
Nonspherically symmetric black string perturbations
in the large dimension limit

Amruta Sadhu* and Vardarajan Suneeta†

The Indian Institute of Science Education and Research (IISER), Pune 411008, India
(Received 11 April 2016; published 1 June 2016)

We consider nonspherically symmetric perturbations of the uncharged black string/flat black brane in the
large dimension (D) limit of general relativity. We express the perturbations in a simplified form using
variables introduced by Ishibashi and Kodama. We apply the large D limit to the equations and show that
this leads to decoupling of the equations in the near-horizon and asymptotic regions. It also enables use of
matched asymptotic expansions to obtain approximate analytical solutions and to analyze stability of the
black string/brane. For a large class of nonspherically symmetric perturbations, we prove that there are no
instabilities in the large D limit. For the rest, we provide additional matching arguments that indicate that
the black string/brane is stable. In the static limit, we show that for all nonspherically symmetric
perturbations, there is no instability. This is proof that the Gross-Perry-Yaffe mode for semiclassical black
hole perturbations is the unique unstable mode even in the large D limit. This work is also a direct analytical
indication that the only instability of the black string is the Gregory-Laflamme instability.
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I. INTRODUCTION

Perturbative stability of black strings and black branes is
an important issue in gravitation and string theory. Since
the discovery of the instability of the black string in
dimensions greater than four by Gregory and Laflamme
(GL) [1,2], research has focused on understanding ques-
tions such as the end point of the GL instability (an account
of this can be found in [3]). The GL instability for the five-
dimensional black string is related to the semiclassical
instability found by Gross, Perry and Yaffe (GPY) [4] of the
four-dimensional Schwarzschild instanton after a suitable
gauge choice [5]. Similar instabilities have been found in
the analysis of perturbations of black branes (see [6] and
references therein). Much of this work has centered on
spherically symmetric perturbations of black strings and
black branes, as the equations are more tractable, and the
GL instability falls in this category (for a review, see [7]).
The perturbation equations for nonspherically symmetric
perturbations are coupled and it is not possible to solve
them analytically in general. Due to a study of the link
between local thermodynamic instability and classical
instability of extended objects [5,8–12], it is expected that
nonspherically symmetric perturbations do not cause insta-
bilities (see Sec. VI in Ref. [6] for a review of the correlated
stability conjecture).1 However, there exists no fully
analytical proof of this even for the asymptotically
flat black string in general dimensions, due to the difficulty
in analyzing the coupled nonspherically symmetric

perturbations. Furthermore, the study of the evolution of
stable nonspherically symmetric perturbations, particularly
quasinormal modes, is also of interest in physics.
In this paper, we obtain the first breakthrough in the

analysis of the coupled equations corresponding to non-
spherically symmetric perturbations of black strings and
branes. This is achieved in the large dimension (D) limit
of general relativity which was first employed in [14] to
study the spherically symmetric GPY mode for the
Schwarzschild instanton. A bigger framework for the large
dimension limit, with applications to perturbations of black
holes/branes has been developed by Emparan, Suzuki and
Tanabe [15]. We apply this limit, for the first time, to the
nonspherically symmetric perturbations of the black string/
flat black brane. Using this, we provide the first analytical
proof of the stability of the black string/flat black brane
under a vast class of nonspherically symmetric perturba-
tions. Classifying perturbations based on their decompo-
sition in terms of scalar, vector and tensor spherical
harmonics, the evolution of the tensor mode is the easiest
to analyze as it can be reduced to a single ordinary
differential equation (ODE). It has been shown by
Kodama to not lead to instabilities [16].2 It is the vector
and scalar modes which are difficult to analyze analytically,
since each set of perturbations involves many coupled
equations. To analyze these modes, we choose a gauge such
that perturbations with an index on the brane/extra dimen-
sion vanish (this was used by Reall [5] to prove equivalence
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1An analogy of the GL instability to the Rayleigh-Plateau

instability of fluids has also been used to argue this [13].

