
Post-Newtonian parameters and cosmological constant
of screened modified gravity

Xing Zhang,* Wen Zhao,† He Huang, and Yifu Cai
CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy,

University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, China
(Received 21 March 2016; published 1 June 2016)

Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which
can generate a screening effect to suppress the fifth force in high density environments and pass the solar
system tests. Meanwhile, the potential of the scalar field in the theories can drive the acceleration of the late
Universe. In this paper, we calculate the parametrized post-Newtonian (PPN) parameters γ and β, the
effective gravitational constant Geff , and the effective cosmological constant Λ for SMG with a general
potential V and coupling function A. The dependence of these parameters on the model parameters of SMG
and/or the physical properties of the source object are clearly presented. As an application of these results,
we focus on three specific theories of SMG (chameleon, symmetron, and dilaton models). Using the
formulas to calculate their PPN parameters and cosmological constant, we derive the constraints on the
model parameters by combining the observations on solar system and cosmological scales.
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I. INTRODUCTION

The current cosmic acceleration [1] can be elucidated
within general relativity (GR) by introducing dark energy
[2]. Some prominent candidates for dark energy are the
cosmological constant [3], a dynamically evolving scalar
field quintessence [4], a phantom field [5], a quintom field
[6], etc. Alternatively, the accelerated expansion of the
Universe can also be explained through modified gravity
(MG) theories [7]. On large scales, we do not have very
strict experiments to verify GR, and then infrared (IR)
modification of gravity is the direction that is supposed to
be worth a try [8]. Weinberg’s theorem states that any
Lorentz invariant spin-2 field theory must reduce to GR at a
low-energy limit [9], and thus any MG theories must
involve extra degree(s) of freedom. The scalar degree of
freedom universally exists in fundamental physics (such
as compactified extra dimensions [10], string theory, and
brane world [11]). Since the Higgs boson in the Standard
Model of particles was found [12], we know that scalar
particles really exist in nature. Moreover, scalar fields are
also widely used in cosmology. Quintessence scalar field
can replace the cosmological constant and drive cosmic
acceleration at late times [4]. The inflation is a short period
of rapid expansion in the very early Universe, which could
also be caused by a scalar field [13,14]. These scalar fields
may couple to matter fields, which slightly violates GR and
could be detected as the continuous improvement of
experimental accuracy.
Most MG theories involve scalar field, and the simplest

one is the so-called scalar-tensor gravity [15–19]. The

fundamental building blocks of scalar-tensor theories are
the tensor gravitational field and scalar field. Moreover,
scalar-tensor theories can be justified by the low-energy
limit of string theory or supergravity [20,21]. Scalar-tensor
theories are usually expressed either in the Jordan frame or
in the Einstein frame, which are related to each other by a
conformal rescaling [22]. In the Einstein frame, a key
ingredient of scalar-tensor theories is the conformal cou-
pling of light scalar field with matter fields, which usually
implies the existence of a new long-range fifth force.
However, at present, fifth forces have not been detected
in either solar system or laboratory experiments, which
means that the strength of the fifth force should be much
weaker than that of the gravitational force [23,24].
Therefore, we need the screening mechanisms, which
can suppress the fifth force and allow MG theories to
evade the tight gravitational tests in the solar system and the
laboratory.
Examples of such screened models abound. The cha-

meleon mechanism [25–29] operates a thin-shell shielding
scalar field, which acquires a large mass in dense envi-
ronments and suppresses its ability to mediate a fifth force.
The symmetron mechanism [30–35] relies on the scalar
field with the Z2 symmetry breaking potential. In high
density regions, the Z2 symmetry is unbroken and the fifth
force is absent, whereas in low density regions, the Z2

symmetry is spontaneously broken and the fifth force is
present. The dilaton mechanism [20,36–38] is similar to the
symmetron. The coupling between dilaton and matter is
negligible in dense regions, while in low density regions the
dilaton mediates a gravitational-strength fifth force. These
screening mechanisms can be described by the same
formalism [39], which is defined by a potential VðϕÞ
and a coupling function AðϕÞ in scalar-tensor theory in the
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Einstein frame. Such scalar-tensor gravity with a screening
mechanism is often called screened modified gravity
(SMG) [39,40,42]. A basic requirement of SMG is that
the effective potential must have a minimum [39], which
can naturally be understood as a stable vacuum. This
requirement can roughly constrain the shapes of two
dynamical functions VðϕÞ and AðϕÞ.
In this paper, we focus on a generic SMG with arbitrary

potential VðϕÞ and coupling function AðϕÞ, and we
calculate the parametrized post-Newtonian (PPN) param-
eters γ and β in the case of a static spherically symmetric
source. Moreover, SMG contains a scalar degree of free-
dom, whose potential can naturally provide the vacuum
energy to drive the cosmic acceleration at late times. These
two analyses allow us to investigate the theoretical frame-
work on solar system and cosmological scales to derive the
combined constraints on model parameters.
In the literature [43,44], the PPN parameters of a generic

scalar-tensor theory were calculated under the assumption
of a point source surrounded by vacuum. This assumption
is generally not appropriate to solve the massive scalar field
since the exterior scalar field of an extended source behaves
quite different from that of a point source, and screening
mechanisms can show up due to nonlinear effects of a
scalar field [44]. So, these results are not applicable to
SMG, whose scalar field is always massive and can be
screened in dense bodies.
In this paper, we solve the massive scalar field in the

Einstein frame in the case of an extended source sur-
rounded by a homogeneous background. Making use of
this scalar solution and the PPN formalism [45,46], in the
Einstein frame, we solve the massless metric field in the
weak field limit around the flat Minkowski background and
the vacuum expectation value (VEV) of the scalar field
(scalar background). Then, we transform them to the Jordan
frame and calculate the PPN parameters γ and β and the
effective gravitational constant Geff . It turns out that these
parameters (γ, β, Geff ) depend not only on the distance r
between the source object and the test mass but also on the
screened parameter ϵ.
Moreover, SMG contains a scalar degree of freedom, and

the bare potential VEVof the scalar field can play the role
of dark energy to accelerate the expansion of the Universe.
Further analysis shows that a generic SMG can converge
back to GR with a cosmological constant in the limiting
case ϵ → 0. In particular, we focus on three specific
theories of SMG (chameleon, symmetron, and dilaton
models) and use our formulas to calculate their PPN
parameters and cosmological constant. We find that our
expressions of the PPN parameters for these three models
can reduce to previous results derived by other authors in
the appropriate cases. Finally, we combine solar system and
cosmological constraints on these three models.
This paper is organized as follows. In Sec. II, we display

the action and field equations for a generic SMG and solve

the scalar field equation in the Einstein frame. In Sec. III,
we derive the post-Newtonian metric field equations in the
Einstein frame. In Sec. IV, we solve the post-Newtonian
metric field equations and calculate the PPN parameters
and cosmological constant for a generic SMG. In Sec. V,
we discuss chameleon, symmetron, and dilaton models and
constrain them by the current observations. Finally, we
conclude our results in Sec. VI.
Throughout this paper, the metric convention is chosen

as ð−;þ;þ;þÞ and Greek indices (μ; ν; � � �) run over
0,1,2,3. We set the units to c ¼ ℏ ¼ 1, and therefore, the
reduced Planck mass is MPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p
, where G is the

Newtonian gravitational constant.

