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Regular black hole solutions are found among the Guilfoyle exact solutions. These are spherically
symmetric solutions of general relativity coupled to Maxwell’s electromagnetism and charged matter where
the metric potentials and electromagnetic fields are related in some particularly simple form. We show that,
for certain ranges of the parameters, there are objects which correspond to regular charged black holes,
whose interior region is filled by an electrically charged phantomlike fluid, or, in the limiting case, a de
Sitter false vacuum fluid, and whose exterior region is Reissner-Nordström. The boundary between both
regions is a smooth boundary surface, except in the limiting case where the boundary is made of a massless
electrically charged spherically symmetric coat. The main physical and geometrical properties of such
charged regular solutions are analyzed.
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I. INTRODUCTION

Solutions of Einstein-Maxwell with matter equations
are of importance as they not only represent a class of
solutions in general relativity but also give hints to the
behavior of solutions with other type of fields. Electric
charged compact objects, starlike, solutions have been
constructed by Guilfoyle in [1]. The interpretation of the
fluid content in these solutions has appeared in [2], and part
of the spectrum of the solutions received a global inter-
pretation in [3,4].
On the other hand, a class of compact objects that

has been of interest are regular black holes, i.e., black
holes that, contrary to the usual Schwarzschild and
Reissner-Nordström black holes, do not possess curvature
singularities at the center. In these regular black holes a
well-behaved interior replaces the singularity.
The first work on regular black holes is due to

Bardeen [5] whose regular black hole was put on a firm
footing in [6]. Dymnikova [7] constructed a regular
black hole solution whose interior matter is an anisotropic
fluid obeying a de Sitter equation of state, p ¼ −ρ,
where ρ and p are the energy density and pressure of
the fluid, respectively, that asymptotically approached the
Schwarzschild spacetime. Other regular black hole solu-
tions have been found in [8,9] where the interior region is a
de Sitter core that can be matched to a Reissner-Nordström
exterior metric thanks to an energyless charged layer at the

boundary surface (see also [10]). Regular black holes with
nonlinear electrodynamics sources appear in, e.g., [11–13].
Stability of these black holes appeared in [14,15]. Regular
black holes in different theories of gravity also appeared in
[16,17], and in nonminimal theories in [18].
An important class of regular black holes is the class of

phantommatter black holes. Phantommatter is characterized
by a perfect fluid for which ρþ p < 0. Fluids satisfying
such a condition may represent the dark energy sector of
the Universe. The property of phantom matter to act as a
negative effective mass turns it into a natural candidate to
build models of compact objects and, in particular, to build
black hole solutions free from singularities. This motivated
several works reporting on black holes with phantom matter,
some of them regular; see [19–28].
Now, electric charged matter provides repulsion, but in

general this electric repulsion is not enough to furnish
regularity at the center. However, electrically charged
matter made of a phantom perfect fluid might indeed be
suitable to produce enough antigravity in order to form a
regular core. Thus it is worth exploring the possibility that
the Guilfoyle solutions [1] contain a subset of regular
electrical black holes with a phantom perfect fluid core.
In the present work we analyze in detail the Guifoyle

model for electrically charged matter [1] and show that
within a certain range of the parameters of the model there
are indeed regular black holes whose central core is made
by a charged perfect fluid obeying an equation of state
representing phantom matter for which pþ ρ < 0.
The layout of the paper is as follows. In Sec. II we

present the basic equations describing a spherically
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symmetric electrically charged perfect fluid matter distri-
bution satisfying some simplifying assumptions that define
the systems. We give explicitly the interior and exterior
solutions with the appropriate boundary conditions and
display the class of the Guilfoyle solutions that is of interest
here. We also show the conditions on the solutions
necessary to make them black holes. Section III is dedi-
cated to analyzing the phantom regular charged black hole
solutions we have found, presenting their main properties,
and comparing the present solutions to other regular black
hole solutions found in the literature. In Sec. IVa particular
limit of the regular black holes where the core is made of de
Sitter material and there is a massless charged layer at the
Cauchy horizon, is studied. Then in Sec. V the spectrum of
the free parameters of the solutions that yields regular black
holes is analyzed in detail. In the first part, we study the
behavior of the mass and other free parameters in terms of
the radius and energy density of the solutions. The second
part contains the display of the regions of the parameter
space where regular black holes can be found. We also
comment on some interesting cases including the ones
analyzed in the previous sections. Finally, in Sec. VI we
conclude.

II. GUILFOYLE SOLUTIONS AND BLACK
HOLE CONDITIONS

A. Spherical static Weyl-Guilfoyle
systems and equations

The matter source is a static charged fluid distribution
with spherical symmetry. The metric is conveniently
written in the form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2 dφ2Þ; ð1Þ

where ðt; r; θ;φÞ are spherical symmetric coordinates, and
the functions A and B depend on the radial coordinate r
only. The fluid is characterized by its energy density ρmðrÞ,
isotropic pressure pðrÞ, electric charge density ρeðrÞ, and
four-velocity Uμ ¼ −

ffiffiffiffiffiffiffiffiffi
BðrÞp

δtμ. The electromagnetic gauge
field Aμ assumes the form

Aμ ¼ −ϕðrÞδtμ; ð2Þ

where ϕðrÞ is the electric potential.
Two important auxiliary quantities are the mass MðrÞ

inside a sphere of radius r,

MðrÞ ¼
Z

r

0

4πr2
�
ρmðrÞ þ

Q2ðrÞ
8πr4

�
drþQ2ðrÞ

2r
; ð3Þ

and the electric charge QðrÞ inside a sphere of radius r,

QðrÞ ¼ 4π

Z
r

0

ρeðrÞ
ffiffiffiffiffiffiffiffiffi
AðrÞ

p
r2dr: ð4Þ

The system we study here is a case of the Weyl-
Guilfoyle-type systems for which the metric potential
BðrÞ and the electric potential ϕðrÞ are functionally related
through a particular Weyl-Guilfoyle relation [1] (see also
[2]), namely, BðrÞ ¼ a½−ϵϕðrÞ þ b�2, with a and b being
arbitrary constants and ϵ ¼ �1. Now, the parameter b can
be absorbed into the electric potential ϕ, and so without loss
of generality one can set b ¼ 0. Thus,

