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Spectral decomposition of black-hole perturbations on hyperboloidal slices

Marcus Ansorg and Rodrigo Panosso Macedo

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitdit Jena, Max-Wien-Platz 1,
D-07743 Jena, Germany
(Received 6 April 2016; published 7 June 2016)

In this paper, we present a spectral decomposition of solutions to relativistic wave equations described on
horizon-penetrating hyperboloidal slices within a given Schwarzschild-black-hole background. The wave
equation in question is Laplace transformed, which leads to a spatial differential equation with a complex
parameter. For initial data which are analytic with respect to a compactified spatial coordinate, this equation
is treated with the help of the Marnematica package in terms of a sophisticated Taylor series analysis.
Thereby, all ingredients of the desired spectral decomposition arise explicitly to arbitrarily prescribed
accuracy, including quasinormal modes and quasinormal mode amplitudes as well as the jump of the
Laplace transform along the branch cut. Finally, all contributions are put together to obtain, via the inverse
Laplace transformation, the spectral decomposition in question. The paper explains extensively this
procedure and includes detailed discussions of relevant aspects, such as the definition of quasinormal
modes and the question regarding the contribution of infinity frequency modes to the early time response of

the black hole.
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I. INTRODUCTION

Since the advent of general relativity, studies within
the linear regime of Einsteins’s equations have played a
crucial role in understanding important aspects of both
mathematical and physical sides of the theory. In the
particular case of black-hole perturbation theory, the work
by Regge and Wheeler [1] usually marks the birth of the
field. Their analysis of a special class of perturbations
of the Schwarzschild spacetime was later generalized by
Zerilli [2,3]. Still in the context of the Schwarzschild
spacetime, Bardeen and Press [4] used the Newman-
Penrose formalism [5] to derive the equations describing
the propagation of scalar, electromagnetic and gravita-
tional wave perturbations within the aforementioned back-
ground. This approach is the same as the one that guided
Teukolsky towards the derivation of his equation, which
takes the Kerr solution as the background spacetime [6].

First observed by Vishveshwara [7], the time evolution of
the perturbing field shows, after an initial dynamics, an
intermediate phase dominated by exponentially damped
oscillations, the so-called “quasinormal modes” (QNMs).
The remarkable feature is that the oscillation and decay time
scales depend solely on the black-hole parameters, which
allows one to infer essential properties of the black hole in the
gravitational wave signal [8] and to determine whether the
objectis a black hole or something else [9,10]. For the late time
evolution, Price showed that the dynamics is characterized by
a power law decay, also referred to as “tail decay” [11].

A complete revision of the literature related to this field is
a task that goes beyond the scope of this work. Instead of
overwhelming the reader with all the developments that
followed the seminal works mentioned previously, we
would rather point out Chadrasekhar’s book [12] that
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reviews the state-of-art developments during the 1980s
and elucidates the connections between different formal-
isms. Also worth mentioning are Refs. [13] and [14], the two
reviews that appeared in the late 1990s. Finally, Berti,
Cardoso and Starinets [15] summarized the more recent
development on black-hole perturbation theory. Apart from
a very interesting and useful chronological “roadmap” in
terms of papers considered as milestones, the results
presented in [15] range from astrophysical scenarios (with
insights into the numerical simulations and the efforts to the
detection of gravitational waves), passing by applications in
gauge-gravity duality theories, up to some recent develop-
ments on quantum black holes. Among the many important
milestones listed in [15], we mention here Leaver’s work
[16-18], which provides one of the most accurate methods
to compute the QNMs.

Note however, that in the great majority of these works,
QNMs are defined in a phenomenological way motivated
by a comparison with the analysis of normal modes (see,
for example, [19]).

A formal definition of the QNMs is presented in the
second chapter of Ref. [13]. It starts out with the description
of normal modes as the real eigenvalues ®, of an
appropriate differential operator. This operator acts on a
corresponding Hilbert-space whose measure characterizing
the inner product, arises through the requirement that the
operator be self-adjoint. The eigenvalues can then be used
along with the associated eigenvectors ¢, (x*) to build up
the solutions V of a specific nondissipative wave equation,

'In this paper, time in the wave equations is denoted by 7,
whereas x* (k = 1...3) stands for the collection of relevant spatial
coordinates.
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V(e x5) = naei@, (xh). (1)
n=0

Of course, this only works if the self-adjoint operator in
question has a pure point spectrum ¢, = {®, }2 . More
generally, if in addition a continuous spectrum o,. is present,
then the superposition needs to include improper eigen-
values and eigenvectors:

n(w)e ™ ¢(w; x*)dw.

Vi) = > mer i) + |
n=0

(2)

The computation of the corresponding amplitudes, 7, and
1(®)|,es,» amounts to projecting the initial data onto the
complete orthonormal system of (proper and improper)
eigenfunctions in terms of the inner product.

As expressed in the review [13], it would be clearly
desirable to take this formulation to the realm of linear
black-hole perturbations, that is, to write the solutions of
initial value problems associated with linear dissipative
wave equations in a given black-hole background-metric as
a similar superposition, with the quasinormal modes being
defined as the eigenvalues of an appropriate operator.
However, the very definition of the QNMs, as pursued
in [13], follows a different route. Through a Laplace
transform applied to the wave equation in question, a
spatial differential equation arises with an inhomogeneity
formed by the initial data. The QNMs are then defined as
the zeros of the corresponding Wronskian determinant,
formed by specifically normalized solutions of the asso-
ciated homogeneous equation. This definition is a perfectly
working characterization of QNMSs in many situations.
However, in the context of linear perturbations in asymp-
totically flat black-hole spacetimes, it appears that a
corresponding direct computation poses substantial tech-
nical difficulties. In this paper (Sec. IV D), we provide a
detailed discussion of this matter.

Until now there is no strict mathematical derivation of a
spectral decomposition formula (2) for linear waves around
asymptotically flat black holes. Nevertheless, in special
cases it was shown [20] that the late time behavior of the
solutions can be approximated in finite parts of the space by
a finite sum of the form (1). In [21], it was demonstrated
that for a wave equation with so called spiked truncated
dipole potential the decomposition (1) can be constructed;
particularly the amplitudes #, were determined explicitly.
Moreover, in several papers [18,22-24], so-called “quasi-
normal excitation factors” are discussed which are deter-
mined through the behavior of ¢, at the two boundaries
describing spatial infinity and the event horizon. They serve
for the determination of quasinormal excitation coefficients
which are equivalent to the expressions #,¢,. Rigorous
mathematical results including integral representations
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have been obtained in the case of Cauchy problems for
the massive Dirac equation as well as for the Teukolsky-
equation in the nonextreme Kerr-Newman geometry out-
side the event horizon; see e.g. [25-29].

In this paper, we demonstrate that a superposition of the
form

00

V) =Y met, )+ [ asedtionns o)
n=0 -

can be found for solutions of initial value problems of linear
wave equations in the Schwarzschild spacetime, provided
that the initial data are analytical in terms of a compactified
coordinate in an appropriate hyperboloidal slice to be
specified in Sec. II A. The amplitudes 7, and 5(s) are
fixed solely by the initial data, whereas the quasinormal
modes s,, as well as the functions ¢, (x*) and ¢(x*;s) are
characteristics of the particular wave equation being stud-
ied and hence independent of the initial data. We stress that
(3) is meant to provide, in a strict sense, the entire solution
for all coordinate times 7 > v where v is a mutual growth
rate of the excitation coefficients 77,¢b,,(x*) and 5(s)@(x*; s)
to be defined in the sequel (see Secs. IVE and IV F).

Now, in order to describe the decay of a dissipative wave
field, the QNMs s, need to be complex valued with
negative real part. Hence, an associated self-adjoint oper-
ator with spectrum ¢ = {s,}% ,U(—00,0) cannot be iden-
tified. Consequently, it is not simply possible to establish 7,
and 7(s) by some orthogonal projection of the initial data
onto the functions ¢, (x*) and ¢ (x*; s). Nevertheless, in this
paper, we develop highly accurate numerical means, based
on a detailed Taylor series analysis which is established
within the Maruemarica environment, through which all
ingredients of (3) are determined:

(1) The QNMs s, are computed through an efficient

procedure which can be considered as an extension
of Leaver’s method of continued fractions [16,17].

(2) The functions ¢,(x*) and ¢(x*;s) are constructed
from the wave equation under consideration (with-
out the need to consider specific initial data).

(3) The amplitudes 7,, and 7(s), being characteristics of
the initial data, are obtained through an analysis that
incorporates the initial data.

In addition, we provide strong evidence that the solutions
V(z,x*) to initial value problems of wave equations in the
Schwarzschild spacetime for analytical initial data as
described above are indeed entirely given in terms of (3)
for all coordinate times 7 that exceed the growth rate v of
the excitation coefficients.

As mentioned above, we concentrate in this paper on a
hyperboloidal formulation. However, typically the black
hole perturbation theory is developed with the background
metric described in terms of a coordinate system with slices
of constant time extending between the bifurcation point B
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it r=0
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FIG. 1. Penrose-Carter conformal diagram for the extended
Schwarzschild spacetime. Future and past event horizons are
denoted by H* and H~ respectively. Likewise, future and past
null infinity are specified through Z* and Z~ respectively. The
bifurcation point 53 describes the mutual meeting point of the
several horizons in this diagram. Also shown is a typical
hyperboloidal slice 7 = const extending smoothly through both
H* and ZT, as well as a Cauchy slice r = const extending from
the bifurcation point B to spatial infinity i°.

and spatial infinity i°; see the Penrose-Carter conformal
diagram in Fig. 1.

The most simple example is given by the Schwarzschild
spacetime written in terms of the well known Schwarzschild-
coordinates {t, r, 6, ¢ }. In this context, apart from the data at
the initial time slice, one needs to impose boundary con-
ditions at B as well as at i” since the physical solution should
contain only ingoing (outgoing) radiation at the horizon
(spatial infinity). When treating the wave equation in terms
of its Laplace transform, this framework leads to solutions of
the spatial equation which grow exponentially near the
boundaries. Note that the review [14] lists many difficulties
for obtaining the desired representation (3), and the issue
regarding the blow up of the solutions near the boundaries
constitutes one of the main drawbacks.

To overcome these caveats, the author of [30] argues in
favor of a coordinate system with time-constant surfaces
extending between the future event horizon ‘H and future
null infinity Z*, also known as hyperboloidal slices; see
[31] for a review. The work [30] shows that this choice
resolves the issues concerning the representation of the
functions associated to the QNMs. The paper emphasizes
the advantage of this framework in comparison with other
methods and mentions that developing a black hole
perturbation theory on hyperboloidal slices “may lead to
efficient numerical codes in the frequency domain” [30].
The work does, however, not advance further in this
direction. In this paper, we exploit the advantages of the
formulation of linear wave equations in the Schwarzschild
spacetime on hyperboloidal slices.

The paper is organized as follows. In Sec. II, we describe
the coordinate transformation leading to the hyperboloidal
slices in the Schwarzschild spacetime, and we introduce the
Bardeen-Press equation that describes scalar, electromag-
netic and gravitational perturbations propagating on this
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background. Section III is devoted to the Laplace trans-
formation of the Bardeen-Press equation, thereby obtaining
a characteristic spatial equation. Moreover, the inversion
through the so-called “Bromwich integral” is discussed.
This section also brings a comparison with the correspond-
ing formulation of black-hole perturbation theory on
Cauchy slices. In the comprehensive Sec. IV, we apply
sophisticated Taylor series expansions in order to get the
solutions of the spatial equations. This analysis provides us
with the various ingredients of the spectral representation (3)
of the solution which is then derived in Sec. V. Section VI
brings a thorough discussion, including a comparison with a
similar problem in Minkowski spacetime which can be
treated explicitly. The Appendix comprises several sections
in order to elaborate on certain aspects and issues that appear
in the course of the text. Especially, the so-called algebrai-
cally special QNMs [32] are discussed. Note that we use
units such that the speed of light as well as Newton’s
constant of gravity are unity, c = G = 1.

II. BLACK-HOLE PERTURBATION WITHIN
A HYPERBOLOIDAL FOLIATION

A. Hyperboloidal coordinates

Our starting point is a review of the hyperboloidal
coordinates used for the spacetime foliation. Following
[33,34], we write at first the Schwarzschild metric for a
black hole with mass M in the horizon-penetrating ingoing
Eddington-Finkelstein coordinates {v, r,0,¢} and intro-
duce then the new coordinates (z, ¢) via

11:4M(r+;—10g0> @)
r:27M. (5)

As a result, we obtain the line element

16M?
2 _
ds- = 2

[—0'2(1 —0)de* + (1 + 0)do?
1
+ (1= 26%)dzdo + 7 (d6° + sin*0dg) |~ (6)

In the hyperboloidal coordinates {z, ¢, 6, ¢}, the horizon is
given by ¢ = 1, while Z* is fixed at ¢ = 0.

B. Bardeen-Press equation

The equation describing the dynamics of a perturbation
U in a background given by the Schwarzschild solution was
derived’ by Bardeen and Press [4]. The equation reads in
our hyperboloidal coordinates {z,0,0, ¢} [34]

*The equation is equivalent to the Teukolsky equation [6] with
vanishing specific angular momentum parameter, a = 0.
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TABLE I. Perturbation field and spin-weight A.

A U c—0
0 d d = 0O(o)
1 ®o by = O(c?)
—1 o2, » = O(o0)
2 U Ty = O(c”)
-2 6_4\1/4 \114 = O(O’)

- (1 + G)U,rr + (1 - ZGZ)U,w + (1 - G)GZU,GG
3 <1 +2/1_12—6

c l-0¢

)U., —olo+A2-0)U,

1
+ Uygo + Ugcotf + -_29(U,tp¢ +2iAcosOU )
sin

+ A(1 = Acot?9)U = 0. (7)

The field U(z, o, 0, @) has spin-weight A. A scalar field ®
propagating on the background is described by 4 = 0. If
A=-1 (A=+1), U(z,0,0,¢) is closely related to the
Newman-Penrose scalars [5] ¢, (¢py) describing outgoing
(ingoing) electromagnetic waves. In the same way, gravi-
tational waves are associated to Newman-Penrose scalars
W, (Py) with spin weight A = =2 (1 = +2). Table I brings
the relation between U(z, o, 6, ¢) and the different types of
fields according to the corresponding spin A. The table also
shows the asymptotic behavior of such fields around Z+
(6 — 0) in accordance with the Peeling theorem [5].