II. ACTION FUNCTIONAL
AND FIELD EQUATIONS

A general scalar-tensor theory with two arbitrary func-
tions is given by the following action in the Einstein frame
[15–19]:

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

Pl

2
RE −

1

2
ð∇EϕÞ2 − VðϕÞ

�

þ Sm½A2ðϕÞgEμν;ψ ðiÞ
m �; ð1Þ

where gE is the determinant of the Einstein frame metric

gEμν, RE is the Ricci scalar, ψ ðiÞ
m are various matter fields

labeled by i, VðϕÞ is a bare potential characterizing the
scalar self-interaction, and AðϕÞ is a conformal coupling
function. In the Einstein frame, the scalar field ϕ interacts

directly with matter fields ψ ðiÞ
m through the conformal

coupling function AðϕÞ. In the Jordan frame, the matter

fields ψ ðiÞ
m couple to the Jordan frame metric gJμν through a

conformal rescaling of the Einstein frame metric gEμν as [22]

gJμν ¼ A2ðϕÞgEμν; ð2Þ

where the coupling function AðϕÞ is usually different for

different matter fields ψ ðiÞ
m . For simplicity, from now on, we

assume that all matter fields couple in the same way to the
scalar field with a universal coupling function AðϕÞ.
The variation of the action (1) with respect to the metric

field and the scalar field yields the metric field equation of
motion (EOM) and the scalar field EOM:

RE
μν ¼ 8πG½SEμν þ ∂μϕ∂νϕþ VðϕÞgEμν�; ð3Þ

□ϕ ¼ dVðϕÞ
dϕ

− TE dAðϕÞ
AðϕÞdϕ ; ð4Þ

with

SEμν ≡ TE
μν −

1

2
gEμνTE; ð5Þ
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where TE
μν ≡ ð−2= ffiffiffiffiffiffiffiffi−gE

p ÞδSm=δgμνE is the energy-momen-
tum tensor of matter in the Einstein frame, TE is the trace of
the energy-momentum tensor Tμν

E , and □≡ gμνE ∇μ∇ν. The
scalar field EOM (4) can be rewritten as follows (Klein-
Gordon equation):

□ϕ ¼ dVeff

dϕ
; ð6Þ

with the effective potential

VeffðϕÞ≡ VðϕÞ þ ρ½AðϕÞ − 1�; ð7Þ

where the matter is assumed to be nonrelativistic. Here, ρ
is defined as the conserved energy density in the Einstein
frame; i.e., ρ is independent of ϕ. The density ρ is related
to the Einstein frame and Jordan frame matter densities
by [47]

ρ ¼ ρE
A

¼ A3ρJ: ð8Þ

The scalar field is governed by the effective potential
VeffðϕÞ, and the shape of the effective potential determines
the behavior of the scalar field. For a general scalar-tensor
theory with two arbitrary functions VðϕÞ and AðϕÞ, the
shape of the effective potential VeffðϕÞ is usually arbitrary,
and this scalar field generally does not have screening
properties. For suitably chosen functions VðϕÞ and AðϕÞ,
the effective potential VeffðϕÞ can have a minimum; i.e., the
scalar field has a physical vacuum. Around this minimum
(physical vacuum), the scalar field acquires an effective
mass which increases as the ambient density increases, and
the scalar field can be screened in high density environ-
ments. This kind of scalar-tensor gravity with a screening
mechanism is often called screened modified gravity
(SMG) [39,40,42], which can generate the screening effect
to suppress the fifth force in high density environments and
pass the solar system tests. There are many SMG models in
the market, including the chameleon, symmetron, and
dilaton models [39], in which the functions VðϕÞ and
AðϕÞ are chosen as the specific forms.
The following two conditions (9a) and (9b) guarantee

that the effective potential VeffðϕÞ has a minimum.
Differentiation of the effective potential with respect to
ϕ is zero at ϕ ¼ ϕminðρÞ, i.e.,

dVeff

dϕ

����
ϕmin

¼ 0; ð9aÞ

and the value of ϕminðρÞ decreases as the ambient density
increases. The effective mass meffðρÞ of the scalar field at
the minimum is defined as

m2
eff ≡ d2Veff

dϕ2

����
ϕmin

; ð9bÞ

which should be a positive and monotonically increasing
function of the ambient density.
Let us consider a static spherically symmetric and

constant density source object, which is embedded in a
homogeneous background. Then, the scalar field EOM (6)
simplifies to

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ m2
mðρÞ½ϕ − ϕmðρÞ�; ð10Þ

with

ρðrÞ ¼
�
ρ0 for r < R

ρ∞ for r > R
; ð11Þ

where R is the radius of the source object, ρ0 is the density
of the source object, and ρ∞ is the background matter
density. For the solar system, in general, ρ∞ is the
cosmological matter density or galactic matter density
[39,48], which corresponds to the cosmological back-
ground or galactic background, respectively.
Equation (10) is a second-order differential equation, and

the boundary conditions are required as follows [25]:

dϕ
dr

¼ 0 at r ¼ 0;

ϕ → ϕ∞ as r → ∞; ð12Þ

where ϕ∞ is the scalar field VEV (scalar background),
depending on the background matter density ρ∞. The first
condition guarantees that the scalar field is nonsingular at
the origin [25], and the second one implies that the scalar
field asymptotically converges to the scalar background.
Moreover, ϕ and dϕ=dr are, of course, continuous at the
surface of the source object. By solving Eq. (10) directly,
we get the exact solution

ϕðr < RÞ ¼ ϕ0 þ
A
r
sinhðm0rÞ; ð13aÞ

ϕðr > RÞ ¼ ϕ∞ þ B
r
e−m∞r; ð13bÞ

with

A ¼ ðϕ∞ − ϕ0Þð1þm∞RÞ
m0 coshðm0RÞ þm∞ sinhðm0RÞ

; ð14aÞ

B ¼ −em∞Rðϕ∞ − ϕ0Þ
m0R − tanhðm0RÞ

m0 þm∞ tanhðm0RÞ
; ð14bÞ

where ϕ0 and ϕ∞ are, respectively, the positions of the
minimum of Veff inside and far outside the source object,
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andm0 andm∞ are, respectively, the effective masses of the
scalar field at ϕ0 and ϕ∞. All these quantities can be
obtained by two given functions VðϕÞ and AðϕÞ.
The scalar field is screened on solar system scales (high

density), which requires that the typical scale of the solar
system R is much larger than the fifth force range m−1

0 . In
addition, the scalar field works on cosmological scales (low
density), which requires that m−1

∞ is close to the Hubble
scale. So, the conditions m0R ≫ 1 and m∞R ≪ 1 can
always be satisfied on solar system scales. In this paper,
we only consider the exterior solution of the scalar field.
Using these two relations, the exterior scalar field (13b) is
reduced to

ϕðrÞ ¼ ϕ∞ − ϵMPl
GME

r
e−m∞r; ð15Þ

with

ϵ≡ ϕ∞ − ϕ0

MPlΦE
; ð16Þ

where ME is the mass of the source object in the Einstein
frame, ΦE ≡GME=R is the Newtonian potential at the
surface of the source object in the Einstein frame, and the
parameter ϵ depends on background matter density ρ∞ and
the physical properties (density ρ0 and radius R) of the
source object. Obviously, the screening effect is very strong
for ϵ ≪ 1 and quite weak for ϵ≳ 1, so ϵ is always called the
screened parameter or the thin-shell parameter in the
literature [25].
This completes the solution of the scalar field EOM in

the Einstein frame. In the next section, we use the scalar
field solution to derive the post-Newtonian metric field
equations in the Einstein frame.

III. POST-NEWTONIAN APPROXIMATION
IN THE EINSTEIN FRAME

In order to solve the metric field EOM (3), we make use
of the PPN formalism introduced in [45,46]. In this
formalism, the gravitational field of the source is weak
GM=r ≪ 1, and the typical velocity ~v of the source matter
is small v2 ∼GM=r ≪ 1. Thus, we can use the perturbative
expansion method to solve the field equations, and all
dynamical quantities can be expanded to OðnÞ ∝ v2n (note
that other authors use the convention OðnÞ ∝ vn).
In this section, we consider a static spherically sym-

metric source and assume that the source object is con-
stituted by a perfect fluid which obeys the post-Newtonian
hydrodynamics. We start from this assumption and expand
the metric field EOM to OðnÞ ∝ v2n in the weak field limit
around the flat Minkowski background and the scalar
background (scalar field VEV). The resulting equations
can then be solved subsequently for each order of magni-
tude in the next section.

