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We construct the graviton two-point function for a two-parameter family of linear covariant gauges in
n-dimensional de Sitter space. The construction is performed via the mode-sum method in the Bunch-
Davies vacuum in the Poincaré patch, and a Fierz-Pauli mass term is introduced to regularize the infrared
(IR) divergences. The resulting two-point function is de Sitter invariant and free of IR divergences in the
massless limit (for a certain range of parameters), although analytic continuation with respect to the mass
for the pure-gauge sector of the two-point function is necessary for this result. This general result agrees
with the propagator obtained by analytic continuation from the sphere [Phys. Rev. D 34, 3670 (1986);
Classical Quantum Gravity 18, 4317 (2001)]. However, if one starts with strictly zero mass theory, the IR
divergences are absent only for a specific value of one of the two parameters, with the other parameter left
generic. These findings agree with recent calculations in the Landau (exact) gauge [J. Math. Phys. 53,
122502 (2012)], where IR divergences do appear in the spin-two (tensor) part of the two-point function.
However, we find the strength (including the sign) of the IR divergence to be different from the one found

in this reference.
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I. INTRODUCTION

Quantum fields in de Sitter space have received increas-
ing attention in recent years due to the accumulating
experimental evidence for an inflationary epoch during
the early moments of our Universe [1-5]. Moreover, the
observations showing that the expansion of our Universe is
accelerating suggest that it might attain a de Sitter stage in
the future [6,7]. On more theoretical grounds, the interest in
de Sitter space stems from the fact that it is the maximally
symmetric solution of Einstein equation with positive
cosmological constant. Its isometries, very much like in
the Minkowskian case, are expect to be reflected in the
structure of the theory. This is indeed the case for massive
scalar fields [8—11].

The analysis of gravitons propagating on the de Sitter
geometry in this theoretical context is particularly relevant
since their observable implications can serve as a probe to
the inflationary era as well as a window to low-energy
quantum gravity. The question of the existence of a state for
free gravitons in de Sitter space that shares the background
symmetries, however, is still a matter of contention in the
literature. This thirty-year long controversy stems mainly
from the fact that the natural graviton modes in the spatially
flat coordinate patch of the de Sitter space (the Poincaré
patch), which is the part relevant for inflationary cosmol-
ogy, resemble those of a massless, minimally coupled
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(MMC) scalar field [12]. As is well known, the natural
vacuum state (the Bunch-Davies state) is IR-divergent for
the MMC scalar, and no de Sitter—invariant state exists
[11,12]. (Note, however, that there is a unitary representa-
tion of the de Sitter group corresponding to the free
MMC scalar field [13-18] and that one can realize this
representation by removing the mode responsible for the IR
divergence [19].) The same is true for other cosmological
(Friedman-Lemaitre-Robertson-Walker, FLRW) space-
times, of which the Poincaré patch of de Sitter space is
a special case. The similarities between gravitons and scalar
field modes led Ford and Parker to conclude that in all these
spacetimes the graviton two-point function is IR-divergent,
although the divergences they report do not appear in the
physical quantities they studied [20].

A noteworthy distinction between the scalar field and
linearized gravity is that the latter possesses gauge sym-
metries arising from the diffeomorphism invariance of
general relativity. Therefore, it is important to settle
whether these IR divergences are restricted to the gauge
sector of linearized gravity, or they appear also in the
physical sector, the exact definition of which is the source
of disagreement in the literature. This question was
addressed in Refs. [21,22], where it was shown that in the
traceless-transverse-synchronous gauge the IR-divergent
part of the graviton two-point function can be expressed
in a nonlocal pure-gauge form. The discussion was
taken further by the authors of Ref. [23], who observed
that a local gauge transformation on the graviton modes
is sufficient to eliminate the IR divergences plaguing
the graviton two-point function in that gauge. Moreover,

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.93.124006
http://dx.doi.org/10.1103/PhysRevD.93.124006
http://dx.doi.org/10.1103/PhysRevD.93.124006
http://dx.doi.org/10.1103/PhysRevD.93.124006

FROB, HIGUCHI, and LIMA

examples of other gauges and coordinate systems in which
the graviton two-point function is IR finite have been worked
out [24-30].

Another interesting test for the gauge nature of these IR
divergences is provided by the linearized Weyl tensor,
which is a local and gauge-invariant observable in the
linearized theory. It was shown that the two-point function
of the linearized Weyl tensor is IR finite even if computed
using a de Sitter—noninvariant graviton two-point function
with an IR cutoff [31,32], and that the result agrees with the
one of Ref. [33], which was calculated from the covariant
two-point function [25,27,28]. Moreover, it was shown that
this two-point function is IR finite also in slow-roll infla-
tionary FLRW spacetimes, where the IR divergences of the
graviton two-point functions are usually worse than in
exact de Sitter space, as long as the slow-roll parameter is
not too large [34]. Thus, the finiteness of the two-point
function of the linearized Weyl tensor is not an accident due
to the maximal symmetry of de Sitter space.

The covariant graviton two-point function was also
shown to be physically equivalent to the transverse-
traceless-synchronous one constructed on global de Sitter
space [35] (in the sense that they produce the same two-point
function of any local gauge-invariant tensor linear in the
graviton field), and the latter is known to be IR finite [29].
Therefore, it does not come as a surprise that within the
gauge-invariant formulation of linearized gravity of
Ref. [36], the graviton and the Weyl-tensor two-point
functions were shown to contain the same gauge-invariant
information in the Poincaré patch [37]. Furthermore,
the existence of a de Sitter—invariant Hadamard state for
the graviton was recently verified in Ref. [38], although the
definition of such a state in this paper is technically different
from the one originally proposed in Ref. [36].

Nevertheless, over the years many authors have
employed IR-regulated graviton propagators which explic-
itly break de Sitter invariance in computing loop correc-
tions. From these studies it has been claimed, e.g., that the
cosmological constant decreases in time [39-41] (see
Refs. [42,43] for a criticism of these results and the
rebuttal), that geometrical fluctuations can grow in the
IR in inflationary spacetimes [44-46], and that some
coupling constants change in time [47,48]. Overall, these
results suggest that the IR sector of the interacting theory
could harbor important physical effects which break de
Sitter invariance. They are rather intriguing, nonetheless,
given the pure-gauge form of the de Sitter—breaking terms
in the free propagator, on which those effects rely. Thus,
loop calculations starting from de Sitter—invariant graviton
propagators would be important to decide whether or not
those effects are gauge artifacts.

However, as mentioned above, there are still some
objections in the literature concerning the derivation of
de Sitter—invariant graviton propagators [49]. Indeed, a
graviton two-point function that breaks de Sitter invariance
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was obtained recently in the so-called exact de Donder
gauge [50-52] by means of a formalism of covariant
projection operators acting on scalar quantities. Then, in
a follow up paper, Morrison took advantage of some
freedom in the solutions of the differential equations
satisfied by those scalar quantities in that formalism and
constructed a de Sitter—invariant graviton two-point func-
tion, which is equivalent to the de Sitter—noninvariant one
when smeared with transverse-traceless tensors of compact
support [38], in order to extract the gauge-invariant content
[36]. This work of Morrison’s was criticized in Ref. [53],
with the main criticism being that the freedom argued to
occur in Ref. [38] is not actually present if one were to
derive the two-point function from a mode sum.

In this paper, we revisit the question of the existence of a
de Sitter—invariant state for gravitons, performing canonical
quantization of the graviton field in the Poincaré patch of
the de Sitter space and then constructing the corresponding
two-point function via mode sums. We consider a two-
parameter family of covariant linear gauges with a Fierz-
Pauli mass term [54] which serves as an IR regulator.
We then study the IR behavior of the two-point function
thus obtained and analyze the convergence of the mode
sums when we take the mass to zero after performing the
momentum integrals [and after analytic continuation with
respect to the mass in the pure-gauge vector (spin-1)
sector]. Note that while in flat space the van Dam-
Veltman-Zakharov discontinuity prevents this limit from
being smooth [55,56], there is no such problem in de Sitter
space [21,57], at least in the linear regime. We also consider
the result obtained by taking the zero mass limit before the
momentum integration. We recover the de Sitter—invariant
and IR-finite results of Ref. [38] if we take the massless
limit after the momentum integration. Interestingly, if we
use the procedure of taking the massless limit before
performing the momentum integrals, the result differs from
both the IR-divergent and IR-finite results in the literature.
We do agree with the IR-divergent results [S0-52] in the
sense that for their choice of gauge parameters IR diver-
gences appear in the tensor (spin-2) sector. However we
disagree even on the sign of the IR divergence. Our
complete results reveal that there exists a de Sitter—
invariant, IR-finite graviton two-point function in the
massless limit for a generic choice of gauge parameters
if this limit is taken after the momentum integrals (and after
a certain analytic continuation in the pure-gauge sector)
and for a particular value of one of the gauge parameters if
it is taken before the momentum integrals.

The rest of the paper is organized as follows: we start in
Sec. II A with a brief discussion on the canonical quantiza-
tion of a general free field theory via the symplectic product
method. In Sec. II B, we present the Lagrangian density for
the graviton, with the mass and gauge-fixing terms in
addition to the gauge-invariant part, and decompose the
field in its scalar, vector, and transverse-tensor Sectors.
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We canonically quantize each sector with the aid of
symplectic product method in Secs. III A, NI B, and
HIC and calculate the corresponding two-point functions
through their mode-sum definitions. The massless limit of
the two-point function thus obtained is then studied in
Sec. III D, and its behavior for large separations is obtained
in Sec. Il E. The convergence of the momentum integrals
in the mode sums in the IR (with the massless limit taken
before or after the momentum integration) is investigated in
detail in Sec. IV. We summarize and discuss our results and
make some remarks on them in Sec. V. Throughout this
paper we use units such that # = ¢ = 1, and use the mostly
plus convention for the metric.

II. CANONICAL QUANTIZATION

A. Overview of the symplectic product method

Let us consider a free field theory described by a
Lagrangian density £ which is defined on a spacetime
with background metric g,, and is a function of the
symmetric tensor field 4, and its covariant derivative
V_h,,. The canonical conjugate momentum current p?’¢ is
defined from £ by

ave 1 oL

= 50V ()

p

where ¢ is the determinant of the background metric. The
Euler-Lagrange equation for £, can then be written as

1oL

V -9 ahbc B

V.p (2)

For any two solutions hfllh) and hfb) of Eq. (2), it follows that

the current

J(1,2)a = _i(hglc)*p(Z)abc _ hézc)p(l)abc*) (3)
(with a star denoting complex conjugation) is conserved,
ie., V,JU:24 = 0. Hence, the symplectic product

() = [ 902m, 0z, @)

with X a Cauchy surface, n, the future-directed unit normal
to it, and dX the normalized surface element, is time-
independent and thus independent of the choice of X.

If the symplectic product (4) is nondegenerate, i.e.,
if there is no solution with zero symplectic product with
all solutions, we quantize the classical field h,, by
imposing the usual canonical commutation relations on

the field operator fzab and its canonical conjugate momen-

tum n, pe:
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[rap (). e peed (x)] |5 = ~i6(, 55 8(e.x).  (5)

(a”b)

with all other equal-time commutators vanishing. The &
distribution appearing here is the one associated with the
spatial sections, defined by

/ 5. x') f(& )N ()X = f(x). (6)

where N = n,(9/0t)® is the lapse function, with ¢ para-
metrizing the Cauchy surfaces and increasing towards
the future. In order to construct a representation for
the field operator, one then chooses a complete set of
modes {hi’;}}kez and {hi’;)*}kez of the Euler-Lagrange
equation (2), with Z an appropriate set of quantum
(k)

numbers, such that hgkb) and h,,”" have vanishing symplec-

tic product. Then one expands the quantum field fzab in
terms of this complete set of modes as

hay = > (Ahl) + AR, (7)
kel

From the symplectic product (4) and the commutation
relations (5), it is straightforward to show that

k) ~ ! k !
(A g, (haps KD = (0% h)) = My, (8)

where the (Hermitian) matrix My, is invertible, thanks to
the completeness of our set of modes. On the other hand, by
employing the expansion (7) one obtains

[<h<a]2j‘cd>v<ilab,h£2>]: Z Miw[Ap. A My (9)
K.I'el

Therefore, one concludes that the operators A, and A} must
satisfy the following commutation relations:

A

A All = (M7 (10)

By a similar calculation with h(cg replaced by hgg* we

find

[Ak’Al] =0. (11)

Thus, in the state |0) annihilated by all the A, the
Wightman two-point function,

Aabc’d’ (x7 xl) = <O|ilab (x)ilc’d’ (x/)|0>’ (12)

is given by the mode sum

_ k 1
A (2 x) = 3 (M) h %) onl, (), (13)
kel
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where the primed indices refer to quantities defined on the
point x” here and below. For a more detailed exposition of
this method, which is completely equivalent to the usual
canonical quantization scheme but is technically easier to
use if the field equations for h,, are complicated, see,
e.g., Ref. [57].

