011
2 0.4557 — 10.2941 0.4342 - 10.2893
3 0.6495 — 10.2907 0.6202 — 10.2857
2 2 0.4216 — 10.5065 0.3988 — 10.4993
3 0.6219 — 10.4936 0.5915 — 10.4856
4 0.8191 — 10.4878 0.7808 — 10.4796
0 1 0.2436 — 10.0920 0.2318 — 10.0900
2 0.4499 — 10.0944 0.4297 — 10.0927
3 0.6461 — 10.0951 0.6177 — 10.0933
1 1 0.2091 — 10.2925 0.1959 — 10.2874
2 0.4285 — 10.2891 0.4074 — 10.2841
3 0.6307 — 10.2881 0.6016 — 10.2830
2 2 03922 — 10.4994 0.3697 — 10.4918
3 0.6022 — 10.4895 0.5720 — 10.4815
4 0.8042 — 10.4852 0.7662 — 10.4770

0.2219 —10.0881
0.4128 —10.0909
0.5938 —10.0916
0.1851 —10.2822
0.3899 —10.2789
0.5773 —10.2779
0.3511 —10.4839
0.5470 —10.4732
0.7344 —10.4686

0.0960 — 10.0945
0.2557 —10.0924
0.4229 —10.0912
0.2245 —10.2922
0.4010 —10.2795
0.5744 —10.2757
0.3640 —10.4839
0.5445 —10.4695
0.7215 - 10.4631

0.2135 —10.0863
0.3982 —10.0892
0.5732 —10.0899
0.1760 —10.2771
0.3750 —10.2740
0.5565 —10.2729
0.3355 -10.4761
0.5256 —10.4651
0.7073 —10.4604

0.0868 —10.0888
0.2322 —10.0875
0.3843 —10.0862
0.2003 —10.2783
0.3619 —10.2647
0.5203 —10.2609
0.3241 —10.4602
0.4897 —10.4451
0.6517 —10.4385

0.1921 —10.0810
0.3609 —10.0841
0.5204 —10.0849
0.1539 —10.2618
0.3372 —10.2590
0.5033 —10.2579
0.2968 —10.4519
0.4717 —10.4405
0.6381 —10.4356
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0" /M* = 1.0

0*/M* =20

TABLE II. Same as Table I but for the axial and polar gravitational perturbations.
Axial perturbations

n l 0*/M* =0.1 0*/M?* =04 Q*/M* = 0.7

0 2 0.3673 —10.0883 0.3508 — 10.0867 0.3370 — 10.0850
3 0.5896 —10.0921 0.5637 —10.0904 0.5419 —10.0887
4 0.7960 — 10.0936 0.7613 —10.0919 0.7320 —10.0901

1 2 0.3394 —:0.2720 0.3215 —10.2673 0.3065 —10.2627
3 0.5725 —10.2797 0.5459 —10.2746 0.5237 —10.2695
4 0.7832 —10.2827 0.7480 —10.2776 0.7185 —10.2724

2 2 0.2904 —:0.4756 0.2696 —10.4692 0.2526 —10.4626
3 0.5409 —10.4765 0.5130 —10.4685 0.4900 — 10.4602
4 0.7589 —10.4773 0.7227 —10.4690 0.6925 —10.4606

Polar perturbations

0 2 0.3665 —10.0881 0.3477 —10.0855 0.3323 —10.0830
3 0.5889 —1:0.0921 0.5614 —10.0901 0.5384 —10.0882
4 0.7955 —10.0936 0.7596 —10.0917 0.7295 —10.0899

1 2 0.3392 —:0.2712 0.3202 —:10.2628 0.3051 —:10.2539
3 0.5719 —10.2794 0.5438 —10.2737 0.5204 —10.2681
4 0.7827 —10.2826 0.7463 —10.2772 0.7159 —10.2718

2 2 0.2920 —10.4745 0.2717 —10.4598 0.2561 —10.4418
3 0.5403 —:10.4761 0.5111 —10.4671 0.4870 — 10.4580
4 0.7584 —10.4771 0.7211 —10.4684 0.6900 — 10.4596

0.3250 —10.0835
0.5231 —10.0870
0.7069 — 10.0885
0.2938 —10.2582
0.5047 —10.2646
0.6931 —10.2675
0.2385 —10.4562
0.4703 —10.4522
0.6667 —10.4525

