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In this work, we consider wormhole geometries in third-order Lovelock gravity and investigate the
possibility that these solutions satisfy the energy conditions. In this framework, by applying a specific
equation of state, we obtain exact wormhole solutions, and by imposing suitable values for the parameters
of the theory, we find that these geometries satisfy the weak energy condition in the vicinity of the throat,
due to the presence of higher-order curvature terms. Finally, we trace out a numerical analysis, by assuming
a specific redshift function, and find asymptotically flat solutions that satisfy the weak energy condition
throughout the spacetime.
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I. INTRODUCTION

Wormholes are hypothetical geometrical shortcuts,
which connect two different regions in spactime [1,2]. A
fundamental ingredient of traversable wormholes is the
flaring-out condition [1], which entails the presence of exotic
matter, i.e., theviolation of the null energy conditions (NEC);
in fact, wormhole solutions violate all of the classical
energy conditions [2]. However, it was shown that evolving
wormhole geometries may present “flashes” of weak energy
condition (WEC) violation, where the matter threading the
wormhole violates the energy conditions for small intervals
of time [3–5]. A popular approach in minimizing the viola-
tion of the energy consists of the construction of thin-shell
wormholes, where the exotic matter is concentrated at the
thin shell [6]. In fact, one can alleviate and avoid altogther the
violation of the energy condition in the context of modified
theories of gravity and higher-dimensional theories [7–11].
Among higher-dimensional theories of gravity, Lovelock
theory is particularly interesting. In this theory, higher-order
curvature terms are added to the action,which lead to second-
order equations [12]. Note that, in wormhole physics, the
presence of the higher-order curvature terms are particularly
relevant in the vicinity of the high curvature region of the
wormhole throat—especially if one is considering a small
throat radius.
Thus, the curvature near the throat is very large and

therefore the investigation of the effects of higher-order
curvature terms in the wormhole geometry becomes
important. This has motivated an extensive research in
higher-dimensional wormholes. Indeed, static wormhole
solutions of second and third-order Lovelock gravity have

been found [13,14]. More specifically, solutions that satisfy
the energy conditions, in the vicinity of the wormhole
throat, have been found in third-order Lovelock gravity
[14]. It was also found that the third-order Lovelock term
with a negative coupling constant enlarges the radius of the
region of normal matter [14]. Dynamic wormhole solutions
in the framework of Lovelock gravity with compact extra
dimensions that are supported by normal matter were also
presented [15]. Explicit wormhole solutions respecting the
energy conditions in the whole spacetime were obtained in
the vacuum and dust cases with k ¼ −1, where k is the
sectional curvature of an (n − 2)-dimensional maximally
symmetric space [16]. However, these solutions were
further extended to the positive k ¼ 1 sectional curvature,
where for the first time specific solutions that satisfy the
weak energy condition throughout the spacetime were
found [17].
Specific exact solutions, consisting of vacuum static

wormholes, black holes and generalized Bertotti-Robinson
spacetimes with nontrivial torsion, were also found in
eight-dimensional Lovelock theory [18]. It was shown that
the wormhole solution found was the first example of a
smooth vacuum static Lovelock wormhole which is neither
Chern-Simons nor Born-Infeld. It was also shown that the
presence of torsion affected the traversability of the worm-
hole for scalar and spinning particles, where torsion acted
as a geometrical filter, in the sense that a large torsion
increases the conditions for traversability for the scalars.
Wormhole solutions in third-order Lovelock gravity with a
cosmological constant term, in an n-dimensional spacetime
M4 ×Kn−4, where Kn−4 is a constant curvature space,
were also extensively explored [19]. More specifically, the
equations of motion were decomposed to four- and higher-
dimensional ones, and wormhole solutions were found by
considering a vacuum Kn−4 space. Applying the latter
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constraint, the second- and third-order Lovelock coeffi-
cients and the cosmological constant Λ were determined in
terms of specific parameters of the model, such as the size
of the extra dimensions. Using the obtained Lovelock
coefficients and Λ, the four-dimensional matter distribution
threading the wormhole was found. Furthermore, exact
asymptotically flat and nonflat wormhole solutions were
found. Further higher-dimensional wormhole solutions
have been studied in [20,21].
Flat charged thin-shell wormholes of third-order