B. The Lagrangian

We start from the Einstein-Hilbert Lagrangian density
for gravity plus a positive cosmological constant A in an
n-dimensional spacetime,

'Cgrav = lz (E - 2A) \/_7?’ (14)

K

where «? = 162Gy with Newton’s constant Gy, Gup

denotes the full metric (background plus perturbations),
and R and g are the corresponding scalar curvature and
metric determinant, respectively. We take the background
metric g,;, to be the de Sitter metric, which in the Poincaré
patch reads

Yap = a(1)*Nap- (15)

with 7, the flat (Minkowski) metric, a(n) = (—Hn)™! the
conformal factor, 7 € (—o0,0) the conformal time, and H
the Hubble constant.

We write the full metric as g,;, = g,), + kh,;, and expand
the Lagrangian (14) up to second order in the perturbation
hap- Choosing the cosmological constant to be 2A =
(n—1)(n—2)H?, one finds that the part of the
Lagrangian density linear in the metric perturbations
vanishes up to a boundary term. The second-order part
can then be cast, up to a boundary term, into the form

1
'Cinv = —1 [Vchabvch“b - Vchvch
L2V, 14N h — 2Veh, VT, hP

—3
+2H2<habh“h+n2 h2>]\/—_, (16)

where we have used that the Riemann tensor of de Sitter
space is Ruhcd = Hz(gacgbd - gudgbc)' As usual’ h= haa
denotes the trace of 4, and indices are raised and lowered
with the background metric g,,. It can readily be verified
that £;,, is invariant (up to a boundary term) under the
gauge transformation

hab - hab - vagb - vbga (17)

for any vector field &°.

As is well known, because of this gauge symmetry a
direct quantization of L, is not possible. The reason is that
the symplectic product (4) between a pure gauge mode and
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any other solution of the linearized Einstein equation is
identically zero [58], which implies that M is a degenerate
matrix and that the inverse M~! in Eq. (10) does not exist.
This difficulty can be circumvented by adding a gauge-
fixing term in the Lagrangian density in such a way that M
becomes an invertible matrix. In our case, we add the
following most general linear covariant gauge-fixing term
to the Lagrangian density:

1
Ly = —%Gbi\/—g’ (18)
with
1
Gb = V"hab - %ﬁvbh, (19)

where a and f are real parameters. The analogue of the
Feynman gauge (£ = 1) in electromagnetism, for which
the gauge-fixing term is —1/(2£)(V,A%)?, is achieved
for a =1 and p = -2, while a one-parameter family
analogous to the Landau gauge can be obtained in the
limit @« — 0. (These gauges are called the exact gauge, and,
for the special case f§ = —2, the exact de Donder gauge in
Refs. [50,51].) However, these gauges may not always be
the most useful ones. An example of a less well known
but useful gauge from electromagnetism is the Fried-
Yennie gauge, a covariant gauge with gauge parameter
E=(n—-1)/(n—3) [60]. This gauge makes individual
Feynman diagrams IR finite (as opposed to only their sum),
and is extremely useful in bound-state calculations [61].
Note that our £ is the same as the one used in Refs. [27,28],
while it is related to the parameter b used in Ref. [52] (for
which we have to take in addition @ = 0) by

2

p=7"5 (20)

We also introduce in the Lagrangian density the Fierz-Pauli
mass term [54],

2
m
‘Cmass =- T (habhub - hz) vV ~=9 (21)

which will serve to regulate the IR behavior of the theory.
We will take the m — 0 limit in the end.
The total Lagrangian density

L= ['inv + ['gf + ﬁmass (22)
leads to the field equation

LS}?V)thCd + L((lg[f)thcd - mZ (hab - gabh) = O? (23)

where we have defined the differential operators L'™)

and L& by
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(inv)ed _ 5£inv n
Ltlb th:2/5habdx

= v2hab =+ gab(vcvdth -
+V,Vyh = 2V, Vo),
- H2[2hab + (I’l - 3>gabh]7 (24)

V2h)

with the abbreviation V> = V, V¢, and
oL
(gf)cd — gt
L h., =2 d"x
ab. . Ted /5h“b
145

2
~Z(v
a( @Gb) = B

with G, defined by Eq. (19). For the total Lagrangian
density, Eq. (22), the canonical conjugate momentum
current defined by Eq. (1) can be written in the form

LR Gc) 25)

P = P + Pt (26)

with

1
pie = =3 (V4R + g (VR = 2V )

+ g7 (Vgh = V)] (27)

coming from the gauge-invariant Lagrangian density L;,,,
Eq. (16), and with

1 a c 1+ﬁ C a
pgf‘: a(g (hG)——ﬂ ghG> (28)

following from the gauge-fixing term Ly, Eq. (18).

In order to obtain the two-point function, we have to find
a complete set of modes At b> that satisfy Eq. (23). This task
is facilitated by decomposing the metric perturbation into
(covariant) scalar, vector, and tensor sectors as

hap = hgy + hgy + 1) (29)

The scalar sector is defined in terms of two scalars, B
and W, as

WS =V, V,B + gV, (30)
the vector sector is given by
W) =V, + Vyu,. (31)

with the vector field v, satisfying the divergence-free
condition, V, v¢ =0, and the tensor sector is transverse
and traceless, i.e., h(T = V') = 0. 1t is here that the
symplectic product method shows its advantages, as it is
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not necessary to determine the canonical conjugate
momentum for each of these sectors taking into account
these constraints, which would be a tedious task. Instead,
one can simply restrict the canonical conjugate momentum
current (26) to each of the sectors. Since the scalar, vector,
and tensor sectors are orthogonal to each other with respect
to the symplectic product (4), the matrix M defined by
Eq. (8) becomes block-diagonal and we can study each
sector separately. [This is of course equivalent to the fact
that the three sectors decouple in the Lagrangian (22)].

III. THE TWO-POINT FUNCTION

A. Scalar sector
We begin the construction of the field modes in the scalar
sector. For that sector, the field equation (23) can be cast in
the form
VVi®) + 90y ® =0, (32)

with ®; and ®, defined by

P, = _arz_ﬁ V2 - (n—-1)pH? —I-%Bm2 B
(n=2)afp=2n—-2(n—1)p
+ of v (33)
and
&= —(n-2)vw 4 2 +ﬂ>[’;ﬂt 1= Dh g2y,
+2(L;2ﬂ> [VZ—(n— 1)ﬁH2+0’2ﬂm2}v23

(= 1)m? = (n = 2)H2W — %sz. (34)

Obviously, Eq. (32) is satisfied if @,
leads to the equations

[W—( 1)pH? + fmz]B:—(n+%>\I/ (35)

and

= &, =0, which

{Vz —(n—1)BH?* + %HmQ] Y

- sz{T* ‘”HZ}B‘

n—+ Ap

mU,  (36)

where we have defined A=2(n—1) - (n—2)a. Due to
the presence of the mass, Egs. (35) and (36) are coupled and
cannot be solved in a straightforward manner. Nevertheless,
since we are interested in the massless limit and since the
scalar sector is well behaved in the IR if # > 0 (as noted
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before, see Refs. [27,28,52]), we make this assumption for
p and let m = O straight away. This leads to the equations

[V2—(n-1)pH*B = — (n + %) N4 (37)

and
[V2 - (n- 1)ﬂH2]\I/ =0, (38)

which are coupled Klein-Gordon equations with squared
mass M[% = (n — 1)BH?. One can prove that, if &, satisfies
the field equation (23), then the trace & and the scalar

VaV?’h,,, can be reproduced by hfl? of the form (30) with B
and W satisfying Eqgs. (37) and (38). This implies that one

can write h,, = h, V+T) + hg,), where h(a‘lﬁn is traceless

and satisfies V¢V?h V+T) =0.

The scalar sector of our two-point function will be
expressed in terms of that of the Klein-Gordon scalar field
of squared mass M?3. It is known that the scalar-field two-
point function is well behaved in the IR if and only if the
mass is strictly positive in the Poincaré patch. For this
reason, we require f > 0 as we stated before (and exclude,
e.g., the analogue of the Feynman gauge).

In the Poincaré patch, the Klein-Gordon equation for a
scalar field ¢ with mass M reads

_ 2
(ag—"nza A+ Af2>¢ 0,  (39)

where A =#*0,0, is the flat-space Laplace operator, and
admits mode solutions of the form

G5 (0.x) = fap (n.p)e™. (40)

Here, f,2(n,p) is a function that is used extensively in this
work and takes the following form:

P 00) =[S () (41

with H,(,l) the Hankel function of the first kind and the
parameter

(n—1)% M?
4 H*

7 (42)

Two linearly independent sets of solutions to Eqs. (37)
and (38), which together with their complex conjugates
form a complete set, can then be constructed from the mode
solutions Eq. (40). In terms of these modes, these two
linearly independent sets of solutions are

PHYSICAL REVIEW D 93, 124006 (2016)

By (n.x) = ¢y ’2’ (1, %), (43a)
v, (,x) = 0, (43b)
and
A
(.x) <”+ ﬂ) 45 ( 17,x) o (44a)
M>=M3
(%) =y (1.%). (44b)

Recalling the definition of hisb) in terms of B and U,
Eq. (30), we thus obtain the modes of the scalar sector:

M
WS (n.x) = V.V (1.x) (45)
and
M;
WS (1.%) = gty (1. %)

A 0
_( ﬁ)v vb6M2 » (nx)

22
M 7M/}

(46)

The expansion of h((;,) in terms of these modes reads

n—1

M—Z/ @ufm1&%pmn

where H.c. stands for the Hermitian conjugate of the
preceding term. The commutators for the operators
&,((S>(p) and &ES)T(p) are obtained from the commutation
relations (10) with the matrix M determined through the
symplectic product of the modes (8).

We now have to determine this matrix. As we have
explained before, the invariant symplectic product,
obtained by letting p? = p?c in Eq. (4), vanishes
identically between solutions of LSZV)“]th = 0 and gauge
modes of the form h,, =2V (a&p) for arbitrary vectors &,.

Since the modes V,V,B are of gauge form, and solve

LSZV)CdVCVdB = 0 identically, they do not make a con-
tribution to the invariant symplectic product. Hence we
have

5 RS = =i [[9,9. B0

_ vbv B pmvaéc* + V v B )abc
_ vthB gf 1abex + ghc‘ll( ) p(2)abc
= g ¥ peb*]n, dz, (48)
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(k)ab

iy’ is the “U part” of the invariant canonical

where p

momentum current, obtained by substituting /,;, = g,, ¥*)
into Eq. (27). Using the field equations (37) and (38), we
obtain

(k)abe (kyabe N — 2 bexTaqts (k
Pinvy +Por = 7550 Ve, (492)
-2
gpepHabe = Ve (n—1)H?BW +%\If<"> . (49b)

and the symplectic product (48) between two scalar modes
reduces to

pOW &)@y =DM =2) g gy gy

2
$ 02D g g,
n—2)4
SR weyg, (50

with the Klein-Gordon symplectic product

B, )
=i [ (@090 - gz, (51)
>

By taking the hypersurface X to be # = const, which entails
d = (=Hp)~""Dd""'x and n®= (—Hpn)s§, one can
readily check that the scalar field modes (40) are normal-
ized with respect to this symplectic product

(D" ) Y = 22)" 18" (p ~q). (52)

Then, by noticing that

0 2 M M 2
a2 O ba") 8 0 Mooy
a 2 2
= 5222 " g Napope = 0. (53)

one concludes that the symplectic product of the mode
solutions (45) and (46) is

(WD W)Y = Ny o)™ (p—q).  (54)

where the matrix N, is given by
n—2 0 2(n—1)H?
Ny=—— < 5 ) (55)
4 \2(n-1)H -

According to formula (10), the canonical commutation
relations for the scalar-sector creation and annihilation
operators are given by
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(@) = (N2 '8 (p —q).  (56)

>
~a
z

-

D
<

where the inverse matrix (N~!),, reads

1 AH2 2(n—1)
(n—l)z(n—2)H2(2(n—1) 0 )

(57)

(N Dy =

and all other commutators vanish. The vacuum state
annihilated by the &ECS) is the Bunch-Davies vacuum, which
reduces to the usual Minkowski vacuum as H — 0.
According to the general formula (13), the scalar sector

of the graviton two-point function is then given by

2 n—1
s _ Sk S.0)+ d~'p
A, (e x) = k;(zv N, / WD o) ) Gy
(58)

The mode sum (58) converges for # > 0, and we can write
the two-point function of the scalar sector as

() / 1
A (x,x) = V,V,V.V,
abcd(x )C) (n_l)Z(n_z)H4 b d
X |:/1AM2(X, X')+ (n—=1)H*(2n + 1p)
X P Ay (x, x’)} e
2
+

(n—1)(n-2)H?
X (gabvc’vd’ + gc’d’vavb)AMﬁ (x7 xl),

(59)
with the scalar two-point function of mass M
/ M? M2 (1 ) dn_lp
App(x.x') = [ @' (n.x)dp " (n ’x)W. (60)

Inserting the concrete form of the scalar mode functions
(40), we obtain

Ay (x,x") =

—;Iﬂ(x,x’), (61)

where p is defined by Eq. (42) and I, is found as
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n+2

= (')

. / HY (=|pn)H (= |p i )eP =)

I,(x,x') = =2y ot

dn—lp
(62)

using that
e H (x) [, () = BV (OB () (63)

for all real x and x’, and u either real or purely imaginary.
The integral 7, is well known [9], and for n spacetime
dimensions it was evaluated in closed form after inserting a
factor of e ¢l to ensure convergence for large |p| in
Ref. [62]. The result only depends on the de Sitter invariant

rr—(m—-n)?