For the metric field gμν in the weak field, it can
be expanded around the flat Minkowski background as
follows:

gμν ¼ ημν þ hμν

¼ ημν þ hð1Þμν þ hð2Þμν þOð3Þ: ð17Þ

This metric can also be written in the spherically symmetric
and isotropic coordinates ðtE; r; θ;φÞ in the Einstein frame,

ds2E ¼ − ½1 − hð1ÞE00ðrÞ − hð2ÞE00ðrÞ�dt2E
þ ½1þ hð1ÞErrðrÞ�ðdr2 þ r2dΩ2Þ; ð18Þ

where tE and r are the time and radial coordinates

in the Einstein frame, respectively. Each term hðnÞEμν is of
order OðnÞ. The term dΩ2 is defined by dΩ2 ≡ dr2 þ
sin2θdφ2, and the flat Minkowski background is ημν ¼
diagð−1; 1; r2; r2sin2θÞ.
For the scalar field ϕ, the exterior solution (15) is a

following expansion in the weak field limit around the
scalar background,

ϕðrÞ ¼ ϕ∞ þ ϕð1ÞðrÞ; ð19Þ

where ϕð1Þ is of order Oð1Þ, given by

ϕð1ÞðrÞ ¼ −ϵMPl
GME

r
e−m∞r; ð20Þ

ϕ∞ ≡ ϕVEV is the scalar background (scalar field VEV),
which depends on the background matter density ρ∞. Note
that, the term ϕð2Þ naturally does not exist in our expression
of the scalar field ϕ (15), which is different from the results
derived in other method [43,44]. Then, the bare potential
VðϕÞ and the coupling function AðϕÞ can be expanded in
Taylor’s series around the scalar background,

VðϕÞ ¼ VVEV þ V1ðϕ − ϕ∞Þ þ V2ðϕ − ϕ∞Þ2 þOð3Þ;
ð21aÞ

AðϕÞ ¼ AVEV þ A1ðϕ − ϕ∞Þ þ A2ðϕ − ϕ∞Þ2 þOð3Þ;
ð21bÞ

where AVEV ≡ AðϕVEVÞ is the coupling function VEV, and
VVEV ≡ VðϕVEVÞ is the bare potential VEV, which acts as
the effective cosmological constant to accelerate the
expansion of the late Universe.
The energy-momentum tensor is given by that of a

perfect fluid [45,46]

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð22Þ
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and the tensor SEμν (5) is expanded in the form

SE00 ¼
1

2
ρEð1þ ΠE þ 2v2E − hð1ÞE00Þ þ

3

2
pE þOð3Þ; ð23aÞ

SErr ¼
1

2
ρE þOð2Þ; ð23bÞ

SEθθ ¼
1

2
ρEr2 þOð2Þ; ð23cÞ

SEφφ ¼ 1

2
ρEr2sin2θ þOð2Þ; ð23dÞ

where ρ is density of rest mass, p is pressure, Π is
internal energy per unit rest mass, uμ is four-velocity, and
the index E indicates that a quantity is defined in the
Einstein frame. For solar system tests, we typically have
p ≪ ρ, Π ≪ 1, and v ≪ 1. So, we neglect the effects of
pressure, internal energy, and velocity in the following
discussions.
By using these relations, the right-hand sides of the

metric field EOM (3) can be expanded to the required order
in the form

RE
00 ¼ 8πG

�
−VVEV þ ρE

2
þ VVEVh

ð1Þ
E00 − V1ϕ

ð1Þ −
ρE
2
hð1ÞE00

þ VVEVh
ð2Þ
E00 þ V1ϕ

ð1Þhð1ÞE00 − V2ðϕð1ÞÞ2
�
þOð3Þ;

ð24aÞ

RE
rr ¼ 8πG

�
VVEV þ ρE

2
þ VVEVh

ð1Þ
Err þ V1ϕ

ð1Þ
�
þOð2Þ;

ð24bÞ

RE
θθ ¼ 8πGr2

�
VVEV þ ρE

2
þ VVEVh

ð1Þ
Err þ V1ϕ

ð1Þ
�
þOð2Þ;

ð24cÞ

RE
φφ ¼ RE

θθsin
2θ þOð2Þ: ð24dÞ

The left-hand sides of the metric field EOM (3), i.e., the
components of the Ricci tensor, are expanded to the same
order in the form

RE
00 ¼ −

1

2
∇2

rh
ð1Þ
E00 −

1

2

�
∇2

rh
ð2Þ
E00 − hð1ÞErr∇2

rh
ð1Þ
E00

þ 1

2
ð∂rh

ð1Þ
E00Þ2 þ

1

2
ð∂rh

ð1Þ
E00Þð∂rh

ð1Þ
ErrÞ

�
þOð3Þ;

ð25aÞ

RE
rr ¼

1

2
∂2
rh

ð1Þ
E00 − ∂2

rh
ð1Þ
Err −

1

r
∂rh

ð1Þ
Err þOð2Þ; ð25bÞ

RE
θθ ¼

1

2
r2
�
1

r
∂rh

ð1Þ
E00−∂2

rh
ð1Þ
Err−

3

r
∂rh

ð1Þ
Err

�
þOð2Þ; ð25cÞ

RE
φφ ¼ RE

θθsin
2θ þOð2Þ; ð25dÞ

where ∇2
r ≡ ∂2

r þ 2=r∂r is the flat space spherical coor-
dinate Laplace operator. Obviously, Eqs. (24d) and (25d)
are equivalent to Eqs. (24c) and (25c), so there are only
three independent equations, which are solved to derive the
PPN parameters in the following sections.

IV. STATIC SPHERICALLY SYMMETRIC
SOLUTION

A. Metric in the Einstein frame

Since the metric gravitational field is always massless in
SMG, similar to the previous work [43], we solve the
metric field equations in the case of a point source, i.e.,
ρE ¼ MEδðrÞ. In the following calculation, we neglect dark
energy VVEV [3] and gravity hðnÞμν interaction terms

VVEVh
ðnÞ
μν since the effect of this interaction is quite weak

on solar system scales.
We consider the post-Newtonian metric field equa-

tions (24a) and (25a) up to first order and obtain the
equation

∇2
rh

ð1Þ
E00 ¼ 8πGð2VVEV − ρE þ 2V1ϕ

ð1ÞÞ: ð26Þ

Using the scalar field (20), the solution is given by

hð1ÞE00ðrÞ ¼
2GME

r

�
1 −

V1

MPlm2
∞
ϵe−m∞r

�
þ 8πGVVEV

3
r2:

ð27Þ

For the spatial components, up to first order, the post-
Newtonian metric field equations (24b), (25b), (24c), and
(25c) follow

1

2
∂2
rh

ð1Þ
E00 − ∂2

rh
ð1Þ
Err −

1

r
∂rh

ð1Þ
Err

¼ 8πG

�
VVEV þ ρE

2
þ V1ϕ

ð1Þ
�
; ð28aÞ

1

r
∂rh

ð1Þ
E00 − ∂2

rh
ð1Þ
Err −

3

r
∂rh

ð1Þ
Err

¼ 8πGð2VVEV þ ρE þ 2V1ϕ
ð1ÞÞ: ð28bÞ

Combining these two equations, and using Eq. (26),
we have

∇2
rh

ð1Þ
Err ¼ 8πGð−VVEV − ρE − V1ϕ

ð1ÞÞ; ð29Þ

and the solution is also derived by applying the solution of
scalar field in (20),
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hð1ÞErrðrÞ ¼
2GME

r

�
1þ V1

2MPlm2
∞
ϵe−m∞r

�
−
8πGVVEV

6
r2:

ð30Þ

We now consider the post-Newtonian metric field
equation [(24a) and (25a)]. Up to second order, we obtain
the equation

∇2
rh

ð2Þ
E00 þ

1

2
∂rh

ð1Þ
E00∂rðhð1ÞE00 þ hð1ÞErrÞ

¼ 8πG½2V1ϕ
ð1Þðhð1ÞErr − hð1ÞE00Þ þ 2V2ðϕð1ÞÞ2�; ð31Þ

where we have neglected the terms ρEh
ð1Þ
μν and ρEϕ

ð1Þ,
which correspond to the gravitational self-energies and do
not affect the calculation of the PPN parameter β
[43,45,46]. Using the metric fields (27) and (30) and the
scalar field (20), the solution of Eq. (31) is given by

hð2ÞE00ðrÞ ¼ −
2G2M2

E

r2

�
1 −

5V1

4MPlm2
∞
ð1 −m∞rÞϵe−m∞r

−
V2

2m2
∞

�
1 −

3V2
1

M2
Plm

2
∞V2

�
ϵ2m∞re−2m∞r

þ V2
1

4M2
Plm

4
∞
ð1 −m∞rÞϵ2e−2m∞r

þ 5V1

4MPlm2
∞
ϵðm∞rÞ2Eið−m∞rÞ

−
�
V2

m2
∞
−

5V2
1

2M2
Plm

4
∞

�
ϵ2ðm∞rÞ2Eið−2m∞rÞ

�
;