BðrÞ ¼ aϕ2ðrÞ; ð5Þ

with a being an arbitrary constant called the Guilfoyle
parameter.
Using the Einstein-Maxwell equations one finds the set

of equations for this system (we use units in which the
gravitational constant and the speed of light are set to one).
The Einstein part of the equations furnishes the following
relations,

B0ðrÞ
BðrÞ þ

A0ðrÞ
AðrÞ ¼ 8πrAðrÞ½ρmðrÞ þ pðrÞ�; ð6Þ

�
r

AðrÞ
�0

¼ 1 − 8πr2
�
ρmðrÞ þ

Q2ðrÞ
8πr4

�
; ð7Þ

where a prime denotes the derivative with respect to the
radial coordinate r. With the definition of the total charge
QðrÞ inside a sphere of radius r [see Eq. (4)], the only
nonzero component of the Maxwell equation yields

QðrÞ ¼ r2ϕ0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAðrÞ

p , where an integration constant was set

to zero. From Eq. (5) we can write ϕðrÞ in terms of BðrÞ as
ϵϕðrÞ ¼

ffiffiffiffiffiffiffi
BðrÞ
a

q
. With this, the amount of electric charge

inside a spherical surface of radius r, Eq. (4), is then given
by

QðrÞ ¼ −ϵr2B0ðrÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffi
aAðrÞp

BðrÞ : ð8Þ

The electric charge is then obtained once we have the
metric functions BðrÞ and AðrÞ.
One of the equations, (6) or (7), can be interchanged with

the contracted Bianchi identity equation, i.e., the conser-
vation equation given here by

2p0ðrÞ þ B0ðrÞ
BðrÞ ½ρmðrÞ þ pðrÞ� − 2

ϕ0ðrÞρeðrÞffiffiffiffiffiffiffiffiffi
BðrÞp ¼ 0: ð9Þ
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B. Guilfoyle solutions

1. Interior solution

The interior goes up to a certain radius r0, say.
Guilfoyle’s solutions are found under the assumption that

the effective energy density ρmðrÞ þ Q2ðrÞ
8πr4 is a constant,

8πρmðrÞ þ
Q2ðrÞ
r4

¼ 3

R2
; ð10Þ

where R, a characteristic length associated to the inverse of
the total energy density, is a constant to be related to the
parameters of the exterior solution,m and q, by the junction
conditions of the metric at the surface r ¼ r0. With this
hypothesis, Guilfoyle [1] found an exact solution given by

AðrÞ ¼
�
1 −

r2

R2

�−1
; ð11Þ

BðrÞ ¼
�ð2 − aÞ2

a2
F2ðrÞ

�
a=ða−2Þ

; ð12Þ

ϕðrÞ ¼ ϵ

ffiffiffiffiffiffiffiffiffi
BðrÞ
a

r
ð13Þ

8πρmðrÞ ¼
3

R2
−

a
ð2 − aÞ2

k20
R4

r2

F2ðrÞ ; ð14Þ

8πpðrÞ ¼ −
1

R2
þ a
ð2 − aÞ2

k20
R4

r2

F2ðrÞ

þ 2a
2 − a

k0
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2=R2

p
FðrÞ ; ð15Þ

4πρeðrÞ ¼
ϵ
ffiffiffi
a

p
2 − a

k20
R4

r2

F2ðrÞ

 
1þ 3FðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2=R2

p
k0r2

!
:

ð16Þ

The auxiliary functions are

MðrÞ ¼ r3

2R2
þ a
2ð2 − aÞ2

k20
R4

r5

F2ðrÞ ; ð17Þ

QðrÞ ¼ ϵ
ffiffiffi
a

p
2 − a

k0
R2

r3

FðrÞ : ð18Þ

The function FðrÞ is defined by

FðrÞ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2

r
− k1; ð19Þ

and the integration constants k0 and k1 are given by

k0 ¼
R2

r20

�
m
r0

−
q2

r20

��
1 −

r20
R2

�−1=a
; ð20Þ

k1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r20
R2

r �
1 −

a
2 − a

r20
R2

�
m
r0

−
q2

r20

�−1�
; ð21Þ

where

m≡Mðr0Þ; ð22Þ
q≡Qðr0Þ: ð23Þ

The constants k0 and k1 are found through the junction
conditions. As one can check, the above solution is valid
for all a > 0, the limiting case a → ∞ yielding the
uncharged (q ¼ 0) Schwarzschild interior solution. We
are not interested in negative a.

2. Exterior solution

The solution of Einstein-Maxwell field equations,
Eqs. (6)–(8), for the external region, r > r0, is given by

AðrÞ ¼ 1

1 − 2m
r þ q2

r2

; ð24Þ

BðrÞ ¼ 1

AðrÞ ¼ 1 −
2m
r

þ q2

r2
; ð25Þ

ϕðrÞ ¼ q
r
; ð26Þ

ρmðrÞ ¼ 0; ð27Þ
pðrÞ ¼ 0; ð28Þ
ρe ¼ 0; ð29Þ

and the auxiliary functions are

MðrÞ ¼ m; ð30Þ
QðrÞ ¼ q; ð31Þ

which is the Reissner-Nordström solution. Note that, by
continuity on the surface r ¼ r0, the metric functions yield

Bðr0Þ ¼ 1=Aðr0Þ ¼ 1 − 2m
r0
þ q2

r2
0

. Also one must have

ϕðr0Þ ¼ q
r0
, Mðr0Þ ¼ m, and Qðr0Þ ¼ q, m and q being

the total mass and total charge of the exterior spacetime.