Z(x,x') =1
(xx) 2’7]1/

, (64)

where r = x — x’. The result reads

[(a )T (a_)
L(xx)=——7
! I'(3)
nl+zZ .
XoFy @y asms———lesgn(n =) |, (65)

where ,F, is the Gaull hypergeometric function and
a, =(n—1)/2+u. Note that the convergence factor
supplied the necessary prescription for treating the singu-
larity of the Gaull hypergeometric function as Z — 1 so
that 7,(x,x’) becomes a well-defined bidistribution. We
will omit this explicit prescription below to simplify the
notation unless it needs to be emphasized, and by abuse of
notation write also 7, (x,x") = 1,(Z).

We obtain the scalar-field two-point function necessary
for our purposes here by letting M*> = Mj. Thus it is
convenient to define a new parameter g to be equal to g in
Eq. (42) after the substitution M*> = M} = (n — 1)pH?,

uss\/(”;” —(n=1)p. (66)

Furthermore, to express the two-point function (59) more
explicitly, we define the set of functions

1) (2) = T(ay + k)C(a_ + k)
g B 2KD(2 + k)
2
1427
x ,F, <a+ +koa_+ k;g+ k;42_>. (67)

For positive integer k, this is the kth derivative of 1,(Z)
with respect to Z, but this function is, in fact, well
defined for all complex &k and u provided that

PHYSICAL REVIEW D 93, 124006 (2016)

=Lt p+ ke{0,—1,-2, ...}, a fact that we will use later
on. From hypergeometric identities [63], one can readily
show that it satisfies the relation

(1-2)1(2) = (n+ 20021V (2)

(n—1)?

+ |u? - —k(n+k=-1|1P2) =0, (68)

which for k = 0 is nothing but the Klein-Gordon equation.

We also need an expression for the derivative of ILk)(Z)
with respect to the parameter u. Thus, we define the
function

~ 1 0
W(@2)==5,5,0 @) (69)

the factor —1/(2u) has been chosen so that

~ 0
L(2) =5 510 (2) (70)

if the parameter y is given in terms of M? by Eq. (42). For
these functions, we also obtain a recursion relation by
differentiating the relation (68) with respect to u, which
leads to

(1 =221 (2) = (n + 26) 215V (2)

(n—1)
4

+ W = —k(n+k-1)|172) =117 (2).

(71)

For later use, it is convenient to have an explicit
expression of the two-point function (59) in terms of de
Sitter—invariant bitensors and scalar functions. A complete
set of such bitensors symmetric in the index pairs ab and
c'd is given by

1

Tizb)c’d’ = YGabYc'd» (72a)
2 —

Tilh)c/d/ =H Z(QabZ;C/Z;d/ =+ gc'd/z;az;b)v (72b)
3 -

szb)c’d/ =H 4Z;aZ;bZ;c’Z;d” (72C)
@) _ 41—

Tabc’d’ =4H 4Z;(aZ;b)(c’Z;d’)a (72d)

0 =2H4Z., .7 (72€)
abc'd — sa(c’%:d)b»

and since we calculate the Wightman two-point function,
the derivatives in Eq. (59) can be taken as if /, were just a
function of Z, which would not be the case were we dealing
with the Feynman propagator. The prescription for the
singularity of the Gaull hypergeometric function given in
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Eq. (65) corresponds to the Wightman two-point function,
and does not generate additional local terms upon differ-
entiation as can also be checked explicitly.

Using the relations

Zay =—H*Zg,,. (73a)
ZZ., = H*(1 - Z77), (73b)
ZZ. g = —H*ZZ,y, (73¢)
ZWZ, o = H*" — H*ZV Z., (73d)

for the covariant derivatives of Z [which can be obtained,
e.g., by direct calculations starting from the definition of Z,
Eq. (64), in the Poincaré patch], it follows that

5

n—2
(s) n_H K) Pk
Ay (x,x) = ) ToweaF(Z2),  (74)
=1
with
A 2 I
(I’l—l)z(l’l—z)( S + S )
2n + ﬂﬁ 3(2) (1)
—— T (7 ZI
-Dn—-2) 215 T25)
4 (1)
- 71, 75
(n—1)n-2)""8 (752)
A
F(S’z) - ZI(%) 21(2)
(n_1)2(n_2>( S + S )
2t 50) 550
- (ZI 21
(I’l—l)(l’l—2)( S + S)
2 @)
—_— I, 75b
HENE R (750)
F83) = : A 4 n 4 api)].
(n=1)(n-2) _n—lS S_
(75c¢)
1 IEAE 3]
=2 =1l TS
(75d)
F(85) — 1 A 1(2) + (211 +/1ﬂ)i(2) i
(n—=1)(n-2)|n—-13% S
(75e)
where we have written I(Sk> = I,(,? and 7&” = 7,(,];).
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B. Vector sector

We now treat the vector sector, for which the classical
field is given by hg\;) =V,v, + Vv, in terms of a
divergence-free vector field v* [see Eq. (31)]. We assume
a > 0. Since the vector modes are pure gauge, we have

LSZV)thg) = ( identically, and hence Eq. (23) reduces to

Vo[V + (n = 1) H* — am®|v) = 0, (76)
which is equivalent to
V2 + (n=1)H? — am®]v® = u®, (77)

for an arbitrary Killing vector u? of the background de
Sitter metric. All solutions of this equation are given by the
sum of a solution of the homogeneous equation and one
particular solution. The particular solution can be obtained
by first noticing that Killing vectors satisfy

0 = V”(Vaub + Vbua) —_ vaaua
= [V2 + (n = 1)Hu,. (78)

Then, it is clear that
v, =——=u" (79)

solves the inhomogeneous equation (77). The particular
solution (79), however, is a Killing vector itself and,
therefore, can be discarded as it does not contribute to
the vector perturbation. Hence, the relevant modes satisfy
the homogeneous part of Eq. (77), which reads

V2 + (n—1)H? — am*|v® =0 (80)

together with the constraint V,0¢ = 0. One can also
show that given any solution h(a‘lﬁn of Eq. (23) satisfying

Vave V) — 0 and h(V+T) = 0, the divergence V24" ")

can be reproduced by h((l‘,? =V,v, + Vv, where v,

satisfies the homogeneous equation (80). This implies that
we can write hg”) = hi‘,? + h(a]l;) where h(a? is transverse
and traceless.

From Eq. (80) one sees that »“ corresponds to a
Stueckelberg vector field for the gauge parameter £ — oo
and the mass M? = am? —2(n—1)H?. The canonical
quantization of the Stueckelberg field on a de Sitter
background and the mode-sum construction of its two-
point function in the Bunch-Davies vacuum was recently
carried out in Ref. [62]. Instead of using the vector two-
point function in this reference, we use the symplectic
method to quantize the vector sector of the graviton two-
point function and also verify the results of Ref. [62] that
are relevant here.
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We start the construction of a complete set of modes for
Eq. (80) by decomposing the components of the vector
field »* in their irreducible parts with respect to the spatial
O(n — 1) symmetry. Note that we use y and v for spatial
indices. The constraint V,v* = 0 can be solved as

vy = T, (813.)

_ -1 Iy n—2
v, = (=Hn)™'W, + A ((’9,, p )T, (81b)
where the spatial vector W, is spatially divergence free, i.e.,
n9,W, =0, and A~ is the inverse of the Laplace
operator with vanishing boundary conditions at (spatial)
infinity. This inverse is well defined if the function it acts on
in Eq. (81b) vanishes sufficiently fast at spatial infinity. We
will assume this for the moment, and comment later on the
condition for it to be justified. By substituting this
decomposition into the field equation (80), one obtains
the following equations of motion:

am? — nH>

n-—2

)T =0, (82a)

am? — nH?
H27]2

-2
<8,3—" 0, - A+ )Wﬂzo. (82b)
n
The divergence-free spatial vector W, can readily be
expressed in the momentum space in terms of the polari-
zation vectors e,(,k>(p), with k € {1,...,n -2}, satisfying
p”eﬁ,k)(p) = 0, which form a basis of the subspace of the

momentum space orthogonal to p. We normalize them by
imposing the condition

el (p)el (p) = S, (83)

where &y, is the Kronecker delta. Since the e,(,k)(p) form a
basis of the space of momenta orthogonal to p, they also
satisfy

n—=2
k k)* jod
> el el (p) = P, (84)
k=1
where
= PuPv
Pnynmz—;—z (85)

is the projection operator onto the subspace orthogonal to p,
corresponding to the projector onto the space of spatially
transverse tensors

PHYSICAL REVIEW D 93, 124006 (2016)

_ aﬂav
P, =06, — A

(86)

in coordinate space.

Equations (82) have exactly the form of the Klein-Gordon
equation (39) with squared mass M? = am® — nH>.
Consequently the modes defining the Bunch-Davies vacuum
are just the modes (40). Hence we find

T,(n.x) = ¢gm'="" (n,x), (87a)

k k am?®—nH?
W (n.x) = e (p) g =" (. x).

(87b)
The modes for the vector field »* can then be determined
from the decomposition (81). The modes that are spatial
scalars are obtained by substituting Eq. (87a) into Egs. (81a)
and (81b) with W, = 0, and read

o) (1,%) = g (%), (88a)
0 n—2
S am-—n.
o (n.%) = (6,1 - >¢,, I (.x)
_ lpl‘ <a n- 2) am?—nH?
=-(0,-—— nx).  (88b
pZ n n 14 ( ) ( )

The modes that are spatial vectors are obtained by substitut-
ing Eq. (87b) into Eq. (81b) with 7= 0, and read

(V.k)

ol (n.x) = 0, (892)
Vi _1(k am?—n
oo (n,) = =(Hn) ™' el (p) e =4 (n,x).  (89b)

Thus, the modes for the field hg‘;) given by Eq. (31) are

ey =Vl + Vyup (90)
and
VV.k) V.k V.k
WY =Vl 1+ Ve, (91)

Hence, the vector sector of the quantum operator izab can be
expanded as follows:

S

v . vs d"'p
i) = [ e + e

n—2 n—1
~(VV VV,k d='p
+; / 2"V )R 4 He) L 92)

The commutation relations for the creation and annihi-
lation operators in this expansion are again obtained from
the symplectic product (4) of the modes (90) and (91). The
symplectic product (4) for the vector sector reduces to

124006-10



MODE-SUM CONSTRUCTION OF THE COVARIANT ...

V(1 V)(2 1 2
(YO Ry = —m2 () WPy, (93)

with the “vector” symplectic product (-, -)y given by

<1)((11), vf)>v Ei/ (”(1>b*va1’§92> (z)bva”él)*)”adz
z

(94)
and conserved for solutions of Eq. (80). We then calculate

(e.g., by taking X to be n = const) the symplectic product
(4) for the modes (90) and (91) and obtain

S S
(WY h0YS)Y = —mam? = 2(n — 1)H?]|p|
x (22)=15"1(p — g), (95a)
(W BDY = —m28y (2n) '8 (p—q).  (95b)
(h(% 1Y) = 0. (95¢)

Thus, the commutation relations for the creation and
annihilation operators of the vector sector are given by

2

(a9 (p). 4% ()] = ~ m?*[am? —p2(n - 1)H?
QA p-g) (96
" 0).a™ @) = =502 (p - ).
(96b)

with all other commutators vanishing.