2Kudoh [17] has partly analyzed nonspherically symmetric
perturbations of the black string. However the analysis has
incorrect equations and claims that do not agree both with our
results and related work of Kodama [16] (see also [18]) and
Gibbons and Hartnoll [19]. This is discussed in Appendix A.

PHYSICAL REVIEW D 93, 124002 (2016)

2470-0010=2016=93(12)=124002(20) 124002-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.124002
http://dx.doi.org/10.1103/PhysRevD.93.124002
http://dx.doi.org/10.1103/PhysRevD.93.124002
http://dx.doi.org/10.1103/PhysRevD.93.124002


of the GL and GPY modes). The perturbations are then
expressed in terms of variables introduced by Ishibashi and
Kodama [20,21]. The vector perturbations reduce to a set of
two coupled ODEs, and the nonspherically symmetric
scalar perturbations are a set of three coupled ODEs.
Both sets of equations do not decouple even in the large
D limit. However, they decouple in the near-horizon and
asymptotic regions. By using matched asymptotic expan-
sions, we prove that the vector equations and part of the
scalar equations do not lead to instabilities. We perform an
additional matching procedure to argue that the rest of the
scalar perturbations are also not likely to lead to insta-
bilities. In the static limit, we show that for all classes of
nonspherically symmetric perturbations, there is no insta-
bility. This is a proof that the GPY mode is the unique
unstable mode of semiclassical perturbations of the
Schwarzschild-Tangherlini black hole in the large D limit.
It is also direct evidence that the Gregory-Laflamme
instability is the unique instability for the uncharged black
string. Furthermore, these techniques provide approximate
analytical solutions to the perturbation equations and can
also be used to obtain quasinormal modes corresponding to
nonspherically symmetric perturbations.
In the case of spherically symmetric perturbations,

quasinormal modes of black strings have been analyzed
in [22]. In the context of anti–de Sitter holography,
quasinormal modes corresponding to scalar field perturba-
tions and nonspherically symmetric perturbations of branes
in anti–de Sitter spacetime have been discussed in [23,24].
The large D limit has been used to discuss quasinormal
modes and instabilities of black holes in [25–28]. Other
applications of the large D limit to the dynamics of black
holes, black rings and black branes include [29–36]. An
effective description of black holes in the large D limit by
surfaces has been explored in [37]. An interesting direction
is the study of nonlinear evolution of perturbations of black
strings/branes in the large D limit [38–41].
The outline of the paper is as follows: in Sec. II, we

outline the methodology. We discuss the gauge-fixing
procedure employed, the perturbation equations, certain
perturbation variables defined by Ishibashi and Kodama, as
well as their application to our problem. In Sec. III, we
discuss vector perturbations. We derive the vector pertur-
bation equations in a simplified form and analyze them in a
large n limit, where n is the dimension of the n-sphere part
of the metric. We discuss matching of solutions from the
near-horizon and the asymptotic regions. In Sec. IV, we do
this procedure to the nonspherically symmetric scalar
perturbations. Section V is a summary of our results,
and Sec. VI is a brief discussion of future projects.
There are four appendixes with lengthy calculations used
in the paper: Appendix A discusses tensor perturbations.
Appendix B discusses how source terms in some of the
equations are handled. Appendix C derives in great detail, a
very crucial part of our paper: the simplified nonspherically

symmetric scalar equations. Appendix D discusses a certain
asymptotic expansion of modified Bessel functions which
is used in many places.