3. Junction conditions

To do the matching properly, we start by imposing the
junction condition that the metric should be continuous at
the boundary surface r ¼ r0. In fact, by joining the interior
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metric function grr ¼ AðrÞ in Eq. (11) with the grr
coefficient of the exterior metric given by (25), it is found
[1] that

m ¼ r0
2

�
r20
R2

þ q2

r20

�
: ð32Þ

Another junction condition arises by using the continuity of
the gtt ¼ BðrÞ metric coefficient, the continuity of its first
derivative at r ¼ r0, and Eq. (8). Then one gets

a ¼ r20
4q2

�
r20
R2

−
q2

r20

�
2
�
1 −

r20
R2

�−1
; ð33Þ

where the fact that Qðr0Þ ¼ q was also taken into account,
and positive q is assumed without loss of generality.

4. Some constraints

Equations (32)–(33) are two constraints to the five free
parameters of the solutions, a, R, m, q, and r0. We now
investigate some constraints on these parameters.
Using Eqs. (32)–(33) it is possible to treat the Guilfoyle

parameter a and the mass m of the solution as a function of
the other parameters of the theory, namely, m ¼ ðr0; R; qÞ
and a ¼ aðr0; R; qÞ. Relation (33) implies amay be zero or
negative in some range of the parameters. However, to
avoid imaginary electromagnetic fields, we are interested
just in solutions for which

a > 0; ð34Þ
and so we use Eq. (33) to constrain the range of the
parameters r0 and R. The condition a > 0 requires that

r0 ≤ R: ð35Þ
The constants k0 and k1 in Eqs. (20)–(21) are also found

through the junction conditions.

C. Black hole conditions

We are looking for regular black holes. The conditions
for the solutions to be regular are subtle and can be found
numerically. The conditions for the solutions to be black
holes are simple and can be stated now. The first condition
to check is the presence of horizons. Namely, the expres-
sions for the Cauchy and event horizon radii of the
Reissner-Nordström solution exterior to the matter,

r− ¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; ð36Þ

rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
; ð37Þ

respectively, have to produce real numbers. Then the
overcharged solutions are discarded and we have the
constraint,

m2 ≥ q2: ð38Þ
Thus the existence of r− and rþ for the electrically charged
solutions guarantees that the solutions are black holes.
Moreover, the radius of the boundary surface r0 cannot

be larger than, or at most, the gravitational radius rþ, i.e.,
r0 ≤ rþ. However, inequality (38) together with condition
(35) imply that the value of r0 cannot be in the region
between r− and rþ. Additionally, the boundary conditions
impose that r0 cannot be equal to rþ, with one special case
as an exception, when r0 ¼ r− and at the extremal regime
m2 ¼ q2, which means r− ¼ rþ ¼ r0. The constraint for r0
is then

0 ≤ r0 ≤ r−; ð39Þ
the equality holding in the limit of r0 ¼ R. This result and
Eq. (37) give

0 ≤ r0 ≤ m; ð40Þ
the equality holding in the limit of q ¼ m.

III. REGULAR NONEXTREMAL BLACK HOLES
WITH CHARGED PHANTOM MATTER

In testing for regularity of the solutions, we find that
there is a region of the parameter space which corresponds
to regular black holes for small characteristic length R,
namely,

0 <
R
q
≤ 1: ð41Þ

From now on we write the parameters of the problem as
parameters without units; mainly we use the total charge q
as the quantity to which the other parameters are gauged.
Since from Eq. (10), ρmðrÞ þQ2ðrÞ=8πr4 ¼ 3=8πR3 ¼
constant, small characteristic length R means sufficiently
large total energy density, i.e., the configurations are
compact relative to the electric charge. Or, if one prefers,
the configurations are heavily charged in comparison.
Besides R=q, another useful parameter for our analysis is

the ratio r0=R, which is the ratio of the radius of the matter
distribution to the energy density parameter R. For very
compacted charged spheres, typically, for r0=R≲ 0.9, the
fluid energy density ρmðrÞ assumes negative values at some
r. On the other hand, for

r0
R
≃ 1 ð42Þ

from below, the energy density ρmðrÞ is positive, while the
pressure is negative everywhere inside the central core. For
solutions in this range one has pðrÞ < −ρmðrÞ, i.e.,

ρmðrÞ þ pðrÞ < 0; ð43Þ
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which means that the fluid is composed of a phantom
matter with electric charge. This is a Guilfoyle phantom
fluid.
To show that these configurations are indeed black holes,

regular ones, we focus on the physical quantities BðrÞ,
AðrÞ, ρmðrÞ, pðrÞ, and ρeðrÞ and plot them as functions
of r. The potential ϕðrÞ is not necessary to plot as it is given
by Eq. (13). We also plot MðrÞ and QðrÞ, which are useful
quantities. As a typical class of configurations we consider
the case

R
q
¼ 0.75: ð44Þ

According to Eq. (35), the maximum value for r0=q is
r0=q ¼ R=q, so in this case the upper limit is then

r0
q
≤ 0.75: ð45Þ

In Figs. 1–7 we display the behavior as a function of r of
the above-mentioned physical quantities for four different
values of r0=q, namely, r0=q ¼ 0.72, 0.73, 0.74, 0.75,
this latter number being the maximum value possible;
see Eq. (45).
In Figs. 1–2 the plots of the metric potentials BðrÞ and

1=AðrÞ are shown. Clearly there are no curvature singu-
larities, i.e., the black holes are regular. The curve for
r0=q ¼ 0.75 (dotted line) corresponds to a regular black
hole with a de Sitter core, to be treated separately. The small
difference among the curves of Figs. 1 and 2 is related to
the fact that we considered regular black holes of almost the
same sizes, i.e., with values of r0=q very close to each
other. Although the values of the mass m are relatively
close to q, these regular black holes are far from being
extremal as rþ and r− differ substantially. These facts can
be found in Table I, which shows the values of the mass m,
the Cauchy and event horizon radii, r− and rþ, respectively,
for some chosen values of r0=q, with R=q ¼ 0.75 fixed.