The vector sector of the graviton two-point function can
then be constructed from these modes according to Eq. (13)
and reads

V,m? S VS, m?
A(abc’d’) (x,x') = N((, )Afzbc’d’ )(x’xl)

+NOIAVY ey (97)

with the spatial scalar part

(4r): S ) d='p
=_ pPhly) ()R () T (98)

the spatial vector part

=

VV m>?
abc’d’ (
4r)

n—2 n—1
(vv, k (VV K, 4P
Hn o / pab pc’d’ (X ) (277)”_1 ’ (99)

,x')

©lx

and the constants
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4H* H"2

S) _
Ny’ = - 100
m*[am? — 2(n — 1)H?] (4x) (100)
and
H2 Hn—2
v A H 101
m? (4rx)2 (101)

The explicit form of the mode functions (88) and (89)
shows that the momentum integrals (98) and (99) converge
in the IR if the squared mass M? = am? — nH? of the scalar
mode functions is positive, since the factor of p,p, /p* ~
1/p? gets canceled by the explicit factor of p? in the
momentum integral (98). We thus assume M? > 0, i.e.,
am? > nH?%, and discuss this condition in more detail in
Sec. IV. Using the explicit mode functions (88), we obtain
for the spatially scalar part,

AL (6 ') = HAV @V (K (x.0), (102)
where
kS = ALy(2), (103a)
n—2
kS =0, (a,, - 7) Iy(2), (103b)
S n—2
K;<¢02 = Ou (8,7 )1\/(2), (103c)

0,0, n—2 n—2
(S) _ Yu
Km/ =A <8,7 - p > <8,1/ - p )IV(Z), (103d)

with the function Iy (Z) =1,,(Z) given by Eq. (65). The
parameter yv is defined by substituting M?> = am? — nH?

in Eq. (42) that gives the parameter y in terms of M>.
Thus,

(n+ 1)2 am?
Hv = T2
4 H

(104)

As for the spatially vector part, it follows from the mode
functions (89) and the polarization sum (84) that

VV,m?
AV (') = BV VK (x) (105)
with
\4 A\
Ky =Ky =Ky =0, (106a)
4
Vv
K\ = = Pl (2). (106b)

124006-11



FROB, HIGUCHI, and LIMA

In order to obtain a covariant
V,m?)
A< .

expression for

ubutg (X.X"), we need to further simplify the spatially-
(s)

scalar contribution to the vector two-point function, K ;.
For the temporal and mixed spatial-temporal components
of KS]),, the derivatives acting on Iy(Z) in Egs. (103a),
(103b), and (103c) can readily be found using the deriv-
atives of Z, which is defined by Eq. (64), as

1z
0,2 =~-2, (107a)
N
1z
OyZ=--2=, (107b)
non
11z
0,02 =———— ot 107¢
”” () (107¢)
and
8,7 = — 4 (108a)
g '
8,2 =" (108b)
oo
0,0,Z = - (108c)
m

with r, = (x —x'),,. The calculation for the purely spatial

components, K/(j)’ given by Eq. (103d) is more compli-

cated. First, note that the action of the Laplacian on the

functions I,(,k) defined by Eq. (67) can be found using the
relations (108c) as

Ao — _(n=1) L 109
g nn n*(n')? (109)

Similarly, the time derivatives of / ftk) can be found by using

the relations (107¢). Thus, we obtain

(ndy + NI = A+ (n= 1)1 (110)

and

n—1)2 772 4 77/ 2
’7’7/81787/’1/(’]() = [( 4 ) _//‘2:| I/(tk) - 2( ) AI}(tk)
n+1

M

/2
7711'A1;(4k_1) 4 (77’;) Azl,(f_z),
(111)
where the equality (68) satisfied by the Lk) has also been

used. These equations allow us to trade time derivatives for
Laplacians. Thus, defining
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(V)
_ e N oW
Kpy =Kpg + N(s) Ky -

a

(112)

we find [using 0,1,(Z) = =0,1,(Z)]

0,0 (n—-2)20,0,

K/u/ =~ ﬂAyanar]’IV(z) - 7]’7/ A IV(Z)

n—20,0,
m A
am* —2(n - 1)H? 0,0,

- Hi”]’]/ ) (/w_ ”A )IV(Z) (113)

(’7871 + ’7/817’ )IV (Z)

Recalling that Iy(Z) = Ii?)(Z), where Iy = I, with puy
defined by Eq. (104), we can exchange time derivatives for
Laplacians using Egs. (110) and (111). All inverse
Laplacians in Eq. (113) cancel out in the process. Next,
by using Eq. (109) to eliminate the remaining Laplacians,
we are left with
2-2(n-1)H?
Kﬂl/ = _am Hgn ! )
nm
(0) _ 27D
+0,0,[ZIy(Z) + (n = 3)Iy, "(Z)].

0
.1y (2)
(1 14)

We evaluate the remaining spatial derivatives using
Egs. (108c). The final result turns out to be de Sitter
invariant, as expected, and has the form

Kpy = [~(1 = Z2)I(Z) + (n = ) ZIY(2))Z

- Z1)(2) + (= D) (2))ZZ.a. (115)
where we have made use of Eq. (68) to simplify the final
expression. This result agrees with that derived in Ref. [62],
but the derivation presented here is shorter.

Note that we were able to perform the exchange of
derivatives only because the momentum integral was
convergent thanks to the condition am?® > nH? and
because, thus, the inverse of the Laplacian in
Egs. (103d) and (113) was well defined. If this condition
were not satisfied, the final result would have depended on
how the momentum integral was regularized (e.g., by a
cutoff at low momenta, or by an additional factor of |p|® in
the integrand).

The final result for the vector sector two-point function
then reads

2
Ai\;'cr,"d,)(x,x’) = N((IS)V@/VK“Kb)‘d/). (116)
Again, it is convenient for later use to have an explicit
expression in terms of de Sitter—invariant bitensors and
scalar functions. We evaluate the derivatives using the
relations (73). The result is
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5
V.m (S)
AV () = NS ST FVR(Z), (117)

k=1

where the bitensors Tflkb)c, , are defined by Eq. (72) and the
coefficients are given by

FOVD = —7/%) (118a)
FOV2) =), (118b)
FV = —z1% — (n+ 1Y) (118¢)
FO4) —%(1 -2+ Lz - 1), (118d)
FV9) = —%(1 — 1 +§ZI(V2). (118e)

As a check, we have verified that the two-point function
Ai‘;’cr,";) (x,x") given by Eq. (117) is traceless in each index
pair using the relations (73). [This must be the case because
the vector v“, in terms of which the vector sector of the
gravitational perturbation is defined by Eq. (31), is diver-

gence free.]

C. Tensor sector

The tensor field h(a? is transverse and traceless, from
which it follows that G, = 0 [see Eq. (19)]. Consequently,
only the invariant part of the field equation (23) contributes.
Thus, we have

2 _op2 _ 2 (T
(V*=2H* —m*)h,, =O0. (119)
In order to find a complete set of modes, we proceed
similarly to the case of the vector sector, decomposing the

components of hg) in their irreducible parts with respect to
the spatial O(n — 1) symmetry. Enforcing (covariant) trans-
versality and tracelessness, we obtain

(120a)

(120b)

1 n—2\2
_Z<8"_ n HS

_ n—1 8(HVD> _
—2(Hn)™! (@1 - ,7> N (Hn)™*H,,,
(120c)
with the spatial vector V, spatially divergence free,
n*9,V,=0, and the spatial tensor H,, spatially
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divergence free and traceless, n**0,H,, = 0 = n*"H,,. In
order to shorten the formulas, we have defined the spatially
traceless operator

QMDE”ﬂD_(n_I)%' (121)
As in the vector case, the inverse Laplacian in the
decomposition (120) is well defined only if the momentum
integrals converge. This condition is satisfied if m?> > 0 as
we shall see below. Substituting the decomposition (120)
back into the field equation (119), we obtain the following
equations of motion:

_ 2

(ag—" 29, - D+ - )S 0.  (122a)
n ’7

, n—2 m>

0y — 0, — A+ V,=0, (122b)
n ’7

, n—2 m?

8,1— ” a”_A+HTI’]2 HMV:()‘ (122C)

To express the solutions of these equations, we need to
define a set of spatial polarization tensors e,w (p) with
ke {l,...,n(n—3)/2} which are symmetric, transverse,
p”ef,ﬁ)(p) = 0, traceless, n””e,(,];)(p) =0, and form a basis
of the subspace of tensors satisfying these conditions. We
normalize them by imposing the conditions

el (p)ess (p) = Su. (123)

They satisfy the following completeness relation since they
form a basis:

n(n=3)/2

k k) 7 D D D
Z ei(lb)(p)e,giff) (p) = P}l(pPO')I/ - n— 2P/UIP/)O"
k=1

(124)

where i’ﬂ,, is defined by Eq. (85). Again, Egs. (122) have
exactly the form of the Klein-Gordon equation (39) with
mass M = m, and, thus, the mode solutions corresponding

to the Bunch-Davies vacuum are given by

S,(1.%) = ¢y (n.x), (125a)
Vo (,x) = el (0)i” (n. %), (125b)
Hy(n.%) = elt) (p) gy (n.x). (125¢)

The modes for the field h(a? can then be determined from
the decomposition (120). We obtain
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oo™ (.3) = o,™ (n.x) = 0, (126a)
™ (n.%) = (Hn) el (p) g (n.%) (126b)

for the spatial tensor modes by substituting Eq. (125¢) into

Eq. (120) with § =0=1V,, and

gy ™ (1) = 0, (127a)
o (n.x) = —(Hn) el (p) gy (n.x). (127b)
21 Py e(I; (I’) n—1
TV.k H - 2
e S CEy
(127¢)

for the spatial vector modes by substituting Eq. (125b) into
Eq. (120) with § = 0 = H,,. The spatial scalar modes are
found by substituting Eq. (125a) into Eq. (120) with

V, =0 = H,, and using Eq. (122a) to simplify the results,
as follows:
TS
hyoo (1.%) = ¢ (1.). (128a)
TS 2
h1(70/4) (n.x) = —lp— < )47,; (n,x) (128b)
(TS) pﬂpy Q;w
hpuy (n,x) = ( X)) —
PH p }72p2
m2
X {7]8:1 - (n — 1) +W:|¢p (777 ),
(128¢)
where
A PuPv
Q/w:r];w_(n_l) ”2 (129)

is the Fourier transform of Q,, defined by Eq. (121).

We expand the tensor sector of the graviton field

operator, faﬁjj, as

n—1
20 _ [ sy oy (TS) d""p
hab _/[a< )(p)hpab +Hc ](27[)11—1
n—1
TVk) d" ' p
/ pab + HC] (2”)n—]

} dn—lp
(277,')"_1 :

n(n-3)
(TT.k
+Z/ p)h(Y 1 Hee.

The commutation relations for the creation and annihilation
operators in this expansion are obtained from the symplectic
product (4) of the modes (126), (127), and (128).

(130)
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The calculation is again facilitated by taking the hyper-
surfaces X to be # = const. Thus, we obtain

1
i ) = 38uCay e p-g). (131)
2
TV.k) 5 (TV.I m n—1 sn—
<@w%@w5:;pm@ﬂ161@—w, (131b)
(1s) ,(1s), _ (n—1)m*[m* — (n —2)H?]
<hpab ’ hch > - _ 2\2
2(n-2)(p*)
x (2z)"16" " (p — q), (131c¢)

and all other components vanish. Note that the symplectic
norm of hgi) 2. This is a
consequence of a gauge symmetry for this value of mass
[64]. The commutators for the creation and annihilation
operators can be found by using Eq. (10) as

vanishes for m?> = (n —2)H

[&]({TT) (P), &gTT)T(q)] _ 25k1(2”)n_15n_1 (P _ q>’ (132&)
2
[&](CTV)@), &ETV)T(q)] _ %5kl(2ﬂ>n—15n—l - Q), (132b)
2(n—=2)(p*)?
[&(TS>(P)’ ot ()] = (n— l)ni2 [m? )—(IZn)— 2)H?]
x (2z)"16" " (p - q), (132c)

with all others vanishing. Notice that, if 0 < m? <
(n—2)H?, then the spatial scalar sector has negative
norm [21].