II. NONSPHERICALLY SYMMETRIC
PERTURBATIONS OF THE BLACK

STRING: METHODOLOGY

In this section, we will outline the strategy for the
analysis of the nonspherically symmetric perturbations of
the black string/flat black brane. We will also summarize
the tools required. For simplicity of notation, we will
discuss the black string—the same computation extends to
the flat black brane as well.
The (uncharged) black string metric is D ¼ nþ 3

dimensions, obtained by adding a flat extra dimension to
an nþ 2-dimensional Schwarzschild-Tangherlini metric is

gμνdxμdxν ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2
n þ dz2;

ð2:1Þ
where fðrÞ ¼ ð1 − bn−1

rn−1Þ and r > b (r ¼ b is the location of
the horizon). In the case of a flat black brane of dimension
D ¼ nþ 2þ p, the flat metric corresponding to p extra
dimensions is added.
We will use capital roman indices A; B;… to denote

coordinates on the black string (or brane). Greek indices
μ; ν;… will be used to denote indices only in the
Schwarzschild-Tangherlini part of the metric, and coordi-
nates in this part of the metric will be denoted collectively
by y. We consider perturbations of the metric (2.1), with the
perturbed metric ḡAB ¼ gAB þ h̄AB, in linearized perturba-
tion theory. We first make a gauge choice used by Reall [5]
that allows us to set h̄Az ¼ 0. Similarly, for the flat black
brane, this can be used to set all metric perturbations with
an index on the brane to zero. Reall used this gauge to study
scalar s-wave perturbations, but it can be used for all black
brane perturbations, and the only nonzero perturbations left
after gauge-fixing are thus the ones with indices in the
Schwarzschild part of the metric. Furthermore, as showed
in [5], some of the linearized Einstein equations then imply
that these perturbations have to be transverse and traceless.
The linearized Einstein equation for the black string
perturbations is

δRMN ¼ 0: ð2:2Þ
The linearized Ricci tensor δRMN is expressed in terms of the
Lichnerowicz Laplacian ΔL acting on the perturbations as

2δRMN ¼ ΔLh̄MN −∇M∇Nh̄þ∇M∇Sh̄SN þ∇N∇Sh̄SM

ð2:3Þ

ΔLh̄MN¼−∇L∇Lh̄MNþRMLh̄LNþRNLh̄LM−2RMLNSh̄LS:

ð2:4Þ

AMRUTA SADHU and VARDARAJAN SUNEETA PHYSICAL REVIEW D 93, 124002 (2016)

124002-2



All curvature tensors are those of the black string metric
(2.1). h̄ ¼ gMNh̄MN . For this background metric, the
Laplacian acting on symmetric tensors splits in the form

∇L∇L ¼ ∇μ∇μ þ ∂2
z : ð2:5Þ

For the metric (2.1), the gauge choice h̄Mz ¼ 0 reduces
(2.2) to

ΔSch
L h̄μν −∇μ∇νh̄þ∇μ∇σh̄σν þ∇ν∇σh̄σμ ¼ ∂2

z h̄μν ð2:6Þ

ΔSch
L h̄μν denotes the Lichnerowicz Laplacian of the

Schwarzschild-Tangherlini metric acting on perturbations
of this metric. Following Gregory and Laflamme, we
choose the ansatz for h̄μνðy; zÞ

h̄μνðy; zÞ ¼ eiλzhμνðyÞ: ð2:7Þ

(2.6) then becomes

ΔSch
L hμν −∇μ∇νhþ∇μ∇σhσν þ∇ν∇σhσμ ¼ −λ2hμν: ð2:8Þ

Here, h ¼ gμνhμν. As emphasized by Reall [5], we have
already fixed gauge, but now the other Einstein equations
with indices on the brane can be used to show that hμν must
be transverse and traceless. Putting this back in (2.8), we
get

ΔSch
L hμν ¼ −λ2hμν: ð2:9Þ

Thus, we finally obtain an eigenvalue equation for the
Lichnerowicz Laplacian in the Schwarzschild-Tangherlini
background. Negative eigenvalues corresponding to nor-
malizable eigentensors (normalizable with respect to the
volume form of the background) are relevant for perturba-
tions of the black string. For the black brane, the gener-
alization of the ansatz (2.7) is h̄μν ¼ eiλkz

k
hμνðyÞ where k

runs from 1 to p (the number of extra dimensions) and
λ2 ¼ Σp

k¼1λ
2
k. Setting λ ¼ 0 gives the equation for classical

perturbations of the Schwarzschild-Tangherlini black holes,
and Ishibashi and Kodama have already proved their
stability [20]. To explore stability of black strings/branes,
the nontrivial case to analyze is solutions to (2.9) with
λ ≠ 0. For future reference, we note that for a transverse,
traceless hμν, (2.9) is equivalent to