It is clear from the table that r0 < r−, i.e., the matter radius
is inside the Cauchy horizon.
In Fig. 3 the energy density ρmðrÞ is displayed for the

mentioned range of parameters. We see that within this
range it is positive. The curve with r0=q ¼ 0.75 (dotted
line) is flat, has a sharp drop at the boundary, and
corresponds to a de Sitter core. Due to its particular interest
it is studied separately. For smaller values of r0 the
solutions are less interesting, as they have negative energy
densities. In Fig. 4 the pressure pðrÞ is shown. The values
are negative and higher in modulus than the energy density
ρmðrÞ. The fluid is a phantom fluid. The curve with r0=q ¼
0.75 (dotted line) that is flat and drops sharply to zero at
the boundary corresponds to a de Sitter core. In Figs. 5
the charge density profiles ρmðrÞ for the given range of
parameters are shown. Finally, the behavior of the auxiliary
functions MðrÞ and QðrÞ is shown in Figs. 6 and 7,
respectively.
The conformal Carter-Penrose diagram of this regular

black hole is shown in Fig. 8. The external region (r > r0)
is Reissner-Nordström, possessing a Cauchy and an event
horizon, r− and rþ, respectively. In the external region there
are three distinct regions indicated in the figure by I, II,
and III. The internal regular region, indicated by R in the
diagram, is filled by a distribution of charged matter for

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0 B r

r

q

r0 q .75

r0 q .74

r0 q .73

r0 q .72

FIG. 1. Graphs of BðrÞ for R=q ¼ 0.75 and four different r0=q:
r0=q ¼ 0.72 (solid line), r0=q ¼ 0.73 (dashed line), r0=q ¼ 0.74
(dash-dotted line), and r0=q ¼ 0.75 (dotted line).

0 1 2 3 4 5
0.2

0.0

0.2

0.4

0.6

0.8

1.0
A 1 r

r

q

r0 q .75

r0 q .74

r0 q .73

r0 q .72

FIG. 2. Plots of 1=AðrÞ for R=q ¼ 0.75 and four different r0=q:
r0=q ¼ 0.72 (solid line), r0=q ¼ 0.73 (dashed line), r0=q ¼ 0.74
(dash-dotted line), and r0=q ¼ 0.75 (dotted line).

TABLE I. Values of the mass m, Cauchy horizon r−, and event
horizon rþ in terms of the radius r0 of the charged mass core of
the regular black holes for R=q ¼ 0.75, for four different values
of r0=q.

r0=q mðr0; 0.75Þ=q r−ðr0; 0.75Þ=q rþðr0; 0.75Þ=q
0.720 000 1.02 622 0.795 724 1.25 672
0.730 000 1.03 072 0.780 939 1.28 051
0.740 000 1.03 587 0.765 622 1.30 613
0.750 000 1.04 167 0.750 000 1.33 333
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FIG. 5. A plot of the charge density ρeðrÞ for R=q ¼ 0.75 and
four different r0=q: r0=q ¼ 0.72 (solid line), r0=q ¼ 0.73
(dashed line), r0=q ¼ 0.74 (dash-dotted line), and r0=q ¼ 0.75
(dotted line).
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FIG. 6. A plot of the mass function MðrÞ for R=q ¼ 0.75 and
four different r0=q: r0=q ¼ 0.72 (solid line), r0=q ¼ 0.73
(dashed line), r0=q ¼ 0.74 (dash-dotted line), and r0=q ¼ 0.75
(dotted line).
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FIG. 7. A plot of the charge function QðrÞ for R=q ¼ 0.75 and
four different r0=q: r0=q ¼ 0.72 (solid line), r0=q ¼ 0.73
(dashed line), r0=q ¼ 0.74 (dash-dotted line), and r0=q ¼ 0.75
(dotted line).
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0
p r

r

q

r0 q .75

r0 q .74

r0 q .73

r0 q .72

FIG. 4. A plot of the pressure pðrÞ for R=q ¼ 0.75 and four
different r0=q:r0=q ¼ 0.72 (solid line),r0=q ¼ 0.73 (dashed line),
r0=q ¼ 0.74 (dash-dotted line), and r0=q ¼ 0.75 (dotted line).

FIG. 8. The Carter-Penrose diagram for the regular nonextre-
mal black hole with r0 < r− < rþ.

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5
m r

r

q

r0 q .75

r0 q .75

r0 q .73

r0 q .72

FIG. 3. A plot of the energy density ρmðrÞ for R=q ¼ 0.75 and
four different r0=q: r0=q ¼ 0.72 (solid line), r0=q ¼ 0.73
(dashed line), r0=q ¼ 0.74 (dash-dotted line), and r0=q ¼ 0.75
(dotted line).
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which the pressure is negative and larger in absolute value
than the energy density in the central core.