0.3193 —10.0806
0.5188 —10.0864
0.7037 —10.0882
0.2931 —10.2444
0.5005 —10.2628
0.6899 —10.2667
0.2439 —10.4201
0.4667 —10.4493
0.6636 —10.4511

0.2944 —10.0788
0.4750 —10.0821
0.6421 —10.0835
0.2619 —10.2448
0.4561 —10.2498
0.6281 —10.2526
0.2040 —10.4363
0.4209 —10.4280
0.6011 —10.4279

0.2875 —10.0732
0.4687 —10.0811
0.6375 —10.0831
0.2697 —10.2072
0.4502 —10.2470
0.6235 —10.2513
0.2297 —10.3085
0.4158 —10.4234
0.5967 —10.4258

tidal charge parameter decreases the frequency of the real
oscillations and the damping rate. Moreover, with increas-
ing multipole number /, the frequency of the oscillations
increases while the damping rate decreases. This means
that quasinormal frequencies with higher multipole num-
bers are longer lived. However, from the general character-
istics of the overtone number n, we know that an increase
of the value of the overtone number situation completely
changes to the contrary; i.e., it implies the wave with lower
oscillation frequency and higher damping rate.
Evolution of the wave. The temporal evolution of the
gravitational perturbations is governed by the equation
e 90

STtz =V (42)

By turning into the null coordinates u=1¢—x and
v =1+ x, one can rewrite the wave equation (42) in the
form

P
—4 _
Ooudv

V(x)®, (43)

Discretization of Eq. (43) allows us to calculate the values
of the wave function ® [44]. We follow the method for
numerical calculations presented in [45].

In Fig. 3 the time-domain profiles for the evolution
of the axial gravitational perturbations' in the fundamental

'Scalar, electromagnetic, and polar gravitational perturbations
give qualitatively the same results. Therefore, we have shown the
behavior only for the axial gravitational perturbations.

mode are presented for the braneworld black hole with
mass M =1 at the radius x, = 10 in comparison with the
Schwarzschild black hole. One can see in these figures a
monotonic decay of the signal; the quasinormal mode
signal dominates after ¢ ~ 40. From the top panel of Fig. 3,
we see that with increasing the tidal charge parameter
damping rate the signal decreases, and the duration of
dominance of the quasinormal mode signal decreases
relative to the Schwarzschild black hole. Moreover, the
bottom panel shows that an increasing multipole number /
increases the damping and the real oscillations time scales.

Massive scalar field. In the case of a massive scalar field
around the black hole the region of the values of the
parameters allowing for occurrence of the quasinormal
modes is restricted [46]. For small enough values of the
scalar field mass parameter m, the effective potential V(r)
is in the form of a barrier. However, with increasing the
value of m, the asymptotical value of V(r) (namely, m?)
increases more rapidly than the peak of the potential
[because of V(r = o) — m?]. Consequently, in the case
of V(ry) < m?, the effective potential is not in the barrier
form anymore. Therefore, in that case quasinormal modes
do not occur. Below in Fig. 4, these regions of parameters
are shown. Contrary to the case of the standard Reissner-
Nordstrom black hole, in the case of the braneworld black
hole with an increasing value of the tidal charge parameter,
the maximum possible value of the mass of the scalar field
decreases. This is connected with the increase of the
horizon radius. From Fig. 4, one can see that with
increasing multipole number [ the range of the possible
values of the mass parameter increases.
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FIG. 2. Here, [ =2 and n = 0 quasinormal modes of the scalar (m), electromagnetic (%), axial (), and polar (¢) gravitational
perturbations of the black hole on the brane with the change of the tidal charge parameter Q* /M?, where the red spot corresponds to the

ones of the Schwarzschild black holes.

B. Quasinormal frequencies in the large multipole
number limit

It is known that the WKB method has very good
accuracy for large values of the multipole number /. In
the large multipole number limit one can solve the wave
equation analytically by using the first order WKB
approximation. To do this, we expand the expression
(41) in powers of 1/I, and quasinormal frequencies tend
to finite values. Interestingly, for the both scalar and

0.01
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|©]
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IOfII

1074

0.01}

[P

1071

107[4

" " 1 " 1
50 100 150

t

FIG. 3. Semilog graphs of the absolute value of the wave
function for the axial gravitational perturbations of the brane-
world black holes evaluated at x, = 10 and M = 1. Top panel:
Different values of the tidal charge parameter Q* =1 (blue
curve) and Q* = 2 (red curve) in comparison with the Schwarzs-
child one Q* = 0 (black curve) in the fundamental mode [ = 2.
Bottom panel: Different values of the multipole number [ =2
(black curve), [ = 3 (blue curve), and [ = 4 (red curve).