δGμν ¼ −
1

2
λ2hμν; ð2:10Þ

where δGμν is the first variation of the Einstein tensor
evaluated for the transverse traceless perturbation hμν on
the Schwarzschild-Tangherlini background. Equivalently,
we could have set the linearized Einstein tensor for the
brane to zero and obtained (2.10).

Equations (2.10) is a set of many coupled equations for
the perturbations hμν. The perturbations can be decom-
posed in terms of scalar, vector and tensor (for n > 2)
spherical harmonics on the n-sphere with metric dΩ2

n—
each class (which we call scalar, vector and tensor
perturbations, respectively) decouples and can be studied
separately. Tensor perturbations have already been dis-
cussed in [16]—they do not lead to instability. The vector
and scalar perturbations are each solutions of intricately
coupled equations.
To analyze the vector and scalar perturbation equations,

we will adapt a formalism due to Ishibashi and Kodama
(IK) originally developed for studying classical gravita-
tional perturbations of Schwarzschild-Tangherlini space-
times [20]. Since the linearized Ricci tensor is invariant
under a gauge transformation, for λ ¼ 0, (2.10) is invariant.
Ishibashi and Kodama introduced manifestly gauge-
invariant variables by taking suitable combinations of
metric perturbations of the Schwarzschild spacetime. The
linearized Ricci tensor can be written entirely in terms of
these variables. We will use their variables even for λ ≠ 0,
and take appropriate combinations of the various equations
to obtain equations for the black string perturbations
written entirely in terms of the IK variables. This is done
mainly for computational simplicity. However, both in the
vector and scalar case, we are still left with coupled ODEs,
and in subsequent sections, we will employ the large D
limit, as well as the method of matched asymptotic
expansions to analyze them.

A. The Ishibashi-Kodama variables

We will set up the notation for our paper by quickly
stating the perturbation variables proposed by Ishibashi and
Kodama in ([20,21]) for doing gravitational perturbation
theory. Their variables are useful for studying perturbations
of the Schwarzschild-Tangherlini metric

gμνdyμdyν ¼ gabðxÞdxadxb þ r2ðxÞdΩ2
n;

¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2
n: ð2:11Þ

Since, after gauge-fixing, we also work with perturba-
tions of the metric (2.11), we will use the IK variables. Here
gabðxÞ is the r − t part of the metric and dΩ2

n ¼ γijd~yid~yj is
the metric of an n-dimensional sphere of unit radius with
Ricci tensor given by R̂ij ¼ ðn − 1Þγij.
We use indices a, b to denote indices from the set r, t and

indices i, j of coordinates on sphere. Indices μ, ν denote any
coordinate in the spacetime with metric (2.11). Covariant
derivatives and Ricci tensors on each space are denoted as

gμν → ∇μ; Rμν

gab → Da; mRab

γij → D̂i; R̂ij:
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We consider perturbations of the metric (2.11) with the
perturbed metric denoted by gpμν ¼ gμν þ hμν in linearized
perturbation theory, where hμν is defined in terms of the
original black string perturbation by (2.7). The scalar,
vector and tensor components of hμν are defined as those
that are decomposed in terms of scalar, vector and tensor
spherical harmonics on the n-sphere, respectively. The
components hab are scalars with respect to transformations
on the n-sphere. The other components can be written as
follows:

hai ¼ D̂iha þ hð1Þai ð2:12Þ

hij ¼ hð2ÞT ij þ 2D̂ðiÞh
ð1Þ
T j þ hLγij þ L̂ijh

ð0Þ
T : ð2:13Þ

where

D̂jhð2ÞT ij ¼ hð2ÞiT i ¼ 0 ð2:14Þ

D̂ahð1Þai ¼ 0; D̂jhð1ÞT j ¼ 0: ð2:15Þ

Here hð2ÞT ij is the ‘tensor’ part, the ‘vector’ set is (h
ð1Þ
T j, h

ð1Þ
ai ),

and the ‘scalar’ set is (hab, ha, hL, h
ð0Þ
T ). The eigenvalue

equations for the linearized Ricci tensor decouple for these
three classes, and they can be studied separately.
Ishibashi and Kodama consider combinations of pertur-

bations in each set which are gauge invariant. To do this, the
generator of a gauge transformation ξμ is also decomposed
into a ‘vector’ part and a gradient of a scalar. We recall that
under a gauge transformation generated by any infinitesi-
mal vector ξμ, the perturbation transforms as

h0μν ¼ hμν −∇μξν −∇νξμ: ð2:16Þ

B. Vector perturbations

We use the notation of [20,21] to describe the vector
perturbations,3

hab ¼ 0 hai ¼ rfvectora Vi hij ¼ 2r2Hvector
T Vij:

ð2:17Þ

Here fvectora , Hvector
T are functions of r, t. Vector harmonics

Vi and Vij are defined by

ðΔ̂þ k2vÞVi ¼ 0; D̂iVi ¼ 0 ð2:18Þ

Vij ¼ −
1

2kv
ðD̂iVj þ D̂jViÞ: ð2:19Þ

k2v ¼ lðlþ n − 1Þ − 1 and l ¼ 2;…. We denote
Δ̂ ¼ γijD̂iD̂j. Gauge-invariant variables in the class of
vector perturbations are given by the combination

Fa ¼ fvectora þ r
kv

DaHvector
T ð2:20Þ

C. Scalar perturbations

Similarly, one can construct gauge-invariant variables for
scalar perturbations. Scalar perturbations are given by
[20,21]

hab ¼ fabS hai ¼ rfaSi hij ¼ 2r2ðHLγijSþHTSijÞ
ð2:21Þ

S, Si and Sij are scalar harmonics satisfying

ðΔ̂þ k2ÞS ¼ 0 Si ¼ −
1

k
D̂iS D̂iSi ¼ kS

Sij ¼
1

k2
D̂iD̂jSþ 1

n
γijS Sii ¼ 0

k2 ¼ lðlþ n − 1Þ and l ¼ 0; 1; 2…. We will not consider
l ¼ 0 which corresponds to spherically symmetric pertur-
bations, since this case has already been extensively
analyzed by Gregory and Laflamme and the GL instabil-
ities fall in this class. The modes with k2 ¼ n (i.e., l ¼ 1)
are exceptional modes, in the sense that the construction of
gauge-invariant variables is not possible in this case (for
details, see [21]). We will eventually work in a large n
approximation where it is not possible to consider the
exceptional mode. Therefore, for the discussion that fol-
lows on scalar modes, we will consider only l ≥ 2. Gauge
invariant variables for scalar perturbations (not defined for
l ¼ 0 and l ¼ 1)are constructed as follows: First we define

Xa ¼
r
k

�
fa þ

r
k
DaHT

�
ð2:22Þ

In terms of Xa, the gauge invariant variables are

Fab ¼ fab þDaXb þDbXa ð2:23Þ

F ¼ HL þ 1

n
HT þ 1

r
DaXa ð2:24Þ

In the next two sections, we will consider the equations
for the vector and scalar perturbations arising from (2.10),
written using IK variables. To analyze the coupled equa-
tions in each case, we will use the large n approximation.