Note that Eq. (7) is irregular at 6 = 0 and 6 = 1, i.e., at
future null infinity and at the horizon, respectively. This
property is a direct consequence of our hyperboloidal
slicing. Taking into account the relation of U(z, 0,8, @)
with the respective Newman-Penrose quantities and their
asymptotic behavior as depicted in table I, one can
introduce the regular field U

U(z,0,0,0) = 61+2’1(~J(T, 6,0,¢)
which removes the singular term going as ¢~ from (7).
Moreover, as noted in [30], the singular term at 6 = 1 is
removed by the further re-scaling
U(r.0.0.9) =c""(1 —0)*V(z.0.0.9).  (8)

We expand the field V(z, 0,0, ¢) into the spin-weighted
spherical harmonics ,Y,, (0, ) basis [35]

© 4
V(r,0,0,9) = z Z V;f’m(f» 0'),1Yfm(9v ?),
£=|i| m=—¢

thus obtaining a specific wave equation for each mode
3
Viem(z,0)7

3For simplicity, we omit the indices #m in V,,,(z,0) from
now on.
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—(1+0)V+(1=26*)V s+ 06> (1 =06)V 44
+062-3c+A2-0)]V,—[26-A(1-0)]V,
+[-(¢+1)=(c—-24)(1+4)]V=0. 9)

Given initial data V(o) = V(0, 6) and V(6) = V ;(0, ),
Eq. (9)is to be solved in the domain (z, o) € [0, 75,4 % [0, 1].

Note that the transition from the field U to V has not
removed the degeneracies of the wave equation at the two
boundaries ¢ = 0 and ¢ = 1. These degeneracies provide
boundary conditions that guarantee that the characteristics
of the wave equation always point outward the numerical
domain and hence no further boundary conditions at the
horizon nor at future null infinity Z* are allowed to be
imposed. Consequently, equation (9) has to be solved as an
initial value problem.

ITI. LAPLACE TRANSFORMATION

A. Definition

Given initial data V(o) and V(o), we follow [13] and
introduce the Laplace transformation

V(o;s) = LV(z.0)](s) = A Y e V(z,0)de. (10)

As the field V is strictly bounded for all times z, it follows

that V(o; s) is complex-holomorphic in the right half-plane
MN(s) > 0 (see Fig. 2). Note that the following relation is a
particular consequence of the fact that the wave-field
V(z,0) is real®:

V(e;s*) = [V(o:5)]". (11)

Applying now the Laplace transformation to both sides of
the dynamical equation (9) and considering that

LV (z.0)](s) = sV(a:5) = Vo (o),
LIV (7.0))(s) = s*V(a15) = sVo(0) = V(o)

we obtain an inhomogeneous ordinary differential equation
(referred to as “ODE” in the sequel)5

A(s)V(s) = B(s) (12)
with the second order differential operator given by

4Throughout this paper, we use an upper asterisk * to denote
complex conjugation. R

For addressing the function V defined for ¢ € [0, 1] (rather
than a particular function value within that interval), we simply
write V(s). The same applies to the right-hand side B.
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A(s5)=0?(1-0)0,5+{s(1-26) +0[2-306+A(2-0)]}0,
—{s*(1+0)+s[26+A(c—-1)|+£(£+1)
+(6-2)(A+1)}. (13)

The degeneracies of the wave equation (9) (see discussion
at the end of Sec. II B) implies that of the operator A(s) at
the surfaces ¢ = 0 and ¢ = 1. The inhomogeneity B(s) in
(12) is given in terms of the initial data V, = V(o) and
VO = VO (G )Z

B(s)=(1-26*)Vy,—(1+ G)VO
—26-A1-0)]Vy—s(1+0)Vy. (14)

B. Inversion

The solution of equation (12) with the help of a
sophisticated Taylor series expansion will be depicted in
Sec. IV. Once established V(o;s) for values s on some
vertical line in the right half-plane 9(s) > 0 (i.e. for
MR(s) =& with some fixed &> 0), we may write the
solution of Eq. (9) in terms of the inverse Laplace trans-
formation, also known as the Bromwich integral

V(r,0) = —A V(s s)e' ds, (15)

2mi
with the integration path (see Fig. 2)
I={seCls=¢&+iy,E>0,y € (—0,+0)}. (16)

Note that (15) provides us with the solution V(z, o) only if
7 > 0 (for 7 < 0 the integral vanishes).

We remark that the formula (15) is the starting point for
the spectral decomposition (3) which comes about through
an appropriate deformation of the integration path (see
Fig. 2) to be discussed in Sec. V.

C. Comparison with Cauchy foliation

We end this section with a brief discussion on some
relations between the Laplace transformation performed in
the context of hyperboloidal foliation and the correspond-
ing formulation of perturbation theory in the original
Schwarzschild coordinates.

Note that typically, perturbations on the Schwarzschild
background are described by the Regge-Wheeler-
Zerilli formalism, while here we focus on the Bardeen-
Press-Teukolsky approach. Both formalisms are known to
be equivalent and, in particular, the equations coincide for
A = 0 (scalar perturbation). Therefore, along the paper, the
discussion between the different foliations of the spacetime
will always be made for the particular case A = 0. The
conclusions, however, are general and should be valid also
for A # 0.
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2y
>

FIG. 2. Integration paths for the inverse Laplace transforma-
tion. The Bromwich integral (15) is evaluated along the line I'; in
the half-plane 9R(s) > 0. In order to arrive at the spectral
decomposition formula (3), it is essential to deform the integra-
tion path and to obtain the solution via integration along the curve
I',. The several ingredients, i.e. integration around the QNMs s,,,
along the branch cut R~ as well as along infinitely extended
circular sections, are discussed in detail in Sec. V.

Let us first introduce the dimensionless coordinates
x=r"/(2M) and 7=1¢/(2M) where r* is the so-called
tortoise coordinate. They are related to {z,c6} via
[cf. Egs. (4) and (5)]

€= ~In(o) +In(1 ~0), (17)
szT—i—%—ln[a(l—a)]. (18)

The horizon is described by x — —co and spatial infinity is
given by x — +o0. These points correspond to the bifur-
cation point B and i in the Penrose diagram (see Fig. 1).

Then, Eq. (9) is equivalent to the well-known wave
equation

_f,f7+f.xx_,Pf:O’ (19)

with f(7,x) = V(z(7,x), o(x)) and

- (- e

r r r

= (1=-0)d*lc+£(¢+1)]. (20)

Now, we apply the Laplace transformation

Fss) = £l G0)s) = [T e (2

0
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to Eq. (19) and obtain the equation

Fax =+ PIf = folx) + 5/0(), (22)

where f(x) =(0,x) and f(x)=f ;(0,x) are the initial data
and § the Laplace parameter in the Cauchy formulation.
Considering the homogeneous equations, we find the
following relation between the Cauchy and the hyper-
boloidal formulation. Given a function Q(s) that satisfies
the ODE A(s)Q(s) =0 [cf. (12) and (13)]. Then the
function
F(x(e);

5) =2¢7/76°(1 — 6)°Q(0: 25) (23)

obeys the equation
F.—[s*+PF=0 (24)

where the Laplace parameter s (from our hyperboloidal
foliation) is related to the Cauchy Laplace parameter 5 via

s =25. (25)
Note that (up to constants) the term
Z(0;5) =2¢7796°(1 — 6)° (26)

corresponds exactly to the factor introduced by Leaver [16]
accounting for the correct behavior of F at the boundaries
x — +oo. Here, the relevant factor (26) is motivated by the
term e*/™9) in (21), i.e., it follows directly from the
hyperboloidal coordinates as a consequence of the fact that
7 = const surfaces extend smoothly between the black
horizon H* and future null infinity Z+.

IV. TAYLOR SERIES EXPANSIONS

A. Solutions to the homogeneous Laplace
transformed equation and the asymptotics
of their Taylor coefficients

Let us exclude, for the time being, nonpositive integer
values of the Laplace parameter s, i.e. s¢Z; % We then start
with the homogeneous Laplace transformed equation

¢(o; s) analytic for 6 € (0,1]  (27)

and expand ¢(s) in terms of a Taylor series

Blos) = S Hy(1 - o)k (28)
k=0

With this ansatz, we follow Leaver [16] and concentrate, in
a first step, on solutions which are analytic in a

®In Appendix C, we extend our results to negative integer
values s.
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neighborhood about the horizon H, ie. at o=1.
Inserting the ansatz (28) into (27), we obtain the following
recurrence relation,

aHy + Pl + viHi—y =0, (29)
with the coefficients:

= (k+1)(k+1+s5-2),
P =2k+s)k+1+s)+£F+1)—-2+1,
vi = (k+s)(k+s+2). (30)

The coefficients H; can now be obtained for k > 1 via

1 !
Hi = —a—k(ﬂka +1eHiy) =0, Hy=1, (31)

where we have chosen Hy =1 as convenient scaling
condition. Note that for k > 1 we have a; # 0 as long as
s¢Z; see (30). We study now the asymptotics of H, for
large indices k — oo.

The singular points of the ODE (27) are given by ¢ = 0,
o = 1, and 6 = . Consequently, we expect the series (28)
to be convergent within the unit circle

C={ceC:|l-0| <1}, (32)

with analyticity breaking down at ¢ = 0, as this represents
an essentially singular point of the ODE. We may therefore
conclude that the domain of convergence of (28) does not
exceed the unit circle C, implying that

Hy
Hy

lim

k—o0

=1 (33)

An asymptotic estimate was found by Leaver [16]

Hk+l S /1+S—%
=1lx,/-+—F
H, \/2* e

from which we derive:

O(k=/7),

Ads_3
logH; =logH, + \/%+#+O(k—3/2)'

k

Applying this formula successively from some k = k, on,
we obtain the asymptotic formula

i\/_z < 3 i)i%JrO(l)

Jj= ko J=ko
(1/2) 1/2
= Vsl - 1)

3
+(a+3-3) " - a2+ 00)

logHy i =
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with

k
) |
HY =Y = (34)

=

being generalized harmonic numbers. Now these numbers
possess the following asymptotics:

HP =2vk+0(1). B =logk+0(1). (35)

from which it follows that for sufficiently large &:
Hy = K (A exVE 4 ApeVE), (36)
with

g:z+%—§ (37)

k= 24/s, R(x) > 0, e

and where the coefficients Af tend to a finite value as
k — oo, to be denoted by AZ. Again, this result corresponds
to the findings by Leaver [17].

If we now investigate the behavior of the corresponding
solution ¢ of (27) we observe that, for N(s) >0, it
possesses an essential singularity at ¢ = 0, somewhat
similar to the function ¢*/°.” A more sophisticated analysis
(to be conducted in Appendix B) reveals that

(03 5) := ot e/P(0; 5) (38)

is, for N(s) > 0, analytic at any o € (0, 1] and still C* at
o = 0. However, just as the function ¢*/°, the behavior of ¢
changes, when moving into the left half-plane %i(s) < 0, as
here ¢ becomes C* for all o € [0, 1]. This fact has the
interesting consequence that for N (s) < 0 the solutions
¢(s) of (27) can be taken as regular C* initial data,

V(0.0) = R[p(o.5)].  V.(0.0) = R[sp(o.5)] (39)

which imply the regular C*-solution
V(z.0) = %g(o.5)e™] (40)

to our wave equation (9).

We observe that the solution (40) behaves like a purely
quasinormal ringing, with damping % (s) and frequency
J(s). Figure 3 exemplifies this behavior by showing the
time evolution (obtained through the algorithm presented in
[34]) for this type of initial data. In particular, in the case
A =1¢ =0 the values s = —1 + #i and s = —2 + 2xi have
been taken. However, these arbitrarily chosen s values in

"Indeed, it can be shown that the Taylor series (28) of e*/°

possesses the dominant asymptotics H, = ez\/gk‘y“Ak+ with
A = AL (s); see Appendix B.
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V(r,o=1)

100

1072 +

(A
1074t :
1076 +

1078 +

10710 b

10712 ¢

0~

FIG. 3. Time evolution for initial data given by (39). For
arbitrarily prescribed s values with R(s) < 0, the evolution
shows exponentially damped oscillations [cf. (40)]. Here, the
examples are obtained for s = —1 4 zi and s = —2 + 27i in the
case A = ¢ = 0. The field is measured at ¢ = 1.

the left plane are to be distinguished from the QNMs to be
discussed in Sec. IV D.*

Let us now turn to a specific second solution (s)
obeying the homogeneous Laplace transformed equation

A(s)y(s) =0. (41)

We describe this solution by a sequence {I;}{>__ of
coefficients satisfying

Al + Pl +1id i1 =0, kllggolkekﬁk—g:l- (42)

Here we have chosen the asymptotics (36) [which holds for
any solution to the homogeneous recursion relation (29)]
with AL = 0 and, moreover, Ay, = 1 as convenient scaling
condition.