IV. REGULAR BLACKHOLESWITH ADE SITTER
CORE AND A MASSLESS CHARGED LAYER

AT THE CAUCHY HORIZON

Within this set of Guilfoyle solutions there are also
regular black holes with a de Sitter core whose matching to
the exterior region occurs at the Cauchy horizon, r0 ¼ r−,
which is a null, i.e., lightlike, surface. The interior fluid,
r < r0 ¼ r−, is uncharged, satisfying a de Sitter equation of
state p ¼ −ρm ¼ 3=8πR2, so that

ρmðrÞ þ pðrÞ ¼ 0; ð46Þ

for this fluid. It is a false vacuum de Sitter core, the limiting
case of a phantom fluid ρm þ p < 0. The boundary of this
de Sitter core, r ¼ r0 ¼ r−, is a layer of zero mass but
nonzero charge. Thus, all the electric charge is on such a
surface.
Let us show from the equations that this regular black

hole solution exists.
By inspection, or otherwise, it is seen that this solution

exists when r0 ¼ r−. Since by Eq. (36), r− ¼ m−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, using Eq. (32), we obtain r0 ¼mðq;r0;RÞ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2ðq;r0;RÞ−q2
p

¼ q2=2r0þ r30=2R
2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2=2r0þ r30=

q
2R2Þ2−q2. This equation gives two solutions. One is
r0 ¼ r− ¼ 0, which is satisfied for all q2 ≥ 0 and is in
fact a singular black hole. The other solution is

r0 ¼ r− ¼ R; ð47Þ

and is satisfied only for R=q < 1. This latter is the solution
that yields regular black holes. Thus

r0
q
¼ r−

q
¼ R

q
< 1; ð48Þ

for this black hole.
Let us now discuss the features of the three different

regions of this regular black hole:
(i) The region r < r0 ¼ r− ¼ R: In this region the

interior fluid is uncharged, satisfying a de Sitter
equation of state.
Indeed, in the limit r0 → R the ratio −pðrÞ=ρm

tends to unity, p ¼ −ρm ¼ 3=8πR2. One can
find this result by taking the limit r0 → R in
Eqs. (12)–(21) with the help of Eqs. (32)–(33).
To be specific, we see from Eq. (33) that for r0 ¼

R and for r0=q < 1, see Eq. (48), the parameter
aðr0;RÞ diverges with ð1−r20=R

2Þ−1. Hence,
Eq. (20) implies that the following limit,

limr0→Rk0ðr0; RÞ ¼ R2

r2
0

ðmr0 −
q2

r2
0

Þ, is finite. Similarly,

it follows from Eq. (21) that the constant k1 goes to
zero with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r20=R

2
p

. Therefore, for r ≠ R, the
function FðrÞ defined in Eq. (19) is finite and
nonzero. Then, in the limit r0 → R the solution
for r < r0 is

BðrÞ ¼ 1

4

�
1 −

q2

r20

�
2
�
1 −

r2

R2

�

¼ 1

4

�
1 −

q2

r20

�
2

A−1ðrÞ; r < r0; ð49Þ

8πρmðrÞ ¼ −8πpðrÞ ¼ 3

R2
; r < r0; ð50Þ

QðrÞ ¼ 0; r < r0: ð51Þ

Thus these black holes have a central de Sitter
vacuum up to r0, r < r0.
Note that generically, the metric function BðrÞ can

be made equal to 1=AðrÞ by a redefinition of the time
coordinate. Note also that for r0=q ¼ 1, a case that
follows outside the configurations we are studying
[see Eq. (48)], BðrÞ ¼ 0 for all r < r0 and we are in
the presence of a quasiblack hole.

(ii) The region r ¼ r0 ¼ r− ¼ R: In this region one
has an electrically charged massless layer. Indeed,
in the limit r0 → R, and r0=q < 1 the function FðrÞ
defined in Eq. (19) goes to zero as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r20=R

2
p

.
Then the charge density diverges at r ¼ r0 ¼ R, but
the total charge is finite,

Qðr ¼ r0Þ ¼ q; r ¼ r0: ð52Þ

(iii) The region r > r0 ¼ r− ¼ R: By construction this
region is the Reissner-Nordström vacuum.

Thus, we have shown that a regular black hole solution
with a de Sitter core and a massless electrically charged
layer at the Cauchy horizon is a solution of the equations.
The resulting metric and fluid functions for this extremal

case correspond to the dotted curves of Figs. 1–7. Those
plots show the particular case r0=q ¼ R=q ¼ 0.75. Worth
noting is the graph for ρeðrÞ (dotted curve of Fig. 5), which
is essentially 0 for 0 ≤ r < r0, and diverges at r ¼ r0. Its
integration givesQðrÞ (see Fig. 7), i.e., it is 0 for r < r0 and
q for r ≥ r0, indicating that ρe has similar properties to the
Dirac delta function. This special case is identical to a
special case of the regular charged black holes found in [8];
see also [10]. The conformal Carter-Penrose diagram for
these regular black holes is shown in Fig. 9. In the external
region there are two distinct regions indicated in the figure
by I and II. The internal regular region, indicated by dS in
the diagram, the de Sitter core, is fulfilled by an uncharged
fluid with equation of state of de Sitter type, p ¼ −ρm.
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V. THE SPACE OF PARAMETERS: LOOKING
FOR ALL REGULAR BLACK HOLES

A. Generics

The model has five free parameters, m, q, r0, R, and a,
and two relations among them [Eqs. (32)–(33)]. In sum-
mary, we have five parameters and only two constraints so
that three parameters are left free. Here we choose r0, R,
and q as free parameters. We normalize all quantities in
terms of q, which is equivalent to setting the charge q
to unity.
In the two previous sections we studied two typical

classes of regular black holes within the Guilfoyle sol-
utions. Now, we investigate the space of parameters where
regular black holes can be found. For this, we start by
showing the dependence of the Guilfoyle parameter a and
of the mass m as a function of the other parameters of the
model. After that we show all the different regions con-
taining regular black holes.