Lovelock gravity in higher dimensions, taking into account
the cut-and-paste technique, were also explored [22]. Using
the generalized junction conditions, the energy-momentum
tensor of these solutions on the shell were determined, and
the issue of the energy conditions and the amount of normal
matter that supports these thin-shell wormholes were
explored. The analysis showed that for negative second-
order and positive third-order Lovelock coefficients, there
are thin-shell wormhole solutions that respect the WEC. In
this case, the amount of normal matter increases as the
third-order Lovelock coefficient decreases. Novel solutions
were also found that possess specific regions where the
energy conditions are satisfied for the case of positive
second-order and negative third-order Lovelock coeffi-
cients. Finally, a linear stability analysis in higher dimen-
sions around the static solutions was carried out, and
considering a specific cold equation of state, wide range
of stability regions were found.
In this work, motivated to find solutions in third-order

Lovelock gravity that satisify the energy conditions, we
obtain novel wormhole geometries by considering the
specific equation of state used in [17]. We investigate

the effects of the third-order term of Lovelock theory and a
nonconstant redshift function that satisfies the WEC. More
specifically, we obtain exact wormhole solutions in third-
order Lovelock gravity by considering a constant redshift
function and show despite having normal matter at the
vicinity of the throat, the WEC is generically violated.
However, by considering a specific redshift function, using
a numerical analysis, we present explicit solutions that
satisfy the WEC throughout the spacetime.
This paper is organized as follows: In Sec. II, we present

a brief review of the field equations of Lovelock gravity and
their applications to the energy conditions. In Sec. III, we
introduce an equation of state to solve the equations, and
find new exact wormhole geometries and numerical sol-
utions are also obtained. Finally, we conclude in Sec. IV.

II. ACTION AND GRAVITATIONAL FIELD
EQUATIONS

The action in the framework of third-order Lovelock
gravity, is given by

I ¼
Z

dnþ1x
ffiffiffiffiffiffi
−g

p ðL1 þ α02L2 þ α03L3Þ; ð1Þ

where α02 and α
0
3 are the second- (Gauss-Bonnet) and third-

order Lovelock coefficients; L1 ¼ R is the Einstein-Hilbert
Lagrangian, the term L2 is the Gauss-Bonnet Lagrangian
given by

L2 ¼ RμνγδRμνγδ − 4RμνRμν þ R2; ð2Þ

and the third-order Lovelock Lagrangian L3 is defined as

L3 ¼ 2RμνσκRσκρτRρτ
μν þ 8Rμν

σρRσκ
ντRρτ

μκ þ 24RμνσκRσκνρRρ
μ þ 3RRμνσκRσκμν þ 24RμνσκRσμRκν þ 16RμνRνσRσ

μ

− 12RRμνRμν þ R3: ð3Þ
In Lovelock theory, for each Euler density of order k in an n-dimensional spacetime, only terms with k < n exist in the
equations of motion [23]. Therefore, the solutions of the third order Lovelock theory are in n ≥ 7 dimensions.
Varying the action (1) with respect to the metric, using the convention 8πGn ¼ 1, where Gn is the n-dimensional

gravitational constant, one obtains the following gravitational field equations up to third-order terms,

GðEÞ
μν þ α02G

ðGBÞ
μν þ α03G

ðTOÞ
μν ¼ Tμν; ð4Þ

where Tμν is the energy-momentum tensor (EMT), GE
μν is the Einstein tensor and GGB

μν and GTO
μν are given by

GðGBÞ
μν ¼ 2ð−RμσκτRκτσ

ν − 2RμρνσRρσ − 2RμσRσ
ν þ RRμνÞ −

1

2
L2gμν;

GðTOÞ
μν ¼ −3ð4RτρσκRσκλρRλ

ντμ − 8Rτρ
λσRσκ

τμRλ
νρκ þ 2Rν

τσκRσκλρRλρ
τμ − RτρσκRσκτρRνμ þ 8Rτ

νσρRσκ
τμRρ

κ þ 8Rσ
ντκRτρ

σμRκ
ρ

þ 4Rν
τσκRσκμρRρ

τ − 4Rν
τσκRσκτρRρ

μ þ 4RτρσκRσκτμRνρ þ 2RRν
κτρRτρκμ þ 8Rτ

νμρRρ
σRσ

τ − 8Rσ
ντρRτ

σR
ρ
μ

− 8Rτρ
σμRσ

τRνρ − 4RRτ
νμρRρ

τ þ 4RτρRρτRνμ − 8Rτ
νRτρRρ

μ þ 4RRνρRρ
μ − R2RνμÞ −

1

2
L3gμν;

respectively.
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In this paper, we consider the n-dimensional traversable
wormholes metric, given by

