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In this paper, we present a spectral decomposition of solutions to relativistic wave equations described on
horizon-penetrating hyperboloidal slices within a given Schwarzschild-black-hole background. The wave
equation in question is Laplace transformed, which leads to a spatial differential equation with a complex
parameter. For initial data which are analytic with respect to a compactified spatial coordinate, this equation
is treated with the help of the MATHEMATICA package in terms of a sophisticated Taylor series analysis.
Thereby, all ingredients of the desired spectral decomposition arise explicitly to arbitrarily prescribed
accuracy, including quasinormal modes and quasinormal mode amplitudes as well as the jump of the
Laplace transform along the branch cut. Finally, all contributions are put together to obtain, via the inverse
Laplace transformation, the spectral decomposition in question. The paper explains extensively this
procedure and includes detailed discussions of relevant aspects, such as the definition of quasinormal
modes and the question regarding the contribution of infinity frequency modes to the early time response of
the black hole.
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I. INTRODUCTION

Since the advent of general relativity, studies within
the linear regime of Einsteins’s equations have played a
crucial role in understanding important aspects of both
mathematical and physical sides of the theory. In the
particular case of black-hole perturbation theory, the work
by Regge and Wheeler [1] usually marks the birth of the
field. Their analysis of a special class of perturbations
of the Schwarzschild spacetime was later generalized by
Zerilli [2,3]. Still in the context of the Schwarzschild
spacetime, Bardeen and Press [4] used the Newman-
Penrose formalism [5] to derive the equations describing
the propagation of scalar, electromagnetic and gravita-
tional wave perturbations within the aforementioned back-
ground. This approach is the same as the one that guided
Teukolsky towards the derivation of his equation, which
takes the Kerr solution as the background spacetime [6].
First observed by Vishveshwara [7], the time evolution of

the perturbing field shows, after an initial dynamics, an
intermediate phase dominated by exponentially damped
oscillations, the so-called “quasinormal modes” (QNMs).
The remarkable feature is that the oscillation and decay time
scales depend solely on the black-hole parameters, which
allows one to infer essential properties of the black hole in the
gravitational wave signal [8] and to determine whether the
object is a black hole or something else [9,10]. For the late time
evolution, Price showed that the dynamics is characterized by
a power law decay, also referred to as “tail decay” [11].
A complete revision of the literature related to this field is

a task that goes beyond the scope of this work. Instead of
overwhelming the reader with all the developments that
followed the seminal works mentioned previously, we
would rather point out Chadrasekhar’s book [12] that

reviews the state-of-art developments during the 1980s
and elucidates the connections between different formal-
isms. Alsoworthmentioning are Refs. [13] and [14], the two
reviews that appeared in the late 1990s. Finally, Berti,
Cardoso and Starinets [15] summarized the more recent
development on black-hole perturbation theory. Apart from
a very interesting and useful chronological “roadmap” in
terms of papers considered as milestones, the results
presented in [15] range from astrophysical scenarios (with
insights into the numerical simulations and the efforts to the
detection of gravitational waves), passing by applications in
gauge-gravity duality theories, up to some recent develop-
ments on quantum black holes. Among the many important
milestones listed in [15], we mention here Leaver’s work
[16–18], which provides one of the most accurate methods
to compute the QNMs.
Note however, that in the great majority of these works,

QNMs are defined in a phenomenological way motivated
by a comparison with the analysis of normal modes (see,
for example, [19]).
A formal definition of the QNMs is presented in the

second chapter of Ref. [13]. It starts out with the description
of normal modes as the real eigenvalues ωn of an
appropriate differential operator. This operator acts on a
corresponding Hilbert-space whose measure characterizing
the inner product, arises through the requirement that the
operator be self-adjoint. The eigenvalues can then be used
along with the associated eigenvectors ϕnðxkÞ to build up
the solutions V of a specific nondissipative wave equation,1

1In this paper, time in the wave equations is denoted by τ,
whereas xk (k ¼ 1…3) stands for the collection of relevant spatial
coordinates.
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Vðτ; xkÞ ¼
X∞
n¼0

ηneiωnτϕnðxkÞ: ð1Þ

Of course, this only works if the self-adjoint operator in
question has a pure point spectrum σp ¼ fωng∞n¼0. More
generally, if in addition a continuous spectrum σc is present,
then the superposition needs to include improper eigen-
values and eigenvectors:

Vðτ; xkÞ ¼
X∞
n¼0

ηneiωnτϕnðxkÞ þ
Z
ω∈σc

ηðωÞeiωτϕðω; xkÞdω:

ð2Þ

The computation of the corresponding amplitudes, ηn and
ηðωÞjω∈σc , amounts to projecting the initial data onto the
complete orthonormal system of (proper and improper)
eigenfunctions in terms of the inner product.
As expressed in the review [13], it would be clearly

desirable to take this formulation to the realm of linear
black-hole perturbations, that is, to write the solutions of
initial value problems associated with linear dissipative
wave equations in a given black-hole background-metric as
a similar superposition, with the quasinormal modes being
defined as the eigenvalues of an appropriate operator.
However, the very definition of the QNMs, as pursued
in [13], follows a different route. Through a Laplace
transform applied to the wave equation in question, a
spatial differential equation arises with an inhomogeneity
formed by the initial data. The QNMs are then defined as
the zeros of the corresponding Wronskian determinant,
formed by specifically normalized solutions of the asso-
ciated homogeneous equation. This definition is a perfectly
working characterization of QNMs in many situations.
However, in the context of linear perturbations in asymp-
totically flat black-hole spacetimes, it appears that a
corresponding direct computation poses substantial tech-
nical difficulties. In this paper (Sec. IV D), we provide a
detailed discussion of this matter.
Until now there is no strict mathematical derivation of a

spectral decomposition formula (2) for linear waves around
asymptotically flat black holes. Nevertheless, in special
cases it was shown [20] that the late time behavior of the
solutions can be approximated in finite parts of the space by
a finite sum of the form (1). In [21], it was demonstrated
that for a wave equation with so called spiked truncated
dipole potential the decomposition (1) can be constructed;
particularly the amplitudes ηn were determined explicitly.
Moreover, in several papers [18,22–24], so-called “quasi-
normal excitation factors” are discussed which are deter-
mined through the behavior of ϕn at the two boundaries
describing spatial infinity and the event horizon. They serve
for the determination of quasinormal excitation coefficients
which are equivalent to the expressions ηnϕn. Rigorous
mathematical results including integral representations

have been obtained in the case of Cauchy problems for
the massive Dirac equation as well as for the Teukolsky-
equation in the nonextreme Kerr-Newman geometry out-
side the event horizon; see e.g. [25–29].
In this paper, we demonstrate that a superposition of the

form

Vðτ;xkÞ¼
X∞
n¼0

ηnesnτϕnðxkÞþ
Z

0

−∞
ηðsÞesτϕðxk;sÞds ð3Þ

can be found for solutions of initial value problems of linear
wave equations in the Schwarzschild spacetime, provided
that the initial data are analytical in terms of a compactified
coordinate in an appropriate hyperboloidal slice to be
specified in Sec. II A. The amplitudes ηn and ηðsÞ are
fixed solely by the initial data, whereas the quasinormal
modes sn as well as the functions ϕnðxkÞ and ϕðxk; sÞ are
characteristics of the particular wave equation being stud-
ied and hence independent of the initial data. We stress that
(3) is meant to provide, in a strict sense, the entire solution
for all coordinate times τ > ν where ν is a mutual growth
rate of the excitation coefficients ηnϕnðxkÞ and ηðsÞϕðxk; sÞ
to be defined in the sequel (see Secs. IV E and IV F).
Now, in order to describe the decay of a dissipative wave

field, the QNMs sn need to be complex valued with
negative real part. Hence, an associated self-adjoint oper-
ator with spectrum σ ¼ fsng∞n¼0∪ð−∞; 0Þ cannot be iden-
tified. Consequently, it is not simply possible to establish ηn
and ηðsÞ by some orthogonal projection of the initial data
onto the functions ϕnðxkÞ and ϕðxk; sÞ. Nevertheless, in this
paper, we develop highly accurate numerical means, based
on a detailed Taylor series analysis which is established
within the MATHEMATICA environment, through which all
ingredients of (3) are determined:
(1) The QNMs sn are computed through an efficient

procedure which can be considered as an extension
of Leaver’s method of continued fractions [16,17].

(2) The functions ϕnðxkÞ and ϕðxk; sÞ are constructed
from the wave equation under consideration (with-
out the need to consider specific initial data).

(3) The amplitudes ηn and ηðsÞ, being characteristics of
the initial data, are obtained through an analysis that
incorporates the initial data.

In addition, we provide strong evidence that the solutions
Vðτ; xkÞ to initial value problems of wave equations in the
Schwarzschild spacetime for analytical initial data as
described above are indeed entirely given in terms of (3)
for all coordinate times τ that exceed the growth rate ν of
the excitation coefficients.
As mentioned above, we concentrate in this paper on a

hyperboloidal formulation. However, typically the black
hole perturbation theory is developed with the background
metric described in terms of a coordinate system with slices
of constant time extending between the bifurcation point B
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and spatial infinity i0; see the Penrose-Carter conformal
diagram in Fig. 1.
The most simple example is given by the Schwarzschild

spacetimewritten in terms of thewell knownSchwarzschild-
coordinates ft; r; θ;φg. In this context, apart from the data at
the initial time slice, one needs to impose boundary con-
ditions atB as well as at i0 since the physical solution should
contain only ingoing (outgoing) radiation at the horizon
(spatial infinity). When treating the wave equation in terms
of its Laplace transform, this framework leads to solutions of
the spatial equation which grow exponentially near the
boundaries. Note that the review [14] lists many difficulties
for obtaining the desired representation (3), and the issue
regarding the blow up of the solutions near the boundaries
constitutes one of the main drawbacks.
To overcome these caveats, the author of [30] argues in

favor of a coordinate system with time-constant surfaces
extending between the future event horizon H and future
null infinity Iþ, also known as hyperboloidal slices; see
[31] for a review. The work [30] shows that this choice
resolves the issues concerning the representation of the
functions associated to the QNMs. The paper emphasizes
the advantage of this framework in comparison with other
methods and mentions that developing a black hole
perturbation theory on hyperboloidal slices “may lead to
efficient numerical codes in the frequency domain” [30].
The work does, however, not advance further in this
direction. In this paper, we exploit the advantages of the
formulation of linear wave equations in the Schwarzschild
spacetime on hyperboloidal slices.
The paper is organized as follows. In Sec. II, we describe

the coordinate transformation leading to the hyperboloidal
slices in the Schwarzschild spacetime, and we introduce the
Bardeen-Press equation that describes scalar, electromag-
netic and gravitational perturbations propagating on this

background. Section III is devoted to the Laplace trans-
formation of the Bardeen-Press equation, thereby obtaining
a characteristic spatial equation. Moreover, the inversion
through the so-called “Bromwich integral” is discussed.
This section also brings a comparison with the correspond-
ing formulation of black-hole perturbation theory on
Cauchy slices. In the comprehensive Sec. IV, we apply
sophisticated Taylor series expansions in order to get the
solutions of the spatial equations. This analysis provides us
with the various ingredients of the spectral representation (3)
of the solution which is then derived in Sec. V. Section VI
brings a thorough discussion, including a comparison with a
similar problem in Minkowski spacetime which can be
treated explicitly. The Appendix comprises several sections
in order to elaborate on certain aspects and issues that appear
in the course of the text. Especially, the so-called algebrai-
cally special QNMs [32] are discussed. Note that we use
units such that the speed of light as well as Newton’s
constant of gravity are unity, c ¼ G ¼ 1.

II. BLACK-HOLE PERTURBATION WITHIN
A HYPERBOLOIDAL FOLIATION

A. Hyperboloidal coordinates

Our starting point is a review of the hyperboloidal
coordinates used for the spacetime foliation. Following
[33,34], we write at first the Schwarzschild metric for a
black hole with mass M in the horizon-penetrating ingoing
Eddington-Finkelstein coordinates fv; r; θ;ϕg and intro-
duce then the new coordinates ðτ; σÞ via

v ¼ 4M

�
τ þ 1

σ
− log σ

�
ð4Þ

r ¼ 2M
σ

: ð5Þ

As a result, we obtain the line element

ds2 ¼ 16M2

σ2

�
−σ2ð1 − σÞdτ2 þ ð1þ σÞdσ2

þ ð1 − 2σ2Þdτdσ þ 1

4
ðdθ2 þ sin2θdφÞ

�
: ð6Þ

In the hyperboloidal coordinates fτ; σ; θ;ϕg, the horizon is
given by σ ¼ 1, while Iþ is fixed at σ ¼ 0.

B. Bardeen-Press equation

The equation describing the dynamics of a perturbation
U in a background given by the Schwarzschild solution was
derived2 by Bardeen and Press [4]. The equation reads in
our hyperboloidal coordinates fτ; σ; θ;φg [34]

FIG. 1. Penrose-Carter conformal diagram for the extended
Schwarzschild spacetime. Future and past event horizons are
denoted by Hþ and H− respectively. Likewise, future and past
null infinity are specified through Iþ and I− respectively. The
bifurcation point B describes the mutual meeting point of the
several horizons in this diagram. Also shown is a typical
hyperboloidal slice τ ¼ const extending smoothly through both
Hþ and Iþ, as well as a Cauchy slice t ¼ const extending from
the bifurcation point B to spatial infinity i0.

2The equation is equivalent to the Teukolsky equation [6] with
vanishing specific angular momentum parameter, a ¼ 0.
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− ð1þ σÞU;ττ þ ð1 − 2σ2ÞU;τσ þ ð1 − σÞσ2U;σσ

−
�
1þ 2λ

σ
− λ

2 − σ

1 − σ

�
U;τ − σ½σ þ λð2 − σÞ�U;σ

þ U;θθ þU;θ cot θ þ
1

sin2θ
ðU;φφ þ 2iλ cos θU;φÞ

þ λð1 − λcot2θÞU ¼ 0: ð7Þ

The fieldUðτ; σ; θ;φÞ has spin-weight λ. A scalar fieldΦ
propagating on the background is described by λ ¼ 0. If
λ ¼ −1 (λ ¼ þ1), Uðτ; σ; θ;φÞ is closely related to the
Newman-Penrose scalars [5] ϕ2 (ϕ0) describing outgoing
(ingoing) electromagnetic waves. In the same way, gravi-
tational waves are associated to Newman-Penrose scalars
Ψ4 (Ψ0) with spin weight λ ¼ −2 (λ ¼ þ2). Table I brings
the relation between Uðτ; σ; θ;φÞ and the different types of
fields according to the corresponding spin λ. The table also
shows the asymptotic behavior of such fields around Iþ
(σ → 0) in accordance with the Peeling theorem [5].
Note that Eq. (7) is irregular at σ ¼ 0 and σ ¼ 1, i.e., at

future null infinity and at the horizon, respectively. This
property is a direct consequence of our hyperboloidal
slicing. Taking into account the relation of Uðτ; σ; θ;φÞ
with the respective Newman-Penrose quantities and their
asymptotic behavior as depicted in table I, one can
introduce the regular field ~U

Uðτ; σ; θ;φÞ ¼ σ1þ2λ ~Uðτ; σ; θ;φÞ
which removes the singular term going as σ−1 from (7).
Moreover, as noted in [30], the singular term at σ ¼ 1 is
removed by the further re-scaling

Uðτ; σ; θ;φÞ ¼ σ1þ2λð1 − σÞ−λVðτ; σ; θ;φÞ: ð8Þ
We expand the field Vðτ; σ; θ;φÞ into the spin-weighted
spherical harmonics λYlmðθ;φÞ basis [35]

Vðτ; σ; θ;φÞ ¼
X∞
l¼jλj

Xl
m¼−l

Vlmðτ; σÞλYlmðθ;φÞ;

thus obtaining a specific wave equation for each mode
Vlmðτ; σÞ3:

− ð1þ σÞV;ττ þ ð1 − 2σ2ÞV;τσ þ σ2ð1 − σÞV;σσ

þ σ½2 − 3σ þ λð2 − σÞ�V;σ − ½2σ − λð1 − σÞ�V;τ

þ ½−lðlþ 1Þ − ðσ − λÞð1þ λÞ�V ¼ 0: ð9Þ

Given initial dataV0ðσÞ¼Vð0; σÞ and _V0ðσÞ¼V;τð0; σÞ,
Eq. (9) is to be solved in the domain ðτ; σÞ∈ ½0;τfinal�× ½0;1�.
Note that the transition from the field U to V has not

removed the degeneracies of the wave equation at the two
boundaries σ ¼ 0 and σ ¼ 1. These degeneracies provide
boundary conditions that guarantee that the characteristics
of the wave equation always point outward the numerical
domain and hence no further boundary conditions at the
horizon nor at future null infinity Iþ are allowed to be
imposed. Consequently, equation (9) has to be solved as an
initial value problem.

III. LAPLACE TRANSFORMATION

A. Definition

Given initial data V0ðσÞ and _V0ðσÞ, we follow [13] and
introduce the Laplace transformation

V̂ðσ; sÞ ≔ L½Vðτ; σÞ�ðsÞ ¼
Z

∞

0

e−sτVðτ; σÞdτ: ð10Þ

As the field V is strictly bounded for all times τ, it follows
that V̂ðσ; sÞ is complex-holomorphic in the right half-plane
ℜðsÞ > 0 (see Fig. 2). Note that the following relation is a
particular consequence of the fact that the wave-field
Vðτ; σÞ is real4:

V̂ðσ; s�Þ ¼ ½V̂ðσ; sÞ��: ð11Þ

Applying now the Laplace transformation to both sides of
the dynamical equation (9) and considering that

L½V;τðτ; σÞ�ðsÞ ¼ sV̂ðσ; sÞ − V0ðσÞ;
L½V;ττðτ; σÞ�ðsÞ ¼ s2V̂ðσ; sÞ − sV0ðσÞ − _V0ðσÞ;

we obtain an inhomogeneous ordinary differential equation
(referred to as “ODE” in the sequel)5

AðsÞV̂ðsÞ ¼ BðsÞ ð12Þ

with the second order differential operator given by

TABLE I. Perturbation field and spin-weight λ.