B. The mass m and the Guilfoyle parameter a

1. The mass function m

From Eq. (32) it follows that the ratio m=q is a function
of the two parameters r0=q and R=q. Figure 10 shows the
mass m=q of each configuration as a function of r0=q for
five different values of R=q. Since r0 cannot be larger than
R, all the plotted curves in such a figure end at r0 ¼ R.
Based on Eq. (32) and Fig. 10 we find that there is an

important value for R=q, namely, R=q ¼ 4
ffiffiffi
3

p
=9, with

4
ffiffiffi
3

p
=9≃ 0.77. We can then divide the analysis of the

mass properties m=q into three cases depending on the
values of R=q: (i) 0 < R=q < 4

ffiffiffi
3

p
=9, (ii) R=q ¼ 4

ffiffiffi
3

p
=9,

and (iii) 4
ffiffiffi
3

p
=9 < R=q < ∞:

(i) 0 < R=q < 4
ffiffiffi
3

p
=9: In this region there appears also

another important value for R=q, R=q ¼ ffiffiffi
3

p
=3, withffiffiffi

3
p

=3≃ 0.56. (a) For 0 < R=q <
ffiffiffi
3

p
=3 all of the

curves end abruptly when a ¼ 0 (the region of the
parameter space where the Guilfoyle parameter a
assumes negative values is not considered in the
present work as for these values the electric charge is
imaginary). This happens, e.g., in the case of the
curve for R=q ¼ 0.3, see Fig. 10, which ends at an r0
given by r0=q ¼ 0.3. (b) For R=q ¼ ffiffiffi

3
p

=3 one finds
the curve for which the minimum coincides exactly
with the endpoint of the line. This curve is not shown
in Fig. 10, because it would cause a mess in the
figure. (c) For

ffiffiffi
3

p
=3 < R=q < 4

ffiffiffi
3

p
=9 and for fixed

R=q the mass function mðr0; RÞ has a minimum at
some finite value of r0; see Fig. 10. This minimum is
denoted by r̄0. Now, Eq. (32) furnishes for this
minimum the value r̄0=q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=3q24

p
. The corre-

sponding minimum value of the mass, m̄¼mðr̄0;RÞ,
is such that m̄r̄0 ¼ 2q2=3. Thus, in brief, within this
range, for fixed R=q, we see that as r0=q increases
the mass m=q increases if r0=q >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=3q24

p
and the

mass m=q decreases if r0=q <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=3q24

p
. The in-

creasing of the mass m with r0 for large r0 is
expected, because with R=q fixed, i.e., with the
energy density fixed, the mass energy increases with
the size of the object. On the other hand, the
decreasing of m with r0 for small r0 may be
understood by noticing that in this case the total
mass is dominated by the electromagnetic energy,
q2=2r0, which decreases with increasing r0.

(ii) R=q ¼ 4
ffiffiffi
3

p
=9: For this value the minimum of the

curve m=q coincides with the value m=q ¼ 1. This
minimum limit is found at r̄0=q ¼ 2=3; see Fig. 10.

FIG. 9. The Carter-Penrose diagram for the regular black hole
with a de Sitter central core and a lightlike matter boundary at the
Cauchy horizon, where r0 < r−.
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FIG. 10. A plot of the mass m=q as a function of r0=q for
different values of R=q, as shown in the curves.

JOSÉ P. S. LEMOS and VILSON T. ZANCHIN PHYSICAL REVIEW D 93, 124012 (2016)

124012-8



(iii) 4
ffiffiffi
3

p
=9 < R=q < ∞: In this case the value of r̄0 is

larger than r̄0=q≃ 0.42 and the respective masses are
such thatm=q ≤ 1. In fact there is a range of values of
r0 for which m=q ≤ 1, meaning these objects are
overcharged or are extremal. Overcharged objects
certainly do not represent regular black holes and are
not of interest for the present work. Extremal black
holes that are regular could not be found in these
solutions. Thus, only configurations that satisfy
m=q > 1 can be regular black holes. Within this
range of R=q we see that regular black holes can exist
in the two disjoint parts of the curve for which
m=q ≥ 1. An example is R=q ¼ 2. It has r̄0=q ¼ffiffiffiffiffiffiffiffi
4=34

p
, and m̄=q ¼ ffiffiffiffiffi

124
p

=3 < 1; see Fig. 10.

2. The Guilfoyle parameter a

Typical curves for the parameter a as a function of r0=q
and R=q are shown in Fig. 11. For fixed R=q one has that
all the curves show a smooth branch in the form of a cup.
The curves have a minimum at some value of r0, ~r0 say (the
root of a polynomial), and tend to þ∞ at r0 → 0 and
r0 → R. Examples of these are the curves for R=q ¼ 0.3,
R=q ¼ 0.77, R=q ¼ 2.0, and R=q ¼ 3.0 in Fig. 11. The
case R=q ¼ 1 is special in the sense that the curve has no
local minimum and ends at r0=q ¼ 1.

C. Regions of the parameter space and general
properties of the solutions

In the following we list the different regions of the
parameter space ðr0=q; R=qÞ in which the corresponding
solutions represent regular black holes.

1. 0 ≤ R=q < 4
ffiffiffi
3

p
=9: High mass-energy densities

For sufficiently compact charged mass distributions, i.e.,
high mass-energy densities, R=q is in the range 0 ≤ R=q <
4
ffiffiffi
3

p
=9≃ 0.77. A typical case in this range is shown in

Fig. 12 for R=q ¼ 0.75. Particular instances of r0=q within
this case were studied in Sec. III.
In Fig. 12 we plot the horizon radius rþ and the Cauchy

horizon r− in terms of r0=q for R=q ¼ 0.75. There are
regular black holes for all values of r0=q.
The dependence of the mass m and of the parameter a