ds2 ¼ −e2ϕðrÞdt2 þ
�

dr2

1 − bðrÞ
r

þ r2dΩ2
n−2

�
; ð5Þ

where dΩ2
n−2 is the metric on the surface of a (n − 2)-

sphere; ϕðrÞ and bðrÞ are the redshift and shape functions,
respectively [1]. The redshift function ϕðrÞ should be finite
everywhere, in order to avoid the presence of an event
horizon. The shape function bðrÞ should satisfy the flaring-
out condition, which is given by rb0 − b < 0, and should

also obey bðrÞ − r ≤ 0. The condition bðr0Þ ¼ r0, which is
the minimum value of the radial coordinate, represents the
throat of the wormhole.
The EMT is given by the following diagonal form,

Tμ
ν ¼ diag½−ρðrÞ; prðrÞ; ptðrÞ; ptðrÞ;…�; ð6Þ

where ρðrÞ is the energy density and prðrÞ and ptðrÞ are the
radial and transverse pressures, respectively. Thus, the field
equation (4), taking into account the metric (5), provides
the following relations,

ρðrÞ ¼ ðn − 2Þ
2r2

�
−
�
1þ 2α2b

r3
þ 3α3b2

r6

� ðb − rb0Þ
r

þ b
r

�
ðn − 3Þ þ ðn − 5Þ α2b

r3
þ ðn − 7Þ α3b

2

r6

��
; ð7Þ

prðrÞ ¼
ðn − 2Þ
2r

�
2

�
1 −

b
r

��
1þ 2α2b

r3
þ 3α3b2

r6

�
ϕ0 −

b
r2

�
ðn − 3Þ þ ðn − 5Þ α2b

r3
þ ðn − 7Þ α3b

2

r6

��
; ð8Þ

ptðrÞ ¼
�
1 −

b
r

��
1þ 2α2b

r3
þ 3α3b2

r6

��
ϕ00 þ ϕ02 þ ðb − rb0Þϕ0

2rðr − bÞ
�
−
2ϕ0

r4

�
1 −

b
r

�
ðb − b0rÞ

�
α2 þ 3α3

b
r3

�

þ
�
1 −

b
r

��
ϕ0

r
þ b − b0r
2r2ðr − bÞ

��
ðn − 3Þ þ ðn − 5Þ 2α2b

r3
þ ðn − 7Þ 3α3b

2

r6

�

−
b
2r3

�
ðn − 3Þðn − 4Þ þ ðn − 5Þðn − 6Þ α2b

r3
þ ðn − 7Þðn − 8Þ α3b

2

r6

�
; ð9Þ

where the prime denotes a derivative with respect to the
radial coordinate r. We define α2 ≡ ðn − 3Þðn − 4Þα02 and
α3 ≡ ðn − 3Þ…ðn − 6Þα03 for notational convenience.
In the context of the local energy conditions, we examine

the WEC, which asserts TμνUμUν ≥ 0 where Uμ is a

timelike vector. For the diagonal EMT (6), the WEC
implies ρ ≥ 0, ρþ pr ≥ 0 and ρþ pt ≥ 0. Note that the
last two inequalities reduce to the null energy condition
(NEC). Using the field equations (7)–(9), one finds the
following relations

ρþ pr ¼ −
ðn − 2Þ
2r2

�ðb − rb0Þ
r

þ 2ϕ0ðb − rÞ
��

1þ 2α2b
r3

þ 3α3b2

r6

�
; ð10Þ

ρþ pt ¼ −
ðb − rb0Þ

2r3

�
1þ 6α2b

r3
þ 15α3b2

r6

�
þ b
r3

�
ðn − 3Þ þ ðn − 5Þ 2α2b

r3
þ ðn − 7Þ 3α3b

2

r6

�

þ ϕ0
�
b − rb0

2r2

�
1þ 6α2b

r3
þ 15α3b2

r6

�
−

b
r2

�
ðn − 3Þ þ 2α2b

r3
ðn − 5Þ þ 3α3b2

r6
ðn − 7Þ

�

þ ðn − 5Þ 2α2b
r4

þ ðn − 9Þ 3α3b
2

r7
þ 1

r

�
ðn − 3Þ þ 2α2b0

r2
þ 6α3b0b

r5

��

þ
�
1 −

b
r

��
1þ 2α2b

r3
þ 3α3b2

r6

�
ðϕ02 þ ϕ00Þ; ð11Þ

respectively.
One can easily show that for α2 ¼ α3 ¼ 0 the NEC, and consequently the WEC, are violated at the throat, due to the

flaring-out condition [1]. Note that at the throat, Eq. (10) reduces to
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ðρþ prÞjr¼r0 ¼ −
n − 2