ð32Þ

where the function Eið−xÞ is defined by the exponential
integral

Eið−xÞ≡ −
Z

∞

x
da

e−a

a
: ð33Þ

The quantity m∞ is the effective mass of the scalar field at
ρ ¼ ρ∞. Using the relations (21) and (9b), this quantity can
be written as

m2
∞ ¼ 2ðV2 þ ρ∞A2Þ: ð34Þ

B. Metric in the Jordan frame

SMG theories are usually expressed either in the Einstein
frame or in the Jordan frame, and these two frames are
related by a conformal rescaling [22]. The PPN parameters
are defined in the Jordan frame [43,45,46], so we should
transform to the Jordan frame to get the expressions of
parameters γ and β.
In the weak field limit, the metric is written in the

spherically symmetric and isotropic coordinates ðtJ; χ; θ;φÞ
as follows:

ds2J ¼ − ½1 − hð1ÞJ00ðχÞ − hð2ÞJ00ðχÞ�dt2J
þ ½1þ hð1ÞJχχðχÞ�ðdχ2 þ χ2dΩ2Þ; ð35Þ

where dΩ2 ≡ dr2 þ sin2θdφ2, and tJ and χ are the time and
radial coordinates in the Jordan frame, respectively, which
relate to the corresponding quantities in the Einstein frame
through the relations (38d). This metric naturally satisfies
the standard post-Newtonian gauge [45], and the PPN
parameters γ and β are defined in the form [45,46]

hð1ÞJ00ðχÞ≡ 2GeffðχÞMJ

χ
; ð36aÞ

hð1ÞJχχðχÞ≡ γðχÞ 2GeffðχÞMJ

χ
; ð36bÞ

hð2ÞJ00ðχÞ≡ −βðχÞ 4G
2
effðχÞM2

J

2χ2
; ð36cÞ

where Geff is the effective gravitational “constant,” and MJ
is the mass of the source object in the Jordan frame, which
relates to the mass in the Einstein frame through the relation
(39). As mentioned above, in this paper, we neglect the
effects of the pressure p, internal energy Π, and velocity v
of the source object, which may contribute additional PPN
parameters [43,45,46].
Using the relations (18) and (21b), the conformal

rescaling (2) turns into

ds2J ¼ A2ðϕÞds2E
¼ −

�
1 − hð1ÞE00 þ

2A1

AVEV
ϕð1Þ − hð2ÞE00 −

2A1

AVEV
hð1ÞE00ϕ

ð1Þ

þ
�

2A2

AVEV
þ A2

1

A2
VEV

�
ðϕð1ÞÞ2

�
A2
VEVdt

2
E

þ
�
1þ hð1ÞErr þ

2A1

AVEV
ϕð1Þ

�
A2
VEVðdr2 þ r2dΩ2Þ:

ð37Þ

Comparing this relation (37) with the Jordan frame metric
in (35), we obtain the relations

hð1ÞJ00 ¼ hð1ÞE00 −
2A1

AVEV
ϕð1Þ; ð38aÞ

hð1ÞJχχ ¼ hð1ÞErr þ
2A1

AVEV
ϕð1Þ; ð38bÞ

hð2ÞJ00 ¼ hð2ÞE00 þ
2A1

AVEV
hð1ÞE00ϕ

ð1Þ −
�

2A2

AVEV
þ A2

1

A2
VEV

�
ðϕð1ÞÞ2;

ð38cÞ

with
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tJ ¼ AVEVtE;

χ ¼ AVEVr: ð38dÞ

Using the relations in (38d) and (8), the masses in these two
frames are related by

MJ ¼
ME

AVEV
; ð39Þ

which follows the relation MJχ ¼ MEr.
Using the scalar field (20) and the metric fields (27),

(30), and (32), from the relations (38), we obtain the
components of the Jordan frame metric:

hð1ÞJ00ðrÞ ¼
2GME

r
þ
�
A1MPl

AVEV
−

V1

MPlm2
∞

�
ϵ
2GME

r
e−m∞r

þ 8πGVVEV

3
r2; ð40aÞ

hð1ÞJχχðrÞ ¼
2GME

r
−
�
A1MPl

AVEV
−

V1

2MPlm2
∞

�
ϵ
2GME

r
e−m∞r

−
8πGVVEV

6
r2; ð40bÞ

hð2ÞJ00ðrÞ ¼ −
2G2M2

E

r2

�
1þ 2A1MPl

AVEV
ϵe−m∞r −

5V1

4MPlm2
∞
ð1 −m∞rÞϵe−m∞r þM2

Pl

�
A2
1

2A2
VEV

þ A2

AVEV

�
ϵ2e−2m∞r

−
2V1A1

m2
∞AVEV

ϵ2e−2m∞r þ V2
1

4M2
Plm

4
∞
ð1 −m∞rÞϵ2e−2m∞r −

V2

2m2
∞

�
1 −

3V2
1

M2
Plm

2
∞V2

�
ϵ2m∞re−2m∞r

þ 5V1

4MPlm2
∞
ϵðm∞rÞ2Eið−m∞rÞ −

�
V2

m2
∞
−

5V2
1

2M2
Plm

4
∞

�
ϵ2ðm∞rÞ2Eið−2m∞rÞ

�
: ð40cÞ

Note that the Jordan frame metrics contain the form of a
Yukawa potential, which is controlled by the screened
parameter.

C. PPN parameters γ and β and effective
gravitational constant Geff

Now, let us calculate the PPN parameters γ, and β and the
effective gravitational constant Geff as given in the Jordan
frame metric (40). In this subsection, we neglect the
cosmological constant VVEV in the metric since its effect

is very weak on solar system scales. In next subsection, we
discuss its effect separately on cosmological scales.
Using the relations (38d) and (39), from the relations

(36) and (40), we can identify the PPN parameters γðr; ϵÞ,
βðr; ϵÞ, and the effective gravitational constant Geffðr; ϵÞ in
the following form:

γðr; ϵÞ ¼ 1 −
ð2A1MPl

AVEV
− 3V1

2MPlm2
∞
Þϵe−m∞r

1þ ðA1MPl
AVEV

− V1

MPlm2
∞
Þϵe−m∞r

; ð41aÞ

βðr; ϵÞ ¼ 1 −
1

½1þ ðA1MPl
AVEV

− V1

MPlm2
∞
Þϵe−m∞r�2

�
−

3V1

4MPlm2
∞

�
1þ 5

3
m∞r

�
ϵe−m∞r þM2

Pl

�
A2
1

2A2
VEV

−
A2

AVEV

�
ϵ2e−2m∞r

þ 3V2
1

4M2
Plm

4
∞

�
1þ 1

3
m∞r

�
ϵ2e−2m∞r þ V2

2m2
∞

�
1 −

3V2
1

M2
Plm

2
∞V2

�
ϵ2ðm∞rÞe−2m∞r

−
5V1

4MPlm2
∞
ϵðm∞rÞ2Eið−m∞rÞ þ

�
V2

m2
∞
−

5V2
1

2M2
Plm

4
∞

�
ϵ2ðm∞rÞ2Eið−2m∞rÞ

	
; ð41bÞ

Geffðr; ϵÞ ¼ GA2
VEV

�
1þ

�
A1MPl

AVEV
−

V1

MPlm2
∞

�
ϵe−m∞r

�
:

ð41cÞ

This is one of the main results of this article. The Taylor
coefficients ðVVEV; V1; V2;AVEV; A1; A2Þ, the screened
parameter ϵ, and the effective mass m∞ can all be obtained
from two arbitrary functions VðϕÞ and AðϕÞ. Obviously,

the PPN parameters and the effective gravitational constant
depend not only on the distance r between the source object
and the test mass but also on the screened parameter ϵ. The
screened parameter depends on background matter density
ρ∞ and the physical properties (density ρ0 and radius R) of
the source object. That is to say, there are different PPN
parameters and effective gravitational constants for differ-
ent sources in SMG theories. Therefore, the observational
constraints in the solar system, including the Cassini