λ U σ → 0

0 Φ Φ ¼ OðσÞ
1 ϕ0 ϕ0 ¼ Oðσ3Þ
−1 σ−2ϕ2 ϕ2 ¼ OðσÞ
2 Ψ0 Ψ0 ¼ Oðσ5Þ
−2 σ−4Ψ4 Ψ4 ¼ OðσÞ

3For simplicity, we omit the indices lm in Vlmðτ; σÞ from
now on.

4Throughout this paper, we use an upper asterisk � to denote
complex conjugation.

5For addressing the function V̂ defined for σ ∈ ½0; 1� (rather
than a particular function value within that interval), we simply
write V̂ðsÞ. The same applies to the right-hand side B.
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AðsÞ¼σ2ð1−σÞ∂σσþfsð1−2σ2Þþσ½2−3σþλð2−σÞ�g∂σ

−fs2ð1þσÞþs½2σþλðσ−1Þ�þlðlþ1Þ
þðσ−λÞðλþ1Þg: ð13Þ

The degeneracies of the wave equation (9) (see discussion
at the end of Sec. II B) implies that of the operator AðsÞ at
the surfaces σ ¼ 0 and σ ¼ 1. The inhomogeneity BðsÞ in
(12) is given in terms of the initial data V0 ¼ V0ðσÞ and
_V0 ¼ _V0ðσÞ:

BðsÞ ¼ ð1 − 2σ2ÞV0;σ − ð1þ σÞ _V0

− ½2σ − λð1 − σÞ�V0 − sð1þ σÞV0: ð14Þ

B. Inversion

The solution of equation (12) with the help of a
sophisticated Taylor series expansion will be depicted in
Sec. IV. Once established V̂ðσ; sÞ for values s on some
vertical line in the right half-plane ℜðsÞ > 0 (i.e. for
ℜðsÞ ¼ ξ with some fixed ξ > 0), we may write the
solution of Eq. (9) in terms of the inverse Laplace trans-
formation, also known as the Bromwich integral

Vðτ; σÞ ¼ 1

2πi

Z
Γ1

V̂ðσ; sÞesτds; ð15Þ

with the integration path (see Fig. 2)

Γ1 ¼ fs ∈ Cjs ¼ ξþ iχ; ξ > 0; χ ∈ ð−∞;þ∞Þg: ð16Þ

Note that (15) provides us with the solution Vðτ; σÞ only if
τ > 0 (for τ < 0 the integral vanishes).
We remark that the formula (15) is the starting point for

the spectral decomposition (3) which comes about through
an appropriate deformation of the integration path (see
Fig. 2) to be discussed in Sec. V.

C. Comparison with Cauchy foliation

We end this section with a brief discussion on some
relations between the Laplace transformation performed in
the context of hyperboloidal foliation and the correspond-
ing formulation of perturbation theory in the original
Schwarzschild coordinates.
Note that typically, perturbations on the Schwarzschild

background are described by the Regge-Wheeler-
Zerilli formalism, while here we focus on the Bardeen-
Press-Teukolsky approach. Both formalisms are known to
be equivalent and, in particular, the equations coincide for
λ ¼ 0 (scalar perturbation). Therefore, along the paper, the
discussion between the different foliations of the spacetime
will always be made for the particular case λ ¼ 0. The
conclusions, however, are general and should be valid also
for λ ≠ 0.

Let us first introduce the dimensionless coordinates
x ¼ r�=ð2MÞ and t̄¼ t=ð2MÞ where r� is the so-called
tortoise coordinate. They are related to fτ; σg via
[cf. Eqs. (4) and (5)]

x ¼ 1

σ
− lnðσÞ þ lnð1 − σÞ; ð17Þ

t̄ ¼ 2τ þ 1

σ
− ln ½σð1 − σÞ�: ð18Þ

The horizon is described by x → −∞ and spatial infinity is
given by x → þ∞. These points correspond to the bifur-
cation point B and i0 in the Penrose diagram (see Fig. 1).
Then, Eq. (9) is equivalent to the well-known wave

equation

−f;t̄ t̄ þ f;xx − Pf ¼ 0; ð19Þ

with fðt̄; xÞ ¼ Vðτðt̄; xÞ; σðxÞÞ and

P ¼
�
1 −

2M
r

��
2M
r

�
2
�
2M
r

þ lðlþ 1Þ
�

¼ ð1 − σÞσ2½σ þ lðlþ 1Þ�: ð20Þ

Now, we apply the Laplace transformation

f̂ðx; s̄Þ ≔ L½fðt̄; xÞ�ðs̄Þ ¼
Z

∞

0

e−s̄ t̄fðt̄; xÞdt̄: ð21Þ

FIG. 2. Integration paths for the inverse Laplace transforma-
tion. The Bromwich integral (15) is evaluated along the line Γ1 in
the half-plane ℜðsÞ > 0. In order to arrive at the spectral
decomposition formula (3), it is essential to deform the integra-
tion path and to obtain the solution via integration along the curve
Γ2. The several ingredients, i.e. integration around the QNMs sn,
along the branch cut R− as well as along infinitely extended
circular sections, are discussed in detail in Sec. V.
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to Eq. (19) and obtain the equation

f̂;xx − ½s̄2 þ P�f̂ ¼ _f0ðxÞ þ s̄f0ðxÞ; ð22Þ

where f0ðxÞ¼fð0;xÞ and _f0ðxÞ¼f;t̄ð0;xÞ are the initial data
and s̄ the Laplace parameter in the Cauchy formulation.
Considering the homogeneous equations, we find the

following relation between the Cauchy and the hyper-
boloidal formulation. Given a function ΩðsÞ that satisfies
the ODE AðsÞΩðsÞ ¼ 0 [cf. (12) and (13)]. Then the
function

FðxðσÞ; s̄Þ ¼ 2e−s̄=σσs̄ð1 − σÞs̄Ωðσ; 2s̄Þ ð23Þ

obeys the equation

F;xx − ½s̄2 þ P�F ¼ 0 ð24Þ

where the Laplace parameter s (from our hyperboloidal
foliation) is related to the Cauchy Laplace parameter s̄ via

s ¼ 2s̄: ð25Þ
Note that (up to constants) the term

Ξðσ; s̄Þ ¼ 2e−s̄=σσs̄ð1 − σÞs̄ ð26Þ
corresponds exactly to the factor introduced by Leaver [16]
accounting for the correct behavior of F at the boundaries
x → �∞. Here, the relevant factor (26) is motivated by the
term e−s̄ t̄ðτ;σÞ in (21), i.e., it follows directly from the
hyperboloidal coordinates as a consequence of the fact that
τ ¼ const surfaces extend smoothly between the black
horizon Hþ and future null infinity Iþ.

IV. TAYLOR SERIES EXPANSIONS

A. Solutions to the homogeneous Laplace
transformed equation and the asymptotics

of their Taylor coefficients

Let us exclude, for the time being, nonpositive integer
values of the Laplace parameter s, i.e. s∉Z−

0 .
6 We then start

with the homogeneous Laplace transformed equation

AðsÞϕðsÞ ¼ 0; ϕðσ; sÞ analytic for σ ∈ ð0; 1� ð27Þ

and expand ϕðsÞ in terms of a Taylor series

ϕðσ; sÞ ¼
X∞
k¼0

Hkð1 − σÞk: ð28Þ

With this ansatz, we follow Leaver [16] and concentrate, in
a first step, on solutions which are analytic in a

neighborhood about the horizon H, i.e. at σ ¼ 1.
Inserting the ansatz (28) into (27), we obtain the following
recurrence relation,

αkHkþ1 þ βkHk þ γkHk−1 ¼ 0; ð29Þ

with the coefficients:

αk ¼ ðkþ 1Þðkþ 1þ s − λÞ;
−βk ¼ 2ðkþ sÞðkþ 1þ sÞ þ lðlþ 1Þ − λ2 þ 1;

γk ¼ ðkþ sÞðkþ sþ λÞ: ð30Þ

The coefficients Hk can now be obtained for k ≥ 1 via

Hkþ1 ¼ −
1

αk
ðβkHk þ γkHk−1Þ ¼ 0; H0¼! 1; ð31Þ

where we have chosen H0 ¼ 1 as convenient scaling
condition. Note that for k ≥ 1 we have αk ≠ 0 as long as
s∉Z−

0 ; see (30). We study now the asymptotics of Hk for
large indices k → ∞.
The singular points of the ODE (27) are given by σ ¼ 0,

σ ¼ 1, and σ ¼ ∞. Consequently, we expect the series (28)
to be convergent within the unit circle

C ¼ fσ ∈ C∶j1 − σj < 1g; ð32Þ

with analyticity breaking down at σ ¼ 0, as this represents
an essentially singular point of the ODE. We may therefore
conclude that the domain of convergence of (28) does not
exceed the unit circle C, implying that

lim
k→∞

����Hkþ1

Hk

���� ¼ 1: ð33Þ

An asymptotic estimate was found by Leaver [16]

Hkþ1

Hk
¼ 1�

ffiffiffi
s
k

r
þ λþ s − 3

4

k
þOðk−3=2Þ;

from which we derive:

logHkþ1 ¼ logHk �
ffiffiffi
s
k

r
þ λþ s

2
− 3

4

k
þOðk−3=2Þ:

Applying this formula successively from some k ¼ k0 on,
we obtain the asymptotic formula

logHkþ1 ¼ � ffiffiffi
s

p Xk
j¼k0

1ffiffi
j

p þ
�
λþ s

2
−
3

4

�Xk
j¼k0

1

j
þOð1Þ

¼ � ffiffiffi
s

p ½Hð1=2Þ
k −Hð1=2Þ

k0−1 �

þ
�
λþ s

2
−
3

4

�
½Hð1Þ

k −Hð1Þ
k0−1� þOð1Þ6In Appendix C, we extend our results to negative integer

values s.
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with

HðνÞ
k ¼

Xk
j¼1

1

jν
ð34Þ

being generalized harmonic numbers. Now these numbers
possess the following asymptotics:

Hð1=2Þ
k ¼ 2

ffiffiffi
k

p
þOð1Þ; Hð1Þ

k ¼ log kþOð1Þ; ð35Þ

from which it follows that for sufficiently large k:

Hk ¼ kζðAþ
k e

κ
ffiffi
k

p
þ A−

k e
−κ

ffiffi
k

p
Þ; ð36Þ

with

κ ¼ 2
ffiffiffi
s

p
; ℜðκÞ > 0; ζ ¼ λþ s

2
−
3

4
; ð37Þ

and where the coefficients A�
k tend to a finite value as

k → ∞, to be denoted by A�
∞. Again, this result corresponds

to the findings by Leaver [17].
If we now investigate the behavior of the corresponding

solution ϕ of (27) we observe that, for ℜðsÞ > 0, it
possesses an essential singularity at σ ¼ 0, somewhat
similar to the function es=σ .7 A more sophisticated analysis
(to be conducted in Appendix B) reveals that

Φðσ; sÞ ≔ σsþ2λe−s=σϕðσ; sÞ ð38Þ
is, for ℜðsÞ > 0, analytic at any σ ∈ ð0; 1� and still C∞ at
σ ¼ 0. However, just as the function es=σ, the behavior of ϕ
changes, when moving into the left half-planeℜðsÞ < 0, as
here ϕ becomes C∞ for all σ ∈ ½0; 1�. This fact has the
interesting consequence that for ℜðsÞ < 0 the solutions
ϕðsÞ of (27) can be taken as regular C∞ initial data,

Vð0; σÞ ¼ ℜ½ϕðσ; sÞ�; V;τð0; σÞ ¼ ℜ½sϕðσ; sÞ� ð39Þ

which imply the regular C∞-solution

Vðτ; σÞ ¼ ℜ½ϕðσ; sÞesτ� ð40Þ
to our wave equation (9).
We observe that the solution (40) behaves like a purely

quasinormal ringing, with damping ℜðsÞ and frequency
ℑðsÞ. Figure 3 exemplifies this behavior by showing the
time evolution (obtained through the algorithm presented in
[34]) for this type of initial data. In particular, in the case
λ ¼ l ¼ 0 the values s ¼ −1þ πi and s ¼ −2þ 2πi have
been taken. However, these arbitrarily chosen s values in

the left plane are to be distinguished from the QNMs to be
discussed in Sec. IV D.8

Let us now turn to a specific second solution ψðsÞ
obeying the homogeneous Laplace transformed equation

AðsÞψðsÞ ¼ 0: ð41Þ

We describe this solution by a sequence fIkg∞k¼−∞ of
coefficients satisfying

αkIkþ1þβkIkþ γkIk−1¼ 0; lim
k→∞

Ikeκ
ffiffi
k

p
k−ζ ¼ 1. ð42Þ

Here we have chosen the asymptotics (36) [which holds for
any solution to the homogeneous recursion relation (29)]
with Aþ

∞ ¼ 0 and, moreover, A−
∞ ¼ 1 as convenient scaling

condition.
Let us discuss the corresponding solution ψ in some

detail. The sequence fIkg∞−∞, which is uniquely defined
by (42), does not provide us with a decent Laurent
representation of ψ . An analysis of the asymptotics of Ik
as k → −∞, performed along the same lines as the above
investigation in the case k → þ∞, reveals that

lim
m→∞

ðe−2 ffiffiffiffiffiffiffi
−sm

p
m−ζI−mÞ ¼ Bþ

∞ with jBþ
∞j < ∞: ð43Þ

Here, the square root in the exponent is again to be taken
such that its real part is positive. If we now consider
principal part fIkg−1−∞ and secondary part fIkg∞0 separately,

FIG. 3. Time evolution for initial data given by (39). For
arbitrarily prescribed s values with ℜðsÞ < 0, the evolution
shows exponentially damped oscillations [cf. (40)]. Here, the
examples are obtained for s ¼ −1þ πi and s ¼ −2þ 2πi in the
case λ ¼ l ¼ 0. The field is measured at σ ¼ 1.

7Indeed, it can be shown that the Taylor series (28) of es=σ

possesses the dominant asymptotics Hk ¼ e2
ffiffiffiffi
sk

p
k−3=4Aþ

k with
Aþ
k → Aþ

∞ðsÞ; see Appendix B.

8Note that if s is not a QNM, then the solution (40) cannot be
expressed in terms of the desired spectral decomposition formula;
see discussion in Sec. VI B.

SPECTRAL DECOMPOSITION OF BLACK-HOLE … PHYSICAL REVIEW D 93, 124016 (2016)

124016-7



ψ− ¼
X∞
m¼1

I−m
ð1 − σÞm ; ψþ ¼

X∞
k¼0

Ikð1 − σÞk; ð44Þ

we find that ψ− corresponds to a function which is analytic
outside C̄ [the closure of the circle C, cf. (32)], while ψþ is
analytic insideC. Hence, there is no annulus in the complex
σ plane about the point σ ¼ 1 within which the formal
Laurent series ψ ¼ψ−þψþ would converge. Nevertheless,
ψ− and ψþ can be extended analytically into exterior and
interior of C, respectively, and there ðψ− þ ψþÞ describes
the complex continuation of a function ψ that satisfies (41).
Note that the complex extension of ψ− is a function with
singularities at σ ∈ f0; 1g and a branch cut discontinuity
along the real interval σ ∈ ð0; 1Þ. Likewise, ψþ is a
function with singularities at σ ∈ f0;∞g and a branch
cut discontinuity along the real interval σ ∈ ð−∞; 0Þ. Thus,
the resulting function ψ possesses a branch cut disconti-
nuity along the real interval σ ∈ ð−∞; 1Þ.
As a solution to (41), the function ψ ¼ ψ− þ ψþ can be

written in terms of ϕ as

ψðσ; sÞ ¼ ϕðσ; sÞ½CðsÞΠðσ; sÞ þ cðsÞ� ð45Þ

with s-dependent constants of integration CðsÞ and cðsÞ
and where

Πðσ; sÞ ¼
Z

σ

1=2
es= ~σ

½ ~σð1 − ~σÞ�λ−s−1d ~σ
~σ3λþ1½ϕð ~σ; sÞ�2

¼
Z

σ

1=2
e−s= ~σ

½ ~σð1 − ~σÞ�λ−s−1d ~σ
~σ1−2s−λ½Φð ~σ; sÞ�2 : ð46Þ

With the convenient lower integration bound 1=2, the
function Π can be analytically extended for 0 < σ < 1
from the right half-plane ℜðsÞ > 0 onto the left half-plane
ℜðsÞ < 0. We remark that based on the aforementioned
considerations it appears difficult to assess with certainty
that the function ψ , when considered at real σ ≳ 0, is C∞-
regular at σ ¼ 0 for ℜðsÞ > 0. This property would be
essential to qualify ψ as one of the two linearly independent
homogeneous solutions to (41) that, according to the
definition in [13], constitute a Wronskian determinant
whose zeros determine the set of QNMs. To show that
ψ is C∞-regular at σ ¼ 0 would mean that we have to
perform a complex continuation of ψ− from the annulus
fσ ∈ C∶j1 − σj > 1g to real σ ≳ 0. As values of ψ−
anywhere inside the annulus are only given numerically,
it appears extremely difficult to provide a decent analytical
expansion of ψ− as required. In Sec. IV D 1, we return to
this issue but remark here that instead of the function ψ
being considered, we concentrate in the following on the
corresponding sequence fIkg which is defined through the
specific asymptotics given in (42).
We now develop a higher-order approximation of the

asymptotic expansion ðk → þ∞Þ of the coefficients Ik, as

they will be an essential ingredient in the solution of the
Laplace transformed equation to be derived in Sec. IVA.
For k ≫ 1, we write