2r20
ð1 − b00Þ

�
1þ 2α2

r20
þ 3α3

r40

�
: ð12Þ

Taking into account the condition b00<1, and for α2>0 and
α3>0, one verifies the general condition ðρþ prÞjr¼r0 < 0.
Now, for other combinations of the parameters α2 > 0 and
α3 > 0, such as in Gauss-Bonnet gravity (α3 ¼ 0) with
α2 < 0 one may have wormhole solutions satisfying the
NEC. More specifically, for the third-order Lovelock
gravity, one can choose an adequate range for the param-
eters such that the NEC is satisfied at the throat and, in
general, throughout the spacetime. In the following section,
we are interested in finding and analysing specific sol-
utions, in particular, asymptotically flat geometries, i.e.,
bðrÞ=r → 0 and ϕðrÞ → 0 as r → ∞.

III. SPECIFIC SOLUTIONS

In this section, we provide several strategies for solving
the field equations. Note that we have three equations,
namely, the field equations (7)–(9), with the five unknown
functions ρðrÞ, prðrÞ, ptðrÞ, bðrÞ and ϕðrÞ, respectively. To
find solutions one can apply restrictions on bðrÞ and ϕðrÞ
or on the EMT components. A common practice is to use a
specific equation of state (EOS) relating the EMT compo-
nents, such as, specific equations of state responsible for
the present accelerated expansion of the Universe [24] and
the traceless EMT equation of state [25].
In this work, we use a particularly interesting EOS,

already explored in [17] and considered in [25], given by

ρ ¼ ω½pr þ ðn − 2Þpt�: ð13Þ

For ω ¼ 1, it reduces to a traceless EOS, T ¼ 0, which is
usually associated with the Casimir effect. Substituting ρ,
pr and pt in the EOS, one obtains the following differential
equation,

b0ðrÞ ¼ 1

ζ
½2r2ωðr − bÞðr6 þ 2α2r3bþ 3α3b2Þðϕ02 þ ϕ00Þ

þ rωϕ0η1 − ξ�; ð14Þ

where we have defined the following parameters, for
notational simplicity,

η1 ¼ 2r7ðn − 2Þ − 2r6ð2n − 5Þb
þ α2½4ðn − 5Þr4b − 2r3ð2n − 11Þb2�
þ α3½6rðn − 8Þb2 − 3ð2n − 17Þb3�;

ξ ¼ bfα3½1þ ðn − 7Þω�ðn − 10Þb2
þ α2½1þ ðn − 5Þω�r3ðn − 7Þb
þ r6½1þ ðn − 3Þω�ðn − 4Þg;

and

ζ ¼ ω½ð15b2 − 12rbÞα3 þ ð6r3b − 4r4Þα2 þ r6�r2ϕ0

þ 3α3½1þ ðn − 7Þω�rb2
þ α2½1þ ðn − 5Þω�2r4bþ r7½1þ ðn − 3Þω�:

A. Zero-tidal-force solution

The aim of this section is to find exact wormhole
solutions in third-order Lovelock gravity. Since solving
the differential equation (14) is, in general, too compli-
cated, we will consider restrictions on the redshift function.
Thus, in order to simplify the analysis, we will consider
a zero redshift function ϕðrÞ ¼ 0 in Eq. (14), which
corresponds to a vanishing tidal force [1]. Applying this
choice, and taking into account that Eq. (14) is a rational
ordinary differential equation with symmetries, one can
build an integrating factor, so that the shape function can be
written as

f½1þ ðn − 7Þω�α3gb3 þ fα2r3½1þ ðn − 5Þω�gb2
þ fr6½1þ ðn − 3Þω�gb − c2r10−n ¼ 0; ð15Þ

where the integration constant c2 can be determined from
the boundary condition bðr0Þ ¼ r0 at the throat, and is
given specifically by