POST-NEWTONIAN PARAMETERS AND COSMOLOGICAL … PHYSICAL REVIEW D 93, 124003 (2016)

124003-7



constraint and the perihelion shift of Mercury constraint,
etc., are applicable only to the Sun but not to other sources
in SMG theories.
Note that for the compact objects (such as the Sun, the

Earth, and the Moon) the screening effect is very strong,
and the fifth force is much weaker than the gravitational
force. However, for galaxies and galaxy clusters, their
densities are very low, the screening effect becomes weak,
and the fifth force becomes comparable with the gravita-
tional force. The extra fifth force may manifestly change
the behavior of the circular velocity for the test objects in
the outskirts of the galactic halo [29] and be involved to
explain their observed cored density distribution [41]. The
scalar field may be screened in the interior of the cluster,
while its outer region can still be affected by the fifth force.
The potential governing the dynamics of the matter fields
can differ significantly from the lensing potential, which
leads to a difference between the mass of the halo obtained
from dynamical measurements (e.g., velocity dispersion)
and that obtained from gravitational lensing [34,42]. So, we
expect that the model parameter space of SMG would be
further depressed if observations at galactic scales were
included. This issue will be addressed in our future study.
In the solar system, the distance r is always much less

than the Compton wavelength m−1
∞ , which roughly is of

cosmological scales, i.e.,m∞r ≪ 1 is satisfied. At the same
time, the screening effect is very strong for the Sun (dense
body) and the screened parameter ϵ ≪ 1. In the case of
x ≪ 1, the asymptotic behavior of the exponential integral
function Eið−xÞ is

Eið−xÞ≃ ln xþ γEM − xþ x2

4
þOðx3Þ; ð42Þ

where γEM ¼ 0.57721 � � � is the Euler-Mascheroni
constant. Therefore, in the case m∞r ≪ 1, the
terms involving ðm∞rÞ2Eið−m∞rÞ fall off proportional
to ðm∞rÞ2 lnð−m∞rÞ, and the terms involving
ðm∞rÞ expð−m∞rÞ fall off proportional to m∞r. All these
terms may be neglected. Thus, the PPN parameters and
the effective gravitational constant are simplified as

γðϵÞ¼ 1−
�
2A1MPl

AVEV
−

3V1

2MPlm2
∞

�
ϵ

þ
�
2A2

1M
2
Pl

A2
VEV

−
7V1A1

2m2
∞AVEV

þ 3V2
1

2M2
Plm

4
∞

�
ϵ2; ð43aÞ

βðϵÞ ¼ 1þ 3V1

4MPlm2
∞
ϵþ

��
A2

AVEV
−

A2
1

2A2
VEV

�
M2

Pl

−
3V1A1

2m2
∞AVEV

þ 3V2
1

4M2
Plm

4
∞

�
ϵ2; ð43bÞ

GeffðϵÞ ¼ GA2
VEV

�
1þ

�
A1MPl

AVEV
−

V1

MPlm2
∞

�
ϵ

�
: ð43cÞ

These relations are applicable to the solar system (or other
solar systems), in which the screening effect is very strong
ϵ ≪ 1 and the PPN parameters γ and β are both close to
unity. Comparing the effective gravitational constant (43c)
with the PPN parameter γ (43a), we find the approximate
relation

GeffðϵÞ≃ GA2
VEV

�
1 −

γðϵÞ − 1

2

�
: ð44Þ

In fact, in the case ϵ ≪ 1, a general relation like this can
be obtained from the relations (41c) and (41a),

Geffðr; ϵÞ≃ GA2
VEV

�
1 −

γðr; ϵÞ − 1

2

�
; ð45Þ

which is applicable to the generic SMG.
Let us consider a general coupling function AðϕÞ in

the form

AðϕÞ ¼ 1þ
Xþ∞

n¼1

an

�
ϕ − ϕ⋆
MPl

�
n
; ð46Þ

where an and ϕ⋆ are free parameters. Using the screened
parameter (16), the coupling function VEV can be
expressed as

AVEV ∼ 1þ
Xþ∞

n¼1

anðΦEϵÞn; ð47Þ

where ΦE is the Newtonian potential at the surface of the
source object in the Einstein frame. For the compact objects
(such as the Sun, the Earth, and the Moon), ΦE is always
much less than unity, and the screening effect is very strong
ϵ ≪ 1, which follows that jAVEV − 1j ≪ 1. Using this
result and the Cassini constraint jγobs − 1j≲ 2.3 × 10−5

[49], from the relation (44), we have

jGeffðϵSunÞ − Gj
G

≃ jγSun − 1j
2

≲ 1.1 × 10−5; ð48Þ

which is applicable to any generic SMG. This result implies
that the effective gravitational constant GeffðϵSunÞ is
approximately equal to the Newtonian gravitational con-
stant G within 10−5 accuracy in the solar system.
For the limiting case with ϵ → 0, from the relations (43)

and (47), we obtain γ → 1, β → 1, and Geff → G. These
imply that SMG converges back to GR in this limiting case
because of the PPN parameters γ ¼ β ¼ 1 in GR [45,46].

D. Effective cosmological constant

SMG contains a scalar degree of freedom, whose
potential can naturally provide the vacuum energy required
to drive cosmic acceleration at late times. More precisely,
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SMG requires that the effective potential of the scalar field
has a minimum, which can be understood as a stable
vacuum. Around this minimum (physical vacuum), the bare
potential has a VEV, which can play the role of cosmo-
logical constant (or, equivalently, dark energy). In this
subsection, we discuss this issue for the generic SMG.
Considering the metric of SMG around the dense object

(such as white dwarf, neutron star, and black hole), the
screened parameter is ϵ → 0. In this limiting case, from
the relation (47), we have AVEV → 1. Using this, and the
relations in (38) and (39), we derive

gJμν → gEμν; ð49aÞ

tJ → tE; χ → r; MJ → ME; ð49bÞ

which imply that the Einstein and Jordan frame converge to
the same frame in this limit. Furthermore, in this limit, from
the Jordan frame metric (40) or the Einstein frame metric
(27) and (30), we find that these two frame metrics both
converge to

ds2≃ −
�
1 −

2GM
r

−
Λ
3
r2
�
dt2

þ
�
1þ 2GM

r
−
Λ
6
r2
�
ðdr2 þ r2dΩ2Þ; ð50Þ

with

Λ≡ 8πGVVEV: ð51Þ

This is the isotropic form of the Schwarzschild-(A)de Sitter
metric [50] in the weak field limit. Using the coordinate
transformation

r≃ ~r

�
1 −

GM
~r

þ Λ
12

~r2
�
; ð52Þ

we obtain the standard form of the Schwarzschild-(A)de
Sitter metric in the weak field limit,

ds2≃ −
�
1 −

2GM
~r

−
Λ
3
~r2
�
dt2

þ
�
1þ 2GM

~r
þ Λ

3
~r2
�
d~r2 þ ~r2dΩ2: ð53Þ

It is easy to identify the cosmological constant Λ, and we
can see that SMG converges back to GR with a cosmo-
logical constant in the limit ϵ → 0. Thus, the density of the
effective cosmological constant (or effective “dark energy”)
is given by

ρΛ ¼ VVEV ¼ V½ϕVEVðρmÞ�; ð54Þ

which can be constrained by various cosmological
observations. In addition, in order to consist with current
observations, the dark energy density should be nearly
equal to a constant, and the evolution with the redshift
should be slow, which is beyond the scope of the present
work. In this paper, we only consider the current energy
density of the effect “dark energy” (labeled by the
subscript “0”) and constrain the parameters of some
specific SMG models, including chameleon, symmetron,
and dilaton.