Let us discuss the corresponding solution y in some
detail. The sequence {/;}%,,, which is uniquely defined
by (42), does not provide us with a decent Laurent
representation of y. An analysis of the asymptotics of 7
as k — —oo, performed along the same lines as the above
investigation in the case k — +o0, reveals that

lim (e72V="m=I_,) = B with |BL| < co. (43)

m—oo

Here, the square root in the exponent is again to be taken
such that its real part is positive. If we now consider
principal part {1, }Z.; and secondary part {1, }& separately,

8Note that if s is not a QNM, then the solution (40) cannot be
expressed in terms of the desired spectral decomposition formula;
see discussion in Sec. VIB.
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(1-o0) =

m=1

we find that y_ corresponds to a function which is analytic
outside C [the closure of the circle C, cf. (32)], while v is
analytic inside C. Hence, there is no annulus in the complex
o plane about the point ¢ = 1 within which the formal
Laurent series w =y _ +y . would converge. Nevertheless,
w_ and y, can be extended analytically into exterior and
interior of C, respectively, and there (y_ + y ) describes
the complex continuation of a function y that satisfies (41).
Note that the complex extension of y_ is a function with
singularities at 6 € {0, 1} and a branch cut discontinuity
along the real interval o € (0,1). Likewise, w_ is a
function with singularities at o € {0, 0} and a branch
cut discontinuity along the real interval ¢ € (—o0, 0). Thus,
the resulting function y possesses a branch cut disconti-
nuity along the real interval ¢ € (—o0, 1).

As a solution to (41), the function = w_ + yw, can be
written in terms of ¢ as

= ¢(0:5)[C(s)(03 5) + (s)] (45)

with s-dependent constants of integration C(s) and c(s)
and where

w(o;s)

o 8) = x/{r{ 5(1-6))~"ds
o) = [ e

B g [6(1 —6)]*"ds
fre " e (0

With the convenient lower integration bound 1/2, the
function IT can be analytically extended for 0 <o <1
from the right half-plane N (s) > 0 onto the left half-plane
N(s) < 0. We remark that based on the aforementioned
considerations it appears difficult to assess with certainty
that the function y, when considered at real ¢ 2 0, is C*-
regular at 6 =0 for 9 (s) > 0. This property would be
essential to qualify y as one of the two linearly independent
homogeneous solutions to (41) that, according to the
definition in [13], constitute a Wronskian determinant
whose zeros determine the set of QNMs. To show that
y is C%®-regular at ¢ = 0 would mean that we have to
perform a complex continuation of y_ from the annulus
{6 €C:|l—06|>1} to real 6=0. As values of y_
anywhere inside the annulus are only given numerically,
it appears extremely difficult to provide a decent analytical
expansion of y_ as required. In Sec. IV D 1, we return to
this issue but remark here that instead of the function y
being considered, we concentrate in the following on the
corresponding sequence {I; } which is defined through the
specific asymptotics given in (42).

We now develop a higher-order approximation of the
asymptotic expansion (k - +o0) of the coefficients I, as
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they will be an essential ingredient in the solution of the
Laplace transformed equation to be derived in Sec. [V A.
For k> 1, we write

I, = eVkKEA, (47)

where the coefficients A, are given in terms of a regular
function A defined on an e neighborhood about the origin,

-

Now, the expression (47) may be inserted into a slightly
rearranged version of the recurrence relation (42), thus
obtaining:

X) =14+ . (48)
j=1

1\¢
ai (1 * %> e VFVOAL L + Ay

1\¢
—l—yk(l 7) e<VkI=VhA =0, (49)

If we now consider (48) and expand (49) in terms of 1/ Vk
about k = co, we can successively determine the p;’s
through the method of equating the coefficients. The first
two terms amount to

342 —487(f+1
—T2L+£2—2)s—3(21 +16£(£+1)—48))s>
16053+ 85Y)). (50)

In this manner, all coefficients H (and hence the function
A) are completely fixed. A sample of the function A for
A=¢=0 and s =1+ is displayed in the left panel
of Fig. 4.

In our numerical computations, we determme for given
values of 4, ¢ and s, the coefficients {u ]} s for some
integer J,,,, with high numerical precision. Thanks to
the Series command in Maruemarica, values of J..
around 40 can easily be chosen. After the computation of
the y;’s, the function A is approximated by a diagonal Padé
approximant

Z] ng pj

T (51)
1 + Z]maf q]

APade ( )

where the coefficients p;, g; are determined such that

di A, d’'A
P (0) == (0) = jlu; forj=0,...,

dxj ( )_d.x/ 2Jmax’ (52)

124016-8



SPECTRAL DECOMPOSITION OF BLACK-HOLE ...
0.045
0.04
0.035
0.03

RA()] -1 ——
S[A(@)]

0.025
0.02 +
0.015
0.01
0.005

0

0.01 0.02 0.03 0.04 0.05

X

PHYSICAL REVIEW D 93, 124016 (2016)

10° ‘ ‘ ‘
|Apade(wmax) - A(xmax)l —

10—10 L b
1075 ¢ :
1072t 1
107 ¢ :
10730 | E
107 ¢ 1
10740 £ ;

10 15 20

10745

25
Jmax

FIG. 4. Left panel: within the interval x € [0, x,,] With x,,,, = 0.05, the function A = A(x) [cf. (47), (48), (51)] is shown for

¢ = 2 = 0 and the Laplace parameter s = 1 + i. The values x < 0.05 correspond to the indexes k > k,,x = x

—2
max

= 400. Right panel:

maximal deviation, obtained for x = x,,,, of the approximation function Ap,q. [cf. (51), (52)] from the function A, in dependence of the

expansion order J .

with pug =1, cf. (48). In this way, we create a highly
accurate approximation Ap,g. of the function A, from which
we may obtain approximative values of the two coefficients
Ii . 41 and I for some large index ky,, from the relation
(47). The high order and the corresponding extreme
accuracy of the Padé approximation allows us to get away
with rather moderate values of e.g. k., ~ 400; see the right
panel of Fig. 4.

We proceed with the determination the coefficients /; for
ke {-1,...,kpy — 1} from the backwards recurrence
relation

1
Ik—lz_ﬁ(akaJrl'f'ﬁka)v k = kmaxs -~ 0. (53)

Note that for s¢Z, the coefficients y; do not vanish, cf. (30).
The 1,’s for k < -2 are not needed in the sequel, although
they also follow from (53).

A note at the end of this section seems appropriate. The
aforementioned asymptotics (36), (47) and (48) arise as the
result of a particular ansatz which appears to work by
means of the asymptotic expansion of (29) and (42) and the
subsequent application of the method of equating the
coefficients. That is to say that we do not intend to provide
a full proof of the aforementioned statements, but rather
describe a particular route towards the solution of the ODE
(12) in terms of a Taylor expansion analysis.

B. Unique solutions of the Laplace
transformed wave equation

For the construction of solutions to (12) for prescribed
values Z, A and s € C, we first consider two notations
which will be useful in the sequel. For a sequence {a; }%,
we define the discrete derivative via the difference

(54)

-
(lk = Ay — Ay

Moreover, for two sequences {a;}%, and {b;}%,, we
introduce the discrete Wronskian determinant by

Wi({ax} Abi}) = apby — ayb, = ap1by — agbyyy.  (55)

In the following, we discuss W, ({H},{I;}) with the
sequences {H;}%, and {I;}%, considered in the previous

section, which we abbreviate by simply writing W. From
(29) and (42), we find

0 = Ii(axHysy + BiHy + yiHi—y)
= Hy(oyp Dy + By + vidi-r)

=W =W,
ie.
Wk - ﬁ Wk—l' (56)
(273

We concentrate again on s¢Z; (see footnote 6). Also, we
assume here that s is not a QNM; these are just the values at
which the construction to be described will fail; see
Secs. IV D and IV E. Then we obtain nonvanishing regular
values W, for k > —1:

fork>0  (57)

since @; #0 and y; #0 for j > 0. Moreover, we have
H; =0 for k < 0 and hence W, = 0 for k < —1. With the
scaling condition Hy = 1, cf. (31), we get W_; = I_;. Note
that in the following, the term
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| fra, JIT(S)O(s + )0 +s5—A+1)

L T TGAs+EDI(s =2+ DG +s+A+1)

_ s LT +4)
I(s—4+1)

[1+0G™)] (58)

occurs frequently. Now we can address the solution to the
inhomogeneous Laplace transformed wave equation (12).
Let us start with the assumption that the initial data be of
polynomial form, that is, for some integer K,, we may
write

V(0.0) = Vo(o) = O w1 o)
V0.0)=Volo) = S wil—o)f.  (59)

k=

(=]

Later in the text, we will relieve this restriction to allow for
initial data that are analytic for ¢ € [0, 1].
Writing accordingly the Laplace transform V as

(5]

V(o;s) = Zak(l - o)k, (60)

k=0
we arrive via Eq. (12) at the recursion relation

Ay +ﬂkak—|—ykak_l :Bk’ ak:0 for k <0, (61)

with

By = (k+ Dvey —2(2k+ s+ 1oy
+ (2k + A+ $) vy = 2wy + Wiy (62)

and B; =0 for k <0 and k > K,,,,. It turns out that

a, = ¢, H, + Cily, (63)
with the condition

¢\Hy+ CI, =0, (64)

where the coefficients ¢, and C;, are to be determined, is a
well-functioning ansatz for all k£ € Z for which W # 0, i.e.
for k > —1. Note that from (63) we learn that C, = 0 for
k <0 since then a, = H, =0 and [I; # 0. Moreover,
the coefficients ¢, are arbitrary and undetermined for
k < 0. In addition, when looking at (64) for k = —1 and
taking H_; = C_; =0# I_; into account, we see that
also Cy = 0.

If we now insert (63) into (61), thereby considering (29),
(42) and (64), we get for k > —1:

ar(Hipicp + 11 Cp) = By (65)

PHYSICAL REVIEW D 93, 124016 (2016)

As a_; = B_; =0, this equation is trivially satisfied for
k = —1. For k > 0, Egs. (64) and (65) can be written as

(o e )(@)=(2)
Hiy Iy J\C fe_f,

with the solution

1,B H,.B
¢ = kk’ c, = - kk’ (67)
aka aka
i.e. by virtue of Cy =0,
k-1 k=1
I.B; H.B;
Ck:C0+ ]], Ck:_ ]]. (68)
,Z:o:“jo ;%Wj

In order to determine the constant c¢, appearing in this
context, we require that a; ~ I; as k — oo for polynomial
initial data. This ensures that for 9(s) > 0 the Laplace
transform V is C® at ¢ =0 and does not blow up
exponentially there. We remark that only such solutions
V can be taken to build up the wave field V via the Bromwich
integral (15).

From (68) we learn that for polynomial initial data (60)
we have for k > K ,:

Kmax I]B)
cr=co+ ~—— =: ¢* = const, (69)
=W,
K
max H B .
Cy=-— ' — const (70)
;o a;W;

Now, the requirement a; ~ [; as k — oo means that ¢* must
vanish [cf. (63)], which leads us with (57) to the final
solution

j k—1 j
a H:B; a
I, JJ | | _m>
=k %I m=0 Vm =0 a; m=0 Ym

(71)

In this expression, the limit K ,,,, — oo is easily performed,
allowing for initial data whose complex extension is
analytic within the circle C. Indeed, if we write

ay =Y Gy;B; (72)
j=0

with
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IH;
Lai I for j < k
1 o —y 4
Giy = =7 Som=0t . (73)
-1 H; {
L G for j > k
a; m=0 Ym
we obtain the implication
. j+1 . k(j+l)Bj+l
lim =e¢ = lim =, (74)
J— j J—o ijBj

and hence convergence in (72) for all k > 0 in the case of
initial data which are analytic within the circle C and thus
satisfy € < 1. Note that (72) presents a representation of the
solution a; of (61) in terms of the discrete Green’s function
Gy, given in (73). This name is justified because of the
relation

G ir1ym + PiGiom + 746G k=1)ym = Okm» (75)

which follows from (72) and (61) for B; = 6;,,.

Let us now discuss the case in which the initial data are
analytic for all 6 € [0, 1] but whose complex extension is
not analytic within the circle C, i.e. € > 1 in (74). Then the
series (72) does not converge. Yet, in order to determine a
definite limit even in this case we introduce

ay(x) = ZijBjxj (76)
J=0

which is a Taylor series that converges for |x| < 1/e. The
corresponding function a;(x) may, however, be defined
on the entire interval x € [0, 1], and we obtain a good
approximation again via a diagonal Padé approximant

Jos p xi
e () = =0 Pt (77)
L+ ™ qx
where the coefficients p;, g; [different from the ones in
(51)] are determined such that
d’ agade _ d’'ay
dx/ dx/

(0) = j!Gy;B; (78)

for j =0, ..., 2jma The values af®(x = 1) serve us as
good approximations for the a;, and we thus obtain the
Taylor series (60) which describes a unique solution V to
the inhomogeneous ODE (12). As the coefficients B; of the
initial data appearing in (12) are characterized by a specific
radius 1/e < 1 of convergence of the associated Taylor
series, we expect that also the coefficients a, are subject to
that convergence radius, meaning that (60) is valid only for
|1 — 0| < 1/e. Similar to the treatment above, we establish

PHYSICAL REVIEW D 93, 124016 (2016)

V(o3 s) in the entire range & € [0, 1] by utilizing once more
a diagonal Padé-approximant (here with respect to the
coordinate o):

kmax 2 j

Zj:o/ pj(l - o)
1 kmux/2 1 j
+Zj:l CIj( _0')

VPade(UQ 5) = ) (79)

where the coefficients p;, g; [different from the ones in (51)

and (77)] are determined such that Vp,g. agrees with V to
the order k., which amounts to the conditions

dkv d“v
i () = (i) = (=1)'Kla
for k=0, ..., k- (80)

The corresponding solutions \7(0; s) are analytic for ¢ €
(0, 1] and still C* at ¢ = 0. Computed at the line (16), they
are perfectly suited to express the wave-field V(z, o) via the
Bromwich integral (15), as is done in Secs. IV C and A.

C. Numerical evaluation of the Bromwich integral

Before proceeding further on the way towards the
desired spectral decomposition of the wave field, we
investigate as a first application and test of the procedure
described in Sec. IV B the numerical evaluation of the
inverse Laplace transform. To this end, we compute the
function V(s) for values of s located on the path I'; [see
Fig. 2 and Eq. (16)] and construct from these the solution to
the wave Eq. (9) in the form of the Bromwich integral (15).
While Appendix A contains more details regarding these
calculations, we concentrate here on the discussion of the
numerical behavior of this solution technique.