in terms of r0=q for this R=q ¼ 0.75 case is similar to the
curves indicated by R=q ¼ 0.3 and R=q ¼ 0.5 in Figs. 10
and 11, respectively. One notes that the mass is larger
than the charge for all these objects. Also for these large
mass-energy density objects there are always two hori-
zons, the event horizon rþ and the Cauchy inner horizon
r−, which cannot be equal to each other, rþðr0; RÞ >
r−ðr0; RÞ. Thus there are no extremal black holes. The
boundary of the matter core r0 can be equal to the Cauchy
horizon only when r0 ¼ R (r0 ¼ 0 is excluded because it
gives singular solutions). Solutions belonging to this
region of the parameter space may be regular black holes
with a timelike boundary below the inner horizon, or, if
r0 ¼ R, with a lightlike boundary at the inner horizon; see
Secs. III–IV.
The good regular black holes, i.e., the ones with non-

negative fluid energy density, are found for r0=q close to
R=q. Such a kind of situation is shown by the particular
solutions whose metric, energy density pressure, and
charge density functions are plotted in Figs. 1–7.
The solutions for small r0 tend to behave badly in the

sense that the pressure pðrÞ assumes very large negative
values in some regions. In the same situations, the energy
density of the fluid ρmðrÞ may also become negative in
some regions.
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FIG. 11. A plot of the parameter a as a function of r0=q for
different values of R=q. All the curves have two branches, one for
positive values and the other for negative values. The branches of
negative values are not shown. The function aðr0=q; R=qÞ is
singular at r0=q ¼ R=q. The only exception is for R=q ¼ 1,
which gives aðr0=q; R=qÞ ¼ 0.
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FIG. 12. A plot of rþ=q and r−=q as a function of r0=q for
R=q ¼ 0.75, the case explored in Sec. V.
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2. R=q = 4
ffiffiffi
3

p
=9: Special case for the

mass-energy density

The dependence of the mass m in terms of r0=q for
this R=q ¼ 4

ffiffiffi
3

p
=9≃ 0.77 case is indicated in Fig. 10; see

also Fig. 11 for the dependence of a. The mass is
larger than the charge for all these objects, except at the
extremal value, r0=q ¼ 2=3, for which the mass equals the
electric charge and the two horizon radii are identical,
rþ=q ¼ r−=q ¼ 1.0.
The plots of the radii r�=q in terms of r0=q for this

special value of R=q are shown in Fig. 13. For r0=q ≠ 2=3,
the class of solutions corresponding to this region presents
similar properties to the case of Fig. 12. The solutions
for R=q ¼ 4

ffiffiffi
3

p
=9≃ 0.77 are regular black holes for all

r0=q (0 < r0=q ≤ R=q).
The boundary surface r0 of the matter is timelike for all

r0=q < R=q, and is lightlike for r0=q ¼ R=q. The non-
extremal regular black holes with r0=q < R=q (and
r0=q ≠ 2=3) all have the same causal structure as shown
in the conformal diagram of Fig. 8, and, for values of r0=q
sufficiently close to R=q, the matter content of these regular
black holes satisfies a phantom-type equation of state.
The regular black holes with a lightlike boundary at

r0=q ¼ R=q are those with a de Sitter core and a charged
layer at r0. These were studied in detail in Sec. IV.
For r0=q ¼ 2=3 the event and the Cauchy horizons

coincide and we find a regular extremal black hole although
it has negative energy density in some regions in the central
core and we do not dwell further on it.

3. 4
ffiffiffi
3

p
=9 < R=q < ∞: Intermediate and low

mass-energy densities

(i) 4
ffiffiffi
3

p
=9 < R=q < 1: Intermediate energy densities

For more disperse, not so compact, charged mass
distributions, R=q is in the range 4

ffiffiffi
3

p
=9<R=q<1.

A typical case in this range is shown in Fig. 14 for
R=q ¼ 0.78.

In Fig. 14 we plot the horizon radius rþ and the
Cauchy horizon r− in terms of r0=q for R=q ¼ 0.78.
There are regular black holes for some values of
r0=q.

The behavior of the mass functionmðr0=q; R=qÞ is
similar to the curve for R=q ¼ 1 in Fig. 10. Given a
value of R=q within this interval, the minimum of the
corresponding curve is at r̄0=q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=3q24

p
, which is

in the interval 2=3 ≤ r̄0=q ≤
ffiffiffi
34

p
and the values of the

mass are bounded from below by m̄=q≃ 0.877.
The regular black holes in the region 0 < r0=q <

0.63 suffer from the drawback of presenting negative
energy density in some region inside matter, i.e.,
ρmðrÞ assumes negative values for some r. For r0=q
in the interval 0.63 < r0=q < 0.71 the solutions
correspond to overcharged stars (regular and in
some cases singular). Finally, in the last region,
0.71 < r0=q < 1, well-behaved regular black holes
are found with positive ρmðrÞ and phantom matter.

(ii) R=q ¼ 1: A special case with intermediate mass-
energy density

An interesting special intermediate mass-energy
density case is the one that has R=q ¼ 1.0.

In Fig. 15 we plot the horizon radius rþ and the
Cauchy horizon r− in terms of r0=q for R=q ¼ 1.0.
The regular black holes are found in these Guilfoyle
solutions in the region 0 < r0=q≲ 0.55; the largest
matching r0 ∼ 0.55 occurs in the extremal black hole
case, r− ¼ rþ. For solutions in this range the mass-
energy density is negative in some regions inside
matter for solutions with small r0 when compared to
R. Hence, these are not good regular black holes.

Also, for R=q ¼ 1 in the limit r0=q → R=q a
quasiblack hole is found. This is shown in Fig. 15 by
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FIG. 13. A plot of rþ=q and r−=q as a function of r0=q for
R=q ¼ 4
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p
=9≃ 0.77. The horizons coincide at r0=q ¼ 2=3 for

which rþ=q ¼ r−=q ¼ 1.
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the point indicated by QBH. We comment further on
this solution. As mentioned above, the maximum
possible value of r0 is the de Sitter radius R, r0 ¼ R.
In that limit, Eq. (32) implies 1−2m=r0þq2=r20¼0,
meaning that the boundary surface coincides with a
horizon of the exterior metric. More precisely, the
matching is done at the inner horizon of the exterior
Reissner-Nordström spacetime, r0 ¼ r−, with the
event horizon rþ being outside the matching surface.
The only exception is the extremal case m2 ¼ q2, for
which one has also r− ¼ rþ, and then r0 ¼ rþ. This
case is represented by the point QBH in Fig. 15,
where the matching is at r0=R ¼ q2=R2 ¼ 1, and
with r− ¼ rþ. In fact, this is not a regular black hole.
This is the quasiblack hole case [3]. The same type of
solution was reported in [8].