V. SOLAR SYSTEM AND COSMOLOGICAL
CONSTRAINTS

There are different experimental constraints on the PPN
parameters γ and β. Currently, the high accuracy exper-
imental constraints mainly come from the solar system tests.
The most stringent constraint on γ in the solar system comes
from the measurements of the Cassini spacecraft, which
measured the Shapiro time delay of a radio signal sent from
and to the Cassini spacecraft while close to conjunction
with the Sun and got γobs−1¼ð2.1�2.3Þ×10−5 at the 1σ
confidence level [49].
The most stringent constraint on β comes from measure-

ments of the perihelion shift of Mercury, which depends on
the combination j2γ − β − 1j of the PPN parameters and the
solar quadrupole moment J2. The latest inversions of
helioseismology data give J2 ¼ ð2.2� 0.1Þ × 10−7 [51].
Adopting the Cassini bound on γ, these analyses yield a
bound on βobs − 1 ¼ ð−4.1� 7.8Þ × 10−5 [46].
A number of advanced experiments or space missions

are under development or have been proposed, which could
lead to significant improvements in values of the PPN
parameters. The Gaia satellite was launched from Europe’s
Spaceport in 2013, which is located around the L2
Lagrange point of the Sun-Earth system. The Gaia satellite
is a high-precision astrometric orbiting telescope; it could
measure light deflection and is expected to improve the
constraint on γ to the 10−6 level [52]. The BepiColombo is
a mission to explore the planet Mercury, which is scheduled
for launch in 2017. An eight-year mission could yield
further improvements by factors of 2–5 in β [53,54].
For the cosmological constraints, we need the

current values of the dark energy density ρΛ0
and

the cosmological matter density ρm0
or, equivalently, the

current values of the density parameters ΩΛ0
and Ωm0

and
the Hubble constant H0. The latest results come from
the observations of the Planck satellite, the best-fit values of
these parameters are ΩΛ0

¼ 0.683, Ωm0
¼ 0.317, and

H0 ¼ 67.3 km · s−1Mpc−1 [55].
In this section, we focus on three specific theories of

SMG (chameleon, symmetron, and dilaton models). By
investigating these models on solar system and cosmologi-
cal scales, we derive the combined constraints on model
parameters.
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A. Chameleons

1. The original chameleon

In order that a certain massive scalar-tensor gravity can
satisfy the solar system experiments, the chameleon model
was introduced as a screening mechanism by Khoury and
Weltman [25–27]. The original chameleon model is char-
acterized by the Ratra-Peebles runaway potential and an
exponential coupling function

VðϕÞ ¼ M4þα

ϕα ; ð55aÞ

AðϕÞ ¼ exp

�
ξϕ

MPl

�
; ð55bÞ

where M is a constant with the dimension of mass, ξ is a
positive coupling constant, and α ∼Oð1Þ is a positive
constant index.
The chameleon effective potential has a minimum. Using

the relations in (9a) and (9b), we obtain the chameleon field
value and the effective mass of the chameleon at this
minimum,

ϕminðρÞ≃
�
αMPlM4þα

ξρ

� 1
αþ1

; ð56aÞ

m2
effðρÞ≃ ðαþ 1Þ ξρ

MPlϕmin
: ð56bÞ

We find that for the higher ambient density ρ, the value
of ϕmin is smaller and the effective mass meff is larger.
The Ratra-Peebles runaway potential VðϕÞ and the
exponential coupling function AðϕÞ are expanded in
Taylor’s series at the chameleon VEV ϕ∞ ≡ ϕminðρ∞Þ
as follows:

VðϕÞ ¼ ξρ∞ϕ∞

αMPl
−
ξρ∞
MPl

ðϕ − ϕ∞Þ

þ ðαþ 1Þξρ∞
2MPlϕ∞

ðϕ − ϕ∞Þ2 þ � � � ; ð57aÞ

AðϕÞ ¼ e
ξϕ∞
MPl þ ξ

MPl
e
ξϕ∞
MPl ðϕ − ϕ∞Þ

þ ξ2

2M2
Pl

e
ξϕ∞
MPl ðϕ − ϕ∞Þ2 þ � � � : ð57bÞ

From these formulas, we obtain the expansion
coefficients

VVEV ¼ ξρ∞ϕ∞

αMPl
; V1 ¼ −

ξρ∞
MPl

;

V2 ¼
ðαþ 1Þξρ∞
2MPlϕ∞

; ð58aÞ

AVEV ¼ e
ξϕ∞
MPl ; A1 ¼

ξe
ξϕ∞
MPl

MPl
; A2 ¼

ξ2e
ξϕ∞
MPl

2M2
Pl

; ð58bÞ

where ρ∞ is the background matter density of the solar
system. If considering the cosmological background, ρ∞
is the cosmological matter density ρm0

. However, if
considering the galactic background, ρ∞ is the galactic
matter density ρgal ≃ 105ρm0

.
Using these coefficients and the relations in (56) and

(16), from the relations in (43), we obtain the expressions of
parameters ðγ; β; GeffÞ as

γ − 1 ¼ −
2ξϕ∞

MPlΦ
; ð59aÞ

β − 1 ¼ −
3

4ðαþ 1Þ
�
ϕ∞

MPl

�
2 1

Φ
; ð59bÞ

Geff

G
− 1 ¼ ξϕ∞

MPlΦ
; ð59cÞ

where Φ is the Newtonian potential at the surface of the
source object, and for the Sun we have Φ≃ 2.12 × 10−6.
These results are consistent with the previous ones in the
literature [48], where only γ parameter was obtained. From
these formulas, we can also get the relations between these
parameters,

β − 1 ¼ −
3Φðγ − 1Þ2
16ξ2ðαþ 1Þ ;

Geff

G
− 1 ¼ −

γ − 1

2
;

AVEV − 1 ¼ −
Φðγ − 1Þ

2
: ð60Þ

Obviously, jβ − 1j ≪ jγ − 1j. Using the Cassini constraint
jγobs − 1j ≲ 2.3 × 10−5, we obtain the constraint on the
model parameters,

ξϕ∞

MPl
¼ ξ

�
αM4þα

ξMα
Plρ∞

� 1
αþ1 ≲ 2.4 × 10−11: ð61Þ

In addition, the bounds on the other parameters are also
derived,

jβ − 1j≲ 10−16 for ξ ∼Oð1Þ;����Geff

G
− 1

����≲ 1.1 × 10−5;

jAVEV − 1j≲ 2.4 × 10−11; ð62Þ

which strongly indicate that the PPN parameter β ¼ 1, the
effective gravitational constant Geff ≃G, and the exponen-
tial coupling function VEV AVEV ¼ 1 for chameleon.
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Unfortunately, for the original chameleon, it is impos-
sible to explain cosmic acceleration and to pass the solar
system experiments at the same time. For the current
Universe, the cosmological observations give the density
ratio ρΛ0

=ρm0
¼ 2.15. However, in the theoretical side,

from the relations VVEV (58a) and (54), we get the ratio
between them,

ρΛ0

ρm0

¼ ξϕ∞ðρm0
Þ

αMPl
¼ 2.15; ð63Þ

where the density ρ∞ ¼ ρm0
, corresponding to the cosmo-

logical matter density. Using the relation in (56a), Eq. (63)
turns into

logM ¼ α logmPl þ logρΛ0

4þ α
þ α

4þ α
log

αρΛ0ffiffiffiffiffiffi
8π

p
ξρm0

; ð64Þ

where mPl ≃ 1.22 × 1019 GeV is the Planck mass, and
ρΛ0

≃ 2.51 × 10−47 GeV4 is the dark energy density. In the
case with ξ ∼Oð1Þ and α ∼Oð1Þ, the relation (64) is
reduced to

logMðGeVÞ ¼ 19α − 47

4þ α
; ð65Þ

which is the same relation as found in [48,56]. This implies
that the influences of the coupling constant ξ and the
cosmological matter density ρm0

are much weaker than that
of parameter α.
From the solar system constraint (61), we obtain its

equivalent form

ξϕ∞ðρm0
Þ

αMPl
≲ 2.4 × 10−11 ·

1

α

�
ρ∞
ρm0

� 1
αþ1

: ð66Þ

Obviously, in the cases with either the cosmological
background (ρ∞ ¼ ρm0

) or the Milky Way galaxy back-
ground (ρ∞ ¼ ρgal), the solar system constraint (66) is
always incompatible with the cosmological relation (63) for
α ∼Oð1Þ. In other words, the original chameleon cannot
explain cosmic acceleration and pass solar system con-
straints at the same time, which is consistent with con-
clusion found in [48].