III. VECTOR PERTURBATIONS

In this section, we will look at solutions to (2.10) for the
class of vector perturbations (2.17). Our goals are twofold:

3Ishibashi and Kodama use the notation fa and HT to denote
distinct quantities in the vector and scalar case. Here we add a
superscript vector in the vector case to avoid confusion.
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(i) to prove that the black string (brane) is stable under this
class of perturbations and (ii) to develop approximate
solutions for vector perturbations.
We can write the equations (2.10) in terms of the IK

variables Fa defined in the previous section (2.20). For the
expression of the variation of the Einstein tensor in terms of
these variables, we refer the reader to [20,21]. Upon using
these results, the equations δGai ¼ − 1

2
λ2hai and δGij ¼

− 1
2
λ2hij are written in terms of the IK variables as

1

rnþ1
Db

�
rnþ2

�
Db

�
Fa

r

�
−Da

�
Fb

r

���
−
α

r2
Fa ¼ λ2fvectora

kv
rn

Daðrn−1FaÞ ¼ λ2Hvector
T ;

ð3:1Þ

where α ¼ k2v − ðn − 1Þ.
We can use the equations (3.1) to obtain second-order

differential equations for the variables Fa (i.e., Fr and Ft):

□Fa −DbDaFb þDaDbFb þ n
DbrDbFa

r
− 2

DbrDaFb

r

−
□r
r

Fa − n
ðDrÞ2
r2

Fa − ðn − 2ÞD
brDar
r2

Fb

þDbDar
r

Fb þ ðn − 1ÞDaDbr
r

Fb −
α

r2
Fa ¼ λ2Fa:

ð3:2Þ

Explicitly evaluating the covariant derivatives, we get a
system of coupled equations for Fr and Ft:

f∂2
rFt −

1

f
∂2
t Ft þ

nf
r
∂rFt −

�
nf
r2

þ α

r2

�
Ft

þ
�
f0 −

2f
r

�
∂tFr ¼ λ2Ft ð3:3Þ

f∂2
rFr −

1

f
∂2
t Fr þ

�
2f0 þ ðn − 2Þf

r

�
∂rFr

þ
�
f00 þ ðn − 2Þf0

r
−
2ðn − 1Þf

r2
−

α

r2

�
Fr

þ f0

f2
∂tFt ¼ λ2Fr: ð3:4Þ

The equations (3.3) and (3.4) match those of Kodama
[16]. Kodama has an additional equation owing to the fact
that [16] employs gauge-invariant variables in the entire
black brane, while we work with gauge-fixed variables in
the black hole spacetime. We first do a modal decom-
position of Ft and Fr:

Ft ¼ AðrÞeiωt Fr ¼
BðrÞ
f

eiωt: ð3:5Þ

The resulting equations for AðrÞ and BðrÞ are

d2A
dr2

þ n
r
dA
dr

þ
�
−
n
r2

−
α

fr2
−
λ2

f
þ ω2

f2

�
A

¼
�
2

rf
−
ðn − 1Þbn−1

f2rn

�
iωB ð3:6Þ

d2B
dr2

þ ðn − 2Þ
r

dB
dr

þ
�
−
2ðn − 1Þ

r2
−

α

fr2
−
λ2

f
þ ω2

f2

�
B

¼ −
ðn − 1Þbn−1

f2rn
iωA: ð3:7Þ

In order to analyze the coupled equations (3.6) and (3.7),
it is necessary to resort to the large n limit, where n is the
number of dimensions of the sphere part of the metric. The
various motivations for the large n limit are discussed in
[15]. Here, we will only summarize the main steps of the
method in [15] and what we hope to achieve in our analysis
of the coupled equations.
The function f ¼ ð1 − bn−1

rn−1Þ which appears in the back-
ground metric (2.1) is an increasing function and fðrÞ → 1
as r → ∞. In the large n limit, this function increases
steeply from zero in the interval b < r < bþ b

n and is
almost constant for r > b

n. The appearance of distinct
regions with a steep change in fðrÞ in this limit is suited
to the application of the method of matched asymptotic
expansions. First we define a near-horizon region and far
region as follows:

Near region r − b ≪ b

Far region r − b ≫
b

n − 1
:

The definition of the near region is standard. The
definition of the far region as done here is made possible
by the large n limit, in which fðrÞ is almost constant in the
far region. The two regions overlap in b

n−1 ≪ r − b ≪ b.
The next step is to define a new coordinate R ¼ ðrbÞn−1.