electromagnetic perturbations, as well as axial and polar
gravitational perturbations, eikonal limits are the same and
read

a),z\/r0<r0_22M)_Q* <l+l), (44)
g 2

m/M
(i)

0190L T ]

0.185]

m/M

0.180f

0175) ]

Q/M"2

FIG. 4. Possible values of the scalar field mass m that give the
limit of existence of quasinormal modes (QNMs) in the field of
the black hole on the brane. Shaded region represents part of
parameter space where the QNM can occur. In the white region
there are no QNMs. Top panel illustrates for the mass of the scalar
field m versus multipole number / for the fixed value of the tidal
charge parameter Q* /M?* = 0.5. In the bottom panel also limiting
values of the scalar field mass m enabling existence of QNMs in
the field of the black hole in the braneworld are given in
dependence of Q*/M? in the fundamental mode [ = 0.
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FIG. 5. Dependence of the real (black curve) and imaginary

(blue curve) parts of the quasinormal frequencies on the tidal
charge parameter Q*/M? in the large multipole number / limit.

1
W= [r5(=3r5 + 20roM — 30M?)
0

+30*(5rg — 14M)ry — 140*?)1/% x (n + %) (45)

where

ro (46)

_3M +\/IM* + 80"
~ 5 .
Therefore, in the large multipole number / case it is almost
impossible to distinguish the types of perturbations. Notice
correspondence of ry and the radius of the photon circular
orbit [47,48].

One can see from Fig. 5 that in the limit of large
multipole number [/ real and imaginary parts of the
quasinormal frequencies tend to finite values.” Since there
is no upper limit on the value of the tidal charge Q*/M?, in
the eikonal limit for large values of the tidal charge
parameter quasinormal frequencies tend to zero.

C. Stability

Calculations have shown that imaginary part of the
quasinormal frequencies is always negative, Im(w) < 0.
Moreover, effective potentials (7), (8), (22), and (37) are
always positive-definite. Furthermore, from Fig. 3 of time-
domain profiles for the evolution of axial gravitational
perturbations, one can see that there is no indication of
instability. One of the most important results of this paper is
that in calculations made by the WKB method and the form
of the wave in time domain profile, we have not observed
any unstable mode. From these, we can conclude that black
holes on the brane (1) are stable against scalar, electro-
magnetic, and gravitational perturbations.

*Real part of the quasinormal frequencies tends to zero slightly
more rapidly than the imaginary part.
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V. SCATTERING

In this section we study the greybody factor for the
braneworld black holes. The greybody factor is understood
as the probability for an outgoing wave in w-mode to reach
infinity or, equivalently, the absorption probability for an
incoming wave in w-mode to be absorbed by the black hole
[49,50]. In other words, the greybody factor is the tunneling
probability of the wave through the barrier determined by
the effective potential in the given black hole spacetime.

In order to calculate the greybody factor we write the
boundary conditions for the ingoing and outgoing waves
that are the solution of the Schrodinger-like wave equations
in the asymptotic form

7 = e—imx —I—R(a))ei”’x,

w

Z, = T(w)e @,

w

at x = +oo,

at x - —oo, (47)

where R(w) and T(w) are the reflection and transmission
coefficients, respectively. We write the above given boun-
dary conditions (47) for @ - —w:

Z_, = e + R(—w)e™™*, at x - +oo,

Z_, =T(-w)e™, atx— —co. (48)

From these two boundary conditions, we can write the
expression for the flux [51],

1 dz, dz_,

J=— |z Yo _ gz Po|
2i |77 dx “ dx

(49)

Using the boundary conditions (47) and (48), we find the
relation between the reflection and transmission coeffi-
cients from the flux conservation in the form

R(w)R(—w) + T(0)T(—w) = 1. (50)
If we consider w real (w € R), we can write that Z_,, = Z,
R(-w) = R*(w), and T(—w) = T*(w). Then, the relation
(50) can be written in the form

IR)> +|T|? = 1. (51)

A wave with frequency w larger than the height of the
potential barrier V; will not be (classically) reflected by the
barrier. Therefore, in this case the reflection coefficient is
close to zero. The incoming wave with smaller frequency
than the height of the potential barrier, »* < V/, is reflected
partly, while the rest is transmitted through the barrier by
the tunneling effect, depending on the values of w and V.
This is why this case is more interesting to study.