The tensor sector of the Wightman two-point function in
the Bunch-Davies vacuum can thus be expressed as

= N(v)A(TT,mZ)(x’ x')

T,m?
AT >()c,)c’) ubed

abc'd
+ NV )A<Tvm )(x,x’)

/d/
+NOATS™I (v, (133)
with the mode sums
TT,m?
Aibc/d, )(x, x')
(4 )n n(n2—3) d 1
5 (4r)? (TT.K) (TT.k)x "p
=2m H" kz;/hpab (x)hpc'd’ (X/) (2”)n—1
(134)
TV,m?
Aihc’d’ )(x x')
_ (4n):} = 2 TVk h(TV.k)* . dlp 135
=G 2 [ e g st 139
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and

TS,m?
Az(zbc 2 >(x, x')

dn—l
TS 14
H"+2 / (P2l (Vg () 2ny T (136)
and the constant
N = 1im N
a—-2(n—1)/(n-2)
B 2(n-2)H* H"? (137)
 (n=1)m*m® — (n = 2)H*] (4n)2"

with N&S) defined by Eq. (100) and NV) given by Eq. (101).
The explicit form of the mode functions (126), (127), and
(128) shows that the momentum integrals (134), (135),
and (136) converge in the IR if the mass m? of the scalar
mode functions is positive. This is because the factor of
Pubu/, 'p* ~ 1/p? in the spatial vector part is canceled by the
explicit factor of p? in the momentum integral (135), and
the explicit factor of 1/(p?)? in the spatial scalar part is
also canceled in the momentum integral (136). Hence, we
assume m? > 0 for the time being and treat the limit
m?> — 0 in Sec. IV.

m? , n—2 N , m?
Agiig,)(x,x): <(9,7— >{(l’]) 2|:778,7/—(n—1)+ﬁ

n
S,m? Q v
Af;p,g, )(x,x’) = {’7—; {;78,1 —(n=1)+ (

(G [ron ==+

The nonzero components of the spatial vector part are
given by

A (x.2) =0, (139a)
(TV.m?) . 1
Apoy (X)) == HZ—W,PMAIT(Z), (139b)

(TV.m?) 2 n—1
A ) = g (a,?/_ - )P 0o (2),

(139¢)
4 n—1
= HZ’,IWI a”I -

-1
X (8;7,—’1’7/

A<Tv’m2) (x,x")

uvp'c’

N——

~—— =
JASS

=

~

Ny

<

B

and the spatial tensor part is given by

m
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Thus, by substituting the mode functions (126), (127),
and (128) into Egs. (134), (135), and (136), respectively, we
obtain the spatial tensor, spatial vector and spatial scalar
part of the tensor sector of the graviton two-point function.
The spatial scalar part is given by

Aoy (x,) = £214(2), (138a)
m? -2
Bogoy(x.0) = (&f - ”,) 0yDIr(Z),  (138b)
(TS.m?) ) m?
AOOp;g’ (x’xl) - (’7,)_ [11’6‘,7/ - (I’l - 1) + m]
x QP/U/AIT(Z) + 8p’ao"AIT(Z)»
(138c)

TS,m? n—2
A ) = (0,-222) (o,

n—2
i )abaa’IT(z)’

(138d)
2)H :| Qp’(r’ + ap’an’}avIT(Z)’ (1386)
e Hz} n a”ay}
m2
n——2)HZ} + 8,,/86/}IT(Z), (138f)

2m?

TT,m?
A;(wp’z )(x, x) =

1
jpﬂyp/)(f I+(2),

(140)
with all components with at least one temporal index
vanishing. We recall that the operators P,, and Q,, are
defined by Egs. (86) and (121), respectively. The function
It(Z) =1,.(Z) appearing above is defined by Eq. (65)
with the parameter yp given by

(n—12 m?

Fr=\N"4 "m

For the 00¢'d’ and the OvOc’ components, the time

derivatives acting on I1(Z) can be evaluated directly with

the help of Egs. (107) and (108). For the remaining

components, we proceed as in the case of the vector sector,

using Eqgs. (109)—(111) to trade time derivatives for
Laplacians. This procedure results in

(141)
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NV)
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2

2
(TS.m2) (TV.n®) [ ;i (V) m. - (-1
Ovp'c’ N©) Ovp'e’ (’1) anﬂﬂA{zm,]/ (Z) + |:(I’l _ 2)[_]2 (n 2):| IT (Z)}
1 m2—( —2)H2< —1) (0)
—— 0, - 1,:0, — (n — D)n,, 01~ (Z
’7’7 (n—2)H2 Ui n [p ( ) (p )]T( )
-2
+ ( , )aya,,a,;l‘;’) (2) (142)
and
V)
(TS,m?) N (TV.,m?) (TT,m?)
Am//)’o" +W A;w/)'o" + Aﬂzxp(; :|
(n—2)m?(1 —m?) 0
= 7]2<7Il)2 [’7;41/77/)0 - (}’L - 1)’7;4(/)’70)1/]1’(1“ >(Z)
ymurea ~ 0 -1 0
2 ’) AL (2) + (1= )[217)(2) + (n = 215 (2]} + 0,0,0,0,1(2)
( ) +’7 n u”)a ~ (0) 1 (1)
’72(’1/)2 <l:/l ! ) {ZI ( ) + [m2 - (n - 1)]IT (Z)} - (”ﬂuapao' + npaaﬂav)WIT (Z)
—2ﬁ 0,0 + 1ys0,0, — (n = 1)), 0) 1211 — )15
{77;41/ + MpeOu ( ) (/4771/)(/) G)][ZIT (Z) + (n )IT (Z)]
+0,0, 0,0, .
(B B ) 210 2) 4 (0 - 1) - 0 @)
n (')
+
b T 60, A (21 (2) + [(n - 1) - )1 (2))
(n = Dn*(n')
1 - o1
= Ty Qe Qe A0 @) + (04 1) =221 (2) + (1= 2) 0+ 1) = B =S)iliy V(@) (143)
|
with the abbreviation 7m? = m?/[(n — 2) H?]. Except for the n—1 n(n? = 1)
components (143) with all indices spatial, the remaining ~ F(™) = —=—— (1 - 72z1Y + TZI<T2)
derivatives can now be evaluated, and the result can be cast :
into a de Sitter—invariant form. It is most useful to present _n+ (n—2-2(n-1)7? 1(T3)’ (145d)
this result in terms of de Sitter—invariant bitensors and
scalar coefficient functions. Thus, we find n—1
F9) = -2 (1 - 221 + (2 - 1)(1 = 22)z1Y)
) &2
(T.m?) no_ N (k) (T.k) 1
Bgpea (%:X) = =33 ; Tapea?0(2) - (144) + @ [1-(n- 1221, (145¢)
with the bitensor set (72) and the coefficients where we have used Eq. (68) to simplify the expressions. It
can readily be verified that the right-hand side of Eq. (144)
FTD — (1- Z2)2 [(T4) —2(n+1)(1 - Z2) Z](T3> is transverse (in spacetime) and traceless with the aid of
) Egs. (73).
—(n+1)(2-nZ%)Iy", (145a) One can show that the purely spatial components (143)
X agree with Eq. (144) by proving that
FT2) = —(1 =221 4 2(n + 1) 21}
T.m
+a(n+ 112, (145b) AT (xx +— Z W F —0. (146)
F(T3) — N-(n- I)ZZ]I(T4> -2(n* - 1)ZI(T3) Since the mode sums (134), (135), and (136) are con-
5 @) vergent for small p as long as m> > 0 (which we have
—n(n* = DI, (145¢)  assumed above), Eq. (146) holds if
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AlAT") (x,x') +

uvp'o’

NGS) & (k)
- (T,k)
n—2k 1 TWPGF (Z)] =0. (147)

This equation can readily be checked by explicit
calculation.

D. Overall result and the massless limit

In the preceding sections, we have derived the expres-
sions for the scalar, vector, and tensor sectors of the
graviton two-point function in a two-parameter family of
covariant gauges in terms of mode sums. The vector and
tensor sectors have been regularized by a Fierz-Pauli mass
term. As already mentioned above, while the expression for
the scalar sector, Eq. (58), converges for m = 0 and f > 0,
the ones obtained for the vector and tensor sectors,
Egs. (97) and (133), are only convergent for am? > nH?
and m? > 0, respectively. Our aim now is to show that
despite this fact, the sum of the vector and tensor sectors
(and thus the whole graviton two-point function) is finite
in the limit m — 0. We note that, although the two-point
function for the divergence-free vector field v, satisfying
Eq. (80) is defined only for am? > nH?, the expression for
the two-point function for Vv, + Vv, given by Egs. (116)
and (118) is well defined for 0 < am? < 2(n — 1)H? as
well. Since nH? < 2(n — 1)H? for n > 2, we can vary am?
from above nH? to 0 continuously. (This does not mean,
however, that the momentum integrals for the vector sector
is convergent with 0 < am® < nH*. We will find in the
next section that they are IR-divergent. Thus, we are
analytically continuing the vector sector obtained for
am? > nH? to all positive values of m? 2

Let us f1rst analyze the behavior of A "/ d, and A{;,:f’ d,>
for small m?. We begin by noting that the ﬁnal result for the
vector sector, Eq. (117), diverges like 1/m? for m — 0

because of the constant factor NE),S’) defined by Eq. (100).
For this reason, we expand the coefficients F (V6 to first
order in m?. Similarly, the final result for the tensor sector,
Eq. (144), diverges like 1/m? for m — 0 because of the
constant N'®) defined by Eq. (137), so we also expand the
coefficients F(TX) to first order in m?. The coefficients
F(TK and F(V5 are given in terms of the derivatives of
I1(Z) and Ig) (Z) with respect to Z through Egs. (145) and
(118), respectively. Using hypergeometric identities [63],
we see that, as m — 0, the integral I1(Z) [with ut given by
Eq. (141)] diverges as
2
L) H—2 + O(mP).

I m

I+(Z) =

(148)

The divergent term in Eq. (148), however, is constant such
that all derivatives I(Tk)(Z) with k > 1 are finite in the

massless limit. Similarly, as m — 0, the integral Ii,l)(Z)
[with uy given in Eq. (104)] diverges as

PHYSICAL REVIEW D 93, 124006 (2016)

(1) F(l’l + 2) H 2
I, (Z2) = ———~ O(m”), 149
and all higher derivatives [ if ) (Z) with k > 2 are finite. The
coefficients for the vector and tensor sectors depend only

on Iﬁf ) (Z) and I(Tk> (Z) with k > 2. Therefore it is enough to

expand the integrals If,k)

noting that

with k£ > 2 up to linear order. By

rlnl_%/,tv =5 (150a)
li n-l (150b)
mot TS T2

and using the definition (69) for the y-derivative of 1,(Z),

we find the small-m limit of the integrals Iif ) and I(Tk) with
k>2 as

(k) k) am- (k)

I =100+ =3 1 p + Om*),  (151a)
(k) _ 7(k) 0 4

IT = I(n—l)/2 + _ZI(n—l)/Z + O(m ) (151]3)

Now we write the vector sector and tensor sector of the
two-point function, Eqs. (117) and (144), respectively, for
small m? as

) = [l A )
+ab 0 (x, ) + O(m?) (152)
and
(Tm?), H? 1 (Tdiv), .
Apeg (X.X') = (W + n— 2) Apea (%.X7)
+ Ao (x,x') + O(m?), (153)

where we have introduced the following m-independent
and de Sitter—invariant bitensors:

T/V.div/fin)
Ai/cw ™ ()
H 22
HZT T/lev/ﬁnk)(z). (154)
=
Here the coefficients F(T/V-4V/fink) (7) defined by
F(T/V,k) (Z) _ F(T/V,div,k) (Z)
M2 fink 4
+ﬁF< Ak (Z) + O(m*).  (155)
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They are obtained by substituting Eqgs. (151) into
Egs. (117) and (144). We first simplify the “div”’ coef-
ficients, F(T/V-div:k)(Z)  further with the aid of the recursion
relation (68). Since the limit m — 0 exists for the Ig{ ) with

k > 2 and the I(Tk) with k£ > 1, we can write down these
recursion relations for these cases simply by letting
m? = 0. However, we also need these relations for k = 1
in the vector sector and k£ = 0 in the tensor sector. For these
cases of the recursion relation (68), we first substitute the
small-m expansions (148) and (149) into Eq. (68) and then
take the limit m — 0. This procedure results in

2 I'(n)
(1= 210, = nZI) ) :r(n , (156a)
(3)
—2u, o _T+2)
(1=Z)1 00— (n+2)ZI w2 = arE 1) (156b)

which have an additional term on the right-hand side
arising as the product of a divergent term proportional to
H?/m? and the first-order term in the expansion of 1,(Z)
in m?. Furthermore, by using the series expansion of the
hypergeometric functions [63] we obtain the relation

(n+1)/2 I—‘(iz_z)

1
nIE) =(1-

)2 = Z, (157)

which we can use to replace all occurrences of the / E?_

with k> 1 by the IEJH)/Z Thus,

coefficients in Eq. (154) as

1)/2
we find the “div”

F(Tdiv.l) — ZIE?H)/T (158a)
F(Tdiv2) 18) . (158b)
F(Tdiv3) ZIE ) iy (DI (n)+1)/2’ (158c¢)
Frava) = 70 ”_erl 10 (158d)
F(Tdiv.s) — Zlgill)/z + Il“(éi—:—zl)) (158e)
and FVAVK — _p(Tdive - which is obtained using

Eq. (157). This last relation implies that A% (x, x/) +

abc'd
Ag}f,ldv,) (x,x") = 0 and, consequently, that the limit

PHYSICAL REVIEW D 93, 124006 (2016)

VT (T,m
Aibc’)d’( ) - hm [Aflbl,/d/ (x xl) + Aabc’d’) (x,x’)]
1 a (T.div)
= |— — A ’// , /
L—z | )
+ Agpog (v.%) +abgid(xx)  (159)
is finite.