c2 ¼ ½1þ ðn − 7Þω�rn−70 α3 þ ½1þ ðn − 5Þω�rn−50 α2

þ ½1þ ðn − 3Þω�rn−30 : ð16Þ

By solving the cubic equation, the general solution of
Eq. (15) is given by

bðrÞ ¼ −
½1þ ðn − 5Þω�α2r3
3½1þ ðn − 7Þω�α3

þ δþ uδ−1; ð17Þ

where

δ¼ðvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−u3

p
Þ1=3;

v¼ c2r10−n

2α3η
þ½1þðn−5Þω�½1þðn−3Þω�α2r9

6α23η
2

−
½1þðn−5Þω�3α32r27

27α33η
3

;

u¼ ½1þðn−5Þω�2α22r6
9α3

2η2
−
3½1þðn−3Þω�½1þðn−7Þω�r6

9α3η
2

;

and η ¼ ½1þ ðn − 7Þω� are defined for notational
simplicity.
The flaring-out condition, at the throat, obeys the

following inequality,
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b0ðr0Þ ¼ −
½1þ ðn − 3Þω�ðn − 4Þr40 þ ξ0

½1þ ðn − 3Þω�r40 þ ξ1
< 1; ð18Þ

where

ξ0¼ α2½1þðn−5Þω�ðn−7Þr20þα3½1þðn−7Þω�ðn−10Þ;
ξ1¼ 2α2½1þðn−5Þω�r20þ3α3½1þðn−7Þω�:

The EMT profile for this solution is given by

ρ ¼ −
ðn − 2Þðn − 1ÞΣ1ωb2

r6Γ
; ð19Þ

ρþ pr ¼ −
ðn − 2Þð3α3b2 þ 2α2br3 þ r6ÞbΣ2

2r9Γ
; ð20Þ

ρþ pt ¼
bΣ3

2r9Γ
; ð21Þ

where

Σ1 ¼ð4r3α3bþ r6α2þα2α3b2Þ;
Σ2 ¼ ½ðn−7Þα3½1þωðn−7Þ��b2þ r3α2ðn−5Þ

× ½1þωðn−5Þ�bþ r6ðn−3Þ½1þωðn−3Þ�;
Σ3 ¼ 3ðn−7Þα23½1þðn−7Þω�b4

þ3½ðn2−18nþ57Þω−9þn�α3r3α2b3
þ2f½ðα22−2α3Þn2þð−8α3−10α22Þnþ25α22þ34α3�ω
þðα22−2α3Þn−4α3−5α22gr6b2
þ½ð−18nþ41þn2Þω−9þn�r9α2b
þ½1þðn−3Þω�r12ðn−3Þ;

and

Γ ¼ 3α3ð1þ ωðn − 7ÞÞb2 þ 2α2r3½1þ ωðn − 5Þ�b
þ r6½1þ ωðn − 3Þ�:

Note that for the cases α2 > 0 and α3 > 0, we have the
general condition ρþ pr < 0 at the throat (as mentioned
above), which is readily verified as the factor ð1þ 2α2b=
r3 þ 3α3b2=r6Þ in Eq. (10), is positive. Thus, in order to
satisfy theWEC,we should search for solutions where either
one of the parametersα2 andα3, or both, are negative. Indeed,
this is possible in a specific range of the radial coordinate, in
the vicinity of the wormhole throat. For instance, one can
choose suitable values of α2 and α3 such that ρ and ρþ pt
have no real root and therefore are positive everywhere,while
ρþ pr possesses a real root (rc), where the value ρþ pr is
positive in the radial region r0 ≤ r ≤ rc, signalling normal
matter, where rc corresponds to the positive real roots of the
equation

r6 þ 2α2r3bþ 3α3b2 ¼ 0; ð22Þ

which follows from Eq. (10). In addition to this, Eq. (12)
entails a choice of the Lovelock coefficients where
r− < r0 < rþ, where

r� ¼
	
−α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 3α3

q 
1=2
: ð23Þ

We plot the quantities 1 − bðrÞ=r, ρ, ρþ pr and ρþ pt
in Fig. 1. The components of the EMT tend to zero as r
tends to infinity. We have considered n ¼ 7 in both plots,
for the specific case of ω ¼ 1, which reduces to a traceless
EMT, with T ¼ 0. For the Fig. 1(a), we have considered
α2 ¼ −7.2, α3 ¼ 4, and in plot 1(b), α2 ¼ 0.6, α3 ¼ −4,
respectively. The plots show that it is possible to choose
suitable values for the constants in order to have normal
matter in the vicinity of the throat. One can also see from

r/r0

1 1.1 1.2 1.3

-1

-0.5

0

0.5

ρ
ρ +pr
ρ +pt

(a)

r/r0

1 1.1 1.2 1.3 1.4

-0.2

0

0.2

0.4

0.6
ρ +pt

ρ
ρ +pr

(b)