First, we consider the small frequency case when @* is
much less than the height of the potential barrier V,
(@w*> < V). For such small values of w? the WKB
approximation does not have high accuracy because of

2
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the large distance between the two turning points. In this
case the transmission coefficient is given by the well-
known formula

T—o IXZ dx+\/V(r,)—a?

i as o’ <V, (52)
and the reflection coefficient
=2 [ dx+/V(r,)-w?* 1/2
R = <1—e 2[5 an/Ve) > , as @’ <V, (53)

The radii x; and x, are the classical turning points that are
the solutions of the equation V(x) — @* = 0. At the small
values of w, the transmission coefficient is close to zero,
while the reflection coefficient is close to one [52].

The second limit case is that the value of w? is of the
same order as the maximum height of the potential barrier
Vo, i.e., ®* =~ V,. Here, we can calculate the greybody
factor by using the sixth order WKB approximation
because of the small distance between the turning points
[50,53]. Then, we arrive at

R = (1 + e—2iﬂ(n+1/2))—l/2’ (54)
where (n + 1/2) is given by the formula of the sixth order
WKB method (41). From (51) with (54), one can write the
expression for the transmission coefficient as

|T‘2 — 1= |<1 + e—2in(n+1/2))—l/2|2‘ (55)
In Fig. 6, we give the reflection coefficients for the scalar,
electromagnetic, and axial gravitational fields in the mode
[ =2 for the braneworld black holes. Reflection and
transmission coefficients for the axial and polar gravita-
tional perturbations are almost the same; i.e., it is impos-
sible to distinguish difference in thefigures.

One can see from Fig. 6 that for the scalar perturbative
fields the probability of the wave reflection by the potential
barrier is larger than for the electromagnetic and gravita-
tional ones. Moreover, unlike the case of the standard

PHYSICAL REVIEW D 93, 124017 (2016)

Reissner-Nordstrom black hole, the presence of the
nonvanishing tidal charge parameter decreases the reflec-
tion ability of the potential barrier, while it increases the
transmission probabilities in comparison with the Reissner-
Nordstrém and Schwarzschild ones.

VI. ABSORPTION CROSS SECTION OF PLANAR
MASSLESS SCALAR WAVES

Absorption and scattering of test particles and fields in
the black hole backgrounds are very important since they
are relevant for observations related to accretion processes,
deflection of light, etc. So far, absorption and scattering
properties of waves by various static spherically symmetric
[54-59] and axially symmetric black holes [60] were
studied. Here, we extend these studies for the analysis of
the absorption cross sections of massless scalar field by
braneworld black holes. The massless scalar field is defined
by Eq. (6) with potential (7).

In order to demonstrate the effect of the tidal charge we
compare the results of the braneworld black holes with the
Reissner-Nordstrom black holes calculated in [56].

Partial wave approach. In the partial wave approach we
should solve the Schrodinger-like wave equation (6) with
the scalar field potential (7) by using the boundary
conditions (47). For such scalar fields, the total absorption
cross section is defined by the sum of the partial absorption
cross sections of the planar massless scalar waves,

(56)

where o;(w) represents the partial absorption cross section
corresponding to the wave with angular momentum / and
energy @, given by
V3
o) = — 21+ 1)|T (@), (57)

T)(w) is the transmission (absorption) coefficient for the
wave with energy @ and angular momentum /. It is known

IRP IRP IRF
L0 e J(— . 1.0 prreeess _—
o0sl \.\. \\\\ \\ osh . \\ oslh O\ \
06} LN \ 0.6f \ 06} FRNAY \
LN \ SRV \ RNt \
. Vo Y DU \
0.4} \ 04F IR \\ 04f \
\. \\\ \\ . \.\ \\ .\. \\\ \:
02t \ oal \ 02l \
. X e Nsiteee W X X >~\,:;1_:-1‘_ > — W . L L \"“?{i\i:?:-}ﬁ — w
0.3 0.4 0.5 0.6 07 03 0.4 05 0.6 025 030 035 040 045 050 055

FIG. 6. Reflection coefficients for (from left to right) the scalar, electromagnetic, and gravitational fields / = 2 mode of the black hole
in the braneworld for several values of the tidal charge parameter Q*/M?*: Q*/M?* = 0.6—dashed, Q*/M?* = 1.2—dot-dashed, and
Q*/M? = 2—dotted curves, where in order to compare the results we have shown the reflection coefficients of the Reissner-Nordstrom
(grey solid curve) and Schwarzschild (black solid curve) black holes.
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from the classical mechanics that |T;(w)|? is the absorption
probability. By using the higher order WKB method one
can write (57) as

61(w) = 75 (21 + DL = (14 e 2= 1/2)722) - (s8)

10)
where (n + 1/2) is given by the expression of the higher
order WKB formulas (41).