Ik ¼ e−κ
ffiffi
k

p
kζAk ð47Þ

where the coefficients Ak are given in terms of a regular
function A defined on an ε neighborhood about the origin,

Ak ¼ A

�
1ffiffiffi
k

p
�
; AðxÞ ¼ 1þ

X∞
j¼1

μjxj: ð48Þ

Now, the expression (47) may be inserted into a slightly
rearranged version of the recurrence relation (42), thus
obtaining:

αk

�
1þ 1

k

�
ζ

e−κð
ffiffiffiffiffiffi
kþ1

p
−

ffiffi
k

p ÞAkþ1 þ βkAk

þ γk

�
1 −

1

k

�
ζ

e−κð
ffiffiffiffiffiffi
k−1

p
−

ffiffi
k

p ÞAk−1 ¼ 0: ð49Þ

If we now consider (48) and expand (49) in terms of 1=
ffiffiffi
k

p
about k ¼ ∞, we can successively determine the μj’s
through the method of equating the coefficients. The first
two terms amount to

μ1¼
1

48
ffiffiffi
s

p ½8sð3þ2sÞ−9−48lðlþ1Þ�;

μ2¼
1

4608s
½−135ð1þ16sÞþ32ð9lðlþ1Þð−1þ8lðlþ1ÞÞ

−72ðlþl2−λÞs−3ð21þ16lðlþ1Þ−48λÞs2
þ60s3þ8s4Þ�: ð50Þ

In this manner, all coefficients μj (and hence the function
A) are completely fixed. A sample of the function A for
λ ¼ l ¼ 0 and s ¼ 1þ i is displayed in the left panel
of Fig. 4.
In our numerical computations, we determine, for given

values of λ, l and s, the coefficients fμjg2Jmax
j¼1 for some

integer Jmax with high numerical precision. Thanks to
the Series command in MATHEMATICA, values of Jmax
around 40 can easily be chosen. After the computation of
the μj’s, the function A is approximated by a diagonal Padé
approximant

APadeðxÞ ¼
PJmax

j¼0 pjxj

1þPJmax
j¼1 qjx

j
ð51Þ

where the coefficients pj, qj are determined such that

djAPade

dxj
ð0Þ¼ djA

dxj
ð0Þ¼ j!μj for j¼ 0;…;2Jmax; ð52Þ
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with μ0 ¼ 1, cf. (48). In this way, we create a highly
accurate approximation APade of the function A, from which
we may obtain approximative values of the two coefficients
Ikmaxþ1 and Ikmax

for some large index kmax from the relation
(47). The high order and the corresponding extreme
accuracy of the Padé approximation allows us to get away
with rather moderate values of e.g. kmax ∼ 400; see the right
panel of Fig. 4.
We proceed with the determination the coefficients Ik for

k ∈ f−1;…; kmax − 1g from the backwards recurrence
relation

Ik−1 ¼ −
1

γk
ðαkIkþ1 þ βkIkÞ; k ¼ kmax;…; 0: ð53Þ

Note that for s∉Z, the coefficients γk do not vanish, cf. (30).
The Ik’s for k ≤ −2 are not needed in the sequel, although
they also follow from (53).
A note at the end of this section seems appropriate. The

aforementioned asymptotics (36), (47) and (48) arise as the
result of a particular ansatz which appears to work by
means of the asymptotic expansion of (29) and (42) and the
subsequent application of the method of equating the
coefficients. That is to say that we do not intend to provide
a full proof of the aforementioned statements, but rather
describe a particular route towards the solution of the ODE
(12) in terms of a Taylor expansion analysis.

B. Unique solutions of the Laplace
transformed wave equation

For the construction of solutions to (12) for prescribed
values l, λ and s ∈ C, we first consider two notations
which will be useful in the sequel. For a sequence fakg∞−∞
we define the discrete derivative via the difference

a0k ≔ akþ1 − ak: ð54Þ

Moreover, for two sequences fakg∞−∞ and fbkg∞−∞, we
introduce the discrete Wronskian determinant by

Wkðfakg;fbkgÞ≔ a0kbk−akb0k ¼ akþ1bk−akbkþ1: ð55Þ

In the following, we discuss WkðfHkg; fIkgÞ with the
sequences fHkg∞−∞ and fIkg∞−∞ considered in the previous
section, which we abbreviate by simply writing Wk. From
(29) and (42), we find

0 ¼ IkðαkHkþ1 þ βkHk þ γkHk−1Þ
−HkðαkIkþ1 þ βkIk þ γkIk−1Þ

¼ αkWk − γkWk−1;

i.e.

Wk ¼
γk
αk

Wk−1: ð56Þ

We concentrate again on s∉Z−
0 (see footnote 6). Also, we

assume here that s is not a QNM; these are just the values at
which the construction to be described will fail; see
Secs. IV D and IV E. Then we obtain nonvanishing regular
values Wk for k ≥ −1:

W−1 ¼ I−1; Wk ¼ I−1
Yk
j¼0

γj
αj

for k ≥ 0 ð57Þ

since αj ≠ 0 and γj ≠ 0 for j ≥ 0. Moreover, we have
Hk ¼ 0 for k < 0 and hence Wk ¼ 0 for k < −1. With the
scaling conditionH0 ¼ 1, cf. (31), we getW−1 ¼ I−1. Note
that in the following, the term

FIG. 4. Left panel: within the interval x ∈ ½0; xmax� with xmax ¼ 0.05, the function A ¼ AðxÞ [cf. (47), (48), (51)] is shown for
l ¼ λ ¼ 0 and the Laplace parameter s ¼ 1þ i. The values x ≤ 0.05 correspond to the indexes k ≥ kmax ¼ x−2max ¼ 400. Right panel:
maximal deviation, obtained for x ¼ xmax, of the approximation function APade [cf. (51), (52)] from the function A, in dependence of the
expansion order Jmax.

SPECTRAL DECOMPOSITION OF BLACK-HOLE … PHYSICAL REVIEW D 93, 124016 (2016)

124016-9



1

αj

Yj
m¼0

αm
γm

¼ j!ΓðsÞΓðsþ λÞΓðjþ s − λþ 1Þ
Γðjþ sþ 1ÞΓðs − λþ 1ÞΓðjþ sþ λþ 1Þ

¼ j−ð2λþsÞ ΓðsÞΓðsþ λÞ
Γðs − λþ 1Þ ½1þOðj−1Þ� ð58Þ

occurs frequently. Now we can address the solution to the
inhomogeneous Laplace transformed wave equation (12).
Let us start with the assumption that the initial data be of
polynomial form, that is, for some integer Kmax we may
write

Vð0; σÞ ¼ V0ðσÞ ¼
XKmax−1

k¼0

vkð1 − σÞk

V;τð0; σÞ ¼ _V0ðσÞ ¼
XKmax−1

k¼0

wkð1 − σÞk: ð59Þ

Later in the text, we will relieve this restriction to allow for
initial data that are analytic for σ ∈ ½0; 1�.
Writing accordingly the Laplace transform V̂ as

V̂ðσ; sÞ ¼
X∞
k¼0

akð1 − σÞk; ð60Þ

we arrive via Eq. (12) at the recursion relation

αkakþ1þβkakþ γkak−1¼Bk; ak ¼ 0 for k< 0; ð61Þ

with

Bk ¼ ðkþ 1Þvkþ1 − 2ð2kþ sþ 1Þvk
þ ð2kþ λþ sÞvk−1 − 2wk þ wk−1 ð62Þ

and Bk ¼ 0 for k < 0 and k > Kmax. It turns out that

ak ¼ ckHk þ CkIk ð63Þ

with the condition

c0kHk þ C0
kIk ¼ 0; ð64Þ

where the coefficients ck and Ck are to be determined, is a
well-functioning ansatz for all k ∈ Z for whichWk ≠ 0, i.e.
for k ≥ −1. Note that from (63) we learn that Ck ¼ 0 for
k < 0 since then ak ¼ Hk ¼ 0 and Ik ≠ 0. Moreover,
the coefficients ck are arbitrary and undetermined for
k < 0. In addition, when looking at (64) for k ¼ −1 and
taking H−1 ¼ C−1 ¼ 0 ≠ I−1 into account, we see that
also C0 ¼ 0.
If we now insert (63) into (61), thereby considering (29),

(42) and (64), we get for k ≥ −1:

αkðHkþ1c0k þ Ikþ1C0
kÞ ¼ Bk: ð65Þ

As α−1 ¼ B−1 ¼ 0, this equation is trivially satisfied for
k ¼ −1. For k ≥ 0, Eqs. (64) and (65) can be written as

�
Hk Ik
Hkþ1 Ikþ1

��
c0k
C0
k

�
¼

�
0
Bk
αk

�
ð66Þ

with the solution

c0k ¼
IkBk

αkWk
; C0

k ¼ −
HkBk

αkWk
; ð67Þ

i.e. by virtue of C0 ¼ 0,

ck ¼ c0 þ
Xk−1
j¼0

IjBj

αjWj
; Ck ¼ −

Xk−1
j¼0

HjBj

αjWj
: ð68Þ

In order to determine the constant c0 appearing in this
context, we require that ak ∼ Ik as k → ∞ for polynomial
initial data. This ensures that for ℜðsÞ > 0 the Laplace
transform V̂ is C∞ at σ ¼ 0 and does not blow up
exponentially there. We remark that only such solutions
V̂ can be taken to build up thewave fieldV via theBromwich
integral (15).
From (68) we learn that for polynomial initial data (60)

we have for k > Kmax:

ck ¼ c0 þ
XKmax

j¼0

IjBj

αjWj
≕ c� ¼ const; ð69Þ

Ck ¼ −
XKmax

j¼0

HjBj

αjWj
¼ const ð70Þ

Now, the requirement ak ∼ Ik as k → ∞means that c� must
vanish [cf. (63)], which leads us with (57) to the final
solution

ak ¼ −
1

I−1

�
Hk

XKmax

j¼k

IjBj

αj

Yj
m¼0

αm
γm

þ Ik
Xk−1
j¼0

HjBj

αj

Yj
m¼0

αm
γm

�
:

ð71Þ

In this expression, the limit Kmax → ∞ is easily performed,
allowing for initial data whose complex extension is
analytic within the circle C. Indeed, if we write

ak ¼
X∞
j¼0

GkjBj ð72Þ

with
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Gkj ¼ −
1

I−1
×

8>>>>><
>>>>>:

IkHj

αj

Yj
m¼0

αm
γm

for j < k

HkIj
αj

Yj
m¼0

αm
γm

for j ≥ k

; ð73Þ

we obtain the implication

lim
j→∞

����Bjþ1

Bj

���� ¼ ϵ ⇒ lim
j→∞

����Gkðjþ1ÞBjþ1

GkjBj

���� ¼ ϵ; ð74Þ

and hence convergence in (72) for all k ≥ 0 in the case of
initial data which are analytic within the circle C and thus
satisfy ϵ < 1. Note that (72) presents a representation of the
solution ak of (61) in terms of the discrete Green’s function
Gkj given in (73). This name is justified because of the
relation

αkGðkþ1Þm þ βkGkm þ γkGðk−1Þm ¼ δkm; ð75Þ

which follows from (72) and (61) for Bj ¼ δjm.
Let us now discuss the case in which the initial data are

analytic for all σ ∈ ½0; 1� but whose complex extension is
not analytic within the circle C, i.e. ϵ > 1 in (74). Then the
series (72) does not converge. Yet, in order to determine a
definite limit even in this case we introduce

akðxÞ ¼
X∞
j¼0

GkjBjxj ð76Þ

which is a Taylor series that converges for jxj < 1=ϵ. The
corresponding function akðxÞ may, however, be defined
on the entire interval x ∈ ½0; 1�, and we obtain a good
approximation again via a diagonal Padé approximant

aPadek ðxÞ ¼
Pjmax

j¼0 pjxj

1þPjmax
j¼1 qjx

j
ð77Þ

where the coefficients pj, qj [different from the ones in
(51)] are determined such that

djaPadek

dxj
ð0Þ ¼ djak

dxj
ð0Þ ¼ j!GkjBj ð78Þ

for j ¼ 0;…; 2jmax. The values aPadek ðx ¼ 1Þ serve us as
good approximations for the ak, and we thus obtain the
Taylor series (60) which describes a unique solution V̂ to
the inhomogeneous ODE (12). As the coefficients Bj of the
initial data appearing in (12) are characterized by a specific
radius 1=ϵ < 1 of convergence of the associated Taylor
series, we expect that also the coefficients ak are subject to
that convergence radius, meaning that (60) is valid only for
j1 − σj < 1=ϵ. Similar to the treatment above, we establish

V̂ðσ; sÞ in the entire range σ ∈ ½0; 1� by utilizing once more
a diagonal Padé-approximant (here with respect to the
coordinate σ):

V̂Padeðσ; sÞ ¼
Pkmax=2

j¼0 pjð1 − σÞj
1þPkmax=2

j¼1 qjð1 − σÞj
; ð79Þ

where the coefficients pj, qj [different from the ones in (51)
and (77)] are determined such that V̂Pade agrees with V̂ to
the order kmax, which amounts to the conditions

dkV̂Pade

dσk
ð1; sÞ ¼ dkV̂

dσk
ð1; sÞ ¼ ð−1Þkk!ak

for k ¼ 0;…; kmax: ð80Þ

The corresponding solutions V̂ðσ; sÞ are analytic for σ ∈
ð0; 1� and still C∞ at σ ¼ 0. Computed at the line (16), they
are perfectly suited to express the wave-field Vðτ; σÞ via the
Bromwich integral (15), as is done in Secs. IV C and A.

C. Numerical evaluation of the Bromwich integral

Before proceeding further on the way towards the
desired spectral decomposition of the wave field, we
investigate as a first application and test of the procedure
described in Sec. IV B the numerical evaluation of the
inverse Laplace transform. To this end, we compute the
function V̂ðsÞ for values of s located on the path Γ1 [see
Fig. 2 and Eq. (16)] and construct from these the solution to
the wave Eq. (9) in the form of the Bromwich integral (15).
While Appendix A contains more details regarding these
calculations, we concentrate here on the discussion of the
numerical behavior of this solution technique.
Figure 5 brings two examples of the time evolution for

initial data prescribed by V0ðσÞ ¼ 1 and _V0ðσÞ ¼ 0. The
first one represents a scalar perturbation with parameters
λ ¼ 0 and l ¼ 0 while the second one corresponds to an
electromagnetic perturbation with λ ¼ −1 and l ¼ 2. The
Bromwich integral is evaluated along the line
ℜðsÞ ¼ 1=10, and we plot Vðσ ¼ 0; τÞ, i.e. the dynamics
of the wave field at Iþ. The time evolution of the first
example shows an early tail decay whereas the second one
possesses a long-lasting ring-down phase.
In the figures, it becomes apparent that the Bromwich

integral method, when computed along the path Γ1, does
not seem to be well suited for the study of the wave’s late
time behavior. This observation is a consequence of the
systematic errors introduced by the discretization of
the integral. As discussed in the Appendix A, within our
approach the numerical solution tends to zero exponentially
which prohibits the resolution of the tail at very large times.
In contrast, the spectral decomposition of the wave field, to
be derived in the sequel, does provide in principle an
arbitrarily accurate description of the very late time tail.
Note that all the results in this section were obtained with
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the fixed Taylor resolution kmax ¼ 500, Jmax ¼ 10.
Moreover, the resolution for the numerical evaluation of
the integral (15) was set to nχ ¼ 200 (see Appendix A).

D. Quasinormal modes

1. Approach within the Cauchy formulation

We start by reviewing the definition of QNMs as usually
expressed in the literature (see, for instance, [13]) and
describe why a direct computation according to this
characterization seems to pose essential technical difficul-
ties when analysed in the context of perturbations in
asymptotically flat black-hole spacetimes.
Working with the Cauchy coordinates ft̄; xg introduced

in Sec. III C, one first considers in the region ℜðs̄Þ > 0
the homogeneous equation (24) which has two linearly
independent solutions F�ðx; s̄Þ, chosen in such a way that
they stay bounded as x → �∞. More specifically, the
solutions satisfy

lim
x→�∞

je�xs̄F�ðx; s̄Þj ¼ 1: ð81Þ

Then one constructs the Wronskian determinant9

W̄ðs̄Þ ¼ Fþ
;xðx; s̄ÞF−ðx; s̄Þ − F−

;xðx; s̄ÞFþðx; s̄Þ ð82Þ

and analytically extends it onto the half-plane ℜðsÞ < 0.
The QNMs are then defined as the values s̄n for
which W̄ðs̄nÞ ¼ 0.