2. The exponential chameleon

The original chameleon is ruled out by the combined
constraints of the solar system and cosmology. However,
the idea of chameleon can be resurrected by modifying the
potential in the form,

VðϕÞ ¼ M4 exp

�
Mα

ϕα

�
: ð67Þ

This chameleon model is called the exponential chameleon
and proposed in [28].
We consider the case with ϕ=M ≫ 1. Using the relation

(56a) and considering the cosmological matter density
ρ ¼ ρm0

≃ 1.17 × 10−47 GeV4, we get that

M ≫ 1.69 × 10−13 eV: ð68Þ
In this case, the exponential potential (67) is reduced to

VðϕÞ ¼ M4 þM4þα

ϕα ; ð69Þ

which is equivalent to the Ratra-Peebles runaway potential
plus a cosmological constant (71). Therefore, all calcu-
lations of the exponential chameleon are the same as the
calculations of the original chameleon, except for the
effective dark energy density. The dark energy density of
the exponential chameleon is given by

ρΛ0
¼ M4 þ ξϕ∞ðρm0

Þ
αMPl

ρm0
: ð70Þ

Taking into account the solar system constraint (66), the
cosmological relation (70) is simplified to

M ¼ ρ1=4Λ0
≃ 0.002 eV; ð71Þ

which is consistent with the relation (68). Using this, the
solar system constraint on the parameters ξ and α becomes

ð19.5 − log ξÞα − logα ≳ 10.6 − log
ρ∞
ρΛ0

: ð72Þ

In Fig. 1, we plot the constraints on the model parameters
α and ξ by considering the cosmological background or
the galactic background. In both cases, we find that the
constraint on ξ is much looser than that on α. For the strong
coupling with ξ≳ 1, we have α ≳ 0.547 in the case with the
cosmological background and α≳ 0.257 in the case with
the galactic background. Even in the limit case with
ξ≳ 10−10, the constraint on α is slightly looser, which is
α≳ 0.355 in the case with the cosmological background
and α ≳ 0.163 in the case with the galactic background.

B. Symmetron

The symmetron models are characterized by a Z2

symmetry breaking potential (a Mexican hat potential)
and a quadratic coupling function [30–34],

VðϕÞ ¼ V0 −
1

2
μ2ϕ2 þ λ

4
ϕ4; ð73aÞ

AðϕÞ ¼ 1þ ϕ2

2M2
; ð73bÞ
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where μ and M are mass scales, λ is a positive dimension-
less coupling constant, and V0 is the vacuum energy of the
bare potential VðϕÞ. The effective potential Veff of sym-
metron has a minimum. Using the relations (9a) and (9b),
we obtain the field value and the effective mass of the
symmetron at this minimum,

ϕminðρÞ ¼

8><
>:

0 for ρ > ρSSB

� μffiffiffi
λ

p
�
1 −

ρ

ρSSB

�1
2

for ρ < ρSSB
; ð74aÞ

m2
effðρÞ ¼

8>>><
>>>:

μ2
�

ρ

ρSSB
− 1

�
for ρ > ρSSB

2μ2
�
1 −

ρ

ρSSB

�
for ρ < ρSSB

ð74bÞ

where ρSSB ≡M2μ2 is the critical matter density of
spontaneous symmetry breaking (SSB). In high density
regions, where ρ > ρSSB, the effective potential has a
minimum at ϕmin ¼ 0, and the Z2 symmetry ϕ → −ϕ is
ensured. However, in low density regions, where ρ < ρSSB,
the Z2 symmetry ϕ → −ϕ is spontaneously broken. In this
case, the effective potential has two of the same minima,
and the field settles at one of them. Note that for either the
positive VEVof scalar field or the negative one the physical
results are same since the scalar field VEValways exists as
its square form in the PPN parameters and effective
gravitational constant [see Eq. (78)]. Without loss of
generality, we choose the positive scalar field VEV,

ϕ∞ ¼ μffiffiffi
λ

p
�
1 −

ρ∞
ρSSB

�1
2

for ρ∞ < ρSSB; ð75Þ

where ρ∞ is the background matter density of the solar
system. Similar to the chameleon models, we have ρ∞ ¼
ρm0

if considering the cosmological matter density as
background, while ρ∞ ¼ ρgal if setting the galactic matter
density as background.
The Z2 symmetry breaking potential VðϕÞ and the

quadratic coupling function AðϕÞ are expanded in
Taylor’s series at this VEV,

VðϕÞ ¼ V0 −
ρ2SSB − ρ2∞
4λM4

−
ρ∞ϕ∞

M2
ðϕ − ϕ∞Þ

þ
�
μ2 −

3ρ∞
2M2

�
ðϕ − ϕ∞Þ2 þ � � � ; ð76aÞ

AðϕÞ ¼ 1þ ϕ2
∞

2M2
þ ϕ∞

M2
ðϕ − ϕ∞Þ þ

1

2M2
ðϕ − ϕ∞Þ2 þ � � � :

ð76bÞ
The expansion coefficients are obtained directly,

VVEV ¼ V0 −
ρ2SSB − ρ2∞
4λM4

; V1 ¼ −
ρ∞ϕ∞

M2
;

V2 ¼ μ2 −
3ρ∞
2M2

; ð77aÞ

AVEV ¼ 1þ ϕ2
∞

2M2
; A1¼

ϕ∞

M2
; A2¼

1

2M2
: ð77bÞ

Using these coefficients and the relations, we get the
expressions of γ, β, and Geff as follows:

γ − 1 ¼ −
2ϕ2

∞

M2Φ
; ð78aÞ

β − 1 ¼ 1

2

�
ϕ∞

MΦ

�
2

; ð78bÞ

Geff

G
− 1 ¼ ϕ2

∞

M2Φ
: ð78cÞ

These results are consistent with the previous ones in the
literature [30], where only the γ parameter was obtained.
From these formulas, we can also get the useful relations
between these parameters,

γ − 1 ¼ −4Φðβ − 1Þ;
Geff

G
− 1 ¼ −

γ − 1

2
;

AVEV − 1 ¼ Φ2ðβ − 1Þ: ð79Þ

Obviously, for the symmetron, we always have
jγ − 1j ≪ jβ − 1j, so the constraints on the model param-
eters are mainly from the measurements of β instead
of γ. Using the perihelion shift of the Mercury constraint
jβobs − 1j≲ 7.8 × 10−5 and the relations in (78), we obtain
the following bound on the symmetron parameters:

1020

1015

1010

105

100

10-5

10-10

10-15

10-20

0 0.5 1 1.5 2 2.5 3

= gal
= m0

(0.547, 1)

(0.257, 1)

(1.157, 1010)(0.563, 1010)

(0.355, 10 -10)

(0.163,10 -10)

FIG. 1. In the parameter space of exponential chameleon
models, the shadow region is allowed by the Cassini experiment,
if assuming the cosmological background, i.e., ρ∞ ¼ ρm0

. While
the yellow region is allowed if assuming the galactic background,
i.e., ρ∞ ¼ ρgal.

XING ZHANG, WEN ZHAO, HE HUANG, and YIFU CAI PHYSICAL REVIEW D 93, 124003 (2016)

124003-12



ρSSB − ρ∞
λM4

≲ 7.0 × 10−16: ð80Þ

Using this bound, we also get the constraints on γ,Geff , and
AVEV for the symmetron models,

jγ − 1j≲ 6.6 × 10−10;����Geff

G
− 1

����≲ 3.3 × 10−10;

jAVEV − 1j≲ 3.5 × 10−16; ð81Þ

which strongly indicate that the PPN parameter γ ¼ 1, the
effective gravitational constant Geff ¼ G, and the quadratic
coupling function VEV AVEV ¼ 1 for symmetron.
From the formula VVEV in (77a) and the relation in (54),

we obtain the energy density of effective dark energy in
symmetron models,

ρΛ0
¼ V0 −

ρ2SSB − ρ2m0

4λM4
;

¼ V0 −
μ4

4λ
þ ρ2m0

4λM4
; ð82Þ

where we have used ρ∞ ¼ ρm0
for the cosmological

background. In order to get the accelerated expansion of
the Universe (ρΛ0

> 0), we need

V0 >
μ4

4λ
−

ρ2m0

4λM4
> 0; ð83Þ

i.e., the vacuum energy V0 of the bare potential must be
positive. Now, let us consider two specific cases of V0

function.
Case 1: V0 ¼ 0
This is the original symmetron model suggested in the

literature [30,31]. From the relation (82), we can see that
the original symmetron has a negative cosmological con-
stant and cannot drive cosmic acceleration at late times,
which is consistent with the conclusion in the previous
work [31].
Case 2: V0 ¼ μ4=4λ
This kind of model is proposed in [35]. In this case, the

density of symmetron dark energy is

ρΛ0
¼ ρ2m0

4λM4
; ð84Þ

and the solar system constraint (80) becomes

0 <
ρSSB − ρ∞

ρm0

≲ 8.1 × 10−17: ð85Þ

From these relations, we evaluate the model parameters of
symmetron as follows:

λM4 ¼ ρm0

4

�
ρm0

ρΛ0

�
≃ 1.4 × 10−48 GeV4; ð86Þ

and

M2μ2 ¼
�
ρm0

≃ 1.2 × 10−47 GeV4 for CB

ρgal ≃ 10−42 GeV4 for GB
; ð87Þ

where ρ∞ ¼ ρm0
and ρ∞ ¼ ρgal, corresponding to the

cosmological background (CB) and the galactic back-
ground (GB), respectively.