Figure 5 brings two examples of the time evolution for
initial data prescribed by V(o) =1 and V(o) = 0. The
first one represents a scalar perturbation with parameters
A =0 and # = 0 while the second one corresponds to an
electromagnetic perturbation with 4 = —1 and ¢ = 2. The
Bromwich integral is evaluated along the line
N(s) = 1/10, and we plot V(¢ = 0,7), i.e. the dynamics
of the wave field at Z*. The time evolution of the first
example shows an early tail decay whereas the second one
possesses a long-lasting ring-down phase.

In the figures, it becomes apparent that the Bromwich
integral method, when computed along the path I';, does
not seem to be well suited for the study of the wave’s late
time behavior. This observation is a consequence of the
systematic errors introduced by the discretization of
the integral. As discussed in the Appendix A, within our
approach the numerical solution tends to zero exponentially
which prohibits the resolution of the tail at very large times.
In contrast, the spectral decomposition of the wave field, to
be derived in the sequel, does provide in principle an
arbitrarily accurate description of the very late time tail.
Note that all the results in this section were obtained with
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FIG. 5. Solution of the Barden-Press equation (9) via the Bromwich integral method (15) for the initial data V(o) = 1, Vo(s) = 0.
Left panel: time evolution of a scalar perturbation with parameters 4 = 0 and £ = 0. Right panel: electromagnetic perturbation with
parameters 1 = —1 and # = 2. Both fields are evaluated at 7V, i.e. at ¢ = 0, and the Bromwich integral is performed along the line

N(s) = 1/10 (see Fig. 2).

the fixed Taylor resolution k., =500, J,.=10.
Moreover, the resolution for the numerical evaluation of
the integral (15) was set to n, = 200 (see Appendix A).

D. Quasinormal modes

1. Approach within the Cauchy formulation

We start by reviewing the definition of QNMs as usually
expressed in the literature (see, for instance, [13]) and
describe why a direct computation according to this
characterization seems to pose essential technical difficul-
ties when analysed in the context of perturbations in
asymptotically flat black-hole spacetimes.

Working with the Cauchy coordinates {7, x} introduced
in Sec. IIIC, one first considers in the region M(5) > 0
the homogeneous equation (24) which has two linearly
independent solutions F*(x;5), chosen in such a way that
they stay bounded as x — d+o0. More specifically, the
solutions satisfy

lim |eSFE(x;5)| = 1. (81)
x—too
Then one constructs the Wronskian determinant’
W(S) = FL(x;5)F(x;5) — F5(x5)F(x;5)  (82)

and analytically extends it onto the half-plane 9i(s) < 0.
The QNMs are then defined as the values 5, for
which W(5,,) = 0.

For equations of the form (24), the Wronskian determinant
does not depend on the coordinate x [14].

In order to compute W explicitly as defined above, '’

we relate the two functions F* to solutions Q(s) of
the homogeneous Laplace transformed equation
A(s)Q(s) = 0 [cf. (27) and (41)] appearing in our hyper-
boloidal framework. From the exponential fall-off of F~
when x — —oo we conclude that F'~ can be written in terms
of ¢. Concretely, with the help of Eq. (23) and the
regularity condition (81) we find

e2§

F~(x(0);5) = 75((;; 5)¢(0; 25) (83)

with the function = defined in (26). For the second solution
F* that needs to satisfy the regularity condition (81), we
have to take

F*(x(0):3) = E(0:5)¥(0; 25), (84)

where

) o _15(1 = &)1tV a5
(o) =S 0(0:5)h(0:5) A ! (1&[45(3?];8)12 d

(85)

is a solution to (41) that is C*-regular at 6 = 0 for all
MN(s) > 0 (recall that 2 = 0 here). Note that once more the
function ® appears which was defined in (38).

We now can write the Wronskian determinant WV(s) in
(82) as

"As mentioned in Sec. III C, the comparison between both
approaches is performed for 4 = 0. We furthermore recall that the
Laplace parameters are related by s = 25.
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W(s) = %3620 - 0)Z(0;5)*W(0;25) (86)

with W(o;s) being the Wronskian determinant formed
from ¢ and V:

W(o:s) = ¢ ,(0:5)¥(0:5) = ¥ 5(0:5)p(0:5)
- %@(O; $)el7e (2 (1 = g)~6HD. (87)

We finally find
W(5) = 25¢>®(0; 25), (88)

which depends solely on s, as expected. Following the
discussion made after the introduction of ®(o;s) in (38),
we see that W(5) is well defined for % (35) > 0. However,
the values ®(¢ = 0;25) are involved which appear to be
determinable only numerically to some accuracy. Now,
they are supposed to constitute a function that is well-
defined on the right complex half-plane i (5) > 0. In order
to determine the set of QNMs it would then be necessary to
continue this function analytically to the left half-plane
M(5) < 0 and identify there its set of zeros. As an example,
if we simply had ®(;25) = ¢=5/? 4 1 + 5 then we would
get P(c=0;25)=1+75 for 9(5) > 0, and this can of
course trivially be analytically expanded to the entire §
plane, despite the fact that ®(0;25) does not exist for
M(5) <0. On the technical side it appears extremely
complicated to provide a reasonable and sound, sufficiently
accurate continuation of the numerically determined func-
tion values ® (o = 0;25) onto the left half-plane. Hence we
feel that the concrete determination according to the usual
definition of QNMs given in [13] needs to be performed in
some different, indirect manner.

In the next section, we provide a working definition of
the QNMs which results in the same expressions as the
ones used by Leaver in his approach utilizing continued
fractions [16]. In particular, we derive that the QNMs can
be characterized through the vanishing of the Wronskian
determinant

W(o;s) = ¢o(0:5)p (o3 s) —w.(035)¢(oss)  (89)

of the two solutions ¢ and y to (41) that were discussed
extensively in Sec. IVA. Note that in order to analyse
whether this approach is equivalent to definition of QNMs
given in [13] it would be necessary to show that W is
proportional to v, i.e. to prove that y, when considered
for real ¢ > 0, is C*®-regular at ¢ = 0 for N(s) > 0. Even
a mere numerical check of this equivalence would pose
again substantial technical difficulties; see discussion in
Sec. IVA.

PHYSICAL REVIEW D 93, 124016 (2016)
log |1-1(s)]

2

1.5

1

0.5

0

—0.5

-1
ﬁ\\\ 1 —1.5

-3 -25 -2 -15 -1 =05 0 05 1

0.4

0.2

FIG. 6. Contour plot of the function log |/_; (s)| in the complex
s plane for A = ¢ = 0. The centres of the concentrically arranged
closed curves are the locations of the quasinormal modes s,,
shown here for n € {0, 1,2}. At these points, I_;(s) vanishes.

2. Quasinormal modes as zeros of the discrete
Wronskian determinant

Quasinormal modes s,, are specific values in the complex
s plane for which the procedure, described in Sec. IV B to
determine a unique solutions of the Laplace transformed
wave equation, fails. The reason for the failure is given by
the fact that

1_1(s,) =0, (90)

from which it follows that the construction (72), (73)
cannot be performed. The zeros of the function 7_;(s)
have always been found to be distributed discretely in the
left half-plane % (s) < 0. Figure 6 shows a contour plot of
I_(s) for A=2¢=0.

We immediately

characterizations:

(i) For s =5, as a QNM, the discrete Wronskian
determinant W ({H;},{I;}) vanishes for all
k € Z. This follows directly from (57).

(i) For s = s, as a QNM, the Wronskian determinant
W(o;s,), as defined in (89) in terms of the two
solutions ¢ and y introduced in Sec. IV A, vanishes
for all o € [0, 1].

With (90) we obtain that /;, = 0 for all kK < O [see
(53) with a_; =0, cf. (30)] and hence I, = I H;
i.e., the two sequences {H,}, {I;} are linearly
dependent. As a consequence, the associated func-
tions ¢ and w satisfy yw = Iy and, hence,
W(o;s,) =0, cf. (89).

(iii) A QNM s, is defined by the existence of a nontrivial
solution ¢ = ¢, to (27) that possesses a Taylor
expansion (28) with rapidly decreasing coefficients.
That is to say that there is, for each v € N, a positive
constant C, such that for all k € N,

arrive at  several equivalent

Hals,)| < 22 1)

This formulation follows directly from the fact that
H, =1,/Iy ~ e™ViE for k — co; see (42).
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[A] = 2,¢ =2 (Leaver’s method)
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FIG. 7. Errors in the numerical determination of the quasinormal modes s, displayed as functions of the truncation number k,,, for a
gravitational perturbation with parameters |1| = 2 and £ = 2. The left panel shows the results according to the algorithm presented in
this work (with J ., = 10), while the right panel brings the corresponding value obtained with Leaver’s method of continued fractions.
It becomes apparent that the errors are drastically reduced by taking the asymptotic behavior (47), (48) of the coefficients /, into account.

Among these three characterizations, point (iii) plays a
preferred role. Points (i) and (ii) make use of the two
sequences {H;} and {I;} of coefficients which cannot
be defined in its entirety for s € Z~; see discussion in
Appendix C. This means that the negative integer, the so-
called “algebraically special” QNMs s, [32] (to be treated
in Appendix D), is excluded in points (i) and (ii) (in the
definition of H; and I, in Sec. IVA we have set s¢Z;).
However, point (iii) still applies since the corresponding
solutions ¢, are polynomials and satisfy therefore trivially
this formulation. We conclude that (iii) should be regarded
as generically valid definition of QNMs for perturbations in
the asymptotically flat Schwarzschild spacetime.

For the numerical computation of the QNMs s,¢7Z;,
Leaver [16] has looked at the recursion relation

I
Tk with by =KL

[ ——
l P + arby k

(92)

through which the coefficients b, can be written in terms of
continued fraction expressions. Starting with b, =1 for
some very large value k,,, and climbing down via (92), one
obtains through the condition

1
0 :E(O‘OII + Polo + 1ol-1) = agby + Po

an equation that determines the QNMSs s,,. In practice, this
equation can be solved numerically using the FindRoot-
command provided within Maruemarica (see e.g. [36]). This
method achieves in principle arbitrary precision. However,
for very accurate calculations, extremely large vales k.,
and a high internal working precision of the Maruematica
notebook need to be chosen. The costs of this numerical
calculation can be reduced drastically by making use of the
approximation function Ap,. introduced in Sec. IVA

above. As described therein, given a suitable expansion
order J.,, we can choose a moderate number k,,,, (say
about 400) to obtain extremely accurate values [, in
particular for /_;. The zero s, is then found by a
Newton-Raphson scheme,

()
: . . I (s%
s, = limsy/, s9+1)::sy)-———:lgi_%ﬁ_’ (93)
Jme (s1_1)(si")

where a suitable initial guess sﬁ,o) is needed. Note that for
the numerical computations, the derivative 0,/_; can be
approximated through a finite difference expression. An
illustrative example demonstrating the accuracy and per-
formance of this calculation in comparison with Leaver’s
method is shown in Fig. 7.

As an additional note, we remark that (41) has, for
s = s, being a QNM, a second solution A which is linearly
independent of ¢,. This solution A can be described
similarly as y in Sec. IVA by a series {L;}%, with

oLy + Pl +viLi—s =0,

Jim Lie™Vkk< =1, (94)
as A=A, + A_, where
o0 L (9]
—m k
Z:: T = L(l-0) (95

ml k=0

Observe the diverging asymptotics of the L; in (94), and
hence A does not present a solution of the kind described in
(iii) of the above characterization. Furthermore, as L; # 0
for k <0, A is singular at 0 = 1. We conclude that the
entirety of solutions to (27) is given by spanc(¢,). This
point will be relevant below (see Sec. IV E).
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We finally mention that, as a consequence of the
symmetry relation (11), we find that the quasinormal
modes s, come in complex-conjugated pairs, s, and s,.

E. Quasinormal mode amplitudes

What happens to the solutions V = V(s) of the inho-
mogeneous ODE (12), computed in Sec. IV B, if we
approach a QNM, i.e. if s — s, (here again s,¢Z7)? As
then I_; — 0, Eq. (71) suggests that V(s) will diverge in
this limit. Assuming that /_; has merely a single zero at

11 S . .
s =s,, the corresponding V(s) will possess a single pole
at s = s,. Accordingly, for values s close to s,, we write

h
P _ksn + gi(s). (96)

ai(s) =
where £, does not depend on s (in contrast to a; and g).
With the single polelike singularity of V, the coefficient /;
is supposed to be the residue of a; at s, whereas g;(s)
presents the secondary part of its Laurent series. That is to
say that the coefficients g, (s) are supposed to be analytic in
the vicinity of s,. As will become clear below, the residues
{h;} turn out to be proportional to {H;(s,)}, and the
corresponding proportionality factor #,, will play a crucial
role as the quasinormal mode amplitude in the desired
spectral decomposition (3).

For the computation of 7, let us start with initial data
that are analytic within the circle C [i.e. for which e < 1 in
(74)] and generalize the corresponding expression in a
subsequent step. We formulate the recursion relation (61) as

A(s) - {a} = {By} (97)
with the operator A(s) defined by
[ACs) - {ar ] = axarsr + Brag + yrag-.- (98)

We now insert (96) into the relation (97), thereby rewriting
(97) by using another operator C,, which is given through

Als) = Alsn) + (s = 5)Cals), (99)

1e.:

[Ca(s) - {a}le = (k+ Dagr =22k + 145 + 5,)ax
+ 2k + s+ s, +A)ag,. (100)

We obtain

Alsn) + (5 = s)Ca(s)] -4 4(9) - () = (B},

s—=5,

(101)

""This assumption has always been found to be realized.

PHYSICAL REVIEW D 93, 124016 (2016)

which provides us in the limit s — s, with the condition

A(s,) - {hy=0.