In order to compute W̄ explicitly as defined above,10

we relate the two functions F� to solutions ΩðsÞ of
the homogeneous Laplace transformed equation
AðsÞΩðsÞ ¼ 0 [cf. (27) and (41)] appearing in our hyper-
boloidal framework. From the exponential fall-off of F−

when x → −∞ we conclude that F− can be written in terms
of ϕ. Concretely, with the help of Eq. (23) and the
regularity condition (81) we find

F−ðxðσÞ; s̄Þ ¼ e2s̄

2
Ξðσ; s̄Þϕðσ; 2s̄Þ ð83Þ

with the function Ξ defined in (26). For the second solution
Fþ that needs to satisfy the regularity condition (81), we
have to take

FþðxðσÞ; s̄Þ ¼ Ξðσ; s̄ÞΨðσ; 2s̄Þ; ð84Þ

where

Ψðσ; sÞ ¼ s
2
Φð0; sÞϕðσ; sÞ

Z
σ

0

es= ~σ
½ ~σð1 − ~σÞ�−ðsþ1Þd ~σ

~σ½ϕð ~σ; sÞ�2
ð85Þ

is a solution to (41) that is C∞-regular at σ ¼ 0 for all
ℜðsÞ > 0 (recall that λ ¼ 0 here). Note that once more the
function Φ appears which was defined in (38).
We now can write the Wronskian determinant W̄ðsÞ in

(82) as

FIG. 5. Solution of the Barden-Press equation (9) via the Bromwich integral method (15) for the initial data V0ðσÞ ¼ 1, _V0ðσÞ ¼ 0.
Left panel: time evolution of a scalar perturbation with parameters λ ¼ 0 and l ¼ 0. Right panel: electromagnetic perturbation with
parameters λ ¼ −1 and l ¼ 2. Both fields are evaluated at Iþ, i.e. at σ ¼ 0, and the Bromwich integral is performed along the line
ℜðsÞ ¼ 1=10 (see Fig. 2).

9For equations of the form (24), the Wronskian determinant
does not depend on the coordinate x [14].

10As mentioned in Sec. III C, the comparison between both
approaches is performed for λ ¼ 0. We furthermore recall that the
Laplace parameters are related by s ¼ 2s̄.
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W̄ðs̄Þ ¼ e2s̄

2
σ2ð1 − σÞΞðσ; s̄Þ2Wðσ; 2s̄Þ ð86Þ

with Wðσ; sÞ being the Wronskian determinant formed
from ϕ and Ψ:

Wðσ; sÞ ¼ ϕ;σðσ; sÞΨðσ; sÞ −Ψ;σðσ; sÞϕðσ; sÞ
¼ s

2
Φð0; sÞes=σσ−ðsþ2Þð1 − σÞ−ðsþ1Þ: ð87Þ

We finally find

W̄ðs̄Þ ¼ 2s̄e2s̄Φð0; 2s̄Þ; ð88Þ

which depends solely on s̄, as expected. Following the
discussion made after the introduction of Φðσ; sÞ in (38),
we see that W̄ðs̄Þ is well defined for ℜðs̄Þ > 0. However,
the values Φðσ ¼ 0; 2s̄Þ are involved which appear to be
determinable only numerically to some accuracy. Now,
they are supposed to constitute a function that is well-
defined on the right complex half-plane ℜðs̄Þ > 0. In order
to determine the set of QNMs it would then be necessary to
continue this function analytically to the left half-plane
ℜðs̄Þ < 0 and identify there its set of zeros. As an example,
if we simply had Φðσ; 2s̄Þ ¼ e−s̄=σ þ 1þ s̄ then we would
get Φðσ ¼ 0; 2s̄Þ ¼ 1þ s̄ for ℜðs̄Þ > 0, and this can of
course trivially be analytically expanded to the entire s̄
plane, despite the fact that Φð0; 2s̄Þ does not exist for
ℜðs̄Þ < 0. On the technical side it appears extremely
complicated to provide a reasonable and sound, sufficiently
accurate continuation of the numerically determined func-
tion values Φðσ ¼ 0; 2s̄Þ onto the left half-plane. Hence we
feel that the concrete determination according to the usual
definition of QNMs given in [13] needs to be performed in
some different, indirect manner.
In the next section, we provide a working definition of

the QNMs which results in the same expressions as the
ones used by Leaver in his approach utilizing continued
fractions [16]. In particular, we derive that the QNMs can
be characterized through the vanishing of the Wronskian
determinant

Wðσ; sÞ ¼ ϕ;σðσ; sÞψðσ; sÞ − ψ ;σðσ; sÞϕðσ; sÞ ð89Þ

of the two solutions ϕ and ψ to (41) that were discussed
extensively in Sec. IVA. Note that in order to analyse
whether this approach is equivalent to definition of QNMs
given in [13] it would be necessary to show that Ψ is
proportional to ψ , i.e. to prove that ψ , when considered
for real σ ≳ 0, is C∞-regular at σ ¼ 0 for ℜðsÞ > 0. Even
a mere numerical check of this equivalence would pose
again substantial technical difficulties; see discussion in
Sec. IVA.

2. Quasinormal modes as zeros of the discrete
Wronskian determinant

Quasinormal modes sn are specific values in the complex
s plane for which the procedure, described in Sec. IV B to
determine a unique solutions of the Laplace transformed
wave equation, fails. The reason for the failure is given by
the fact that

I−1ðsnÞ ¼ 0; ð90Þ

from which it follows that the construction (72), (73)
cannot be performed. The zeros of the function I−1ðsÞ
have always been found to be distributed discretely in the
left half-plane ℜðsÞ < 0. Figure 6 shows a contour plot of
I−1ðsÞ for λ ¼ l ¼ 0.
We immediately arrive at several equivalent

characterizations:
(i) For s ¼ sn as a QNM, the discrete Wronskian

determinant WkðfHkg; fIkgÞ vanishes for all
k ∈ Z. This follows directly from (57).

(ii) For s ¼ sn as a QNM, the Wronskian determinant
Wðσ; snÞ, as defined in (89) in terms of the two
solutions ϕ and ψ introduced in Sec. IVA, vanishes
for all σ ∈ ½0; 1�.

With (90) we obtain that Ik ¼ 0 for all k < 0 [see
(53) with α−1 ¼ 0, cf. (30)] and hence Ik ¼ I0Hk;
i.e., the two sequences fHkg, fIkg are linearly
dependent. As a consequence, the associated func-
tions ϕ and ψ satisfy ψ ¼ I0ϕ and, hence,
Wðσ; snÞ ¼ 0, cf. (89).

(iii) AQNM sn is defined by the existence of a nontrivial
solution ϕ ¼ ϕn to (27) that possesses a Taylor
expansion (28) with rapidly decreasing coefficients.
That is to say that there is, for each ν ∈ N, a positive
constant Cν such that for all k ∈ N,

jHkðsnÞj <
Cν

kν
: ð91Þ

This formulation follows directly from the fact that
Hk ¼ Ik=I0 ∼ e−κ

ffiffi
k

p
kζ for k → ∞; see (42).

FIG. 6. Contour plot of the function log jI−1ðsÞj in the complex
s plane for λ ¼ l ¼ 0. The centres of the concentrically arranged
closed curves are the locations of the quasinormal modes sn,
shown here for n ∈ f0; 1; 2g. At these points, I−1ðsÞ vanishes.
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Among these three characterizations, point (iii) plays a
preferred role. Points (i) and (ii) make use of the two
sequences fHkg and fIkg of coefficients which cannot
be defined in its entirety for s ∈ Z−; see discussion in
Appendix C. This means that the negative integer, the so-
called “algebraically special” QNMs sðlÞ [32] (to be treated
in Appendix D), is excluded in points (i) and (ii) (in the
definition of Hk and Ik in Sec. IVA we have set s∉Z−

0 ).
However, point (iii) still applies since the corresponding
solutions ϕðlÞ are polynomials and satisfy therefore trivially
this formulation. We conclude that (iii) should be regarded
as generically valid definition of QNMs for perturbations in
the asymptotically flat Schwarzschild spacetime.
For the numerical computation of the QNMs sn∉Z−

0 ,
Leaver [16] has looked at the recursion relation

bk−1 ¼ −
γk

βk þ αkbk
with bk ≔

Ikþ1

Ik
; ð92Þ

through which the coefficients bk can be written in terms of
continued fraction expressions. Starting with bkmax

¼ 1 for
some very large value kmax and climbing down via (92), one
obtains through the condition

0 ¼ 1

I0
ðα0I1 þ β0I0 þ γ0I−1Þ ¼ α0b0 þ β0

an equation that determines the QNMs sn. In practice, this
equation can be solved numerically using the FindRoot-
command provided within MATHEMATICA (see e.g. [36]). This
method achieves in principle arbitrary precision. However,
for very accurate calculations, extremely large vales kmax
and a high internal working precision of the MATHEMATICA

notebook need to be chosen. The costs of this numerical
calculation can be reduced drastically by making use of the
approximation function APade introduced in Sec. IVA

above. As described therein, given a suitable expansion
order Jmax we can choose a moderate number kmax (say
about 400) to obtain extremely accurate values Ik, in
particular for I−1. The zero sn is then found by a
Newton-Raphson scheme,

sn ¼ lim
j→∞

sðjÞn ; sðjþ1Þ
n ¼ sðjÞn −

I−1ðsðjÞn Þ
ð∂sI−1ÞðsðjÞn Þ

; ð93Þ

where a suitable initial guess sð0Þn is needed. Note that for
the numerical computations, the derivative ∂sI−1 can be
approximated through a finite difference expression. An
illustrative example demonstrating the accuracy and per-
formance of this calculation in comparison with Leaver’s
method is shown in Fig. 7.
As an additional note, we remark that (41) has, for

s ¼ sn being a QNM, a second solution Λ which is linearly
independent of ϕn. This solution Λ can be described
similarly as ψ in Sec. IVA by a series fLkg∞−∞ with

αkLkþ1 þ βkLk þ γkLk−1 ¼ 0;

lim
k→∞

Lke−κ
ffiffi
k

p
k−ζ ¼ 1; ð94Þ

as Λ ¼ Λþ þ Λ−, where

Λ− ¼
X∞
m¼1

L−m

ð1 − σÞm ; Λþ ¼
X∞
k¼0

Lkð1 − σÞk: ð95Þ

Observe the diverging asymptotics of the Lk in (94), and
hence Λ does not present a solution of the kind described in
(iii) of the above characterization. Furthermore, as Lk ≠ 0
for k < 0, Λ is singular at σ ¼ 1. We conclude that the
entirety of solutions to (27) is given by spanCðϕnÞ. This
point will be relevant below (see Sec. IV E).

FIG. 7. Errors in the numerical determination of the quasinormal modes sn, displayed as functions of the truncation number kmax for a
gravitational perturbation with parameters jλj ¼ 2 and l ¼ 2. The left panel shows the results according to the algorithm presented in
this work (with Jmax ¼ 10), while the right panel brings the corresponding value obtained with Leaver’s method of continued fractions.
It becomes apparent that the errors are drastically reduced by taking the asymptotic behavior (47), (48) of the coefficients Ik into account.
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We finally mention that, as a consequence of the
symmetry relation (11), we find that the quasinormal
modes sn come in complex-conjugated pairs, sn and s�n.

E. Quasinormal mode amplitudes

What happens to the solutions V̂ ¼ V̂ðsÞ of the inho-
mogeneous ODE (12), computed in Sec. IV B, if we
approach a QNM, i.e. if s → sn (here again sn∉Z−)? As
then I−1 → 0, Eq. (71) suggests that V̂ðsÞ will diverge in
this limit. Assuming that I−1 has merely a single zero at
s ¼ sn,

11 the corresponding V̂ðsÞ will possess a single pole
at s ¼ sn. Accordingly, for values s close to sn, we write

akðsÞ ¼
hk

s − sn
þ gkðsÞ; ð96Þ

where hk does not depend on s (in contrast to ak and gk).
With the single polelike singularity of V̂, the coefficient hk
is supposed to be the residue of ak at sn whereas gkðsÞ
presents the secondary part of its Laurent series. That is to
say that the coefficients gkðsÞ are supposed to be analytic in
the vicinity of sn. As will become clear below, the residues
fhkg turn out to be proportional to fHkðsnÞg, and the
corresponding proportionality factor ηn will play a crucial
role as the quasinormal mode amplitude in the desired
spectral decomposition (3).
For the computation of ηn, let us start with initial data

that are analytic within the circle C [i.e. for which ϵ < 1 in
(74)] and generalize the corresponding expression in a
subsequent step. We formulate the recursion relation (61) as

AðsÞ · fakg ¼ fBkg ð97Þ

with the operator AðsÞ defined by

½AðsÞ · fakg�k ≔ αkakþ1 þ βkak þ γkak−1: ð98Þ

We now insert (96) into the relation (97), thereby rewriting
(97) by using another operator Cn which is given through

AðsÞ ¼ AðsnÞ þ ðs − snÞCnðsÞ; ð99Þ
i.e.:

½CnðsÞ · fakg�k ¼ ðkþ 1Þakþ1 − 2ð2kþ 1þ sþ snÞak
þ ð2kþ sþ sn þ λÞak−1: ð100Þ

We obtain

½AðsnÞ þ ðs − snÞCnðsÞ� ·
fhkg
s − sn

þAðsÞ · fgkg ¼ fBkg;
ð101Þ

which provides us in the limit s → sn with the condition

AðsnÞ · fhkg¼! 0:

In the vicinity of the QNM sn, i.e. for 0 < js − snj < ε with
some ε ≪ 1, Eq. (96) describes the solution to (101) with
vanishing and rapidly decreasing coefficients fhkg, fgkg
for k < 0 and k → ∞ respectively. Hence, according to the
fact that ϕn is the only C∞-solution on the interval σ ∈
½0; 1� (cf. discussion at the end of Sec. IV D), we have

hk ¼ ηnHkðsnÞ ð102Þ

with the QNM amplitude ηn as proportionality factor. We
thus obtain

½AðsnÞ þ ðs − snÞCnðsÞ� ·
fhkg
s − sn

¼ ηnCnðsÞ · fHkðsnÞg:

Equation (101) reads now

AðsÞ · fgkgðsÞ ¼ fBkgðsÞ − ηnCnðsÞ · fHkðsnÞg: ð103Þ

For s ≠ sn, the solution of (103) can be found using the
formula (71). In particular, we obtain

g0ðsÞ ¼ −
1

I−1

X∞
j¼0

IjðBj − ηnCjÞ
αj

Yj
m¼0

αm
γm

ð104Þ

with

Cj ≔ ½CnðsÞ · fHkðsnÞg�j: ð105Þ

In the limit s → sn, we have I−1 → 0, and (104) provides us
with a finite value g0 only if

ηn ¼
2
4P∞

j¼0

HjBj

αj

Qj
m¼0

αm
γmP∞

j¼0

HjCj

αj

Qj
m¼0

αm
γm

3
5
s¼sn

; ð106Þ

where we utilized that IjðsnÞ ¼ I0ðsnÞHjðsnÞ. Note that the
sum in the denominator is assured to converge since the
addends are rapidly decreasing as j → ∞ [see (42), (58),
(100)]. The numerator can be written as N ¼ P∞

j¼0 GjBj,
and since jGjþ1Bjþ1=ðGjBjÞj → ϵ as j → ∞ for our initial
data that are analytic within the circle C, we can again
conclude convergence.
Now the case in which the initial data are analytic for all

σ ∈ ½0; 1� but whose complex extension is not analytic
within C, i.e. ϵ > 1 in (74), is treated as in Sec. IV B. We
introduce NðxÞ ¼ P∞

j¼0GjBjxj and expand it to x ¼ 1

with the help of an associated diagonal Padé approximant.
As an important quantity for the time range, within

which the desired spectral decomposition formula (3) is11This assumption has always been found to be realized.
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valid, we now define the growth rate of the quasinormal
mode amplitudes,

νQNMðσÞ ¼ lim
n→∞

ln jηnϕnðσÞj
jℜðsnÞj

: ð107Þ

The following statements hold:
(1) As

νQNMðσÞ ¼ lim
n→∞

ln jηnj
jℜðsnÞj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼νQNMð1Þ

þ lim
n→∞

ln jϕnðσÞj
jℜðsnÞj

;

the profile of νQNMðσÞ is universally given by the
second term, while the first one is νQNMð1Þ (which
follows from the scaling condition H0 ¼ 1) and
presents a constant shift depending on the ini-
tial data.

(2) For polynomial initial data (59), we obtain a uni-
versal growth rate νQNMðσÞ. This follows from the
fact that the numerator N in (106) is algebraic in sn.
Hence, we get

νQNMð1Þ ¼ − lim
n→∞

ln jP∞
j¼0

HjCj

αj

Qj
m¼0

αm
γm
js¼sn

jℜðsnÞj
¼ −2;

i.e. an expression that is independent of the particu-
lar choice of the polynomial initial data. Note that in
our numerical investigations, this limit has been
observed to be always −2, independently of the
choices for λ and l.

(3) Looking at (3), we see that the addends in the sum
fall off exponentially for τ > νQNMðσÞ. Adding a
similar argument with respect to the continuous
integral part, we will be able to argue in Sec. VI,
that this means full validity of the spectral decom-
position formula (3) for such times.