C. Dilaton

The dilaton model, inspired by string theory in the large
string coupling limit, has an exponentially runaway poten-
tial and a quadratic coupling function [20,36–38],

VðϕÞ ¼ V0 exp

�
−

ϕ

MPl

�
; ð88aÞ

AðϕÞ ¼ 1þ ðϕ − ϕ⋆Þ2
2M2

; ð88bÞ

where V0 is a constant with the dimension of energy
density, M labels the energy scale of the theory, and ϕ⋆ is
approximately the value of ϕ today.
The dilaton effective potential Veff also has a minimum.

Using the relations (9a) and (9b), we obtain the dilaton field
value and the effective mass of the dilaton at this minimum,

ϕminðρÞ≃ ϕ⋆ þ
M2V0

MPlρ
e−

ϕ⋆
MPl ; ð89aÞ

m2
effðρÞ≃ ρ

M2
þ V0

M2
Pl

e−
ϕ⋆
MPl : ð89bÞ

The exponentially runaway potential VðϕÞ and the quad-
ratic coupling function AðϕÞ can be expanded in Taylor’s
series at the dilaton VEV ϕ∞ ≡ ϕminðρ∞Þ,

VðϕÞ ¼ V0e
−ϕ∞
MPl −

V0

MPl
e−

ϕ∞
MPlðϕ − ϕ∞Þ

þ V0

2M2
Pl

e−
ϕ∞
MPlðϕ − ϕ∞Þ2 þ � � � ; ð90aÞ

AðϕÞ ¼ 1þ ðϕ∞ − ϕ⋆Þ2
2M2

þ ϕ∞ − ϕ⋆
M2

ðϕ − ϕ∞Þ

þ 1

2M2
ðϕ − ϕ∞Þ2 þ � � � : ð90bÞ

So, the expansion coefficients are derived directly,
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VVEV ¼V0e
−ϕ∞
MPl ; V1¼−

V0e
−ϕ∞
MPl

MPl
; V2 ¼

V0e
−ϕ∞
MPl

2M2
Pl

;

ð91aÞ

AVEV ¼ 1þ ðϕ∞ − ϕ⋆Þ2
2M2

; A1 ¼
ϕ∞ − ϕ⋆

M2
;

A2 ¼
1

2M2
; ð91bÞ

where ρ∞ is the background matter density of the solar
system.
Using these coefficients and the relations in (89), (16),

and (43), we obtain the PPN parameters and effective
gravitational constant,

γ − 1 ¼ −
2ðϕ∞ − ϕ⋆Þ2

M2Φ
; ð92aÞ

β − 1 ¼ 1

2

�
ϕ∞ − ϕ⋆
MΦ

�
2

; ð92bÞ

Geff

G
− 1 ¼ ðϕ∞ − ϕ⋆Þ2

M2Φ
: ð92cÞ

The useful relations between them are also derived directly,

γ − 1 ¼ −4Φðβ − 1Þ;
Geff

G
− 1 ¼ −

γ − 1

2
;

AVEV − 1 ¼ Φ2ðβ − 1Þ: ð93Þ

Note that these relations are exactly same with the ones in
symmetron model. Therefore, among the solar system tests,
the perihelion shift of the Mercury constraint jβobs − 1j ≲
7.8 × 10−5 follows the most stringent constraint on the
model parameter, which is

MV0

MPlρ∞
e−ϕ⋆=MPl ≲ 2.6 × 10−8: ð94Þ

The bounds of the other parameters in the dilaton models
are

jγ − 1j≲ 6.6 × 10−10;����Geff

G
− 1

����≲ 3.3 × 10−10;

jAVEV − 1j≲ 3.5 × 10−16: ð95Þ

Using the relations in Eqs. (91a) and (54), we obtain the
density of dilaton dark energy,

ρΛ0
¼ V0e−ϕ∞=MPl

≃ V0e−ϕ⋆=MPl ≃ 2.51 × 10−47 GeV4; ð96Þ

where ρ∞ ¼ ρm0
on cosmological scales. This is consistent

with the relation found in [36]. Taking into account this
relation, the solar system constraint (94) turns into

MρΛ0

MPlρ∞
≲ 2.6 × 10−8; ð97Þ

that is,

M
MPl

≲ 1.2 × 10−8 for ρ∞ ¼ ρm0
; ð98aÞ

M
MPl

≲ 1.2 × 10−3 for ρ∞ ¼ ρgal; ð98bÞ

where ρ∞ ¼ ρm0
and ρ∞ ¼ ρgal correspond to the cosmo-

logical background and galactic background, respectively.

VI. CONCLUSIONS

Screened modified gravity (SMG) is a kind of scalar-
tensor theory with screening mechanisms, which can
generate a screening effect to suppress the fifth force
and pass the solar system tests. In this paper, we calculated
the PPN parameters γ and β for SMG with a general
potential V and coupling function A in the case of a static
spherically symmetric source. In addition, we discussed the
effective cosmological constant in the generic SMG. These
two analyses allow us to constrain the model parameters by
combining the observations on solar system and cosmo-
logical scales.
The PPN parameters were typically calculated under the

assumption of a point source surrounded by a vacuum
[43,44], but this assumption is generally not appropriate to
solve the massive scalar field. In order to overcome this
defect and calculate the PPN parameters for the generic
SMG, in which the scalar field is always massive, we solved
the scalar field in the Einstein frame in the case of an
extended source surrounded by a homogeneous back-
ground, which is the more realistic case for the source as
the Sun or the Earth. Then, we solved the massless metric
field in the Einstein frame. By transforming the results to the
Jordan frame through a conformal rescaling of the metric,
we obtained the PPN parameters γ and β and the effective
gravitational constant Geff for the general SMG models.
We found that the parameters (γ, β,Geff ) depend not only

on the distance between the source object and the test mass
but also on the screened parameter ϵ, which is determined
by the physical properties of the source object. Moreover,
SMG contains a scalar degree of freedom, whose effective
potential has a minimum (physical vacuum), and the bare
potential has a VEV at this minimum. The bare potential
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VEV can naturally play the role of dark energy to accelerate
the expansion of the Universe at late times. So, as
anticipated, the SMG could not only pass the strict solar
tests but also account for the accelerated expansion of the
Universe.
We applied our results to three specific cases of SMG

theories (chameleon, symmetron, and dilaton models), and
calculated their PPN parameters and effective cosmological
constant. By investigating the current experiments on solar
system and cosmological scales, we derived the combined
parameter constraints on these three models. Consistent
with all the previous works, we found the following results
for these SMG models: The original chameleon cannot
explain cosmic acceleration and pass solar system con-
straints at the same time, but this difficulty is overcome
in the exponential chameleon. The original symmetron
ðV0 ¼ 0Þ has a negative cosmological constant and cannot

drive cosmic acceleration. However, the modified symme-
tron with V0 ¼ μ4=4λ can realize it. The dilaton is a fine
model for both passing solar system tests and accelerating
the expansion of the Universe in the late stage. For each of
these healthy models (the exponential chameleon, the
modified symmetron, and the dilaton), we obtained the
constraints on the model parameters, respectively.
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