In the vicinity of the QNM s,,, i.e. for 0 < |s — 5,| < & with
some ¢ < 1, Eq. (96) describes the solution to (101) with
vanishing and rapidly decreasing coefficients {%;}, {g;}
for k < 0 and k — oo respectively. Hence, according to the
fact that ¢, is the only C®-solution on the interval ¢ €
[0, 1] (cf. discussion at the end of Sec. IV D), we have

hk = nnHk(sn) (102)
with the QNM amplitude 7, as proportionality factor. We
thus obtain

[A(sn) + (s =

Equation (101) reads now

A(s) - {gi} () = {Bi}(s) = 1aCu(s) - {H(sn) -

For s # s,,, the solution of (103) can be found using the
formula (71). In particular, we obtain

(103)

-1 Jj=0 al m=0 Ym
with
Cj = [Cn(s) ) {Hk(sn)}]j' (105)

In the limit s — s,,, we have I_; — 0, and (104) provides us
with a finite value g, only if

o HiBiTTi ow
Jj=0 a; m=0y,,

= o HCiT1i o ’ (106)

j=0 aj m=0 Ym

S=S,

where we utilized that /;(s,) = Iy(s,)H;(s,). Note that the
sum in the denominator is assured to converge since the
addends are rapidly decreasing as j — oo [see (42), (58),
(100)]. The numerator can be written as N = Z;‘;O G;Bj,
and since |G}, B;1/(G;B,)| = € as j — oo for our initial
data that are analytic within the circle C, we can again
conclude convergence.

Now the case in which the initial data are analytic for all
o €[0,1] but whose complex extension is not analytic
within C, i.e. € > 1 in (74), is treated as in Sec. IV B. We
introduce N(x) = >°%,G;B;x’ and expand it to x = 1
with the help of an associated diagonal Padé approximant.

As an important quantity for the time range, within
which the desired spectral decomposition formula (3) is
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valid, we now define the growth rate of the quasinormal
mode amplitudes,

. In|n,p,(0)|
= lim ————————. 107
The following statements hold:
(1) As

g, | Inlg(o)]
i 1

vanil®) = 10 ] o s,

W—’

El

=VQoNm (1)

the profile of vgym(o) is universally given by the
second term, while the first one is vgnw(1) (Which
follows from the scaling condition Hy = 1) and
presents a constant shift depending on the ini-
tial data.

(2) For polynomial initial data (59), we obtain a uni-
versal growth rate vonm (o). This follows from the
fact that the numerator N in (106) is algebraic in s,,.
Hence, we get

HC; i
i IH|Z] =0 a] : in:O% S=S,
lim
n—co R (s,)|

= —2’

VQNM(U =

i.e. an expression that is independent of the particu-
lar choice of the polynomial initial data. Note that in
our numerical investigations, this limit has been
observed to be always —2, independently of the
choices for 4 and 7.

(3) Looking at (3), we see that the addends in the sum
fall off exponentially for 7 > vgym(c). Adding a
similar argument with respect to the continuous
integral part, we will be able to argue in Sec. VI,
that this means full validity of the spectral decom-
position formula (3) for such times.

F. The Laplace transform along the branch cut

Let us now consider the situation in which we approach
the negative real axis within the complex s plane. Again
we exclude, for the time being, integer s values, i.e.
s € R"\Z". (As mentioned in footnote 6, s € Z~ will
be treated in Appendix C.) Towards this axis, we can get
from above or from below. In the first case, arg(s) — 7, the
corresponding k = 24/s with R(x) > 0 tends to the pos-
itive imaginary axis, while in the latter one, arg(s) — —, it
runs towards the negative imaginary axis. Consequently,
we obtain via the method presented in Sec. IV B for s €
R™\Z~ the two solutions

VE(s) = lirré V(s £ile])

PHYSICAL REVIEW D 93, 124016 (2016)
with

= iaki(l - o)k

k=0

In the computation of the a;® according to steps described in
Sec. IVB, the coefficients By, H; as well as I are
involved. Only the latter ones are different when getting
to the negative real axis from above or from below; see
asymptotics in (42).

Now, the symmetry condition (11) implies that

V=(s) = [V*(s)I".

and the asymptotics (42) tells us that these quantities have,
in general, both real and imaginary parts. With nonvanish-
ing imaginary part of \A/i(s) we conclude that the Laplace
transform V(s) possesses, besides the simple poles at the
QNMs s, a jump along the negative real axis, s € R™:

I S

hm[ (s +ile]) = V(s — ile])] :Z(a —a;)(1-o0)k

=0 H—/

Therefore, the negative real axis appears as a branch cut
with respect to V(s). Now, as both a; and aj satisfy the
recursion relation (61), the coefficients d;, = ak+ —a;
satisfy the homogeneous recurrence relation (29) and,
moreover, d_; = 0. Hence we have d;, = dyH, and thus:

V(s — ilel)] = =2zin(s)p(s).

ljr%[V(s + ile]) — (108)
where we introduced 7(s) == —d/(2zi) which will appear
in the spectral decomposition formula (3) as a branch cut

amplitude. The computation of d;, in terms of (71) yields

by = ai —ar 53 ’fi“ ( L)
0= 0dy —dy = - - )
0 0 o 1Ly -

M—’
::Dj
where the coefficients D; satisfy again the homogeneous

recurrence relation (29) and, moreover, D_; = 0. We
conclude that D; = DyH; and obtain, finally,

03 ) S 115

(109)

::Gj
Again, this formula is valid as it stands for initial data that
are analytic within the circle C. For initial data that are
analytic for all ¢ € [0, 1] but whose complex extension is
not analytic within C, i.e. ¢ > 1 in (74), we introduce once

124016-16



SPECTRAL DECOMPOSITION OF BLACK-HOLE ...

more N(x) = >%, G;B;x/ and expand it to x = 1 with the
help of an associated diagonal Padé approximant.

For representative sample initial data, the magnitude
[7(s)p(o;s)| is shown in Fig. 9.

Finally, let us define as in Sec. IV E the growth rate of the
branch cut amplitudes,

Veut(6) = —lim max
n—=00 | —(n+1)<s<-n

DI (110
s '

Note that the three statements at the end of Sec. IV E can be
transferred to the growth rate of the branch cut amplitudes,
with the second point modified by

} S

R —Ig
rl fl

It is interesting to note that in our numerical investigations
of analytic initial data we observe that the growth rates
vonm and vy of quasinormal mode amplitudes and branch
cut amplitudes coincide. We believe that this is a conse-
quence of the fact that these quantities arise from similar
expressions, cf. (106) and (109). Henceforth we will simply
use v(o) to denote the mutual growth rates vgny and vgy.

—lim max —In
n—oco —(n+1)§s<—n|S|

G. Asymptotic expansion of the Laplace transform

In order to arrive at the spectral decomposition (3) in
Sec. V via an appropriate deformation of the Bromwich
integration path (see Fig. 2), we have to consider the
contribution of the integral over the semicircular portion of
I'; in the complex s plane for z > 0. The two cases, positive
and negative growth rates v, have to be discussed
separately.

Let us approach the matter with the auxiliary function

0
W(r) = / =) sin(ws)ds = S{ . (111)

T—IJ—Z'(U:|

where we took in the desired formula (3) only the
continuous integral part and, moreover, inserted for
n(s)g(o;s) its asymptotics given through the growth rate
v, cf. (110). The phase w (let us take @ > 0) has been added
in order to have a regular function W for z > 0. Note that
the integral can only be performed for 7 > v, but the result
is defined on the entire complex 7z plane with single poles
at v+ iw.

Now, the integrand of the Bromwich integral (15) is
given by V(o; s)e*”. Consequently, we have to discuss here
W(s)e*” with

. 1 .
5; (7B [=s(v + )]

— eSO E [—s(v — iw)]),

PHYSICAL REVIEW D 93, 124016 (2016)

where E| is an exponential integral. The function

f(z) = €E\(2) (112)
has a branch cut along the negative real axis in the complex
z plane. Let us discuss this function as being defined on a
Riemannian surface with infinitely many sheets. The
crossing of the negative real axis means the analytic
transition into a neighboring sheet. The function f is best
described by another function

g(r.@) = f(re'),
(113)

g:10,00) X (=00, 0) = C,

where 7 = re'® is assumed to be located in the kth sheet
with k = [ (¢ + 7)/(27)]." It turns out that

1
limM:sin <¢+57ﬂ> for ¢ € <_5_ﬂ _3_”>

r—o0 r 2 ’ 2
37 3
lim|g(r,p)| =0 for ¢ e <—7ﬂ§>
. In|g(r,e)| . 3 3z 5x
lim — AP ~Z) & 27,
lim - sin { ¢ —— or ¢ € )
(114)

Now, (112) means

- 1

W(s) = :lg(r.91) = g(r.0-)] (115)

with (w > 0),
r=|s|Vi*+ @?,

¢y = arg(s) + [arg(v + iw) — 7.

Let us discuss v < O first. We have —z < arg(s) < z and
7/2 < arg(v + iw) < z. We conclude that

T < < < i
-5 T, '/ — A
3 P+ P >
and hence |W(s)| vanishes whenever s — co with —z <
arg(s) <.
The case v >0 1is different. Now we have

arg(v + iw) € (0,7/2), and we get for arg(s)>7% +
arg(v + iw):

rsine_

. V3
lg(r,p_)| ~e , e_ = arg(s) —arg(v + iw) —5-

Likewise, for arg(s) < —arg(v + iw) —% we obtain

"“Here we used the notation | - | for the floor function.
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FIG. 8.
A =1 = 0. Left panel: for the polynomial initial data V(o)
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growth rate vonu(o)

o

Behavior of the residues 7,,¢,,(¢) of the Laplace transform V(o; s) at the quasinormal modes {s,,} with prescribed parameters
=0*(1-o0)*

, Vo(o) = 0 the decay is shown for 6 = 0 (at Z*) and for 6 = 1

(at the horizon). The inset brings the growth rate vy (o) for all ¢ € [0, 1]. Right panel: comparison of the grow rate for the polynomial

initial data against meromorphic initial data with single poles in the complex o plane. Here, V(o) = 2%[(6 — 6)~"], Vo (o) = 0, with
= 0.5 + iy. While polynomial initial data show a universal behavior, more generic initial data introduce a constant shift in the profile.

lg(r.p)| ~erstee ey = —arg(s)
We conclude that, for v > 0, the function W(s) diverges
exponentially as [s| > co when the limit is performed
in the circular sector |arg(s)| > %+ arg(v+ iw)."” The
strongest divergence is obtained for |arg(s)| — m; there
we have |W| ~ elsl,

In Fig. 10, we display the behavior of the Laplace
transform V(o; 5) in the half-plane 9i(s) < 0 for meromor-
phic initial data V(o) = 2%[(c — 64)7'], V(o) = 0 with
single poles at ¢, and of. We take oy = 0.5+ iy and
considered, in particular, the parameter y = 0.7. For these
initial data, we obtain at ¢ = 0.5 a positive growth rate
v~ 0.13 (see Figs. 8 and 9). In Fig. 10, the existence of a
circular sector |args| > 0.99z becomes apparent within
which V(o;s) diverges exponentially. As expected, the
strongest divergence occurs for | arg s| = 7 with the rate v.

We now turn to the deformation of the Bromwich
integration path. Let us again consider the case v < 0 first.
Although |W(s)| = 0 for |s| = oo, |arg(s)| < 7, we can-
not simply apply Jordan’s lemma in order to obtain
vanishing contribution of the integral over the semicircular
portion of I'; in the complex s plane. The reason is that W
possesses a branch cut along the negative s axis, a fact
which is not included in the formulation of Jordan’s lemma.
Moreover, when considering V we see that it possesses
poles at the QNMs s = s, accumulating at infinity. One
might be reminded of the function 1/ sin(zs) with poles at
real integer values. However, for 1/ sin(zs) the residues of

PQutside this sector, in particular for |arg(s)| < z/2, |W|
tends to zero when |s| = oo, and hence the Bromwich integral
(15) exists.

—arg(v—i—ia))—g.

the poles remain of finite magnitude as s tends to infinity. In
contrast, the residues of V die out at the rate e="(sn)v,
Likewise, also the jump along the negative s axis falls off at
the rate e™* when s — —o0. One may say that asymptoti-
cally the singular structures of V and W disappear expo-
nentially and play merely a sub-dominant role.

Let us illustrate this issue by a representative example.

The function
( 7 1,1+ s)

where @ is the so-called Lerch transcendent (see e.g. [37]),

resembles the property of V of having infinitely many first-
order poles accumulating at infinity with rapidly decreasing

0 —

E: +k_2

k=1

(116)

residuals. We have /i — 0 for |s| — oo, | arg(s)| < 7. Letus

now discuss the Bromwich integral (see (15), (16) and

Fig. 2) which yields the associated inverse Laplace trans-
form A:

A 1

h(z) = L7'[A(s))(7) = —

27l

h(s)esds. (117)

The inverse Laplace transformation can be applied sepa-
rately to each addend in (116), giving thus

- 1

7) = ZZ"‘e"" =31

k=1

(118)

which is just the sum of the residues of /i(s)e* in the left
half-plane:

iRes_k[ﬁ(s)e
=1

T . —k ,—kt 1
‘]:ZZ kek :267——1 (119)

k=1
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growth rate vy (o)
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FIG. 9.
panel: for polynomial initial data V(c) = 6>(1 — o)

Jump 1,¢,,(6) of the Laplace transform V(o; s) along the negative axis s € R~ with prescribed parameters 2 = [ = 0. Left
4, V(o) = 0 the decay is shown for 6 = 0 (at Z+) and for 6 = 1 (at the horizon).

The inset brings the growth rate v (o) for all ¢ € [0, 1]. Right panel: comparison of the grow rate for polynomial initial data against
meromorphic initial data with single poles in the complex o plane. Here, V(o) = 20[(6 — 64)7'], V(o) = 0, with 65 = 0.5 + iy. We
observe exactly the same behavior for the growth rate as in the quasinormal mode case (see Fig. 8), i.e., vonm(0) = Ve (0).