F. The Laplace transform along the branch cut

Let us now consider the situation in which we approach
the negative real axis within the complex s plane. Again
we exclude, for the time being, integer s values, i.e.
s ∈ R−nZ−. (As mentioned in footnote 6, s ∈ Z− will
be treated in Appendix C.) Towards this axis, we can get
from above or from below. In the first case, argðsÞ → π, the
corresponding κ ¼ 2

ffiffiffi
s

p
with ℜðκÞ > 0 tends to the pos-

itive imaginary axis, while in the latter one, argðsÞ → −π, it
runs towards the negative imaginary axis. Consequently,
we obtain via the method presented in Sec. IV B for s ∈
R−nZ− the two solutions

V̂�ðsÞ ¼ lim
ε→0

V̂ðs� ijεjÞ

with

V̂�ðσ; sÞ ¼
X∞
k¼0

a�k ð1 − σÞk:

In the computation of the a�k according to steps described in
Sec. IV B, the coefficients Bk, Hk as well as I�k are
involved. Only the latter ones are different when getting
to the negative real axis from above or from below; see
asymptotics in (42).
Now, the symmetry condition (11) implies that

V̂−ðsÞ ¼ ½VþðsÞ��; a−k ¼ ½aþk ��; I−k ¼ ½Iþk ��;

and the asymptotics (42) tells us that these quantities have,
in general, both real and imaginary parts. With nonvanish-
ing imaginary part of V̂�ðsÞ we conclude that the Laplace
transform V̂ðsÞ possesses, besides the simple poles at the
QNMs sn, a jump along the negative real axis, s ∈ R−:

lim
ε→0

½V̂ðsþ ijεjÞ − V̂ðs − ijεjÞ� ¼
X∞
k¼0

ðaþk − a−k Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≕dk

ð1 − σÞk:

Therefore, the negative real axis appears as a branch cut
with respect to V̂ðsÞ. Now, as both aþk and a−k satisfy the
recursion relation (61), the coefficients dk ¼ aþk − a−k
satisfy the homogeneous recurrence relation (29) and,
moreover, d−1 ¼ 0. Hence we have dk ¼ d0Hk and thus:

lim
ε→0

½V̂ðsþ ijεjÞ − V̂ðs − ijεjÞ� ¼ −2πiηðsÞϕðsÞ; ð108Þ

where we introduced ηðsÞ ≔ −d0=ð2πiÞ which will appear
in the spectral decomposition formula (3) as a branch cut
amplitude. The computation of d0 in terms of (71) yields

d0 ¼ aþ0 − a−0 ¼ −
X∞
j¼0

Bj

αj

Yj
m¼0

αm
γm

�
Iþj
Iþ−1

−
I−j
I−−1

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

≕Dj

;

where the coefficients Dj satisfy again the homogeneous
recurrence relation (29) and, moreover, D−1 ¼ 0. We
conclude that Dj ¼ D0Hj and obtain, finally,

ηðsÞ ¼ ℑ

�
Iþ0
πIþ−1

�X∞
j¼0

Bj
Hj

αj

Yj
m¼0

αm
γm|fflfflfflfflfflffl{zfflfflfflfflfflffl}

≕Gj

: ð109Þ

Again, this formula is valid as it stands for initial data that
are analytic within the circle C. For initial data that are
analytic for all σ ∈ ½0; 1� but whose complex extension is
not analytic within C, i.e. ϵ > 1 in (74), we introduce once
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more NðxÞ ¼ P∞
j¼0GjBjxj and expand it to x ¼ 1with the

help of an associated diagonal Padé approximant.
For representative sample initial data, the magnitude

jηðsÞϕðσ; sÞj is shown in Fig. 9.
Finally, let us define as in Sec. IV E the growth rate of the

branch cut amplitudes,

νcutðσÞ ¼ − lim
n→∞

�
max

−ðnþ1Þ≤s<−n
ln jηðsÞϕðσ; sÞj

jsj
�
: ð110Þ

Note that the three statements at the end of Sec. IV E can be
transferred to the growth rate of the branch cut amplitudes,
with the second point modified by

− lim
n→∞

�
max

−ðnþ1Þ≤s<−n
1

jsj ln
����ℑ
�

Iþ0
πIþ−1

�����
�
¼ −2:

It is interesting to note that in our numerical investigations
of analytic initial data we observe that the growth rates
νQNM and νcut of quasinormal mode amplitudes and branch
cut amplitudes coincide. We believe that this is a conse-
quence of the fact that these quantities arise from similar
expressions, cf. (106) and (109). Henceforth we will simply
use νðσÞ to denote the mutual growth rates νQNM and νcut.

G. Asymptotic expansion of the Laplace transform

In order to arrive at the spectral decomposition (3) in
Sec. V via an appropriate deformation of the Bromwich
integration path (see Fig. 2), we have to consider the
contribution of the integral over the semicircular portion of
Γ2 in the complex s plane for τ > 0. The two cases, positive
and negative growth rates ν, have to be discussed
separately.
Let us approach the matter with the auxiliary function

WðτÞ ¼
Z

0

−∞
esðτ−νÞ sinðωsÞds ¼ ℑ

�
1

τ − ν − iω

�
; ð111Þ

where we took in the desired formula (3) only the
continuous integral part and, moreover, inserted for
ηðsÞϕðσ; sÞ its asymptotics given through the growth rate
ν, cf. (110). The phase ω (let us take ω > 0) has been added
in order to have a regular function W for τ > 0. Note that
the integral can only be performed for τ > ν, but the result
is defined on the entire complex τ plane with single poles
at ν� iω.
Now, the integrand of the Bromwich integral (15) is

given by V̂ðσ; sÞesτ. Consequently, we have to discuss here
ŴðsÞesτ with

ŴðsÞ ¼ L½WðτÞ�ðsÞ ¼ 1

2i
ðe−sðνþiωÞE1½−sðνþ iωÞ�

− e−sðν−iωÞE1½−sðν − iωÞ�Þ;

where E1 is an exponential integral. The function

fðzÞ ¼ ezE1ðzÞ ð112Þ

has a branch cut along the negative real axis in the complex
z plane. Let us discuss this function as being defined on a
Riemannian surface with infinitely many sheets. The
crossing of the negative real axis means the analytic
transition into a neighboring sheet. The function f is best
described by another function

g∶½0;∞Þ × ð−∞;∞Þ → C; gðr;φÞ ¼ fðreiφÞ;
ð113Þ

where z ¼ reiφ is assumed to be located in the kth sheet
with k ¼ ⌊ðφþ πÞ=ð2πÞ⌋.12 It turns out that

lim
r→∞

ln jgðr;φÞj
r

¼ sin

�
φþ 5π

2

�
for φ ∈

�
−
5π

2
;−

3π

2

�

lim
r→∞

jgðr;φÞj ¼ 0 for φ ∈
�
−
3π

2
;
3π

2

�

lim
r→∞

ln jgðr;φÞj
r

¼ sin

�
φ −

3π

2

�
for φ ∈

�
3π

2
;
5π

2

�
:

ð114Þ

Now, (112) means

ŴðsÞ ¼ 1

2i
½gðr;φþÞ − gðr;φ−Þ� ð115Þ

with (ω > 0),

r ¼ jsj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ ω2

p
; φ� ¼ argðsÞ � ½argðνþ iωÞ − π�:

Let us discuss ν < 0 first. We have −π < argðsÞ < π and
π=2 < argðνþ iωÞ < π. We conclude that

−
3π

2
< φþ < π; −π < φ− <

3π

2
;

and hence jŴðsÞj vanishes whenever s→∞ with −π <
argðsÞ< π.
The case ν > 0 is different. Now we have

argðνþ iωÞ ∈ ð0; π=2Þ, and we get for argðsÞ > π
2
þ

argðνþ iωÞ:

jgðr;φ−Þj ∼ er sin ϵ− ; ϵ− ¼ argðsÞ − argðνþ iωÞ − π

2
:

Likewise, for argðsÞ < − argðνþ iωÞ − π
2
we obtain

12Here we used the notation ⌊ · ⌋ for the floor function.
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jgðr;φþÞj ∼ er sin ϵþ ; ϵþ ¼ − argðsÞ − argðνþ iωÞ − π

2
:

We conclude that, for ν > 0, the function ŴðsÞ diverges
exponentially as jsj → ∞ when the limit is performed
in the circular sector j argðsÞj > π

2
þ argðνþ iωÞ.13 The

strongest divergence is obtained for j argðsÞj → π; there
we have jŴj ∼ ejsjν.
In Fig. 10, we display the behavior of the Laplace

transform V̂ðσ; sÞ in the half-plane ℜðsÞ < 0 for meromor-
phic initial data V0ðσÞ ¼ 2ℜ½ðσ − σ0Þ−1�, _V0ðσÞ ¼ 0 with
single poles at σ0 and σ�0. We take σ0 ¼ 0.5þ iy and
considered, in particular, the parameter y ¼ 0.7. For these
initial data, we obtain at σ ¼ 0.5 a positive growth rate
ν ≈ 0.13 (see Figs. 8 and 9). In Fig. 10, the existence of a
circular sector j arg sj > 0.99π becomes apparent within
which V̂ðσ; sÞ diverges exponentially. As expected, the
strongest divergence occurs for j arg sj ¼ π with the rate ν.
We now turn to the deformation of the Bromwich

integration path. Let us again consider the case ν < 0 first.
Although jŴðsÞj → 0 for jsj → ∞; j argðsÞj < π, we can-
not simply apply Jordan’s lemma in order to obtain
vanishing contribution of the integral over the semicircular
portion of Γ2 in the complex s plane. The reason is that Ŵ
possesses a branch cut along the negative s axis, a fact
which is not included in the formulation of Jordan’s lemma.
Moreover, when considering V̂ we see that it possesses
poles at the QNMs s ¼ sn, accumulating at infinity. One
might be reminded of the function 1= sinðπsÞ with poles at
real integer values. However, for 1= sinðπsÞ the residues of

the poles remain of finite magnitude as s tends to infinity. In
contrast, the residues of V̂ die out at the rate e−ℜðsnÞν.
Likewise, also the jump along the negative s axis falls off at
the rate e−sν when s → −∞. One may say that asymptoti-
cally the singular structures of V̂ and Ŵ disappear expo-
nentially and play merely a sub-dominant role.
Let us illustrate this issue by a representative example.

The function

ĥðsÞ ¼
X∞
k¼1

2−k

sþ k
¼ 1

2
Φ

�
1

2
; 1; 1þ s

�
; ð116Þ

where Φ is the so-called Lerch transcendent (see e.g. [37]),
resembles the property of V̂ of having infinitely many first-
order poles accumulating at infinity with rapidly decreasing
residuals. We have ĥ → 0 for jsj → ∞, j argðsÞj < π. Let us
now discuss the Bromwich integral (see (15), (16) and
Fig. 2) which yields the associated inverse Laplace trans-
form h:

hðτÞ ¼ L−1½ĥðsÞ�ðτÞ ¼ 1

2πi

Z
Γ1

ĥðsÞesτds: ð117Þ

The inverse Laplace transformation can be applied sepa-
rately to each addend in (116), giving thus

hðτÞ ¼
X∞
k¼1

2−ke−kτ ¼ 1

2eτ − 1
; ð118Þ

which is just the sum of the residues of ĥðsÞesτ in the left
half-plane:

X∞
k¼1

Res−k½ĥðsÞesτ� ¼
X∞
k¼1

2−ke−kτ ¼ 1

2eτ − 1
: ð119Þ

FIG. 8. Behavior of the residues ηnϕnðσÞ of the Laplace transform V̂ðσ; sÞ at the quasinormal modes fsng with prescribed parameters
λ ¼ l ¼ 0. Left panel: for the polynomial initial data V0ðσÞ ¼ σ2ð1 − σÞ4, _V0ðσÞ ¼ 0 the decay is shown for σ ¼ 0 (at Iþ) and for σ ¼ 1
(at the horizon). The inset brings the growth rate νQNMðσÞ for all σ ∈ ½0; 1�. Right panel: comparison of the grow rate for the polynomial
initial data against meromorphic initial data with single poles in the complex σ plane. Here, V0ðσÞ ¼ 2ℜ½ðσ − σ0Þ−1�, _V0ðσÞ ¼ 0, with
σ0 ¼ 0.5þ iy. While polynomial initial data show a universal behavior, more generic initial data introduce a constant shift in the profile.

13Outside this sector, in particular for j argðsÞj < π=2, jŴj
tends to zero when jsj → ∞, and hence the Bromwich integral
(15) exists.
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It follows that

1

2πi

Z
Γ2

ĥðsÞesτds ¼ 1

2πi

Z
Γ1

ĥðsÞesτds

¼
X∞
k¼1

Res−k½ĥðsÞesτ�;

i.e. the integral over the semicircular portion of Γ2 vanishes
in the limit of infinite radius. That is to say that Jordan’s
lemma applies, even though the function ĥ possesses
poles accumulating at infinity (and therefore does not

satisfy the prerequisites required for a strict application
of Jordan’s lemma).
From the preceding considerations, we find that for

ν < 0 the integral over the semicircular portion of Γ2 in
the complex s plane vanishes. In contrast, for ν > 0 the
exponential divergence in the circular sector j argðsÞj >
π
2
þ argðνþ iωÞ ruins the applicability of Jordan’s lemma.

However, for times τ > ν the functions V̂ðσ; sÞesτ as well as
ŴðsÞesτ possess the desired fall-off at infinity. This results
from the fact that the strongest divergence in the circular
sector is given by ejsjν in the limit j argðsÞj → π. We thus
may finally conclude that the integral over the semicircular
portion of Γ2 does not contribute for (i) τ > 0 when ν < 0,
and (ii) τ > ν when ν > 0.

V. SPECTRAL DECOMPOSITION

It is now an easy task to put the pieces together that we
collected in the previous sections. The starting point is the
representation (15) of the wave field V. If we deform the
Bromwich integration path from Γ1 to Γ2 (see Fig. 2), we
gather
(1) QNM contributions: Writing according to (60), (96),

(102) and (28) the Laplace transform V̂ in the
vicinity of the QNM sn as

V̂ðσ; sÞ ¼ ηnϕnðσÞ
s − sn

þ
X∞
k¼0

gkðsÞð1 − σÞk ð120Þ

with coefficients gkðsÞ that are analytic in the
vicinity of sn (cf. discussion in Sec. IV E), we find

1

2πi

X∞
n¼0

I
Cn

V̂ðσ;sÞeτsds¼
X∞
n¼0

ηnϕnðσÞeτsn ; ð121Þ

FIG. 9. Jump ηnϕnðσÞ of the Laplace transform V̂ðσ; sÞ along the negative axis s ∈ R− with prescribed parameters λ ¼ l ¼ 0. Left
panel: for polynomial initial data V0ðσÞ ¼ σ2ð1 − σÞ4, _V0ðσÞ ¼ 0 the decay is shown for σ ¼ 0 (at Iþ) and for σ ¼ 1 (at the horizon).
The inset brings the growth rate νcutðσÞ for all σ ∈ ½0; 1�. Right panel: comparison of the grow rate for polynomial initial data against
meromorphic initial data with single poles in the complex σ plane. Here, V0ðσÞ ¼ 2ℜ½ðσ − σ0Þ−1�, _V0ðσÞ ¼ 0, with σ0 ¼ 0.5þ iy. We
observe exactly the same behavior for the growth rate as in the quasinormal mode case (see Fig. 8), i.e., νQNMðσÞ ¼ νcutðσÞ.

FIG. 10. Behavior of the Laplace transform V̂ at the spatial
location σ ¼ 0.5 in the half-plane ℜðsÞ < 0 for meromorphic
initial data V0ðσÞ¼2ℜ½ðσ−σ0Þ−1�, _V0ðσÞ¼0 with σ0 ¼ 0.5þ
i0.7. It becomes apparent that V̂ grows exponentially for
j argðsÞj > 0.99π. The strongest divergence is obtained for
j argðsÞj ¼ π and coincides there with the growth rate ν
(here, ν ≈ 0.13).
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where Cn denotes a sufficiently small circle which
encompasses in a counterclockwise fashion the
QNM sn (and only this one) and does not touch
or cross the negative real s axis.

(2) The branch cut contribution amounts to

1

2πi

Z
0

−∞
½V̂−ðσ; sÞ − V̂þðσ; sÞ�eτsds

¼ −
1

π

Z
0

−∞
ℑ½V̂þðσ; sÞ�eτsds

¼
Z

0

−∞
ηðsÞϕðσ; sÞeτsds;

where the integral is to be performed along the
negative real s axis.

(3) No contribution from the semicircle for (i) τ > 0
when ν < 0, and (ii) τ > ν when ν > 0, see dis-
cussion in Sec. IVG. We recall that ν resembles the
mutual growth rate of QNM and branch cut ampli-
tudes, cf. (107) and (110), obtained for analytic
initial data.