The “fin” coefficients, F(T/V-ink)(Z) can be computed
using the recursion relation (71). For the w‘ ) with k > 2 and
the 7(Tk) with k > 1, we may simply substitute m*> = 0 to
find these recursion relations. For the case k =1 in the

vector sector and k = 0 in the tensor sector, which we also
need, we first show that for small m

2 (n - 1)2 70) _ H_zr(”) m2 a
= TR o e

- SR e
(160b)

The contribution (160) present on the left-hand side of
Eq. (71) exactly cancels the divergent term on the right-
hand side in the m — 0 limit [given by Egs. (148) and
(149)]. Let us define

=105

. 0 0
=gwﬁa—#em

S LI

n—1) T

—<w(n—1)+y+ :

Z ) N
:/_1 1 (747

)

')

(w(n—1)+7+— :

1
(161)

(1) _ (0, Fln+2) H?
M2 =l (IV T T g
1(-1))

1 I(n+1)
n+1)2IG+1)

2
1224z

1 \T(n+1)
n+1>2r(g+1)‘

(162)

- <1//(n+1)+7/+
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Then the limit m — 0 of the relation (71) for k = 0 in the
tensor case and k = 1 in the vector case can be written as

7(2) 7(1) _ 110
(1- ZZ)I(n_l)/2 —nZL, =100 (163a)

73 7@ 1)
(=21, — (42212, =1, . (1630)

Finally, using these relations we obtain for the “fin”
coefficients as follows:

in,1) _ 72
FOVD = 712 . (164a)
F(Vifin2) _ 70) 164b
(n+1)/2° ( )
fin3) _ 7(4) 7(3)
FO) = —Z10 = (4 DIGL) . (164¢)
(V. find) 33) nt -0 (2)
g ZI(n+1)/2 2 (n+1)/2 4I(n )/2’
(164d)
F(V,fin,S) —_ _ZI( ) H(l> (1646)
(n+1)/2 2 (n+1)/2°
and
(T.fin,1) _ 7(2) _ 7@
F =Ly =Wy
2 (n) (n—1C(n-2)
- z1!". : . (165a)
n— ( 1)/2 F(E)
in 3(3) 7(2)
F(Tfin.2) ZIG, = (n+ DI
e
oy (165b)
FOm3) =)+ (n=1)ZI)
(n-1)/2 (n-1)/2
5(2) n=1,0
+ (n2 —_ 1)1<n_1)/2—m1(n_1)/2, (1650)
F(Tfind) _ 70 + n—1 (Zj(Z) + nf )
(n—1)/2 2 (n=1)/2 (n—1)/2
n=1 .0 (1)
2(n—2) [Zl<n—1>/2 +(n - 2)1(»1—1)/2]’
(165d)
(Tfin,5) _ 7(2) n=1_
F =Lyt — Mo,
n—1 (1) ['(n)
ZI 165
+n—2< =02 orm) ) (163¢)

The full two-point function for the graviton in the massless
limit is given by

PHYSICAL REVIEW D 93, 124006 (2016)

Agperg (X, X)) = Aii)c,d, (x,x') + Ai\zf’)d' (x,x'),  (166)

with the scalar part Aish)c, s (x,x’) given by Egs. (74) and
(75). The right-hand side of Eq. (166) can naturally be
expressed in terms of the bitensor set (72). Indeed, by
combining Egs. (159) and (154), the two-point function
(166) can be given as

Aabc d’ 'x x abc’d’ Z (167)

I\)I:
l Mm

with the coefficients

F®(z) = FSh(z)

2 1 .
F(T,dlv,k) 7 F(T,ﬁn,k) 7
n—1 L ) (2)+ )

a

1 . -
F(Tdivk) 7\ _ o p(V.fink) (7)|
e 2)

(168)

The functions F(SK) | F(Tdivk)  p(Viink) and p(Tfink) gee
given by Egs. (75), (158), (164), and (165), respectively.

Equation (167) shows that, for the two-parameter family
of covariant gauges considered here, there is a de Sitter—
invariant two-point function constructed by the mode-sum
method which is free of IR divergences, even though it is
necessary to perform analytic continuation of the vector
sector, which is of pure-gauge form, in the mass parameter
m from am? > nH? to all positive m?. In the case of the
scalar field theory with finite mass, it is known that, if the
spacetime is global de Sitter space, there is a de Sitter—
invariant state [8,9] which coincides with the Bunch-Davies
vacuum in the Poincaré patch [10] and Euclidean vacuum
obtain by analytic continuation from the sphere [65]. For
gravitons, it is known that on the sphere (in the Euclidean
approach) the family of covariant gauges employed here
leads to a propagator which is both IR finite and, after
analytic continuation, de Sitter invariant in the full de Sitter
space [28]. When restricted to the Poincaré patch, it is
straightforward to check that it agrees with our result (167),
where the explicit expressions in four dimensions are given
in the Appendix. Thus, our result gives strong evidence for
the existence of an IR finite, de Sitter—invariant Hadamard
state in the full de Sitter space whose associated Wightman
two-point function coincides with Eq. (167) in the Poincaré
patch, just as in the massive scalar field case, as claimed
in Ref. [38].

E. Behavior for large separations with n =4

Large separations between the two points x and x” of the
two-point function corresponds to large Z (64), where large
timelike separations entail Z — +oco while large spacelike
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separations result in Z — —oo. (Note, however, that there is
no geodesic connecting the two points if Z < —1.) It is
known that for n = 4 the graviton two-point function grows
in these limits, with the exact nature of the growth
depending on the gauge parameters [28] and taking the
form of a linearized gauge transformation, such that two-
point functions of gauge-invariant quantities do not grow
[28,37,38,66]. The aim of this section is to clarify the
nature of that growth for our result (167).

Since the four-dimensional case is the most interesting
physically, we will specialize to n = 4 in this section. Some
results here can also be found in Ref. [28]. We first note
that, since the function Ig(Z) is essentially the two-point

function for the scalar field of mass /(n — 1)H if f > 0
[see Egs. (37) and (38)], the scalar-sector two-point

function Aisb)c, s(x,x’) tends to zero as |Z] - oo as long
as # > 0. We work under this assumption for the rest of this
section. Thus, we only need to examine the vector and
tensor sectors, which are independent of . We could then
expand the coefficients F(¥) for large Z, whose explicit
expressions are given in the Appendix. However, since the
bitensor set (72) is not normalized and thus itself changes
with distance, we need to convert it to a normalized set.
Such a set can be constructed from the tangent vectors 7,
and n, to the geodesic connecting x and x’, which can be
expressed via

Z
HV1 =272

as a function of Z, and the parallel propagator g,, which
reads

(169)

n, =—

170
1+Z (170)

_ Z Z;b’
Yo = H™? <Z;ab’ - >
These bivectors were first used by Allen and Jacobson in
Ref. [67]. From the relations

n,n* =1,

naguh/ = —Ny, guh'ghlc = 62! (171 )
[which can be derived, e.g., from Eqgs. (73)], one finds that
they are, indeed, normalized. We now introduce the set of

bitensors

Salb)c’d’ = Gab9cd's (172a)
@ _
Sabc’d/ = Gaple Mg + geraNaltp, (172b)
St = nampnny. (1720)
Sepwa =41 172d)
abc'd = T(a9b) (M) (
5
SEzb)c’d’ = 29a(c’gd’)b7 (1726)
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and expand the two-point function (167) in this basis,
obtaining

Hn—Z 5 )
Agpea(x,x') = , Z Sapera GM(Z)

a2 (173)
with the coefficients
GW(z) = F(2), (174a)
G2 (Z)=(1-2*)F?(2), (174b)
GI(Z) = (1-222FO)(Z)+2(1 - Z)*F®)(Z)
+4(1=-2)(1 = Z2)FW(2), (174c¢)
GY(Z)=(1-Z)FY(Z)+ (1-2Z)FO)(Z), (174d)
GO)(z) = FO)(2) (174e)

The explicit expressions for the coefficients G(TVX)(Z)
are given in the Appendix. By expanding them for large Z,
we obtain

y 11+1+ 1 1 | 1-Z
—_— —_ P —— n—
6 Z 372 2

+0(Z22)+0(Z3InZ), (175a)
2 4 3
(TV.2) —_Z . "(1_=
GH@) 3+3<1 5“)
X 5+1+ 1 2 1 Lz
6 Z 7)) "\ 2
+0(Z272)+ 023 nZ), (175b)
GTV3)(Z) = 4G4 (Z) — 4GTV2)(Z), (175¢)
3 11 100 3
(TV.4) _ a7 -
G2 =50z -F 4577 (1 5“)
-0 (520 2
3 2712 9Z 97?7
1-7
1
(7))
+0(272) +0(z3n2), (175d)
1
GTVS)(Z) = =26V (7) - EG(TV~2> (2). (175¢)

Note that while we can remove the terms which grow
logarithmically for large Z by taking o = 5/3, there will be
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a divergence linear in Z unless o =0. As shown in
Refs. [28,66], however, this growth does not contribute
to gauge-invariant observables in linearized gravity, such as
the linearized Weyl tensor [31-33].

IV. IR ISSUES

Let us summarize our mode-sum construction of the
Wightman two-point function of gravitons in the family of
covariant gauges parametrized by a and f [see Eq. (19)] in
the Poincaré patch of de Sitter space. We introduced the
Fierz-Pauli mass term [see Eq. (21)] as an infrared
regularization and observed that the two-point function
can be expressed as the sum of three sectors: the scalar,
vector and tensor sectors. We first observed that the scalar
sector can directly be obtained in the massless limit with
the assumption that # > 0. We then found that there is no
IR problem in the mode-sum construction of the vector
and tensor sectors if am? > nH* and m> > 0, respectively,
with the assumption « > 0. Then, the vector sector was
found to be well defined for 0 < am? < nH? as well. We
used this expression of the vector sector, added it to the
tensor sector and took the limit m — 0. We found that this
limit was finite. In this manner, we obtained the graviton
two-point function, Eq. (167), which is well defined in the
IR and invariant under the symmetry of the background de
Sitter space. In this section, we discuss the IR issues
arising in the momentum integral of the vector and tensor
sectors. In particular, we find that the momentum integral
for the mixed spatial-temporal components of the vector
sector is IR-divergent for 0 < am® < nH?. We then
discuss the finiteness of the limit m — O for the sum
of the vector and tensor sectors, which was shown in
Sec. III D, in the context of the momentum integration for
the purely spatial components. We note that those com-
ponents are IR finite for all positive m? for both vector and
tensor sectors.

A. The IR issues for 0 < am? < nH?

If m?> > 0, all the components of the tensor sector of the
Wightman two-point function converge for small
momenta and, thus, are IR finite. On the other hand,
we assumed am’? > nH?> with a > 0 to guarantee the
convergence of the momentum integration in the IR for
the vector sector. However, the derivatives in hg\b/) =
Vv, + Vv, somewhat mitigate the IR behavior, and
one can readily verify that the momentum integrals for

most components of A((J\IQ‘/ 4(x.x") are IR finite as long as

am? > 0. However, the exceptions are the mixed spatial-
temporal components with indices 0uOr/, for which the
momentum integral is IR-divergent if 0 < am?® < nH?>.
We discuss this problem here.