FIG. 1. The behavior of ρ (solid), ρþ pr (dotted) and ρþ pt (dashed) versus r=r0 for ω ¼ 1 (T ¼ 0), n ¼ 7. The constants are
α2 ¼ −7.2, 0.6, α3 ¼ 4;−4 and r0 ¼ 3, 1.92, respectively, in the left (a) and right (b) plots, respectively.
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Eq. (22) that the radius of the region of normal matter
increases as α3 becomes more negative.

B. Numerical solutions satisfying the WEC

In this section, we find asymptotically flat solutions,
where the WEC is satisfied throughout the spacetime. As
mentioned above, since analytic solutions are extremely
difficulty to find, we adopt a numerical approach in solving
Eq. (14). For this purpose, we choose an asymptotically flat
redshift function given by

ϕðrÞ ¼ ϕ1

2

�
r0
r

�
m
; ð24Þ

where ϕ1 is a dimensionless constant and m is a positive
constant. This choice guarantees that the redshift function is
finite everywhere.

Now, solving Eq. (14) numerically, we choose constant
parameters so that solutions are asymptotically flat. Recall
that for the cases that either of α2 and α3, or both, are
negative, one can in principle construct wormhole solutions
that satisfy the WEC at the wormhole throat, so that with
choices for these parameters one may obtain normal matter
in limit of large r, and thus satisfy the WEC throughout the
spacetime.
As in the previous section, we consider n ¼ 7, and for

ω ¼ 1 and, so that T ¼ 0. We have chosen the following
values for the parameters: In Fig. 2(a), α2¼−0.45,
α3¼−1.6, ϕ1¼−10.9; in Fig. 2(b), α2 ¼ 0.2, α3 ¼ −3.2,
ϕ1 ¼ −8; and in Fig. 2(c), α2 ¼ −2, α3 ¼ 0.7,ϕ1 ¼ −6. We
verify that for these choices, the quantity bðrÞ=r tends to
zero at spatial infinity. For these choices, the quantities ρðrÞ,
ρðrÞ þ prðrÞ and ρðrÞ þ ptðrÞ are positive throughout the

r/r0
1 2 3 4

0

1

2

3 ρ
ρ +pr
ρ +pt

1-b(r)/r

(a)

r/r0
2 3 4

1

2

3

ρ
ρ +pr
ρ +pt

1-b(r)/r

(b)

r/r0
2 3 4

0.5

1

1.5
ρ
ρ +pr
ρ +pt

1-b(r)/r
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FIG. 2. The behavior of 1 − bðrÞ=r (dotted-dashed), ρ (solid), ρþ pr (dotted) and ρþ pt (dashed) versus r=r0 for ω ¼ 1 (T ¼ 0),
n ¼ 7. The constants are α2 ¼ −:45; 0.2;−2, α3 ¼ −1.6;−3.2, 0.7, ϕ1 ¼ −10.9;−8;−6 and r0 ¼ 1.58, 1.58, 1.7, respectively, for the
top left (a), top right (b) and bottom (c) plots, respectively. This solution satisfies the WEC throughout the entire spacetime.
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spacetime, implying that the WEC is satisfied ∀r. These
results are explicitly depicted in Fig. 2.

IV. SUMMARY AND CONCLUSION

In this paper, we have explored higher-dimensional
wormhole solutions of third-order Lovelock gravity by
considering specific choices for the redshift function and by
imposing a particular equation of state. More specifically,
we obtained exact wormhole solutions in third-order
Lovelock gravity by considering a constant redshift func-
tion and showed that for the cases where either of α2 and α3,
or both of them, is negative, one can obtain a region with
normal matter near the throat. It was also shown that the
radius of the region with normal matter near the wormhole
throat enlarges as α3 becomes more negative. In the context
of Gauss-Bonnet gravity, we found solutions that satisfied
the WEC throughout the entire spacetime [17]. These

solutions were obtained by considering a negative
Gauss-Bonnet coupling constant, i.e., α2 < 0. We have
extended this analysis to third-order Lovelock gravity, in
this paper, by finding solutions that satisfy the WEC
throughout the entire spacetime where either of α2 and
α3, or both, are negative.
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