In terms of this coordinate, the near and far regions are

Near region lnR ≪ n − 1

Far region lnR ≫ 1:

In the near-region approximation, r can be written in
terms of R as

r ∼ b

�
1þ lnR

n − 1

�
: ð3:8Þ

Wewill now look at the coupled equations (3.6) and (3.7)
in the near and far regions. The equations decouple in the
large n approximation in both these regions and can be
solved. Then the far limit of the near-region solution
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satisfying appropriate boundary conditions at the horizon
and the near limit of an appropriate far region solution are
compared in the overlap region to see if they can be
matched. For discussions on stability, we need to inves-
tigate if there are normalizable solutions to the set of
coupled equations that are regular at the horizon, with
ω ¼ −iΩ and Ω real (so that the solution grows in time).
Wewill show that there are no such solutions, indicating the
stability of the black string (brane) under vector perturba-
tions. The same analysis can be applied for other choices of
boundary conditions, such as those corresponding to
quasinormal modes.

A. The equations in the near region, large n
approximation

Wewish to analyze (3.6) and (3.7) in the near region. We
also substitute iω ¼ Ω in order to study black string (brane)
stability. Among like terms in these equations, we only
keep pieces which are of leading order in n. We assume kv,
λ and ω to be at least of order n. We use the notation
k2v=n2 ¼ k̂v

2, λ2=n2 ¼ λ̂2, iω ¼ Ω and Ω2=n2 ¼ Ω̂2. To
study solutions where they are of lower order in n, we can
simply set them to zero. As α ¼ k2v − ðn − 1Þ, we replace it
by k2v for large n. We then rewrite the equations in terms of
the variable R ¼ ðrbÞn−1. To write functions of r in terms of
the variable R in the equations, we use the approximate
relation (3.8) which is valid in the near region. We also
implicitly assume an expansion of A and B as

A ¼
X
i≥0

Ai

ni
B ¼

X
i≥0

Bi

ni
: ð3:9Þ

Thus, in the near region, large n approximation, the
equations obeyed by A and B are

d2A
dR2

þ 2

R
dA
dR

−
�

k̂2v
RðR − 1Þ þ

λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
A

¼ −
Ω̂b

RðR − 1Þ2 Bþ 2Ω̂b
nRðR − 1ÞB:

d2B
dR2

þ 2

R
dB
dR

−
�

k̂2v
RðR − 1Þ þ

λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
B

¼ −
Ω̂b

RðR − 1Þ2 A: ð3:10Þ

We notice that the right-hand side of the first equation in
(3.10) contains a term of the form 2Ω̂b

nRðR−1ÞB, which seems

subleading in n in comparison to a similar term k̂2vþλ̂2b2

RðR−1Þ A on

the left-hand side. This statement is true if the leading-order
behavior in n of A and B in (3.9) is similar. Indeed, this is
the likely scenario in such systems of coupled equations. In
such a case, this term on the right can be dropped. If on the
other hand, A is subleading in n in comparison with B, the

term must be retained. We will analyze both cases (while
discussing the second case, we will also discuss the
possibility of B being subleading in comparison with A).
Case 1: Leading-order behavior in n of A and B is

similar.
We can take A ¼ A0 þ A1=nþ � � � and B ¼ B0 þ

B1=nþ � � �, where A0; B0 ≠ 0. In what follows, we will
drop the subscripts of the leading terms in n in A and B. In
this case, in the large n limit, (3.10) reduces to

d2A
dR2

þ 2

R
dA
dR

−
�

k̂2v
RðR − 1Þ þ

λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
A

¼ −
Ω̂b

RðR − 1Þ2 B: ð3:11aÞ

d2B
dR2

þ 2

R
dB
dR

−
�

k̂2v
RðR − 1Þ þ

λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
B

¼ −
Ω̂b

RðR − 1Þ2 A: ð3:11bÞ

It is clear from the form of (3.11a) that a simple sum and
difference of the two equations decouples them. We define