High-energy limit. In the high-energy scale the wave-
length is almost negligible relative to the horizon scale of
the black hole. Therefore, in this regime massless scalar
waves propagate along the null geodesics [61]. Therefore,
one may use the classical capture cross section of the light
by the black holes as the geometric cross section of the light
rays. To do so, we consider the motion of the massless
particle (photon) around the black hole confined to the
equatorial plane (0 = z/2),

L2
iZZEz_VCff’ Veff:f?7 (59)
where E and L are energy and angular momentum of the
photon, respectively, which are conserved quantities due to
symmetries of the spacetime. However, for the photon
motion, only the impact parameter b = L/E is relevant
[62,63]. The geometric cross section of the light rays is
given by the expression 6,,, = ﬂb%m, where b is the
critical impact parameter of the light defined by the ratio of
angular momentum and energy of the photon moving along
the circular photon orbit as b,, = L,/E,. Therefore,

Fr) (60)

2
Ogeo = by =21

/o

where means the derivative with respect to r, and r,, is
the radius of the photon sphere which is found from the
equation

2f —rf = 0. (61)

The radius of the photon sphere for the braneworld black
hole is given by the expression [48]

3M + \/OM? + 80" ()
_ . .

T'ps

In Fig. 7 the loci of the event horizons and photon spheres
of the braneworld and Reissner-Nordstrom black holes are
shown for comparison. One can see from Fig. 7 that event
horizon and photon spheres of the braneworld black holes
never vanish for any values of the tidal charge parameter.

By inserting (62) into (60), we obtain expression for the
geometric absorption cross section of the massless scalar
wave by the braneworld black hole in the form
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FIG. 7. The loci of the event horizons (dashed) and photon
spheres (solid) of the black hole in braneworld (black) and
Reissner-Nordstrom black holes (blue).
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O

In Fig. 8 the geometric absorption cross section of the
massless scalar wave by the braneworld black hole and the
Reissner-Nordstrom black holes are shown. One can see
that unlike the case of the Reissner-Nordstrom black hole
with increasing value of the tidal charge parameter the
geometric absorption cross section of the massless scalar
wave increases.

In the paper from [57] it has been shown that there are
fluctuations (regular oscillations) of the high-energy (fre-
quency) absorption cross section around the limiting value
of the geometric cross section; this is a universal property of
the absorption cross section of scalar field in the high-
energy regime in the field of spherically symmetric black
holes. This oscillatory part of the absorption cross section
of the massless scalar waves can be written as

O pse(®) = —87b A6 40 ¢ P sinc(2nb.w),  (64)

O geol M2

S S S S | P R S S |

0.0 0.5 1.0 L5 2.0

0’ /M2, g/M

FIG. 8. The geometric absorption cross section by black hole in
braneworld (black) and the Reissner-Nordstrom black hole
(blue).
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FIG. 9. Absorption cross section of massless scalar waves by
the braneworld for the values of the tidal charge parameter
Q*/M?> =05 (cyan), Q*/M* =1.0 (red), and Q*/M*> =15
(magenta). The Schwarzschild (black) and Reissner-Nordstrom
with electric charge ¢/M = 0.5 (blue) black holes are shown for
comparison, where horizontal lines represent the geometric
absorption cross sections.

where sinc(x) = sin(x)/x and 4 is the Lyapunov exponent
used for analysis of the instability of the null geodesics
[64]. The total absorption cross section of the massless
scalar waves is the sum of the geometric (60) and
oscillatory (64) cross sections

Oups N Ogeo + Oosc- (65)