In sum, we arrive at the following spectral decomposition
of the wave field satisfying the dissipative wave
equation (9):

Vðτ; σÞ ¼
X∞
n¼0

ηnϕnðσÞeτsn þ
Z

0

−∞
ηðsÞϕðσ; sÞeτsds:

ð122Þ

We recap that fsng are the QNMs of our wave equation in
question. The functions ϕnðσÞ and ϕðσ; sÞ are the solutions
to the homogeneous equation (27) taken at the QNMs and

the branch cut s ∈ R−, respectively. The initial data are
analytic for all σ ∈ ½0; 1� and imply corresponding QNM
amplitudes fηng and the branch cut amplitude ηðsÞjs∈R−

with characteristic mutual growth rate ν ¼ νðσÞ. For ν < 0,
the formula (122) was derived from the Bromwich integral
for coordinate times τ > 0. However, having established
(122), we see that the expressions actually make sense for
any τ > ν, meaning that we may analytically expand the
solution to such times. In sum, we may conclude that (122)
is a valid representation of the wave field solution for all
times τ > νðσÞ.
A reformulated version is given by

Vðτ; σÞ ¼ 2
X∞
n¼0

ℜðηnϕnðσÞeτsnÞ þ
Z

0

−∞
ηðsÞϕðσ; sÞeτsds;

ð123Þ
where we utilized the condition (11) that allows us to count
merely the quasinormal modes sn with ℑðsnÞ > 0, as in
Fig. 2. If algebraically special QNMs need to be taken into
account, then the formula gets slightly modified; see
Appendix D, Eq. (D10) therein.
Figure 11 displays the time evolution according to the

spectral decomposition (123) for the two types of initial
data discussed in this work. The left panel brings the
results of a polynomial initial data V0ðσÞ ¼ 1, _V0ðσÞ ¼ 0
and, in order to compare with the results from Fig. 5
with chose λ ¼ 0, l ¼ 0 and −1, l ¼ 2. Moreover, the
right panel compares the evolution according to (123)
with the dynamics obtained numerically with the fully
spectral code [34] for the meromorphic initial data
V0ðσÞ ¼ 2ℜ½ðσ − σ0Þ−1�, _V0ðσÞ ¼ 0 (σ0 ¼ 0.5þ iy) and
λ ¼ 0, l ¼ 0. According to the growth rate νðσÞ showed

FIG. 11. Time evolution of the field Vðτ; σÞ according to the spectral decomposition (123). Left panel: polynomial initial data with
V0ðσÞ ¼ 1, _V0ðσÞ ¼ 0, for λ ¼ 0, l ¼ 0 and −1, l ¼ 2. The spectral decomposition provides an efficient and stable method for a long
time evolution (to be compared with the inverse Laplace transformation method in fig. 5). Right panel: meromorphic initial data
V0ðσÞ ¼ 2ℜ½ðσ − σ0Þ−1�, _V0ðσÞ ¼ 0, with σ0 ¼ 0.5þ i0.7 and λ ¼ 0, l ¼ 0. The continuous lines correspond to an evolution
according to (123) while the dots are the results of the explicit time evolution with the code [34]. The spectral decomposition (123) is
valid for time τ ≳ νðσÞ.
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in the previous figs. 8 and 9, for y ¼ 0.7, the spectral
decomposition is valid only for τ ≳ 0.83 at Iþ (σ ¼ 0),
whereas Eq. (123) is valid for all time τ ≳ −0.17 (in
particular τ ≥ 0) at the horizon (σ ¼ 1).
All in all, we have found that the formula (123) describes

the wave field for all times τ > νðσÞ and is, in contrast to the
Bromwich integral method presented in Sec. IV C and
Appendix A, particularly well suited to resolve highly
accurately the late time tail behavior. More concretely, if τ
is very large, then only the amplitude ηðsÞ within a tiny
vicinity of the origin s ¼ 0 in the complex s plane is
important. Although the computation gets harder as s → 0
[note that the coefficients μj diverge in this limit, cf. (48) and
(50)], ηðsÞ can be computed independently for each s directly
from the initial data. This is a striking advantage compared to
a time evolution code forwhich the tail behavior results froma
successive marching forward in time and depends therefore
on all steps computed previously. A sophisticated study of
tails in the more general Kerr spacetime is planned to be
presented in a forthcoming article.

VI. DISCUSSION

In this article, we have numerically constructed the
ingredients fsn;ϕn; ηng∞n¼1 as well as fϕðsÞ; ηðsÞgs∈R− of
the spectral decomposition (123) that describes solutions V
to the initial value problem of the dissipative wave
equation (9) with initial data that are analytic in terms of
the compactified spatial hyperboloidal coordinate
σ ∈ ½0; 1�. The spectral form (123) arises through the study
of the corresponding Laplace-transformed equation and an
appropriate deformation of the associated Bromwich inte-
gration path. The ingredients in question were established
in a sophisticated analysis of Taylor coefficients of relevant
functions appearing in this context.
In the course of the aforementioned steps, we have

discussed in detail that the characterization of QNMs in
terms of the vanishing of the Wronskian determinant
formed of specifically normalized solutions to the homo-
geneous Laplace transformed equation as described in [13]
implies severe technical problems when attempting a
straight-forward numerical computation.
In contrast, a well-functioning definition, which provides

the justification of Leaver’s continued fraction method [16]
to determine the QNMs, is given through the vanishing of
an appropriate discrete Wronskian determinant.
The form (123) has been numerically confirmed in

a number of tests in which a selection of different analytical
initial data were chosen. After the determination of
fsn;ϕn; ηng∞n¼1 and fϕðsÞ; ηðsÞgs∈R− , formula (123) repre-
sents the desired solution for all coordinate times τ for which
(123) makes sense, that is for τ > νðσÞ where νðσÞ is the
mutual growth rate of QNM and branch cut excitation
coefficients. The test was performed through a comparison
with the fully-pseudo spectral time evolution algorithm
described in [34].

Before moving on, we elaborate on striking similarities
with a specific dissipative wave equation on hyperbolic
slices in Minkowski space that can be handled explicitly.

A. A dissipative wave equation with obstacle in
Minkowski space

The following example is often being used in the so-
called Lax-Phillips scattering theory [38]. Here, we aim not
at a discussion within that framework but rather investigate
the equation along the lines developed in this article.
Consider the ordinary wave equation on Minkowski

space,

∂2U
∂x2 þ ∂2U

∂y2 þ ∂2U
∂z2 −

∂2U
∂t2 ¼ 0;

written in the Cartesian coordinates ðx; y; z; tÞ of some
inertial frame. We introduce the specific hyperbolic coor-
dinates ðϱ; θ;φ; uÞ given through

x ¼ rOðϱþ 1Þ sin θ cosφ
y ¼ rOðϱþ 1Þ sin θ sinφ
z ¼ rOðϱþ 1Þ cos θ
t ¼ rOð2uþ ϱþ 1Þ;

where rO denotes the coordinate radius of a given spherical
obstacle at which we require the wave field U to vanish at
all times. Assuming that U also vanishes at Iþ (described
by ϱ → ∞), we rewrite it as

Vðu; ϱ; θ;ϕÞ ¼ ðϱþ 1ÞUðu; ϱ; θ;ϕÞ

and expand the auxiliary field Vðu; ϱ; θ;ϕÞ into the
spherical harmonics Ylmðθ;φÞ basis,

Vðu; ϱ; θ;ϕÞ ¼
X∞
l¼0

Xl
m¼−l

Vlmðu; ϱÞYlmðθ;φÞ:

We thus obtain a specific wave equation for each mode
Vlmðu; ϱÞ (again we omit the indices lm from now on):

V;ϱϱ − V;uϱ −
lðlþ 1Þ
ðϱþ 1Þ2 V ¼ 0; Vðu; ϱ ¼ 0Þ ¼ 0:

ð124Þ

The second equation represents the boundary condition that
the wave field be always zero at the obstacle. We consider
(124) specifically for l ¼ 0, and with the initial data
Vð0; ϱÞ ¼ V0ðϱÞ the solution

Vðu; ϱÞ ¼ V0ðϱþ uÞ − V0ðuÞ ð125Þ

arises.

SPECTRAL DECOMPOSITION OF BLACK-HOLE … PHYSICAL REVIEW D 93, 124016 (2016)

124016-21



We now formulate the following question: For which
initial data V0 can the solution (125) be written in the form
(123)? The answer is given by the inverse Laplace trans-
form applied to ðV0 − V0jϱ→∞Þ in terms of the spatial
coordinate ϱ. In fact, if V0 can be written as

V0ðϱÞ ¼
Z

0

−∞
ηðsÞðeϱs − 1Þds ¼ Lfηð−sÞgðϱÞ þ V∞;

V∞ ¼ V0jϱ→∞ ¼ −
Z

0

−∞
ηðsÞds ð126Þ

for some function ηðsÞ, then (125) turns into

Vðu; ϱÞ ¼
Z

0

−∞
ηðsÞðeϱs − 1Þ|fflfflfflfflffl{zfflfflfflfflffl}

¼ϕðϱ;sÞ

esuds; ð127Þ

i.e., we obtain the form (123) with a purely continuous part.
Now, if we expand V0 into the entire complex ϱ plane and
find some finite value,

ϱmax ≔ maxfℜðϱSÞ∶ϱS is singularity of V0g; ð128Þ

i.e. all singularities of V0 are located to the left of the line
ℜðϱÞ ¼ ϱmax, then we have for s → −∞:

jηðsÞj ¼ jL−1fV0ðϱÞ − V∞gð−sÞj ∼ e−sϱmax : ð129Þ

We thus conclude: The spectral decomposition (127) holds
for u > ϱmax if the complex continuation of the initial data
V0ðϱÞ onto the complex ϱ plane reveals singular structures
located entirely to the left of the line ℜðϱÞ ¼ ϱmax away
from infinity.
This is a very similar situation as the one that we

encountered in the Schwarzschild case. In this
Minkowski example, however, we can identify an explicit
relation between the spatially constant growth rate and the
location of singular structures of the initial data V0ðϱÞ,
namely ν ¼ ϱmax.
Going further and considering now singularities located

at infinity in the complex ϱ plane, we find that the matter
gets more subtle. The following examples provide an
impression (take α, ω ∈ Rþ in the examples 2 and 4):

No: V0ðϱÞ ηðsÞ
1 e−ϱ − 1 δðsþ 1Þ
2 e−αϱ sinðωϱÞ nonexistent

3 e−
ffiffiffiffiffiffi
ϱþ1

p
− 1 esþ1=ð4sÞ

2
ffiffi
π

p ð−sÞ3=2

4 ðϱþ 1Þ−α − 1
esð−sÞα−1

ΓðαÞ

ð130Þ

The first example describes a purely exponential falloff
of the solution, while the second one is a ring down
oscillation with arbitrarily chosen frequency ω and
decay rate α.

If we discuss the several choices V0 in terms of a
compactified spatial coordinate σ ¼ 1=ðϱþ 1Þ, then we
find for the first three examples in (130) that the corre-
sponding V0ðσÞ is C∞ at σ ¼ 0. In the fourth example,
however, we have V0ðσÞ ¼ σα − 1 which, for α < 1, is not
differentiable at σ ¼ 0. We conclude that Ck-regularity, and
in particular C∞-smoothness of the initial data V0ðσÞ at
σ ¼ 0, is neither sufficient nor necessary for the existence
of a corresponding function ηðsÞ. This point deserves
further clarification, to be conducted elsewhere.

B. Conclusion and outlook

The final result of our analytical considerations com-
bined with numerous numerical examples can be formu-
lated as the following conjecture:
Given analytical initial data V0ðσÞ and _V0ðσÞ for the

wave equation (9). Then the spectral decomposition (123)
holds for all τ > νðσÞ where νðσÞ is the mutual growth rate
of quasinormal mode and branch cut excitation coefficients
defined by (107) and (110).
A strict mathematical proof of this conjecture remains a

challenging task which is far outside the scope of this paper.
Clearly, it would be desirable to relax the conditions

imposed on the initial data to allow for more generic
configurations (for instance, data with compact support).
From our experiences gathered in this paper as well as
through numerous dynamical computations performed by
many authors we surmise that the conjecture would still
hold for generic initial data that are analytic in a vicinity of
σ ¼ 0, i.e. at Iþ. More precisely, we expect that there are
for each such initial data individual QNM as well as branch
cut amplitudes with characteristic growth rates νQNMðσÞ
and νcutðσÞ (maybe different for nonanalytical data) such
that the spectral decomposition (123) holds for all τ > νðσÞ
where νðσÞ ¼ maxfνQNMðσÞ; νcutðσÞg. These amplitudes,
however, cannot be determined by the methods described in
this paper, as they rely on an analysis of Taylor expansions.
Note that we had to exclude initial data that are not analytic
at Iþ. Again a look at the dissipative wave equation in
Minkowski space illuminates the situation, specifically
example 2 in table (130) for which a branch cut amplitude
and hence a corresponding growth rate does not exist.
Consequently, for such initial data the spectral decompo-
sition never holds. Going back to the Schwarzschild case,
we expect that likewise for generic initial data of the form
(39) we cannot identify QNM and branch cut amplitudes,
i.e., (123) never holds (ν ¼ ∞), unless the Laplace param-
eter in (39) is chosen to be some QNM, s ¼ sn, in which
case (123) holds for all times τ (ν ¼ −∞).
At the end, a final remark seems to be in place. In [24], it

has been argued that “the integral over the quarter circles at
infinite frequency produces the early time response of the
black hole.” Similar comments can be found in other papers
(see e.g. [39]), and they all seem to be reformulated
versions of Leaver’s statement from [18], “It is GF that
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propagates the high-frequency response, and which reduces
to the free-space Green’s function in the limit as the mass of
the black hole goes to zero.” Our considerations lead us,
however, to a different interpretation. We have seen that, for
generic analytical initial data, the Laplace transform V̂
diverges exponentially in some circular sector j argðsÞj ∈
ðπ − ε; πÞ in the complex s plane when jsj → ∞. This
means, that the integral over the quarter circles at infinite
frequency mentioned before cannot be evaluated. However,
in the course of time, concretely for τ > νðσÞ, the asso-
ciated V̂ for initial data taken on such time slices vanishes
when jsj → ∞, j argðsÞj < π, and hence the integral in
question does not contribute by virtue of Jordan’s lemma.
Therefore, we encounter the impression that the proposed
early time contribution of the integral over the quarter
circles at infinity is a misinterpretation. This integral cannot
be evaluated for small times (and thus cannot reasonably be
discussed physically) and vanishes for data at larger
times τ > νðσÞ.
We conclude this article with the observation that, due to

our experiences gathered in the Minkowski example, the
case in which the singularity is located at Iþ, i.e. at σ ¼ 0,
is expected to require a more sophisticated investigation.
While it might appear as a minor remaining uncertainty,
this issue plays a fundamental role when attempting to
identify an appropriate linear operator acting on an asso-
ciated function space, whose spectrum is fsng∪R− with
corresponding proper and improper eigenvectors ϕn and
ϕðsÞ. Again, the treatment of this interesting functional-
analytical question is far beyond the scope of this paper.
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APPENDIX A: THE BROMWICH INTEGRAL

The Bromwich integral solution method considers the
integration path Γ1 [see (16)], that is, values V̂ðsÞ for s ¼
ξþ iχ with some prescribed ξ > 0 and χ ∈ ð−∞;∞Þ are
collected in order to evaluate (2), i.e.

Vðτ; σÞ ¼ eξτ

2π

Z þ∞

−∞
V̂ðσ; ξþ iχÞeiχτdχ: ðA1Þ

Since Vðτ; σÞ is bounded, its Laplace transform V̂ vanishes
for jsj→∞, argðsÞ ∈ ð−π=2; π=2Þ; see (10). Consequently,
we have for all s with ℜðsÞ > 0, via Jordan’s lemma,

lim
R→∞

Z
CRðsÞ

V̂ðσ; ~sÞd~s
~s − s

¼ 0; ðA2Þ

where CRðsÞ is a semicircle in the right half-plane about the
point s, i.e.

CRðsÞ ¼ f~s ∈ Cj~s ¼ sþ Reif; f ∈ ð−π=2; π=2Þg:

Consider now Cauchy’s integral theorem,

P
I
ΓRðsÞ

V̂ðσ; ~sÞds
~s − s

¼ πiV̂ðσ; sÞ; ðA3Þ

where

ΓRðsÞ ¼ CRðsÞ∪f~s ∈ Cj~s ¼ sþ i~χ; ~χ ∈ ð−R; RÞg;

with P denoting the Cauchy principal value and the
integration evaluated in a counterclockwise fashion along
the closed curve ΓRðsÞ. By virtue of (A2) and (A3), it
follows that the imaginary part of V̂ is the Hilbert transform
of the real part:

ℑ½V̂ðσ; ξþ iχÞ� ¼ 1

π
P
Z

∞

−∞

ℜ½V̂ðσ; ξþ iχ̄Þ�dχ̄
χ̄ − χ

: ðA4Þ

We insert this expression into (A1) and obtain via

P
Z

∞

−∞

e−iω

ω
dω ¼ −πi

that

Vðτ; σÞ ¼ eξτ

π

Z þ∞

−∞
ℜ½V̂ðσ; ξþ iχÞ�eiχτdχ

¼ 2eξτ

π

Z
∞

0

ℜ½V̂ðσ; ξþ iχÞ� cosðχτÞdχ; ðA5Þ

where the latter expression arises through the symmetry
condition (11). Now, for some prescribed auxiliary param-
eter sP ∈ R−

0 , we compactify the integration interval with
the help of the new variable x ∈ ð0; xP� via

x ¼ xP
1þ xPχ2

where xP ¼ ðξ − sPÞ−2: ðA6Þ

Taking into account that ℜðV̂Þ is an even function in the
variable χ and vanishes when χ → ∞, we may approximate
x−1ℜðV̂Þ in terms of a Chebyshev series:

ℜ½V̂ðσ; ξþ iχÞ� ≈ x
Xnχ−1
j¼0

cjðσ; ξ; sPÞTj

�
2x
xP

− 1

�
; ðA7Þ

where a particular numerical resolution nχ was chosen. The
Chebyshev coefficients cjðσ; ξ; sPÞ are obtained through
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requiring equality in (A7) at the Chebyshev-Gauss grid
points

χk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xk
−

1

xP

s
; with xk ¼ xP cos

�
πð2kþ 1Þ

2nχ

�

and k ¼ 0;…; nχ − 1. Here, the left-hand sides in (A7) are
evaluated according to the procedure described in Sec. IV.
Note that x−1ℜðV̂Þ is C∞ for x ∈ ½0; xP�,14 and hence a
Chebyshev expansion provides an accurate numerical
approximation.
Considering the polynomial structure of the Tj’s explic-

itly, we introduce coefficients Pjl via the requirements

xTj

�
2x
xP

− 1

�
¼

Xj

l¼0

Pjlxlþ1: ðA8Þ

Through this rearrangement we can explicitly evaluate the
integral (A5):

Vðτ; σÞ ≈
Xnχ−1
j¼0

cjðσ; ξ; sPÞ
Xj

l¼0

PjlQlðτ; ξ; sPÞ ðA9Þ

with

Qlðτ; ξ; sPÞ ¼
2eξτ

π

Z þ∞

0

xlþ1 cosðχτÞdχ

¼ 2esPτ

l!