We first perform the angular part of the integrals in
momentum space in Egs. (98) and (99) through the formula
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- dn—lp - 1
/f(|p|)e‘1’ (2m)"-! N (271')%#2;3
< [T Hoatprpap, (176
0

where f(p) is any function depending only on the absolute
value p = |p|, J,(z) is the Bessel function of order p, and
r = |x|. Then the spatial scalar and spatial vector contri-

butions to A(()V()) ,(x.x") can be written as
1Oy

S,m? Sm

A(()ZOM )(x,x’) :/0 ovo’ (x,x's p)dp, (177a)
VVm VVm

Aoﬂoy ( ) —/ 00w/ )(x,x’;p)dp, (177b)

respectively, so that the vector sector of the two-point
function is given as

V.m? &~ (V.m?
A(()ﬂoyl)(X, x') _/) Aéﬂoy,)(x, x'sp)dp,  (178)
where
X (V,m? S) ~ (VS.m2
A((),lou >(x, x'ip) = N )A(()”W )(x, x5 p)
V2
+ N(V)A(()X(\)Z) )(x, x5 p). (179)

We use the expansion for small arguments of the Hankel
and Bessel functions [63] to approximate the integrands of
Eqgs. (177) for small p as

~ (VS.m? 1 /n+1 am?
A i) = (1)

iy

-9 LR o)}
x K (g pr)pr=2- (180)
and
s =3 ("= ) { (M-
{ “1’5” |

x KY) (71, i, pr)p" T, (181)
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where the parameter uy is given by Eq. (104), and we have
defined the spatial bivectors

x { ) =307
+ (prpiat } (182)
and
Yy pr) = Z? ()"
{[in-204 050
+ (pr)? r*;r } (183)

As am? — nH? — 0%, the power of p in Eqgs. (180) and
(181) tends to —1. This means that the p integral diverges
like (@m? — nH?)~! in this limit. However, A(() o ") (x, x5 p)
behaves like am? — nH? in this limit, thus canceling this
pole. This agrees with the fact that the vector sector given
by Egs. (116) and (118) has no singularity at am? = nH?.
Nevertheless, the p integral in Eq. (178) is divergent for
0 < am® < nH? because the power of p in Egs. (180) and
(181) is less than —1. In particular, for small m?, to lowest
order in p we find from Eqgs. (180) and (181) that both
expressions behave as

am
3+2(»1+1)112

+O(m*)

prE =p (184)
Thus, the p integral in Eq. (178) has a power-law
divergence in the IR for 0 < am? < nH?. It is interesting
to note that the coefficient multiplying the leading diver-
gence is proportional to @*m*. Thus, if one takes the m — 0
limit before the p integration, or equivalently, if one
regularizes the p integration, takes the m — O limit and
then removes the IR regularization for the p integral, the
leading power-law IR singularity we encounter here will
vanish. However, as we shall see in the next subsection, this
strategy will not yield a finite result in the total two-point
function. As for the next-to-leading order terms in
Egs. (181) and (180), they both converge for m? > 0 but
diverge as m — 0. Nevertheless, these terms cancel each
other, rendering the final expression for A(() o )(x, x') finite
for m = 0 except for the leading divergence mentioned
above. It is unclear how to justify discarding this diver-
gence and using the expression of the vector sector,
Eq. (117), analytically continued in m? from am? > nH?>
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to study the m — O limit, but we conjecture that the
subtraction of this divergence will not affect physical
observables since the vector sector of the free graviton
field comprises part of the gauge sector of the theory. We
also conjecture that one will obtain the result of Sec. III B
for all @m® > 0 without encountering IR divergences if the
vector sector is constructed by the mode-sum method in
global de Sitter space, because the mode sum in global de
Sitter space is discrete.

B. The m — 0 limit

In the previous subsection, we found that the p integrals
in our graviton two-point function are IR finite for m> > 0
if the IR divergence of the Ou0r component of the vector
sector for 0 < am? < nH? is dealt with by analytic
continuation in m?2. Then, the m — 0 limit of our two-
point function is finite because of cancellation of terms
behaving like 1/m? between the vector and tensor sectors,
and is given by Eqgs. (167) and (168). In this subsection, we
investigate this cancellation by analyzing the p integration
closely for the purely spatial components. We note that
these components of the vector sector as well as the tensor
sector are IR finite for m? > 0 (with a > 0). We will show
how the well-known IR divergences of the two-point
function in the transverse-traceless-synchronous gauge
[20], which contains only physical degrees of freedom,
are canceled by gauge contributions. We will also find that
the m — O limit and the p integral do not commute and
that, if the m — 0 limit is taken before the p integration, our
two-point function will be IR-divergent unless a takes a
particular value.

We first perform the angular integrals in the expressions
for their spatial tensor, spatial vector, and spatial scalar
parts, Egs. (134)—(136), respectively, with the aid of
Eq. (176) and express them as follows:

m? o ~ m?
AT (x, ) = A BTk, s p)dp, (185)
AT (e, x') = / ATV (xox'sp)dp. (185b)
m? ® ~ m?
Aﬁ/s);ﬂ, )(x, X)) = A Agi,ﬁ, )(x, x'; p)dp. (185c)

We note that the m — 0 limit of A( (x x') is the two-
point function in the transverse- traceless synchronous

A(V’")

gauge whereas the contributions '’ (x,x’) and

Al
behavior for small m? and p of the integrands in Eqs. (185)
is given by

x,x') are of pure-gauge form in this limit. The
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K(TTo?) n(n—3)m?
ALy (x,x';p) = T
. 1422
x KU (. )p” R 1+ O(p)],
(186)

= (TV,m?) R & 1 2
A i) = 2"

+ 2
vazr(r] ’7) (NIH[ —l—O(p )}
(187)
and
2 2
~(TS,m2) /. _ n-— 1 _ m
Aﬂvp’a’ (x, %3 p) = 2 + Hr (n —2)H?

R O(p2)),
(188)

(wr) /
X Kﬂypo— (’/I’ ;7 )p

where pt is defined by Eq. (141), and we have defined the
following traceless spatial bitensor:

1-n 12
@ oy (4)
K" (nn)= ] H > —
Hup 0-(77 'I ) (4]7:)7 F(I/HZ,:;) ( ’77/] ) 7]7]/
X [ﬂyuﬂ/}’o—’ - (}’L - 1)’7;4(/)”10’)1/]'

(189)

The purely spatial components of the tensor sector are thus
obtained by integrating the following tensor over p:

(T.m?) (V) A (TT.m?) .
A;u/pa (X X p) N'YA (x,x,p)

uvp'c’

~ (TV.n?
+N(V>A£Up,;" )(x,x’;p)

~ (TS, m?
+ N(S)ALW,:,’ >(x, x5p),

(190)
where NV) and N8, which are proportional to H2/m?, are
given by Eqgs. (101) and (137), respectively. The contri-
bution from the spatial tensor part, which corresponds to
the two-point function in the transverse-traceless-
synchronous gauge, is

n(n—3)H"?
n—2 (4z): #

om?

x p L+ O(pR)],

NVIA <TT,m2>(

. _ (—1)
AW/U, x,x'sp)=-— K 2 (

n.1)
(191)

where the terms of order m? have been neglected except in

2m?
p M= By adding the spatial vector and spatial scalar
contributions, both of which become pure gauge in the limit
m — 0, we find
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A(T.mz) /. H"2 (nT_I)
s (x,xsp) = e ;wp’a’(n ')

(n-3)1

2m?

xp TR+ O] (192)
Thus, in the tensor sector the gauge contribution over-
compensates the one from the transverse-traceless-synchro-
nous modes, and changes the sign of the IR divergence.

The purely spatial components of the vector sector of the
graviton two-point function can be expressed as a p integral
in the same fashion as for the tensor sector. By combining

Egs. (98) and (99) with Eq. (176), one can express AWS )

up'c’
and A VV ") in the following form:

VS, m? VSm
AI(M),OJ )(x, x') —A e’ (x x'; p)dp, (193a)
Al () = A AVYI) (x, s p)dp. (193b)

If m? and p are small, the integrands in Eqgs. (193) can be
approximated as follows:

~ (VS.m? 1 am?
Al(wp’a’ ' xip) = (n-1) {1 - mﬁ] '

v —1+
x K" (n.1)p w1+ O0(p?)]

(194)
and
AN (x5 p) = 2
_1+ 2am? 5
X K (n.)p” [+ O(p?)].
(195)

The purely spatial components of the vector sector are
obtained by integrating over p the tensor

A (Vom? S) % (VS,m?
A/(wp’o-’)(x’ xl;p) = N((l )A/(dl/p'a’ )(X X/;p)
+ NV )Aﬂ\::am (x.x;p),  (196)

which for small m? and p reads

H" -2

AV (4 s n-1
A = —ar——(n—3) 7
(n=3) G

s’ (x,x'sp) = an+1 n

TR+ 0]
(197)

n ]) -1
X K,(w,,/g/ (n.n')p-

The p dependence of A( ' ,> (x,x'; p) given by Eq. (192)
and the one of A( ,{ﬂ) (x, x"; p) given by Eq. (197) are of the
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form p"“’”z, where c is a positive constant. Each of these

give an IR-divergent contribution proportional to 1/(cm?)
when integrated over p. These IR contributions, however,
cancel exactly for any @ > 0 when they are added together,
in agreement with our conclusions in Sec. III D: the total
contribution diverging like 1/m? is proportional to
(n—-1)H*> n-1

2m? —an+1(n—3)~

(n+1)H?
)

(n—13)- =0.

20m
(198)

It is interesting to note that the m — 0 limit and the p
integration do not commute. If one takes the m — 0 limit
first, then the cancellation shown in Eq. (198) does not
work for all @ because there will be no distinction between

. —1+ 2m?
the small-p behavior of the form p ~ «-v#* (for the tensor
2

sector) and that of the form p_1+<"+1>H2 (for the vector sector)
if the limit m — O is taken before the p integration. In this
case, the IR-divergent contribution to the two-point func-
tion with an IR momentum cutoff at p = 1 will be given by

2am’

H'2 s

A (}C,.X'/) NWK/,{D/)/OJ(”’”/)

uvpc’

n—1
-3\(1=
X (n )( o

>ln(1/i). (199)

Thus, if the m — 0 limit is taken before the p integration,
our two-point function is IR-divergent unless
a= (n+1)/(n—1). (Recall also that the IR divergence
in the vector sector for 0 < am? < nH? will be absent if the
m — 0 limit is taken before the p integration.) Especially, it
will be IR-divergent for @ = 0, which corresponds to the
Landau/exact gauge used in Refs. [50-52], where the two-
point function constructed using a different method was
found to be IR-divergent in the cutoff regularization.
However, the coefficient for the IR divergence we find is
different from the one found in these works. In four
dimensions, for example, the method of Ref. [52] gives
(see Ref. [53])

2

H @)
MTW N~ 3
Aﬂl’/’/"/ (x, x') =5 (4r)? Kﬂvp’a’

(n.7")In(1/2),  (200)

whereas the coefficient for the IR divergence for our two-
point function will be 1 instead of —5 if the m — O limit is
taken before the p integration.

V. SUMMARY AND DISCUSSION

We have, for the first time, derived the graviton two-
point function by an explicit mode-sum construction in the
Poincaré patch of de Sitter space, for general spacetime
dimension n, in a general linear covariant gauge with
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parameters « and S [see Eqgs. (18) and (19)]. We added a
Fierz-Pauli mass term proportional to m?> to control IR
divergences and found that the two-point function can be
expressed as the sum of the scalar, vector and tensor
sectors. Since there is no IR problem in the scalar sector if
£ >0 [28,52], we made this assumption and found the
scalar sector directly with m = 0. As for the vector sector,
we found that all relevant momentum integrals are con-
vergent only for am? > nH?. We performed the mode-sum
construction with this assumption and found that the
resulting vector sector of the two-point function is well
defined for any value of m?> > 0 (with a > 0) if this sector
is analytically continued in m?. The tensor sector, which
contains the contribution from the transverse-traceless-
synchronous modes, was found to be IR finite as long
as m*> > 0. We then added together the tensor sector and the
(analytically-continued) vector sector and found that the
m — 0 limit, i.e., the limit in which the IR regulator is
removed, is finite. In this manner, we obtained a de Sitter
invariant two-parameter family of graviton two-point
function in the Poincaré patch of de Sitter space by the
mode-sum method. We also verified that our result in four
dimensions agrees with the two-point function obtained by
analytic continuation from the sphere [27,28] (see also
Ref. [38]). We verified that the resulting two-point function
grows for large (time- or spacelike) separation but noted
that this growth does not affect local gauge-invariant
observables in linearized gravity as was shown in Ref. [28].

We also considered the procedure of setting m = 0 from
the start and regularizing the IR divergences by an IR
momentum cutoff as is usually done in the literature. We
found that the graviton two-point function will be
IR-divergent for a general value of a because the IR
divergences do not cancel between the vector and tensor
sector in this case. This conclusion is in agreement with the
results of Refs. [50-52] obtained for the gauge parameter
a = 0 (the Landau or exact gauge) although there is disagree-
ment in the exact value of the IR-divergent term. However,
since the IR divergence of the vector sector is proportional to
a, there is one special value of @ where these divergences
cancel exactly, namely a = (n+1)/(n—1) in n dimen-
sions. For this value of @, one encounters no IR problems at
all. (We note, however, that some authors object to the gauge
with nonzero a [68].) If a is greater than this value, the IR
divergences coming from the vector sector are not large
enough to cancel the ones coming from the tensor sector,
while for smaller o they are too large. In particular, for the
Landau gauge o = 0 the IR-divergent contribution coming
from the vector sector and the spatial vector and spatial scalar
parts of the tensor sector were found to overcompensate the
“physical” IR divergence coming from the spatial transverse-
traceless tensor part of the tensor sector and changes the
overall sign of the IR divergence.