V(o =0.5;5)

et
1.0et04 | 28ls) =09797 arg(s) = 10007 —— |
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FIG. 10. Behavior of the Laplace transform V at the spatial
location ¢ = 0.5 in the half-plane M(s) < 0 for meromorphic
initial data V(o)=20[(c—0¢)""], Vo(6)=0 with 65 = 0.5+
i0.7. It becomes apparent that 1% grows exponentially for
|arg(s)| > 0.99z. The strongest divergence is obtained for
|arg(s)] =z and coincides there with the growth rate v
(here, v~ 0.13).

It follows that

1
- h(s)esds = - . h(s)es ds
= > Res_yfh(s)e”.
=1

i.e. the integral over the semicircular portion of I', vanishes
in the limit of infinite radius. That is to say that Jordan’s
lemma applies, even though the function h possesses
poles accumulating at infinity (and therefore does not

satisfy the prerequisites required for a strict application
of Jordan’s lemma).

From the preceding considerations, we find that for
v < 0 the integral over the semicircular portion of I'; in
the complex s plane vanishes. In contrast, for v > 0 the
exponential divergence in the circular sector |arg(s)| >
2+ arg(v + iw) ruins the applicability of Jordan’s lemma.
However, for times 7 > v the functions V(o; s)e** as well as
W(s)e* possess the desired fall-off at infinity. This results
from the fact that the strongest divergence in the circular
sector is given by el in the limit | arg(s)| — z. We thus
may finally conclude that the integral over the semicircular
portion of I, does not contribute for (i) 7 > 0 when v < 0,
and (ii) 7 > v when v > 0.

V. SPECTRAL DECOMPOSITION

It is now an easy task to put the pieces together that we
collected in the previous sections. The starting point is the
representation (15) of the wave field V. If we deform the
Bromwich integration path from I'; to I'; (see Fig. 2), we
gather

(1) QNM contributions: Writing according to (60), (96),

(102) and (28) the Laplace transform V in the
vicinity of the QNM s,, as

’/Inqsn +ng S) I—Gk

V(o;s) = —

(120)

with coefficients g,(s) that are analytic in the
vicinity of s, (cf. discussion in Sec. IV E), we find

2m f{ (c35) “ds—Znnqﬁn e, (121)
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Polynomial initial data
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Meromorphic initial data (y = 0.7)
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Time evolution of the field V(z, 6) according to the spectral decomposition (123). Left panel: polynomial initial data with

V(o) =1, Vo(o) = 0,for A= 0, # = 0 and —1, # = 2. The spectral decomposition provides an efficient and stable method for a long
time evolution (to be compared with the inverse Laplace transformation method in fig. 5). Right panel: meromorphic initial data
V(o) = 2%R[(6 = 06)7"], Vo(6) =0, with 65 =0.5+i0.7 and 1 =0, £ =0. The continuous lines correspond to an evolution
according to (123) while the dots are the results of the explicit time evolution with the code [34]. The spectral decomposition (123) is

valid for time 7 2 v(o).

where C, denotes a sufficiently small circle which
encompasses in a counterclockwise fashion the
QNM s, (and only this one) and does not touch
or cross the negative real s axis.

(2) The branch cut contribution amounts to
1 (NN N
P V= (0;5) = VT (0;5)|e™ds
271 )

1

ﬂ'/—zo
[ nteisienas

where the integral is to be performed along the
negative real s axis.

No contribution from the semicircle for (i) ¢ > 0
when v <0, and (i) 7 > v when v > 0, see dis-
cussion in Sec. IV G. We recall that v resembles the
mutual growth rate of QNM and branch cut ampli-
tudes, cf. (107) and (110), obtained for analytic
initial data.

In sum, we arrive at the following spectral decomposition
of the wave field satisfying the dissipative wave
equation (9):

I[V*(o;5)]e™ds

3

n(s)p(o;s)e™ds.

(e8]

Vo) =Y ndulole+ [
n=0 -
(122)

We recap that {s,} are the QNMs of our wave equation in
question. The functions ¢, () and ¢(o; s) are the solutions
to the homogeneous equation (27) taken at the QNMs and

the branch cut s € R™, respectively. The initial data are
analytic for all ¢ € [0, 1] and imply corresponding QNM
amplitudes {#,} and the branch cut amplitude 7(s)|cg-
with characteristic mutual growth rate v = (o). Forv < 0,
the formula (122) was derived from the Bromwich integral
for coordinate times 7 > 0. However, having established
(122), we see that the expressions actually make sense for
any 7 > v, meaning that we may analytically expand the
solution to such times. In sum, we may conclude that (122)
is a valid representation of the wave field solution for all
times 7 > v(o).
A reformulated version is given by

Vo) =23 hdlo)e) + [ as)plois)eds
n=0

—00

(123)

where we utilized the condition (11) that allows us to count
merely the quasinormal modes s, with J(s,) > 0, as in
Fig. 2. If algebraically special QNMs need to be taken into
account, then the formula gets slightly modified; see
Appendix D, Eq. (D10) therein.

Figure 11 displays the time evolution according to the
spectral decomposition (123) for the two types of initial
data discussed in this work. The left panel brings the
results of a polynomial initial data V(o) = 1, V() =0
and, in order to compare with the results from Fig. 5
with chose 41 =0, # =0 and —1, Z = 2. Moreover, the
right panel compares the evolution according to (123)
with the dynamics obtained numerically with the fully
spectral code [34] for the meromorphic initial data
Vo(6) = 2R[(6 — 69)7"], Vo(6) =0 (69 = 0.5 + iy) and
1=0, £ =0. According to the growth rate v(c) showed
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in the previous figs. 8 and 9, for y = 0.7, the spectral
decomposition is valid only for 7> 0.83 at Z* (¢ = 0),
whereas Eq. (123) is valid for all time 72 —0.17 (in
particular 7 > 0) at the horizon (6 = 1).

All in all, we have found that the formula (123) describes
the wave field for all times 7 > v(c) and is, in contrast to the
Bromwich integral method presented in Sec. IV C and
Appendix A, particularly well suited to resolve highly
accurately the late time tail behavior. More concretely, if 7
is very large, then only the amplitude #(s) within a tiny
vicinity of the origin s =0 in the complex s plane is
important. Although the computation gets harder as s — 0
[note that the coefficients ; diverge in this limit, cf. (48) and
(50)], n(s) can be computed independently for each s directly
from the initial data. This is a striking advantage compared to
atime evolution code for which the tail behavior results from a
successive marching forward in time and depends therefore
on all steps computed previously. A sophisticated study of
tails in the more general Kerr spacetime is planned to be
presented in a forthcoming article.

VI. DISCUSSION

In this article, we have numerically constructed the
ingredients {s,,®,.n,}°, as well as {¢(s),n(s) }ser- Of
the spectral decomposition (123) that describes solutions V
to the initial value problem of the dissipative wave
equation (9) with initial data that are analytic in terms of
the compactified spatial hyperboloidal coordinate
o € [0, 1]. The spectral form (123) arises through the study
of the corresponding Laplace-transformed equation and an
appropriate deformation of the associated Bromwich inte-
gration path. The ingredients in question were established
in a sophisticated analysis of Taylor coefficients of relevant
functions appearing in this context.

In the course of the aforementioned steps, we have
discussed in detail that the characterization of QNMs in
terms of the vanishing of the Wronskian determinant
formed of specifically normalized solutions to the homo-
geneous Laplace transformed equation as described in [13]
implies severe technical problems when attempting a
straight-forward numerical computation.

In contrast, a well-functioning definition, which provides
the justification of Leaver’s continued fraction method [16]
to determine the QNMs, is given through the vanishing of
an appropriate discrete Wronskian determinant.

The form (123) has been numerically confirmed in
a number of tests in which a selection of different analytical
initial data were chosen. After the determination of
{$p, p.n, 3, and {p(s),n(s) }ser-» formula (123) repre-
sents the desired solution for all coordinate times 7 for which
(123) makes sense, that is for 7 > v(c) where v(o) is the
mutual growth rate of QNM and branch cut excitation
coefficients. The test was performed through a comparison
with the fully-pseudo spectral time evolution algorithm
described in [34].
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Before moving on, we elaborate on striking similarities
with a specific dissipative wave equation on hyperbolic
slices in Minkowski space that can be handled explicitly.

A. A dissipative wave equation with obstacle in
Minkowski space

The following example is often being used in the so-
called Lax-Phillips scattering theory [38]. Here, we aim not
at a discussion within that framework but rather investigate
the equation along the lines developed in this article.

Consider the ordinary wave equation on Minkowski
space,

WU+WU+WU_WU_O
) A

written in the Cartesian coordinates (x,y,z,7) of some
inertial frame. We introduce the specific hyperbolic coor-
dinates (g, 0, @, u) given through

x =ro(e+ 1)sinfcos ¢
y=ro(e+1)sinfsing
z=ro(e+ 1)cosd
t=roQu+o+1),

where ro denotes the coordinate radius of a given spherical
obstacle at which we require the wave field U to vanish at
all times. Assuming that U also vanishes at Z" (described
by ¢ — o), we rewrite it as

V(u,0,0,¢) = (e +1)U(u, 0,0, )

and expand the auxiliary field V(u,0,0,¢) into the
spherical harmonics Y, (0, ¢) basis,

o0 4
V(I/l, 0,9, ¢) = Z Z me(”* Q)Yt’m(g’ ¢)
=0 m=—¢

We thus obtain a specific wave equation for each mode
Vm(u, 0) (again we omit the indices #m from now on):

(+1)
Vo= Vae = (o1 ¥ =0

(124)
The second equation represents the boundary condition that
the wave field be always zero at the obstacle. We consider

(124) specifically for /=0, and with the initial data
V(0,0) = Vy(o) the solution
V(u,0) = Voo +u) = Vo(u) (125)

arises.
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We now formulate the following question: For which
initial data V, can the solution (125) be written in the form
(123)? The answer is given by the inverse Laplace trans-
form applied to (Vo — Vo|,_) in terms of the spatial
coordinate ¢. In fact, if V,, can be written as

vmaz/fmw@w—thcm&me+vw

(5]

0
Vo= Voloow == [ n5)ds (126)
for some function #(s), then (125) turns into
0
Vo) = [ o) ee - evds (127)
—® ——

=¢(03s)

i.e., we obtain the form (123) with a purely continuous part.
Now, if we expand V|, into the entire complex ¢ plane and
find some finite value,

Omax = Max{M(gs):es is singularity of V},  (128)
i.e. all singularities of V|, are located to the left of the line
N(Q) = Omax> then we have for s - —oo:

1()] = £ {Vo(@) = Vea}(=s)]| ~ &0

We thus conclude: The spectral decomposition (127) holds
for u > Q. if the complex continuation of the initial data
V(@) onto the complex ¢ plane reveals singular structures
located entirely to the left of the line M (@) = Qmax away
from infinity.

This is a very similar situation as the one that we
encountered in the Schwarzschild case. In this
Minkowski example, however, we can identify an explicit
relation between the spatially constant growth rate and the
location of singular structures of the initial data V(o),
namely v = Qpax-

Going further and considering now singularities located
at infinity in the complex ¢ plane, we find that the matter
gets more subtle. The following examples provide an
impression (take a, @ € R™ in the examples 2 and 4):

(129)

No. Vo(e) n(s)
1 e ?—1 S(s+1)
— -
2 e sn:(a)g) nonxejl::t)ent (130)
3 el gmm
e:(_s)(z—]

4 (o+1)*—-1 NG

The first example describes a purely exponential falloff
of the solution, while the second one is a ring down
oscillation with arbitrarily chosen frequency @ and
decay rate a.
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If we discuss the several choices V| in terms of a
compactified spatial coordinate ¢ =1/(¢ + 1), then we
find for the first three examples in (130) that the corre-
sponding V(o) is C* at ¢ = 0. In the fourth example,
however, we have V((c) = 6% — 1 which, for @ < 1, is not
differentiable at ¢ = 0. We conclude that C*-regularity, and
in particular C*®-smoothness of the initial data V(o) at
o = 0, is neither sufficient nor necessary for the existence
of a corresponding function #(s). This point deserves
further clarification, to be conducted elsewhere.

B. Conclusion and outlook

The final result of our analytical considerations com-
bined with numerous numerical examples can be formu-
lated as the following conjecture: )

Given analytical initial data V(o) and V(o) for the
wave equation (9). Then the spectral decomposition (123)
holds for all T > v(c) where v(o) is the mutual growth rate
of quasinormal mode and branch cut excitation coefficients
defined by (107) and (110).

A strict mathematical proof of this conjecture remains a
challenging task which is far outside the scope of this paper.

Clearly, it would be desirable to relax the conditions
imposed on the initial data to allow for more generic
configurations (for instance, data with compact support).
From our experiences gathered in this paper as well as
through numerous dynamical computations performed by
many authors we surmise that the conjecture would still
hold for generic initial data that are analytic in a vicinity of
o =0, i.e. at Z". More precisely, we expect that there are
for each such initial data individual QNM as well as branch
cut amplitudes with characteristic growth rates vonw (o)
and v, (o) (maybe different for nonanalytical data) such
that the spectral decomposition (123) holds for all 7 > v(o)
where v(c) = max{vonm(0). Vew(0)}. These amplitudes,
however, cannot be determined by the methods described in
this paper, as they rely on an analysis of Taylor expansions.
Note that we had to exclude initial data that are not analytic
at ZT. Again a look at the dissipative wave equation in
Minkowski space illuminates the situation, specifically
example 2 in table (130) for which a branch cut amplitude
and hence a corresponding growth rate does not exist.
Consequently, for such initial data the spectral decompo-
sition never holds. Going back to the Schwarzschild case,
we expect that likewise for generic initial data of the form
(39) we cannot identify QNM and branch cut amplitudes,
i.e., (123) never holds (v = o), unless the Laplace param-
eter in (39) is chosen to be some QNM, s = s, in which
case (123) holds for all times 7 (v = —o0).