Xl

k¼0

ðlþ kÞ!
ðl − kÞ!k! ½2ðξ − sPÞ�−ðlþkþ1Þτl−k:

ðA10Þ

We provide a few examples of the functions Qlðτ; ξ; sPÞ:

Q0ðτ; ξ; sPÞ ¼
esPτ

ξ − sP

Q1ðτ; ξ; sPÞ ¼ esPτ
1þ τðξ − sPÞ
2ðξ − sPÞ3

Q2ðτ; ξ; sPÞ ¼ esPτ
3þ 3τðξ − sPÞ þ τ2ðξ − sPÞ2

8ðξ − sPÞ5

The systematic error of this method is a consequence of
the truncation of the Chebyshev series (A7) at the reso-
lution order nχ. For τ ∼ 0, the accuracy is determined by the
behavior of the Chebyshev coefficients cjðσ; ξ; sPÞ,
whereas the time propagation of this initial numerical error
is related to the behavior of the functions Qlðτ; ξ; sPÞ. As a
representative we consider the coordinate location σ ¼ 0
and study how the choice of the two parameters ξ > 0 and
sP ≤ 0 affects the numerical performance.
Figure 12 compares the dependency of cjð0; ξ; sPÞ on the

parameter ξ (left panel) for a fixed value sP ¼ 0. Note that
the coefficients fall off stronger and stronger as ξ increases.
However, the right panel of this figure reveals that the
dynamical error grows in the course of time exponentially
as eξτ.15

For ξ ∼ 0, we can improve the efficiency of the method
by shifting the parameter sP accordingly. Fixing now
ξ ¼ 1=10, the left panel of Fig. 13 depicts cjð0; ξ; sPÞ

FIG. 12. Numerical accuracy of the Bromwich integral method with resolution nχ ¼ 200, applied to the initial data V0ðσÞ ¼ 1,
_V0ðσÞ ¼ 0, with parameter sP ¼ 0 [cf. (A6)] along the Bromwich integration paths ℜðsÞ ¼ ξ ∈ f1=10; 1; 10g. Left panel: Chebyshev
coefficients cjð0; ξ; sPÞ, cf. (A7) and their dependence on ξ. Right panel: Corresponding dynamical error εðτ; σ ¼ 0Þ which diverges as
eξτ. Results were obtained with the fixed Taylor resolutions kmax ¼ 500, Jmax ¼ 10, cf. Sec. IV.

14Analyticity breaks down at x ¼ 0 when χ → ∞; see dis-
cussion in Sec. IV G.

15The dynamical error is defined as εðτ; σÞ ¼
jVBromwichðτ; σÞ − VHighAccðτ; σÞj, where VBromwichðτ; σÞ is the
solution obtained via the Bromwich integral method and
VHighAccðτ; σÞ being a highly accurate numerical solution ob-
tained with a time-marching scheme based on a fully spectral
code [34].
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for different values of sP. Note that an appropriate choice of
sP significantly enhances the decay rate of cjð0; ξ; sPÞ. As
in Fig. 12, the right panel of Fig. 13 displays the
corresponding dynamical errors, and it becomes apparent
that a stable solution can be obtained for a much longer
time period. In the long run, however, the time behavior of
the numerical Bromwich solution is dominated by the
decay rate ∼esPττl of the integral terms Qlðτ; ξ; sPÞ,
cf. (A10) and Fig. 5. Consequently, for very late times,
the dynamical error corresponds to the inverse power law
behavior of the tail decay.
We conclude that in contrast to the spectral decompo-

sition (123), the Bromwich integral method, as realized in
this work, is not suitable for describing the wave field’s
long term tail behavior. It does, however, provide a neat test
and justification of the Taylor coefficient techniques which
present the core of this work.

APPENDIX B: EXAMPLES FOR RELEVANT
TAYLOR ASYMPTOTICS

In this section, we provide an explicit example that
resembles the properties of a function f,

f ¼
X∞
k¼0

Hkð1 − σÞk; ðB1Þ

whose Taylor coefficients posses an asymptotics of the kind
given in (36) and (37). The explicit example is given by the
function

f ¼ es=σ: ðB2Þ

It can easily be verified that f satisfies the ordinary
differential equation

½σ2∂σ þ s�f ¼ 0: ðB3Þ

Inserting the Taylor expansion (B1) into (B3) yields the
recurrence relation

ðkþ 1ÞHkþ1 − ð2kþ sÞHk þ ðk − 1ÞHk−1 ¼ 0: ðB4Þ

Treating this recurrence relation in exactly the same manner
as described in Sec. IVA, we obtain the following asymp-
totics of the Taylor coefficients:

Hk ∼ A�
∞k−3=4e�2

ffiffiffiffi
sk

p
Y

�
� 1ffiffiffi

k
p

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕a�k

; k → ∞ ðB5Þ

with

YðxÞ ¼ 1þ
X∞
j¼1

yjxj; ðB6Þ

y1 ¼
4s2 − 9

48
ffiffiffi
s

p ðB7Þ

y2 ¼
s3

288
−
5s
64

−
15

512s
…etc: ðB8Þ

Clearly, for s∉R−, the term in (B5) with the positive sign
(meaning the square root in the exponent with positive real
part) is dominant in comparison to the term with the
negative sign. Hence we have:

Aþ
∞ ¼ lim

k→∞
ðHkk3=4e−2

ffiffiffiffi
sk

p
Þ; s∉R−: ðB9Þ

If we compute the coefficients Hk with the help of (B4),
utilized here as upwards recurrence relation with H−1 ¼ 0

FIG. 13. Numerical accuracy of the Bromwich integral method with resolution nχ ¼ 200, as in Fig. 12 applied to the initial data
V0ðσÞ ¼ 1, _V0ðσÞ ¼ 0, along the fixed Bromwich integration path ℜðsÞ ¼ ξ ¼ 1=10 for different parameters sP [cf. (A6)]. Left panel:
Chebyshev coefficients cjð0; ξ; sPÞ, cf. (A7) and their dependence on sP. Right panel: Corresponding dynamical error εðτ; σ ¼ 0Þ.
Results were obtained with the fixed Taylor resolutions kmax ¼ 500, Jmax ¼ 10, cf. Sec. IV.

SPECTRAL DECOMPOSITION OF BLACK-HOLE … PHYSICAL REVIEW D 93, 124016 (2016)

124016-25



and H0 ¼ es, we can determine the limit (B9) numerically.
Examples are provided in (B12).
For s ∈ R−, however, both asymptotics in (B5) need to

be considered. Then the two unknowns A�
∞ can be obtained

through the conditions

H1 ¼ ses; H2 ¼
s
2
ð2þ sÞes; ðB10Þ

which result from (B4) for k ¼ 1 and k ¼ 0, taking into
account that H−1 ¼ 0 and H0 ¼ es. Indeed, if we write in
accordance with (B5)

Hk ¼ Aþ
∞a

þ
k þ A−

∞a−k ðB11Þ

for two coefficients HKþ1 and HK , where K is some
large number, and climb down to H2 and H1 utilizing (B4)
now as downwards recurrence relation, the conditions
(B10) determine uniquely the two unknowns A�

∞. We
generally find that Aþ

∞ ¼ ðA−
∞Þ� ∝ eπi=4 for s ∈ R−; see

examples in (B12).

s ¼ 1∶ Aþ
∞ ≈ 0.46509

s ¼ eπi=4∶ Aþ
∞ ≈ 0.34251þ 0.20995i

s ¼ i∶ Aþ
∞ ≈ 0.17696þ 0.21969i

s ¼ e3πi=4∶ Aþ
∞ ≈ 0.11641þ 0.16027i

s ¼ −
1

2
∶ Aþ

∞ ≈ 0.13063þ 0.13063i

s ¼ −1∶ Aþ
∞ ≈ 0.12099þ 0.12099i

s ¼ −2∶ Aþ
∞ ≈ 0.08727þ 0.08727i

s ¼ −10∶ Aþ
∞ ≈ 0.00239þ 0.00239i ðB12Þ

The preceding detailed study provides us with an under-
standing of regularity properties of solutions ϕðsÞ to the
homogeneous equation

AðsÞϕðsÞ ¼ 0; ϕðsÞ analytic at σ ¼ 1; ðB13Þ
when s is not a quasinormal mode, s∉fsng. Just like
f ¼ es=σ, the functions ϕðsÞ diverge at σ ¼ 0 if ℜðsÞ > 0.
However, they are C∞ for all σ ∈ ½0; 1� ifℜðsÞ < 0, despite
the fact that the corresponding Taylor coefficients’ magni-
tudes jHkj grow faster in k than any polynomial (for s∉R−).
It is interesting to note that apparently the relation between
the growth rate of jHkj and the frequency in the coef-
ficients’ oscillations determines whether the function is C∞

or diverges at σ ¼ 0:

ϕ ¼
X∞
k¼0

Hkð1 − σÞk;

Hk ∼ eðgþiωÞ ffiffi
k

p
as k → ∞∶g < jωj∶ ϕ is C∞;

g > jωj∶ ϕ diverges: ðB14Þ

As depicted in Sec. IVA, this has the consequence that for
ℜðsÞ < 0 there are C∞-initial data (39) which imply the
regular C∞-solution (40) to our wave equation (9). The
situation is very similar to the Minkowskian wave obtained
for the initial data No. 2 in (130). Note that for this example
the spectral representation (127) does not hold, and hence
we presume that likewise (123) is not applicable for the
initial data (39); see discussion in Sec. VI B. The particular
case s ∈ R− provides us with a solution with an exponen-
tial fall-off without oscillations, to be compared with the
Minkowskian wave associated with the initial data No. 1 in
(130). Just like there, the situation can be described
marginally with the formula (123) if we accept Dirac-
delta-type amplitudes ηðsÞ.
Let us now take a closer look at the function Φ

introduced in (38) which satisfies the ODE

0 ¼ σ2ð1 − σÞΦ00 þ ½ðλ − 1Þσð3σ − 2Þ − s�Φ0

− ½ðλ − 1Þð2λσ − λ − σÞ þ lðlþ 1Þ�Φ: ðB15Þ

Writing Φ as f in (B1) in terms of a Taylor expansion about
σ ¼ 1, we find the recurrence relation

αkHkþ1 þ ~βkHk þ ~γkHk−1 ¼ 0 ðB16Þ

with

~βk ¼ −λ2 þ 4kλþ 2λ − 2kðkþ 1Þ − lðlþ 1Þ − 1

~γk ¼ ðk − 2λÞðk − λÞ: ðB17Þ

The analysis of the relation (B16) along the lines presented
in Sec. IVA reveals the asymptotics

Hk ¼ Uþ
∞u

þ
k þ U−

∞u−k ðB18Þ

with

u�k ∼ k−
1
4
ð4λþ2s−3Þe�2

ffiffiffiffiffiffi
−sk

p
Z

�
� 1ffiffiffi

k
p

�
; ðk → ∞Þ;

ðB19Þ

which by virtue of (B15) describes for ℜðsÞ > 0 a function
Φ that is C∞ for all σ ∈ ½0; 1� but blows up exponentially at
σ ¼ 0 for ℜðsÞ < 0.
We conclude this section by providing an example

resembling the properties of a function f with Taylor
coefficients Hk which can be written as in (B11) with
Aþ
∞ ¼ 0, i.e. with an asymptotics similar to the one

described in (42). This example is meant to demonstrate
the analytical properties of the solutions ϕn to the homo-
geneous problem (27) at the QNMs sn∉Z−.
Looking for some j ∈ N at the inhomogeneous equation

½σ2∂σ þ s�f ¼ σj; ðB20Þ
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where s ∈ CnR−
0 , we find the solution

fðσÞ ¼ σj−1es=σEj

�
s
σ

�
;

which is analytic for σ ∈ ð0; 1� and still C∞ at σ ¼ 0. Its
Taylor coefficients obey the asymptotics Hk ∼ A−

∞a−k as
k → ∞ [see (B5)]. Taking again this expression for two
coefficients HKþ1 and HK , where K is some large number,
and climbing down to Hj utilizing (B4) once more as
downwards recurrence relation,16 the condition Hj ¼
ð−1ÞjfðjÞðσ ¼ 1Þ=j! implies the numerical value of A−

∞.
Exemplary cases for j ¼ 1 are provided in (B21).

s ¼ 1∶ A−
∞ ≈ −2.92228

s ¼ eπi=4∶ A−
∞ ≈ −2.15206 − 1.31915i

s ¼ i∶ A−
∞ ≈ −1.11188 − 1.38033i

s ¼ e3πi=4∶ A−
∞ ≈ −0.73143 − 1.00699i ðB21Þ

APPENDIX C: NEGATIVE INTEGER
LAPLACE PARAMETERS

When the Laplace parameters s is a negative integer then
α−ðsþ1−λÞ as well as γ−s and γ−ðsþλÞ vanish. Consequently,
neither the forward recurrence relation (31) nor the back-
ward recurrence relation (53) can be completely carried out
for the sequences fHkg and fIkg, respectively. Yet, the
calculation of the jump function for values in the neighbor-
hood of the negative integers indicates that the solution
V̂ðσ; sÞ is well behaved at s ∈ Z−.
Here we modify the calculation of the Taylor coefficients

ak [cf. (60)] for s ∈ R−nZ− and consider subsequently a
smooth limit of s towards the neighboring negative
integer.17 To this end, we start by defining the critical
indices

~k ¼ ⌊ − s − 1þ λ⌉;

k̂ ¼ ⌊minð−s;−s − λÞ⌉;
k� ¼ ⌊maxð−s;−s − λÞ⌉; ðC1Þ

where ⌊ • ⌉ denotes the round function which provides the
nearest integer. We further introduce the new coefficients
Kk and Jk via

Kk ¼
	
Hk for k ≤ ~k

α~kHk for k > ~k
; ðC2Þ

Jk ¼

8>><
>>:

γk̂γk�Ik for k < k̂

γk�Ik for k̂ ≤ k < k�

Ik for k ≥ k�
: ðC3Þ

Now, for k < ~k and for k > ~kþ 1, the coefficients Kk
satisfy the same forward recurrence relation asHk, cf. (31).
Besides, combining the definition (C2) with the recurrence
relation (31) for k ¼ ~k and k ¼ ~kþ 1 one gets

K ~kþ1 ¼ −ðβ ~kK ~k þ γ ~kK ~k−1Þ; ðC4Þ

K ~kþ2 ¼ −ðβ ~kK ~kþ1 þ α~kγ ~kK ~kÞ=α~kþ1: ðC5Þ

In the limit s → ⌊s⌉ ∈ Z−, both K ~kþ1 and K ~kþ2 are well
defined, despite the fact that α~k → 0. This can be followed
from the relations (31), (C4) and (C5).
The analysis of the coefficients Jk follows a similar

route. They satisfy the same backward recurrence relation
(53) for the coefficients Ik, except for the values k ¼ k�,
k ¼ k� − 1, k ¼ k̂ and k ¼ k̂ − 1. Combining the definition
(C3) with the backward recurrence relation (53) for k ¼ k�
and k ¼ k� − 1, we obtain

Jk�−1 ¼ −ðαk�Jk�þ1 þ βk�Jk� Þ; ðC6Þ

Jk�−2 ¼ −ðγk�αk�−1Jk� þ βk�−1Jk�−1Þ=γk�−1: ðC7Þ

Likewise, if we replace here k� by k̂, then we obtain
expressions which provide Jk̂−1 and Jk̂−1.

18 Again,
eqs. (C6) and (C7) (together with the corresponding case
k� replaced by k̂) are well defined in the limit s → ⌊s⌉ ∈
Z− where γk� and γk̂ tend to zero.
We now turn our attention to the computation of the

coefficients ak. Given a0 we can invoke the forward
recurrence relation (61) to compute ak for 1 ≤ k ≤ ~k.
However, since α~k → 0 for s → ⌊s⌉, the forward recurrence
calculation of a~kþ1 breaks down in this limit. Then for

larger indices k ≥ ~kþ 2, the forward recurrence relation
(61) can again be used. That is to say that for the
computation of the entirety fakg in the limit s → ⌊s⌉
via the forward recurrence relation it is necessary to provide
the two coefficients a0 and a~kþ1. Indeed, they can be
obtained explicitly by rewriting Eq. (71) with the help of
(C2) and (C3). In terms of the abbreviations

~ΠðαÞ
j ¼

Yj−1
m¼0

αm ðC8Þ

16With the inhomogeneity σj in (B20), the recurrence relation
(B4) remains the same for k > j.

17Throughout this section, we assume that the negative real
axis is approached from above. For simplicity, we omit the index
•þ in all the relevant quantities.

18Care must be taken if jλj ¼ 1, for then k� − 1 ¼ k̂ and
k� − 2 ¼ k̂ − 1.
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ΠðαÞ
j ¼

Yj−1
m¼0
fm≠~kg

αm ðC9Þ

ΠðγÞ
j ¼

Yj
m¼0

fm≠k�g
fm≠k̂g

γm; ðC10Þ

we find:

a0 ¼ −
1

J−1

X∞
j¼0

JjBj
~ΠðαÞ
j

ΠðγÞ
j

ðC11Þ

and

a~kþ1 ¼ −
1

J−1

�
K ~kþ1

X∞
j¼~kþ1

JjBjΠ
ðαÞ
j

ΠðγÞ
j

þ J ~kþ1

X~k

j¼0

ΘjKjBjΠ
ðαÞ
j

ΠðγÞ
j

�
: ðC12Þ

The factors Θj assume different values, depending on λ:

λ < 0∶ Θj ¼ 1;

λ ¼ 0∶ Θj ¼ γk�

λ > 0∶ Θj ¼

8><
>:

γk�γk̂ for j < k̂

γk� for k̂ ≤ j < k�

1 for k� ≤ j ≤ ~k

Note that in these expression no divisions by γk� and γk̂
occur and hence both coefficients a0 as well as a~kþ1 assume
well defined values in the limit s → ⌊s⌉. We finish this
section by noticing that, for jλj ¼ 2, there are specific s
values for which this construction fails since J−1 vanishes.
Similar to the discussion in Sec. IV D 2 [see, in particular,
Eq. (90)], we conclude that these values have to be
considered as QNMs to be treated in Appendix D.