In Ref. [23], it was explicitly shown that these diver-
gences are of gauge form, and can be transformed away by
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a “large” gauge transformation, at least in noninteracting
linearized gravity (see also Refs. [22,66]). If one considers
these IR divergences to be unphysical and expects them not
to contribute to correlation functions of gauge-invariant
observables, the change of sign in the IR divergence does
not matter (and in fact, one can then use the de Sitter—
invariant two-point function from the outset). On the other
hand, if one is skeptical of large gauge transformations and
attributes physical reality to the IR divergences, this change
of sign appears to cause difficulties because, then, one
would obtain different answers depending on whether one
uses the covariant two-point function with a gauge-fixing
term or that corresponding to just the physical, spatial
transverse-traceless metric perturbations.

Although it was shown in Ref. [37] that, as far as the
computation of the correlation functions corresponding to
compactly supported gauge-invariant quantities goes, the
covariant graviton two-point function we have derived is
physically equivalent at tree level to the de Sitter—breaking
ones, the same result may not be true for noncompactly
supported observables. Especially, we find it plausible that a
naive calculation of observables whose support extends to
spatial infinity can give different results using our two-point
function versus the de Sitter—breaking two-point functions
of, e.g., Refs. [50-52]. Such observables must be defined
carefully (e.g., by taking their support to be contained in a
sphere of radius R and showing that the limit R — oo is well
defined), and while studies of this sort have been undertaken
in both anti—de Sitter and Minkowski spacetimes (see, e.g.,
Refs. [69-73]), leading to the discovery of asymptotic
symmetries and conserved charges at infinity, we are not
aware of a similar analysis for the de Sitter case.
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APPENDIX: FORMULAS FOR =4

Here we present the explicit form of the coefficient
functions in the massless two-point function (167) in
dimension n = 4.

The functions 1, (k ) , with k>2 present in the
tensor-sector coefﬁ01ents F(Tdvk) (7) Eq. (158), can be
directly evaluated for n = 4 from the definition (67). For the
coefficients F(T-fink) (7), given by Eq. (165), we also need the

functions / Ei)—l) P with k > 1, which can also be evaluated

directly from the definition (67), the function HE?_I) P (2),

which can be calculated from its definition (161), and the

(k)

functions 1(”_1) P with k> 1, which were defined by
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Eq. (69). For the evaluation of / E ) for n = 4, we first

n—1)/2
write the relevant hypergeometric function as a series in four
dimensions and then differentiate term by term since the
series is absolutely convergent. This results in

~(1) 1 I OXITG+u+OrG-—pu+7?)
fa(2) = —¢ him, a_z I3+ 2)!

X —_—

(=)

B 1i352+125+11<1+z>f
64 (£+1)(¢+2) \ 2

2(1+22) 20+2) (1-Z
_3(1—2)(1+z)+3(1+z)2m< 2 )

(A1)

and the Ig /)2( ) with k> 1 can be obtained by simple
differentiation of this expression. For the vector-sector

coefficients F(V-in%)(Z), Eq. (164), we need the functions

(k)
](n+l)

definition (67), the function H

Jo Withk > 2, which can be evaluated directly from the
12 (Z), which can also be

calculated from its definition (162) and the functions / E )+1) P

with k& > 2, for which a similar calculation as in Eq. (A1)
shows

2(8Z% +322 - 15Z - 6)
5(1-2)*(1+2)?

232> +9Z2+8), (1-2
(112 ln< 5 > (A2)

Finally, for the scalar-sector coefficients F(S%)(Z) given by
Eq. (75) the four-dimensional limit is straightforward for
general > 0. However, the limit f — O exists for the
coefficients as we have

7(2
Ig/z(z) =

k)

1£(2) - 1$5(2). (A3a)

1$(2) - 1§),(2) (A3b)

for k > 1. Simple expressions are also found for the case

p = 2/3, where we obtain by a similar reasoning as above

(Ada)

~ 2 2 1-Z
W7y — _ - 1 , Adb
VD=
and for k > 1 we again simply take derivatives. The greatest
simplification occurs in the limit # — oo, for which it was

shown in Ref. [62] that I (Sk)(Z) tends to zero exponentially

fast, and the same is seen to be true for I §k> (2).
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By combining the calculations described above, in four dimensions the scalar-sector coefficients F(S*)

# =0 by

are given for

47(5Z% —57° = 247> +1Z +5) 47 16Z 1-7
FD = - 1 , A5
9(1-2)*(1 + 2)? 1=z o1+zp n( 2 ) (A5a)
2(72° = 7Z* —104Z° + 82> —T1Z + 23) 4 16 1-Z
FG2) = : ASb
9(1-2)*(1 + 2)° T I T AT n( 2 ) (A3b)
5 _ 4 _ 3 2 _ _ _
sy _ A2 — 192" —3867° + 987 : 2932+17)  45-2) 16(5+2) (1-Z ’ (A50)
9(1-2)%(1+2) 3(1-2)° 3(1+2)° 2
4 3 _ 2 _ _ _
pisay _ M2 =57 622 +172-16) _ 4(4 z)4 16(4+Z} n(1=%) (ASd)
9(1 -2)*(1 + 2)? 9(1-2)* 9(1+2) 2
3 2 _ _ —
piss) A2 +322+272-7) 23 z)%_ 83+2), (1-7 ’ (A5e)
9(1 —2)*(1 + 2)? 9(1-2)* 9(1+2) 2
and for f =2/3 by
8Z 27(523 -372>+7Z-1) 4(1-2)Z. (1-Z
F&H —___ ™™ 4 (9g_ - 1 , A6
si—zr T Toaszrar 27 oatzr M\ 2 (A6a)
45+2 8(32*-373+1372>-32+2) 8(2-Z2 1-Z7
F(s2) — 45+2) )4— O-a) ( +4 3 t2), 3 )4 n ’ (A6b)
3(1-2) 9(1-2)%(1+2) 91 + Z) 2
32 8(72* — 667> +162% —54Z 4 1) 32 1-Z7
F(83) — _ 9_— 1 . A6
a-zp ! ){ 9(1-25(1+2)° METTES L “( 2 >] (A6c)
8 8(=3+2Z—-112%+ 27 8 1-7
FG&4 = — 9— - 1 , A6d
-zt “){ 9(1-2)*(1+2) 3(1+Z)4“< 2 ﬂ (A6d)
8 16Z 8 1-2Z
FS3) =~ (9 - 1 , A6
si—zr O Yazzrarzr vz 2 (Ae)

while they vanish in the limit # — co. For the vector- and tensor-sector coefficients F(TV-K) = F(K)(Z) — FSK(Z), we
obtain

2(—27 +89Z — 817° + 277°) 27(—4 +19Z — 737> —157° + 337%)

FV(z) = - 5-3
(2) 27(1 - 2)? + @) 135(1 = 2)3(1 4+ Z)?
4Z(8+9Z2+37%). (1-Z
-(5-3 , A7
(5= 3a) 45(1 + 2)° < 2 ) (ATa)
2(17 = 12Z 4+ 372 2(21 =797 — 1472 — 1473 + 7* + 573
prva(z) < 22 532 e
9(1-2) 45(1-2)*(1+ 2)
45+4z+272%, (1-Z
-(5-3 1 , A7b
(5 = 3a) 15(1+ 2)* n( 2 ) (ATb)
2(=121 + 149Z — 7572 + 1573 4(25 4+ 297 + 1522 + 373 1-Z7
prva)(z) = A2 LB | (53 B 22T DT AT
9(1-2) 15(1+2) 2
2(—=105 + 4837 4 3972 + 29573 + 57* — 957° — 37° + 2177
- (5-3a) ( * + * * * ), (A7c)

45(1 - 2)°(1 + 2)*

124006-26



MODE-SUM CONSTRUCTION OF THE COVARIANT ... PHYSICAL REVIEW D 93, 124006 (2016)

8(=5+3Z)(7-7Z+322) 2(70 — 58Z + 29777 + 5273 — 1487* — 18Z° + 457°)

F(2) = 27(1-2)° —(5-3a) 135(1 - 2)*(1 + 2)°

— (5 - 3) 2H0F 54552“13;)25 e (1 3 Z) : (A7d)
FVS)(z) = (=159 + 321;1—_22322 +997%) (5 3q) (T03 2212 4;315 1(?2_2 ;)?(SIOTZ_) 263 74+ 11729)

+(5-3a) 2(5+ 3425)((13:;)Z3+ 37?) (1 ; Z>’ (A7)

and we see that the logarithmic terms are absent for « = 5/3, which is exactly the value of « (in four dimensions) for which
the potential IR divergences in the momentum integrals cancel if one sets m = 0 before the momentum integration is
performed, as explained in Sec. IV B.

In order to compare the results above with those of Ref. [28], we need to switch to the Allen-Jacobson basis [67] and use

the bitensor set defined by Egs. (172). Using the relations (174) to convert the coefficients, we obtain for the scalar-sector
coefficients G4 for f =0

G () = AL ST WIS Mt (), (A5
gz =202 7226 1_0‘53 szzzi R o (<11 - ZZ))3 ;(6f 1+_ZZ)z ! <1 2 Z) ’ A
o) W VIRE SN N (15,
GS9(Z) = — 2(5 + 29)((1—5 ;)32(1— i3ZZ)22+ 373) N az(—lg 1( 1— _2;4; 7?) 8(594{1?( ; ); Z) <1 ; z) , (ASd)
i AN 08 (1)
and for § = 2/3

o= o[ ()]
o0 L) oSN B8 (1]
ot - 0oL M (151)]
Go2) = 3= =) L(l iz " (1 3 Z)] | (ASe)

As for the vector- and tensor-sector coefficients G(TV%), we find
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27(-4+19Z - 737% = 1523 + 337%)

GWVI(Z) = - 5-3
@) 27(1-2)° +(5-39) 135(1-2)3(1 + 2)?
47Z(8 Z +37? 1-Z
(5 3a) B 92+ 377) , (A10a)
45(1+ 2) 2
2(14+2)(17 = 12Z + 372 221 =79Z — 147> = 1473 + 74 + 577
9(1-2) 45(1-2)%(1 + 2)
4(1-2)5+4z2+2%, (1-2Z
—(5-3 1 , A10b
G =30 5152y "\ 72 (A10b)
GV (Z) = 4GV (Z) — 4GV (Z), (A10c)
-4 Z — 47877 + 18073 — 277 2(1-2)(2 267 Z? 1-27
v ) — =439 + 668 827 4180 (532125 R 262402
27(1 - 2) 45(1 + 2) 2
77 + 168Z + 49122 — 26473 — 109Z* + 144Z7° — 272°
~(5-30) = i 3 5 s , (A10d)
35(1-27(1+2)
1
G(TV,S)(Z) _ _2G(TV.1)(Z) _ EG(TV,2) (Z). (A10e)
|
1 1
The results of Ref. [28] are given by coefficients f(TV4) GV + G52 = —Zf(TV’l) - Zf(s'l) + fS4, (Allb)

and f(S% multiplying certain linear combinations of the
bitensor set (172). Hence, the split between the scalar and
the vector and tensor sectors in the Euclidean approach
used in Ref. [28] is different from ours. This is expected
because each of our scalar, vector and tensor sectors satisfy
the field equations separately whereas those in the
Euclidean approach do not.

Converting their expression into the bitensor set (172),
we obtain

1 1 1
GTV.) L GS1) — L p(TV.1) _ 2 £(TV.2) 4 = £(S,1)
+ 16f 2f + 16f
— %f(s,z) - %f(SA) + f(8:5), (Alla)

G(TV,S) 4 G(S‘3) — f(TV,l) +4f(TV,3) +f(S,1) +4f(S,3)’

(Allc)
G(TV,4) + G(SA) — f(TV,3) _'_‘}6(5.3)7 (Alld)
G(TV,S) + G(S,S) _ f(TV,Z) _'_f(S.2)’ (Alle)

and using that their z is related to Z by z = (1 + Z)/2, we
find full agreement for the case f = 2/3 where explicit
expressions were presented. Furthermore, since only the
scalar-sector two-point function depends on S, one readily
finds from Eq. (59) that there is also agreement for all other
values of f > 0.
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