At the end, a final remark seems to be in place. In [24], it
has been argued that “the integral over the quarter circles at
infinite frequency produces the early time response of the
black hole.” Similar comments can be found in other papers
(see e.g. [39]), and they all seem to be reformulated
versions of Leaver’s statement from [18], “It is G that
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propagates the high-frequency response, and which reduces
to the free-space Green’s function in the limit as the mass of
the black hole goes to zero.” Our considerations lead us,
however, to a different interpretation. We have seen that, for
generic analytical initial data, the Laplace transform V
diverges exponentially in some circular sector |arg(s)| €
(r —&,m) in the complex s plane when |s| = co. This
means, that the integral over the quarter circles at infinite
frequency mentioned before cannot be evaluated. However,
in the course of time, concretely for 7 > v(o), the asso-
ciated V for initial data taken on such time slices vanishes
when |s| — oo, (s)| < =, and hence the integral in
question does not contribute by virtue of Jordan’s lemma.
Therefore, we encounter the impression that the proposed
early time contribution of the integral over the quarter
circles at infinity is a misinterpretation. This integral cannot
be evaluated for small times (and thus cannot reasonably be
discussed physically) and vanishes for data at larger
times 7 > v(o).

We conclude this article with the observation that, due to
our experiences gathered in the Minkowski example, the
case in which the singularity is located at Z*, i.e. at 6 = 0,
is expected to require a more sophisticated investigation.
While it might appear as a minor remaining uncertainty,
this issue plays a fundamental role when attempting to
identify an appropriate linear operator acting on an asso-
ciated function space, whose spectrum is {s, }UR™ with
corresponding proper and improper eigenvectors ¢, and
¢(s). Again, the treatment of this interesting functional-
analytical question is far beyond the scope of this paper.

ACKNOWLEDGMENTS

The authors are deeply indebted to Bernd Schmidt for
bringing our attention to this interesting topic and for
numerous insightful discussions. This work was supported
by the DFG Grants No. SFB/Transregio 7 Gravitational
Wave Astronomy and No. GRK 1523/2. Rodrigo P.
Macedo was supported by the CNPq under the Ciéncia
sem Fronteiras program.

APPENDIX A: THE BROMWICH INTEGRAL

The Bromwich integral solution method considers the
integration path T'; [see (16)], that is, values V(s) for s =
&+ iy with some prescribed £ > 0 and y € (—o0, 0) are
collected in order to evaluate (2), i.e.

§T [+, .
Vie.o) = & / V(o +iy)eidy.  (Al)

27 J_

Since V (7, ) is bounded, its Laplace transform V vanishes
for [s| — oo, arg(s) € (—n/2,7/2); see (10). Consequently,
we have for all s with 0 (s) > 0, via Jordan’s lemma,
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V(6:5)d5

lim -
S—s

=0, A2
R—o0 Crl(s) ( )

where Cg(s) is a semicircle in the right half-plane about the
point s, i.e.

Cils) = {5€Cls =5 +Re, f € (—1/2.7/2)}.

Consider now Cauchy’s integral theorem,

V(c:3)d N
P ]f V@ 9)ds _ @ itiss), (A3)
Tp(s) S8
where
Ti(s) = C(s)U{G€Cls =5 +i7.7 € (-R.R)},

with P denoting the Cauchy principal value and the
integration evaluated in a counterclockwise fashion along
the closed curve I'g(s). By virtue of (A2) and (A3), it
follows that the imaginary part of V is the Hilbert transform
of the real part:

A 1 o S{ V : i\ dy
SV(esé+iy)] = ;P/_ [ (‘}5_;1)()] X

(A4)

We insert this expression into (A1) and obtain via

00 e—im
P/ do = —rmi
o @
that

e‘ff +o0
V(z,0) = —/ N
-

(o8]

[V(o; &+ iy)] e dy

257
o

/0 " R[V(0:+ ip)] cos(rr)dy.  (AS)

where the latter expression arises through the symmetry
condition (11). Now, for some prescribed auxiliary param-
eter sp € R, we compactify the integration interval with
the help of the new variable x € (0, xp] via

i where xp = (£ —sp)72.  (A6)

L4 xpp?
Taking into account that 9%(V) is an even function in the
variable y and vanishes when y — oo, we may approximate

x"'R(V) in terms of a Chebyshev series:

nl 2
RV (03 + iy)] NXZ (63, 5p)T <xf—1>, (A7)

where a particular numerical resolution n, was chosen. The

Chebyshev coefficients cj(a; £, sp) are obtained through
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A=0,0=0,sp =0
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FIG. 12. Numerical accuracy of the Bromwich integral method with resolution 7, = 200, applied to the initial data Vj(o) = 1,
Vo(o) = 0, with parameter sp = 0 [cf. (A6)] along the Bromwich integration paths 0t (s) = & € {1/10, 1, 10}. Left panel: Chebyshev
coefficients c;(0; &, sp), cf. (A7) and their dependence on £. Right panel: Corresponding dynamical error &(z, ¢ = 0) which diverges as

5. Results were obtained with the fixed Taylor resolutions k., = 500, Jy.x = 10, cf. Sec. IV.

requiring equality in (A7) at the Chebyshev-Gauss grid
points

1 1 .
———, with x; = xpcos
Xp  Xp

72k + 1))

Xk =
2”)(

and k =0, ...,n, — 1. Here, the left-hand sides in (A7) are
evaluated according to the procedure described in Sec. IV.
Note that x~'0(V) is C* for x € [0, xp],"* and hence a
Chebyshev expansion provides an accurate numerical
approximation.

Considering the polynomial structure of the 7';’s explic-
itly, we introduce coefficients P;; via the requirements

2x ! I+1
x| —=1) = Zpﬂx .
Ap =0

Through this rearrangement we can explicitly evaluate the
integral (AS):

(A8)

n,—1 j
V(T,G)%ch(a;é,sp)ZPﬂQ,(r;f, sp) (A9)
Jj=0 1=0
with
25 [+oo
O/(7;&,5p) = / x* 1 cos(yr)dy
T Jo

spr 1
:26 Z (I+k)! (-

s )]—(1+k+1)rl—k'
I = (1—k)'k!

(A10)

14Analyticity breaks down at x =0 when y — co; see dis-
cussion in Sec. IV G.

We provide a few examples of the functions Q;(z;¢&, sp):

&Pt
QO(T’Z’:’SP>:§—SP

STl+ 5_
Oi(r:& sp) = € ﬁ

o34+ 37(E—sp) + TH(E—s5p)?
O(7:&,5p) = € T( 8(;— SP)TS .

The systematic error of this method is a consequence of
the truncation of the Chebyshev series (A7) at the reso-
lution order n,. For 7 ~ 0, the accuracy is determined by the
behavior of the Chebyshev coefficients c;(c:¢, sp),
whereas the time propagation of this initial numerical error
is related to the behavior of the functions Q,(z; &, sp). As a
representative we consider the coordinate location ¢ =0
and study how the choice of the two parameters £ > 0 and
sp < 0 affects the numerical performance.

Figure 12 compares the dependency of ¢;(0; £, sp) on the
parameter & (left panel) for a fixed value sp = 0. Note that
the coefficients fall off stronger and stronger as £ increases.
However, the right panel of this figure reveals that the
dynamical error grows in the course of time exponentially
as €57,

For £ ~ 0, we can improve the efficiency of the method
by shifting the parameter sp accordingly. Fixing now
& =1/10, the left panel of Fig. 13 depicts c;(0;¢,sp)

“The dynamical error is defined as &(z,0) =
|VBr0mwich(T’ 6)_VHighAcc(T7 (7)|’ where VBmmwich(T’ 6) is the
solution obtained via the Bromwich integral method and
Viighace (7. 6) being a highly accurate numerical solution ob-
tained with a time-marching scheme based on a fully spectral
code [34].
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Numerical accuracy of the Bromwich integral method with resolution n, = 200, as in Fig. 12 applied to the initial data

Vo(o) = 1, Vo(o) = 0, along the fixed Bromwich integration path 9t(s) = & = 1/10 for different parameters sp [cf. (A6)]. Left panel:
Chebyshev coefficients c;(0;¢&, sp), cf. (A7) and their dependence on sp. Right panel: Corresponding dynamical error &(z, 0 = 0).

Results were obtained with the fixed Taylor resolutions k., = 500, J .« =

for different values of sp. Note that an appropriate choice of
sp significantly enhances the decay rate of ¢;(0;¢&, sp). As
in Fig. 12, the right panel of Fig. 13 displays the
corresponding dynamical errors, and it becomes apparent
that a stable solution can be obtained for a much longer
time period. In the long run, however, the time behavior of
the numerical Bromwich solution is dominated by the
decay rate ~e**z! of the integral terms Q,(t;¢&, sp),
cf. (A10) and Fig. 5. Consequently, for very late times,
the dynamical error corresponds to the inverse power law
behavior of the tail decay.

We conclude that in contrast to the spectral decompo-
sition (123), the Bromwich integral method, as realized in
this work, is not suitable for describing the wave field’s
long term tail behavior. It does, however, provide a neat test
and justification of the Taylor coefficient techniques which
present the core of this work.

APPENDIX B: EXAMPLES FOR RELEVANT
TAYLOR ASYMPTOTICS

In this section, we provide an explicit example that
resembles the properties of a function f,

[Se]

f= ZHk(l - o)k,

k=0

(B1)

whose Taylor coefficients posses an asymptotics of the kind
given in (36) and (37). The explicit example is given by the
function

f=ee. (B2)
It can easily be verified that f satisfies the ordinary
differential equation

10, cf. Sec. IV.

[620, + s]f = 0. (B3)
Inserting the Taylor expansion (B1) into (B3) yields the
recurrence relation

(k+1)Hy — 2k +s)Hy+ (k—=1)H,_; =0. (B4)
Treating this recurrence relation in exactly the same manner

as described in Sec. [IVA, we obtain the following asymp-
totics of the Taylor coefficients:

1
H ~A§ok‘3/4eﬁmY<ﬂ:>, k — oo BS
k \/]; ( )
::af
with
Y(x) =14y, (B6)
j=1
452 -9
- B7
53 5s 15
- 0T et BS
Y2788 T 6a 5125 ST (B8)

Clearly, for s¢R™, the term in (B5) with the positive sign
(meaning the square root in the exponent with positive real
part) is dominant in comparison to the term with the
negative sign. Hence we have:

AL = lim (H eV ), s¢R™. (BY)
If we compute the coefficients H; with the help of (B4),
utilized here as upwards recurrence relation with H_; = 0
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and H, = e*, we can determine the limit (B9) numerically.
Examples are provided in (B12).

For s € R™, however, both asymptotics in (B5) need to
be considered. Then the two unknowns AL can be obtained
through the conditions

H, = se’, HQ:%(Z—Fs)eS, (B10)
which result from (B4) for k = 1 and k = 0, taking into
account that H_; = 0 and H, = ¢°. Indeed, if we write in
accordance with (B5)

H, = ALal + Aga; (B11)
for two coefficients Hg,; and Hg, where K is some
large number, and climb down to H, and H| utilizing (B4)
now as downwards recurrence relation, the conditions
(B10) determine uniquely the two unknowns AZ. We
generally find that AL = (A3)* o /4 for s € R™; see
examples in (B12).

s=1: AL =~ 0.46509
s = e™/*: AL ~0.34251 + 0.20995i
s=1i: AL ~0.17696 + 0.21969i

s =4 AL ~0.11641 + 0.16027i

1
s=-3 : AL ~0.13063 4 0.13063i

s=—1: AL ~0.12099 + 0.12099i
s =-2: AL ~0.08727 + 0.08727i

s =—10: AL ~0.00239 + 0.00239 (B12)
The preceding detailed study provides us with an under-
standing of regularity properties of solutions ¢(s) to the
homogeneous equation
¢(s) analytic ato = 1, (B13)
when s is not a quasinormal mode, s¢{s,}. Just like
f = e*/°, the functions ¢(s) diverge at 6 = 0 if R (s) > 0.
However, they are C* for all ¢ € [0, 1] if N (s) < 0, despite
the fact that the corresponding Taylor coefficients’ magni-
tudes |H | grow faster in k than any polynomial (for s¢R™).
It is interesting to note that apparently the relation between
the growth rate of |H;| and the frequency in the coef-
ficients’ oscillations determines whether the function is C*
or diverges at ¢ = O:

Hy ~e@toVk g5 k 5 00tg < |w|: ¢ is C,

g > |w|: ¢ diverges. (B14)
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As depicted in Sec. IV A, this has the consequence that for
M(s) < O there are C™-initial data (39) which imply the
regular C*-solution (40) to our wave equation (9). The
situation is very similar to the Minkowskian wave obtained
for the initial data No. 2 in (130). Note that for this example
the spectral representation (127) does not hold, and hence
we presume that likewise (123) is not applicable for the
initial data (39); see discussion in Sec. VI B. The particular
case s € R~ provides us with a solution with an exponen-
tial fall-off without oscillations, to be compared with the
Minkowskian wave associated with the initial data No. 1 in
(130). Just like there, the situation can be described
marginally with the formula (123) if we accept Dirac-
delta-type amplitudes 7(s).

Let us now take a closer look at the function &
introduced in (38) which satisfies the ODE

0=0°(1-0)9"+[(A—1)6(36 —2) — 5]®'

—[(A=-1)2kc=A—0)+£(¢+1)]D. (B15)

Writing @ as f in (B1) in terms of a Taylor expansion about
o = 1, we find the recurrence relation

H 1 + BHy +7Hioy =0 (B16)
with
Br=—A2+4kA+24—2k(k+1)=£(£+1)—1
Yi=(k=20)(k=2). (B17)

The analysis of the relation (B16) along the lines presented
in Sec. IV A reveals the asymptotics

H, = ULu} + Ugu; (BI8)
with
| 1
U ~ kA3 2V (i ﬁ) - e
(B19)

which by virtue of (B15) describes for 9 (s) > 0 a function
® that is C* for all ¢ € [0, 1] but blows up exponentially at
o =0 for N(s) <O.