In Fig. 9 we show the total absorption cross sections of the
massless scalar waves by the braneworld black holes for
several values of the tidal charge parameter. For comparison,
the total absorption cross sections obtained for the
Schwarzschild and Reissner-Nordstrom black holes are also
shown. One can see from Fig. 9 that with increasing tidal
charge parameter the absorption cross section increases.
By comparing the absorption cross sections to those related
to the Schwarzschild and Reissner-Nordstrom black holes,
we can conclude Oabs.RN < Gabs,Schw < O abs.Br-

Low-energy limit. In the papers from [54,56] it has been
shown that for small values of the massless scalar wave
frequency the absorption cross section by a black hole tends
to the horizon area of the black hole (6y(w — 0) — 4zr2).
We know from (3) that the horizon of the braneworld black
hole always increases with increasing tidal charge. Then, in
the low-frequency regime the absorption cross section of
the massless scalar waves also increases appropriately to
the increasing of the horizon.

Scalar particle emission by Hawking radiation. As
already stated by Hawking [65], the particle absorption
cross section is very relevant to the particle emission by
black holes [66]. The particle emission rate by Hawking
radiation is defined by the number of emitted particles by
the black hole per unit time and per unit frequency. One
should take into consideration also the spin of the emitted
particles. Here, we are considering a massless scalar field. It
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FIG. 10. Massless scalar particle emission spectrum by the
braneworld for the values of the tidal charge parameter Q* /M? =
0.5 (cyan), Q*/M?* = 1.0 (red), and Q*/M?* = 1.5 (magenta) in
comparison with the Schwarzschild (black) and Reissner-
Nordstrom with electric charge ¢/M = 0.5 (blue) black holes.

is well known that scalar particles have spin-zero (bosons)
and their emission probabilities are defined by the Bose-
Einstein distribution. Then, the particle emission rate (or
emission spectrum) by Hawking scalar radiation reads

_ a)_2 Oubs (C())
S 272 ew/T - 17

d’N(w) 1 §(21+ DT, ()]

dodi — 2m4= ¢T -1

(66)

where T is the Hawking temperature given by (5). In
Fig. 10 we represent the massless scalar particle emission
spectrum by the braneworld black holes in comparison with
the Reissner-Nordstrom and Schwarzschild black holes.
One can see from Fig. 10 that unlike the case of the
Reissner-Nordstrom black holes an increase of the tidal
charge parameter implies an increase of the particle
emission rate. Furthermore, with increasing frequency
the particle emission spectrum rises up to peak and falls
to zero rapidly. At the frequencies wM > 0.3, emission
spectrum is almost zero regardless the value of the tidal
charge parameter. From Fig. 10 one can deduce that at the
high-frequency regime distinction of types of black holes is
impossible. From this viewpoint, the low-frequency regime
is more favorite to distinguish various black holes.

VII. SUMMARY

We have studied the scalar, electromagnetic, axial, and
polar gravitational perturbations of the Reissner-Nordstrom
black hole (with tidal charge instead of electric charge)
in the Randall-Sundrum braneworld. By using the sixth
order WKB method, we have calculated the quasinormal
frequencies of these perturbations. Results have shown that
with increasing tidal charge parameter the frequency of the
real oscillations decreases while damping rate increases,
unlike the case of the standard Reissner-Nordstrom black
hole.
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Moreover, it has been shown that the current black
hole solution localized in the Randall-Sundrum braneworld
is stable against scalar, electromagnetic, and gravitational
perturbations.

The reflection probability of the wave by the scalar
potential barrier is larger than for the electromagnetic and
gravitational ones; i.e., scalar fields are the most favorite in
terms of reflection of waves, while the gravitational fields
are the most favorite in terms of transmission of waves.
With increasing tidal charge parameter reflection, abilities
of the perturbative fields decrease, as the radii of the
horizon and the photon sphere increase with the tidal
charge.

However, we should note that because of no upper limit
on the value of the tidal charge parameter, black holes on
the brane always have event horizons and photon spheres
which are located further away from the central object in
comparison to the Schwarzschild ones. We have studied
also the absorption cross section of the massless scalar
waves by the braneworld black hole in the low- and high-
frequency regimes. Calculations have shown that the
braneworld black holes always have bigger absorption
cross sections than the corresponding ones related to the
Schwarzschild and Reissner-Nordstrém black holes. One
of the main results of this paper is that in the high-
frequency regime distinction of the black holes from the

PHYSICAL REVIEW D 93, 124017 (2016)

particle emission spectrum is almost impossible. From this
point of view, the low-frequency regime is more significant.
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