(iii) 1 < R=q < ∞: Low mass-energy densities
For disperse, low mass-energy density distribu-

tions, R=q is in the range 1 < R=q < ∞. A typical
case in this range is shown in Fig. 16 for R=q ¼ 3.0.
In Fig. 16 we plot the horizon radius rþ and the

Cauchy horizon r− in terms of r0=q for R=q ¼ 3.0.
As in the case of Fig. 14, there are two branches for
rþ and r−. One branch ends at r0=q≃ 0.51 and the
other starts at r0=q≃ 2.42. There are regular black
holes for sufficiently small r0=q. The vertical dotted
line at r0=q≃ 0.51 is drawn to indicate that the
regular black hole region (r0=q ≤ r−=q) is on the left
of that point, i.e., there are regular black holes just
for 0 < r0=q≲ 0.51. In the whole region 0.51≲
r0=q ≤ R=q there are other kinds of objects, over-
charged objects for 0.51≲ r0=q < 2.42, under-
charged stars for 2.42≲ r0=q≲ 2.8, and singular
objects above this value, i.e., for 2.8≲ r0=q < 3.0
only singular objects are found.

Note that the matching is at r ¼ r0 and then the curves
for r−ðr0; RÞ and rþðr0; RÞ to the right of the vertical line at

r0=q≃ 2.42 in Fig. 16 are not real horizons, because they
would be inside the matter.
When r0=q ¼ R=q the boundary is at r0 ¼ R ¼ rþ, i.e.,

at the horizon. However, for r0 close to R the solutions are
singular at one or several radii r. Thus, we do not analyze
objects with r0 close to R.
Again, the region where regular black holes may be

found corresponds to relatively small values of the matter
boundary radius r0. This means that the pressure assumes
very large negative values in some regions, and, moreover,
the energy density also becomes negative in some regions
inside matter. This drawback makes these regular solutions
less interesting than the ones occurring for large energy
density (with R=q < 1).

D. Comments

Two other interesting features should be mentioned:
(i) The limit of zero r0, for fixed R=q, gives singular

charged black holes.
(ii) The limit of zero charge, with nonzero r0, of these

solutions is not regular black holes, but corresponds
to uncharged stars for a given range of parameters.
The exception is the limit of zero charge and zero r0
that gives a Schwarzschild black hole.

E. On the numerical techniques employed

The starting point for the analysis is a system of relations
defining the metric potentials AðrÞ and BðrÞ that define the
spacetime geometry, and the other quantities that comprise
the energy-momentum tensor; namely, the fluid quantities
ρmðrÞ, pðrÞ, and Uμ, and the electromagnetic energy
density Q2ðrÞ=r4. These quantities are given in terms of
three free parameters r0, q, and R representing the radius, the
electric charge, and a characteristic length related to the total
energy density of the fluid. After normalizing with respect to
q, we are left with two free parameters from what the other
important parameters such as the mass m, horizons radii rþ
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FIG. 15. A plot of rþ=q and r−=q as a function of r0=q for
R=q ¼ 1.0. The point indicated by QBH is the quasiblack hole
solution.
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and r−, and Guilfoyle parameter a are obtained, i.e., each
nonfree parameter is treated as a function of the two free
parameters, m ¼ mðr0=q; R=qÞ, etc., while the potentials
and fluid quantities depend also on the radial coordinate r,
AðrÞ ¼ Aðr0=q; R=q; r=qÞ, and so on.
Since we have analytical expressions for all these

quantities, the related numerical techniques employed to
investigate the behavior of each function are mainly
visualization of graphics and approximation techniques,
numerical or analytical.
The region where black holes are found is given by the

conditions m2 > q2 and r0 ≤ r−. Equations (32) and (37)
help to locate such a region. Then, after choosing a specific
pair of parameters ðr0=q; R=qÞ satisfying these constraints,
all the relevant functions are analyzed for the required
physical conditions, in particular, the regularity of the
energy density, pressure and electromagnetic energy den-
sity for all values of the radial coordinate r. The curvature
scalars are also checked. This is done by using standard
methods of functional analysis. We repeated the process by
varying the two free parameters r0=q and R=q along the
appropriate region of the parameter space.
In summary, all the numerical and graphical analysis

may be done using built-in functions of the chosen
algebraic software, e.g., using the internal functions of
Wolfram Mathematica.

VI. CONCLUSIONS

Charged regular black holes have been found here for a
range of parameters of the static spherically symmetric

solutions displayed by Guilfoyle. For a range of parame-
ters, the solutions are regular electrically charged black
hole solutions. They are built from charged phantom matter
satisfying the condition ρm þ p ≤ 0 up to r0. The metric for
r < r0 is regular and the isotropic pressure goes to 0 at r0
while the energy density and the charge density may
present discontinuities at r0. The exterior is the
Reissner-Nordström solution. The matter boundary is time-
like and is always at a radius smaller than the inner
Reissner-Nordström Cauchy horizon.
In the limiting case where ρm þ p ¼ 0 the interior can be

interpreted as a false vacuum de Sitter state. In this case, the
isotropic pressure and the energy density are constant
throughout the interior region. The boundary is lightlike,
located at the inner Reissner-Nordström Cauchy horizon
r−. All the electric charge of the solution is located at this
boundary.
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