APPENDIX D: ALGEBRAICALLY
SPECIAL QNMS

a. Polynomial solutions to the homogeneous
Laplace transformed equation

For gravitational perturbations jλj ¼ 2, specific QNMs
arise, the so-called algebraically special sðlÞ values which
are negative integers. The characterization of QNMs in
terms of the points (i) and (ii) in Sec. IV D 2 fails because
(for each s ∈ Z−) the corresponding coefficients Hk and Ik
cannot be defined for all k. However, it turns out that for
s ¼ sðlÞ a polynomial solution ϕðlÞ to the homogeneous
problem (27) can be found. This means that the

characterization of QNMs in terms of point (iii) in
Sec. IV D 2 still holds and should therefore be regarded
as a generically valid definition of QNMs for perturbations
in the asymptotically flat Schwarzschild spacetime.
The solution ϕðlÞ emerges through the following con-

siderations. Let us write ϕðlÞ as in (28) as Taylor expansion
about σ ¼ 1 with coefficients Hk that are not subject to the
scaling condition in (31) but are normalized in the sequel
through a different requirement. We look at the correspond-
ing recurrence relation (29), denoted for the indexes
k ∈ fj − 1; j; jþ 1; jþ 2g:

αj−1Hj þ βj−1Hj−1 þ γj−1Hj−2 ¼ 0 ðD1Þ

αjHjþ1 þ βjHj þ γjHj−1 ¼ 0 ðD2Þ

αjþ1Hjþ2 þ βjþ1Hjþ1 þ γjþ1Hj ¼ 0 ðD3Þ

αjþ2Hjþ3 þ βjþ2Hjþ2 þ γjþ2Hjþ1 ¼ 0 ðD4Þ

It can be verified explicitly that for19

jλj ¼ 2; s ¼ sðlÞ ¼ −
1

3
ðl − 1Þlðlþ 1Þðlþ 2Þ;

j ¼ −s − 2

the following properties arise:
(1) The coefficient γ−s vanishes, γ−s ¼ γjþ2 ¼ 0.
(2) The 2 × 2-matrix

M̂ ¼
�

βj αj

γjþ1 βjþ1

�

is singular and possesses the nontrivial null
eigenvector

~v ¼
�
l2 þ l − 3

1 − λ

�

satisfying M̂ ~v ¼ 0.
(3) Additionally, we have for

(a) λ ¼ −2 that αj−1 ¼ 0.
(b) λ ¼ þ2 that γj ¼ 0.

Now, we may write (D2), (D3) in the form

M̂

�
Hj

Hjþ1

�
¼ −

�
γjHj−1

αjþ1Hjþ2

�
ðD5Þ

The corresponding algebraically special solutions ϕðlÞ are
characterized by the following properties:
(A) Hk ¼ 0 for k ≥ jþ 2.

19In [32], the algebraically special Laplace parameters are
given by s̄ðlÞ ¼ 1

2
sðlÞ, cf. (25).
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(B) Hk ¼ 0 for k < 0. With statement (A) we
conclude that ϕðlÞ is a polynomial of order
1
3
ðl − 1Þlðlþ 1Þðlþ 2Þ − 1.

(C) The coefficients ðHj;Hjþ1Þ form a null eigenvector
of M̂, i.e.�

Hj

Hjþ1

�
¼ K~v ¼ K

�
l2 þ l − 3

1 − λ

�
ðD6Þ

with some constant K.
The property (D6) means that (D5) is realized for the
vanishing right-hand side; i.e., we have

γjHj−1 ¼ 0 ðD7Þ

αjþ1Hjþ2 ¼ 0: ðD8Þ

Let us first look at (D8). As αjþ1 ¼ sðlÞλ ≠ 0 we have
that Hjþ2 ¼ 0. Looking now at (D4) it follows with γjþ2 ¼
0 (see point (1) above) and αjþ2 ¼ ðλ − 1Þðs − 1Þ ≠ 0 that
Hjþ3 ¼ 0. With the two vanishing coefficients
Hjþ2 ¼ 0 ¼ Hjþ3, the upwards recurrence relation

Hkþ1 ¼ −
1

αk
ðβkHk þ γkHk−1Þ; k ≥ jþ 3

tells us that all Hk ¼ 0 for k ≥ jþ 2; i.e., we obtain
consistency with the above statement (A).
The first property (D7) is realized differently for the two

cases λ ¼ −2 and λ ¼ 2. Let us start with the discussion
of the situation λ ¼ −2. As γj ¼ 4 − 2λ ¼ 8 ≠ 0, we
have Hj−1 ¼ 0. With the property 3.(a) above and
γj−1 ¼ 9 − 3λ ¼ 15 ≠ 0, we obtain from (D1) that
Hj−2 ¼ 0. Now, with Hj−1 ¼ 0 ¼ Hj−2, the downwards
recurrence relation

Hk−1 ¼ −
1

γk
ðαkHkþ1 þ βkHkÞ; k ≤ j − 2

tells us that all Hk ¼ 0 for k ≤ j − 1, thus realizing in
particular the above statement (B). Taking (D6) into
account, the algebraically special polynomial solution
amounts thus to

ϕðlÞ ¼ Kð1 − σÞj½ðl2 þ l − 3Þ þ 3ð1 − σÞ�

for

λ ¼ −2; s ¼ sðlÞ; j ¼ −sðlÞ − 2:

For the remaining case λ ¼ 2, we have γj ¼ 0 [cf. point
(3)(b)] and, hence, (D7) is realized trivially. Let us
now look at the recurrence relation for the indexes

k ¼ 0;…; j − 1, where we assume that H−1 ¼ 0 in order
to satisfy the above statement (B), i.e.

α0H1 þ β0H0 ¼ 0

α1H2 þ β1H1 þ γ1H0 ¼ 0

..

.

αj−2Hj−1 þ βj−2Hj−2 þ γj−2Hj−3 ¼ 0

βj−1Hj−1 þ γj−1Hj−2 ¼ −αj−1Hj

¼ −Kαj−1ðl2 þ l − 3Þ:
ðD9Þ

Here we have rewritten the very last relation for k ¼ j − 1
such that the quantity Hj known from (D6) appears as
inhomogeneity on the right-hand side. Now, (D9) forms a
system of j linear equations to determine uniquely the
coefficients fH0;…; Hj−1g, thereby realizing H−1 ¼ 0

through which the solution becomes analytic at σ ¼ 1.
We thus obtain for

λ ¼ 2; s ¼ sðlÞ; j ¼ −sðlÞ − 2

the algebraically special polynomial solution as

ϕðlÞ ¼
Xjþ1

k¼0

Hkð1 − σÞk

with the coefficients fH0;…; Hj−1g fixed by (D9) and
fHj;Hjþ1g given through (D6). In the following, we use
polynomial solutions ϕðlÞ which are normalized by the
requirement K ¼ 1. Note that the scaling in (31) would not
work in the case λ ¼ −2.

b. Algebraically special QNM amplitudes

A characterization that works well for the entirety of
QNMs is given by the condition J−1 ¼ 0 with Jk intro-
duced in (C3) [see also (42)]. Clearly, then the computation
of a0 and a~kþ1 according to (C11) and (C12) will fail,
which leads us to the conclusion that in the vicinity of the
algebraically special QNM sðlÞ the Laplace transform V̂ is
of the form (120), i.e. it possesses a single pole there. As
sðlÞ is located on the branch cut, we need to consider
separately the approach s → sðlÞ from above (argðsÞ → π)
and from below (argðsÞ → −π), i.e. s → s�ðlÞ. Alternatively,

V̂ can be regarded as being defined on multiple sheets in the
complex s plane where the negative s axis presents the
transition between the sheets. At the two s values s ¼ s�ðlÞ,

the Laplace transform V̂ possesses single poles with
residues η�ðlÞϕðlÞ, which by virtue of (11) satisfy

η−ðlÞ ¼ ½ηþðlÞ��. Considering the representation (15) of the
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wave field V which we now evaluate along the deformed
integration path Γ2 displayed in Fig. 14, we find that in the
limit of infinitesimal semicircles about the algebraically
special QNMs s�ðlÞ the contributions

1

2πi
· πiRess�ðlÞ ðV̂e

τsðlÞ Þ;

arise, i.e. in sum:

1

2
ðη−ðlÞϕðlÞeτsðlÞ þ ηþðlÞϕðlÞeτsðlÞ Þ ¼ ℜðηþðlÞÞϕðlÞeτsðlÞ :

Thus, the corresponding spectral decomposition (see
Sec. V) of the wave field satisfying the dissipative wave
equation (9) assumes the form:

Vðτ; σÞ ¼ 2
X∞
n¼0

ℜðηnϕnðσÞeτsnÞ þℜðηþðlÞÞϕðlÞðσÞeτsðlÞ

þ
Z

0

−∞
ηðsÞϕðσ; sÞeτsds; ðD10Þ

where the set fsng∞n¼0 contains only those quasinormal
modes for which ℑðsnÞ > 0.
In order to determine the amplitude ηþðlÞ, we proceed

along the same line of reasoning as in Sec. IV E. In
particular, the analogue of Eq. (104) for negative integer
s values can be derived by means of Eq. (C11), with the
source coefficient Bk being replaced by ðBk − ηþðlÞCkÞ
where Ck is given by (105) [see also (100)] with the
Taylor coefficients Hk of ϕðlÞ. Requiring the regularity of
the corresponding coefficient gþ0 ðsðlÞÞ, we obtain

ηþðlÞ ¼
P∞

k¼0 J
þ
k Bk

~ΠðαÞ
k

ΠðγÞ
kP∞

k¼0 J
þ
k Ck

~ΠðαÞ
k

ΠðγÞ
k

for λ ¼ þ2: ðD11Þ

We emphasize, however, that this procedure works only for

λ ¼ þ2. For λ ¼ −2, we observe that ~ΠðαÞ
k ¼ 0 for k >

λ − s and Jþk ¼ 0 for k ≤ λ − s. Hence, every addend of
the sum in (C11) vanishes, regardless of the source
coefficient Bk. This means that this equation cannot be
used to establish the amplitude ηþðlÞ. Instead, the corre-

sponding formula (C12) can be employed. Requiring a
regular coefficient gþ~kþ1

ðsðlÞÞ we find

ηþðlÞ ¼
K ~kþ1

P∞
k¼~kþ1

Jþk Bk
ΠðαÞ

k

ΠðγÞ
k

þ Jþ~kþ1

P~k
k¼0KkBk

ΠðαÞ
k

ΠðγÞ
k

K ~kþ1

P∞
k¼~kþ1

Jþk Ck
ΠðαÞ

k

ΠðγÞ
k

þ Jþ~kþ1

P~k
k¼0KkCk

ΠðαÞ
k

ΠðγÞ
k

ðD12Þ

for λ ¼ −2.

[1] T. Regge and J. Wheeler, Phys. Rev. 108, 1063 (1957).
[2] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).
[3] F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).
[4] W. P. J. M. Bardeen, J. Math. Phys. (N.Y.) 14, 7 (1973).
[5] E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566

(1962); 4, 998(E) (1963).
[6] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[7] C. V. Vishveshwara, Nature (London) 227, 936 (1970).

[8] B. P. A. et al. (LIGO Scientific), Phys. Rev. Lett. 116,
061102 (2016).

[9] V. Cardoso, E. Franzin, and P. Pani, Phys. Rev. Lett. 116,
171101 (2016).

[10] C. Chirenti and L. Rezzolla, arXiv:1602.08759.
[11] R. Price, Phys. Rev. D 5, 2419 (1972).
[12] S. Chandrasekhar, The Mathematical Theory of Black

Holes, (Oxford University Press, New York, 1983).

FIG. 14. Deformed integration path Γ2 for the inverse
Laplace transformation in the case jλj ¼ 2 where algebraically
special QNMs s�ðlÞ ∈ R− are present. The Laplace transform

V̂ is defined on multiple sheets where the negative s axis
presents the transition between the sheets. At s ¼ s�ðlÞ, V̂

possesses single poles with residues η�ðlÞϕðlÞ, and the integration

is to be performed along corresponding infinitesimal semicircles
about s�ðlÞ.

MARCUS ANSORG and RODRIGO PANOSSO MACEDO PHYSICAL REVIEW D 93, 124016 (2016)

124016-30

http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1103/PhysRevLett.24.737
http://dx.doi.org/10.1103/PhysRevD.2.2141
http://dx.doi.org/10.1063/1.1666175
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1063/1.1724257
http://dx.doi.org/10.1063/1.1704025
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1038/227936a0
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.171101
http://dx.doi.org/10.1103/PhysRevLett.116.171101
http://arXiv.org/abs/1602.08759
http://dx.doi.org/10.1103/PhysRevD.5.2419


[13] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativ. 2, 2
(1999).

[14] H.-P. Nollert, Classical Quantum Gravity 16, R159
(1999).

[15] E. Berti, V. Cardoso, and A. O. Starinets, Classical Quantum
Gravity 26, 163001 (2009).

[16] E. Leaver, Proc. R. Soc. A 402, 285 (1985).
[17] E.W. Leaver, J. Math. Phys. (N.Y.) 27, 1238 (1986).
[18] E.W. Leaver, Phys. Rev. D 34, 384 (1986).
[19] V. Cardoso, Ph.D. thesis, Instituto Superior Técnico,

Lisbon, 2003.
[20] A. Bachelot and A. Motet-Bachelot, Annales de l’I.H.P.

Physique théorique 59, 3 (1993).
[21] N.-P. Nollert and R. Price, J. Math. Phys. (N.Y.) 40, 980

(1999).
[22] Y. Sun and R. H. Price, Phys. Rev. D 38, 1040 (1988).
[23] N. Andersson, Phys. Rev. D 51, 353 (1995).
[24] E. Berti and V. Cardoso, Phys. Rev. D 74, 104020

(2006).
[25] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Adv.

Theor. Math. Phys. 7, 25 (2003).
[26] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun.

Math. Phys. 230, 201 (2002).

[27] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun.
Math. Phys. 260, 257 (2005).

[28] F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun.
Math. Phys. 264, 465 (2006).

[29] F. Finster and J. Smoller, Adv. Theor. Math. Phys. 13, 71
(2009).

[30] A. Zenginoglu, Phys. Rev. D 83, 127502 (2011).
[31] J. Frauendiener, Living Rev. Relativ. 7, 1 (2004).
[32] S. Chandrasekhar, Proc. Roy. Soc. A 392, 1 (1984).
[33] D. Schinkel, R. P. Macedo, and M. Ansorg, Classical

Quantum Gravity 31, 165001 (2014).
[34] R. P. Macedo and M. Ansorg, J. Comput. Phys. 276, 357

(2014).
[35] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F.

Rohrlich, and E. C. G. Sudarshan, J. Math. Phys. (N.Y.)
8, 2155 (1967).

[36] V. Cardoso, https://centra.tecnico.ulisboa.pt/~vitor/.
[37] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,

Series, and Products, 7th ed. (Elsevier, New York, 2007).
[38] P. D. Lax and R. S. Phillips, Bull. Am. Math. Soc. 70, 130

(1967).
[39] E. Harms, S. Bernuzzi, and B. Bruegmann, Classical

Quantum Gravity 30, 115013 (2013).

SPECTRAL DECOMPOSITION OF BLACK-HOLE … PHYSICAL REVIEW D 93, 124016 (2016)

124016-31

http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.1088/0264-9381/16/12/201
http://dx.doi.org/10.1088/0264-9381/16/12/201
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1098/rspa.1985.0119
http://dx.doi.org/10.1063/1.527130
http://dx.doi.org/10.1103/PhysRevD.34.384
http://dx.doi.org/10.1063/1.532698
http://dx.doi.org/10.1063/1.532698
http://dx.doi.org/10.1103/PhysRevD.38.1040
http://dx.doi.org/10.1103/PhysRevD.51.353
http://dx.doi.org/10.1103/PhysRevD.74.104020
http://dx.doi.org/10.1103/PhysRevD.74.104020
http://dx.doi.org/10.4310/ATMP.2003.v7.n1.a2
http://dx.doi.org/10.4310/ATMP.2003.v7.n1.a2
http://dx.doi.org/10.1007/s002200200648
http://dx.doi.org/10.1007/s002200200648
http://dx.doi.org/10.1007/s00220-005-1390-x
http://dx.doi.org/10.1007/s00220-005-1390-x
http://dx.doi.org/10.1007/s00220-006-1525-8
http://dx.doi.org/10.1007/s00220-006-1525-8
http://dx.doi.org/10.4310/ATMP.2009.v13.n1.a3
http://dx.doi.org/10.4310/ATMP.2009.v13.n1.a3
http://dx.doi.org/10.1103/PhysRevD.83.127502
http://dx.doi.org/10.12942/lrr-2004-1
http://dx.doi.org/10.1098/rspa.1984.0021
http://dx.doi.org/10.1088/0264-9381/31/16/165001
http://dx.doi.org/10.1088/0264-9381/31/16/165001
http://dx.doi.org/10.1016/j.jcp.2014.07.040
http://dx.doi.org/10.1016/j.jcp.2014.07.040
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1063/1.1705135
https://centra.tecnico.ulisboa.pt/%7Evitor/
https://centra.tecnico.ulisboa.pt/%7Evitor/
https://centra.tecnico.ulisboa.pt/%7Evitor/
https://centra.tecnico.ulisboa.pt/%7Evitor/
http://dx.doi.org/10.1088/0264-9381/30/11/115013
http://dx.doi.org/10.1088/0264-9381/30/11/115013