We conclude this section by providing an example
resembling the properties of a function f with Taylor
coefficients H; which can be written as in (B11) with
AL =0, ie. with an asymptotics similar to the one
described in (42). This example is meant to demonstrate
the analytical properties of the solutions ¢, to the homo-
geneous problem (27) at the QNMs s,¢7".

Looking for some j € N at the inhomogeneous equation

620, + s]f = o, (B20)
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where s € C\Ry, we find the solution

f(o) =o/"'e/?E; (5> ,

o

which is analytic for ¢ € (0, 1] and still C* at ¢ = 0. Its
Taylor coefficients obey the asymptotics Hy ~AZa; as
k — oo [see (B5)]. Taking again this expression for two
coefficients Hg | and Hg, where K is some large number,
and climbing down to H; utilizing (B4) once more as

downwards recurrence relation,16 the condition H =
(=1)/fU)(6 =1)/;! implies the numerical value of Ag.
Exemplary cases for j = 1 are provided in (B21).

s=1: Ay ~ —2.92228
>~ —2.15206 — 1.31915i
s=i: Ay ~—1.11188 — 1.38033i

e/t AT ~ —0.73143 — 1.00699i

§ = eﬂi/4 .

S =

(B21)

APPENDIX C: NEGATIVE INTEGER
LAPLACE PARAMETERS

When the Laplace parameters s is a negative integer then
a_(s41-7) as well as y_; and y_,,,) vanish. Consequently,
neither the forward recurrence relation (31) nor the back-
ward recurrence relation (53) can be completely carried out
for the sequences {H;} and {I,}, respectively. Yet, the
calculation of the jump function for values in the neighbor-
hood of the negative integers indicates that the solution
V(o;s) is well behaved at s € Z~.

Here we modify the calculation of the Taylor coefficients
ay [cf. (60)] for s € R™\Z~ and consider subsequently a
smooth limit of s towards the neighboring negative
integer.17 To this end, we start by defining the critical
indices

k=|-s—1+21],
k= | min(=s, —s — 1)].

k* = | max(—s,—s — 1)], (C1)

where | ¢ ] denotes the round function which provides the

nearest integer. We further introduce the new coefficients

Ky and J; via
H
Kk:{ k

a;(Hk

forksic

- C2
for k > k (€2)

"®With the inhomogeneity ¢/ in (B20), the recurrence relation
(B42 remains the same for k > j.

! Throughout this section, we assume that the negative real
axis is approached from above. For simplicity, we omit the index
" in all the relevant quantities.

PHYSICAL REVIEW D 93, 124016 (2016)

viveely for k < k
Je=1 yel, fork<k<k . (C3)
I for k > k*

Now, for k < k and for k> k + 1, the coefficients K,
satisfy the same forward recurrence relation as H, cf. (31).
Besides, combining the definition (C2) with the recurrence

relation (31) for k = k and k = k+ 1 one gets

K = —(BiK; +71iKi ). (C4)

Kiio = =Ky, + ariKp) /gy (C5)
In the limit s — |s] € Z7, both K, and Kj_, are well
defined, despite the fact that a; — 0. This can be followed
from the relations (31), (C4) and (C5).

The analysis of the coefficients J; follows a similar
route. They satisfy the same backward recurrence relation
(53) for the coefficients I, except for the values k = k*,
k=k*—1,k=kand k = k — 1. Combining the definition
(C3) with the backward recurrence relation (53) for k = k*
and k = k* — 1, we obtain

Jio1 = =T par1 + P Jie)s (Co)

Jioa = =t 1T + PreotJe—1) [vie—1- - (CT)
Likewise, if we replace here k* by k, then we obtain
expressions which provide J;_, and J ,;_1.]8 Again,
egs. (C6) and (C7) (together with the corresponding case
k* replaced by k) are well defined in the limit s — ls] €
Z~ where y;- and y;, tend to zero.

We now turn our attention to the computation of the
coefficients a;. Given a, we can invoke the forward
recurrence relation (61) to compute a; for 1 <k < k.
However, since a; — 0 for s — |s], the forward recurrence
calculation of aj_, breaks down in this limit. Then for

larger indices k > l~c+ 2, the forward recurrence relation
(61) can again be used. That is to say that for the
computation of the entirety {a;} in the limit s — |s]
via the forward recurrence relation it is necessary to provide
the two coefficients ay and ag, . Indeed, they can be
obtained explicitly by rewriting Eq. (71) with the help of
(C2) and (C3). In terms of the abbreviations

j—1

i = T e

m=0

(C8)

"Care must be taken if |4 =1, for then k* —1 =k and
k=2=k-1.
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j-1
Hﬁm = H a, (C9)
()
%) !
0 = T 7 (C10)
(i)
(mh)
we find:
0 (@)
1 JB;
ay ==~ ! ’mJ (C11)
-1 j=0 H]
and
1 = J;B,11\"
Y1 = =5 K Z 0
-l j=k+1 j
k ©.K;B1"
+Jk+12 : J(y]) ’ > (C12)
J=0 Hj
The factors ©; assume different values, depending on 4:
1<0:0;=1,
A=0:0; =y

YiVi fOI’j</A€
1>0:0;,=¢y. fork<j<k
1 for k* <j<k

Note that in these expression no divisions by y;- and y;
occur and hence both coefficients a, as well as ag, | assume
well defined values in the limit s — |s]. We finish this
section by noticing that, for || = 2, there are specific s
values for which this construction fails since J_; vanishes.
Similar to the discussion in Sec. IV D 2 [see, in particular,
Eq. (90)], we conclude that these values have to be
considered as QNMs to be treated in Appendix D.

APPENDIX D: ALGEBRAICALLY
SPECIAL QNMS

a. Polynomial solutions to the homogeneous
Laplace transformed equation

For gravitational perturbations |1| = 2, specific QNMs
arise, the so-called algebraically special s, values which
are negative integers. The characterization of QNMs in
terms of the points (i) and (ii) in Sec. IV D 2 fails because
(for each s € Z7) the corresponding coefficients H; and I
cannot be defined for all k. However, it turns out that for
s = 5(¢) @ polynomial solution ¢ to the homogeneous
problem (27) can be found. This means that the
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characterization of QNMs in terms of point (iii) in
Sec. IV D 2 still holds and should therefore be regarded
as a generically valid definition of QNMs for perturbations
in the asymptotically flat Schwarzschild spacetime.

The solution ¢, emerges through the following con-
siderations. Let us write ¢4 as in (28) as Taylor expansion
about ¢ = 1 with coefficients H}, that are not subject to the
scaling condition in (31) but are normalized in the sequel
through a different requirement. We look at the correspond-
ing recurrence relation (29), denoted for the indexes
ke{j-1,jj+1,j+2}:

aHj+p H;y+y;1Hj»=0 (D1)
aiH oy + BiH; + 7 Hj =0 (D2)

aj Hjo+ P Hippy +vi0H; =0 (D3)
ajaHj3+ Piol i +vj0H; 0 =0 (D4)

It can be verified explicitly that for"

1
A=2  s=s0=-3(- D+ DE+2).

j=—s5s=2
the following properties arise:

(1) The coefficient y_, vanishes, y_; = y;, = 0.
(2) The 2 x 2-matrix

~ . a
(5
Vit+1 ﬁj+1

is singular and possesses the nontrivial null
eigenvector
- <f 2+¢-3 )
v =
1-2

satisfying M v = 0.
(3) Additionally, we have for
(@) A= -2 that a;_; = 0.
(b) 4 = +2 that y; = 0.
Now, we may write (D2), (D3) in the form

)=~
Hji aj 1 Hjpo

The corresponding algebraically special solutions ¢, are
characterized by the following properties:
(A) H,=0for k> j+2.

(D5)

®In [32], the algebraically special Laplace parameters are
given by 5, = 15(s), cf. (25).
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B) H,=0 for k<0. With statement (A) we
conclude that ¢ is a polynomial of order
He-10e(e+1)(2+2)-1.

(C) The coefficients (H;, H;,) form a null eigenvector
of M, i.e.

H; P4t -3
( j>—K5—K( N > (D6)
Hi 1-2

J

with some constant K.
The property (D6) means that (D5) is realized for the
vanishing right-hand side; i.e., we have

VjHj-l =0 (D7)

aj 1 Hjy = 0. (D8)
Let us first look at (D8). As a;,; = 54 #0 we have
that H;,, = 0. Looking now at (D4) it follows with y;,, =
0 (see point (1) above) and a;,, = (4 —1)(s — 1) # O that
Hj,3=0. With the two vanishing coefficients
H;,, =0 = H; 3, the upwards recurrence relation

(BeHy + viHi—1), k>j+3

1
Hyp = s
tells us that all H, =0 for k> j+2; i.e., we obtain
consistency with the above statement (A).

The first property (D7) is realized differently for the two
cases A = —2 and 1 = 2. Let us start with the discussion
of the situation 1=-2. As y; =4-21=8#0, we
have H;_; =0. With the property 3.(a) above and
Yj-i =9-32=15#0, we obtain from (DI) that
H;_, =0. Now, with H;_; =0 = H,_,, the downwards
recurrence relation

1 .
Hy_, :_ﬁ(aka-H'i'ﬁka)v k<j-2

tells us that all H, =0 for k < j— 1, thus realizing in
particular the above statement (B). Taking (D6) into
account, the algebraically special polynomial solution
amounts thus to

¢(f) = K(l —G)j[(fz +Z/ﬂ—3) +3(1 —O')]

for

For the remaining case 4 =2, we have y; =0 [cf. point
(3)(b)] and, hence, (D7) is realized trivially. Let us
now look at the recurrence relation for the indexes

PHYSICAL REVIEW D 93, 124016 (2016)

k=0,...,j—1, where we assume that H_; = 0 in order
to satisfy the above statement (B), i.e.

aoH] +,80H0 =0
aiHy + p1Hy +71Hy =0

ajoH; +Pj2Hj 5 +yj2H;3=0
Pi-iHj\ +7j1Hjp = —a;_ H;
= —Ka;_(*+¢-3).
(D9)

Here we have rewritten the very last relation for k = j — 1
such that the quantity H; known from (D6) appears as
inhomogeneity on the right-hand side. Now, (D9) forms a
system of j linear equations to determine uniquely the
coefficients {Hy,...,H,_}, thereby realizing H_; =0
through which the solution becomes analytic at ¢ = 1.
We thus obtain for

the algebraically special polynomial solution as

ol
b)) = ZHk(l - o)k

k=0

with the coefficients {H,...,H;_,} fixed by (D9) and
{H; H;.,} given through (D6). In the following, we use
polynomial solutions ¢, which are normalized by the
requirement K = 1. Note that the scaling in (31) would not
work in the case 1 = 2.

b. Algebraically special QNM amplitudes

A characterization that works well for the entirety of
QNMs is given by the condition J_; = 0 with J; intro-
duced in (C3) [see also (42)]. Clearly, then the computation
of ay and ag,, according to (C11) and (C12) will fail,
which leads us to the conclusion that in the vicinity of the
algebraically special QNM s, the Laplace transform V is
of the form (120), i.e. it possesses a single pole there. As
) is located on the branch cut, we need to consider
separately the approach s — s, from above (arg(s) — #)

and from below (arg(s) — —x), i.e. s — s?;). Alternatively,

V can be regarded as being defined on multiple sheets in the
complex s plane where the negative s axis presents the
transition between the sheets. At the two s values s = si/,),
the Laplace transform V possesses single poles with
residues nﬁ,)(b(f), which by virtue of (11) satisfy

Ny = [r](%]*. Considering the representation (15) of the
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FIG. 14. Deformed integration path I, for the inverse
Laplace transformation in the case |4| =2 where algebraically
special QNMs s(if) € R~ are present. The Laplace transform
V is defined on multiple sheets where the negative s axis
presents the transition between the sheets. At s = sm 1%
possesses single poles with residues r/t,)db(f), and the integration

is to be performed along corresponding infinitesimal semicircles
about s(f,,).

wave field V which we now evaluate along the deformed
integration path I', displayed in Fig. 14, we find that in the
limit of infinitesimal semicircles about the algebraically
special QNMs stp) the contributions

! Res, (V =),
— Tl i e
2ri

arise, 1.e. In sum:

N[ =

Thus, the corresponding spectral decomposition (see
Sec. V) of the wave field satisfying the dissipative wave
equation (9) assumes the form:

PHYSICAL REVIEW D 93, 124016 (2016)

V(w.0) =23 R0nbu(o)e™™) + 01, i) (o)™
n=0

+ [ ate:

(o]

s)e™ds, (D10)

where the set {s,}%, contains only those quasinormal
modes for which 3J(s,) > 0.

In order to determine the amplitude ;7(?), we proceed
along the same line of reasoning as in Sec. IVE. In
particular, the analogue of Eq. (104) for negative integer
s values can be derived by means of Eq. (C11), with the
source coefficient B; being replaced by (Bk—n&)Ck)
where C; is given by (105) [see also (100)] with the
Taylor coefficients Hy of ¢,). Requiring the regularity of
the corresponding coefficient gj (s(4)), we obtain

- i
>0 i Biyfn
;7(;) =———5 fori=+2. (D11)
0 + Hk
>0 C o

We emphasize, however, that this procedure works only for

A =+42. For A = -2, we observe that 1:11(:’) =0 for k >
A—s and J =0 for k <1—s. Hence, every addend of
the sum in (C11) vanishes, regardless of the source
coefficient B;. This means that this equation cannot be
used to establish the amplitude ;7(;). Instead, the corre-
sponding formula (C12) can be employed. Requiring a
regular coefficient glif+ (5(¢)) we find

(a) ()
11 I1

k + ke

N k+1 Zk k+1 kn(r) +Jk+1 Zk OKkBk R
A k

ey = P @
_ LV

Kii 200,/ Cirln 7 I Zk 0 KiCu

:

(D12)
for 1 = —
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