ξ ¼ ðR − 1Þ−Ω̂bðAþ BÞ ζ ¼ ðR − 1ÞΩ̂bðA − BÞ:

The equation obeyed by ξ is

Rð1 − RÞ d
2ξ

dR2
þ ½2 − ð2Ω̂bþ 2ÞR� dξ

dR

− ½Ω̂b − ðk̂2v þ λ̂2b2Þ�ξ ¼ 0: ð3:12Þ

This is an hypergeometric equation whose solutions, for
2Ω̂b not an integer are

ξ ¼ C1Fðp; q; 2Ω̂b; 1 − RÞ þ C2ðR − 1Þ1−2Ω̂b
× Fð2 − p; 2 − q; 2 − 2Ω̂b; 1 − RÞ; ð3:13Þ

where

p ¼ 1

2

h
1þ 2Ω̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2v þ λ̂2b2Þ

q i
q ¼ 1

2

h
1þ 2Ω̂b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2v þ λ̂2b2Þ

q i
:

Physical considerations require A, B to be, at the very least,
finite at the horizon. For Ω̂b > 1, this implies C2 ¼ 0. For
Ω̂b < 1, both linearly independent solutions for (Aþ B)
approach zero as R → 1. However, in fact, we need
finiteness of the perturbation variables Ft and Fr at the
horizon, which are related to A, B by (3.5). This requires
Ω̂b > 1. Henceforth, we shall assume this. We will impose
the boundary condition C2 ¼ 0. The solution for (Aþ B) is
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ðAþ BÞ ¼ ðR − 1ÞΩ̂bC1Fðp; q; 2Ω̂b; 1 − RÞ: ð3:14Þ

The equation and general solution for ζ can be obtained by
replacing Ω̂b by −Ω̂b in (3.12) and (3.13) respectively.
Since ðA − BÞ ¼ ðR − 1Þ−Ω̂bζ, the solution (A − B) that is
regular at the horizon is now given by C1 ¼ 0.
For Ω̂b ¼ N a positive integer, and p ≠ 1; 2;…; 2N − 1,

the general solution for ξ is now

ξ ¼ C1Fðp; q; 2Ω̂b; 1 − RÞ
þ C2 lnðR − 1ÞFðp; q; 2Ω̂b; 1 − RÞ:

Finiteness of the perturbation at the horizon implies
C2 ¼ 0. If p is one of the integers 1; 2;…; 2N − 1, then
the general solution for ξ is given by (3.13). We will not
discuss these cases further as the finite solution in all cases
is the same.
Case 2: A is subleading in n in comparison to B (or

vice-versa).
If A is subleading in n, then in the expansion (3.9), where

A ¼ A0 þ A1=nþ � � �, and B ¼ B0 þ B1=nþ � � �), we set
A0 ¼ 0. The equations (3.10) then imply B0 ¼ 0 which
brings us back to Case 1. A similar analysis follows
when B0 ¼ 0.

B. The far region in the large n approximation

The far region is defined by r ≫ bþ b
n. Therefore, in this

limit f → 1 as ðbn−1=rn−1Þ ∼ e−n ln r is a small quantity for
large n and large r. We can neglect terms that have f0 (or
f00) in (3.6) and (3.7) because they fall off at least as
bn−1=rn and are negligible compared to other terms that fall
off as 1=r2. We then use the large n approximation to retain
only the leading n parts in like terms. To consider the most
general case, we have assumed k2v, Ω2 ¼ −ω2 and λ2 are of
order n2. To consider the case when these quantities are of
lower order in n, we can take them to zero in our final
answer.
We observe, that, for example, the term on the right-hand

side of (3.7) is, in this limit, − ðn−1Þbn−1
rn ΩA. Decaying terms

we consider in this approximation on the left-hand side are
of the form 1

r2 B. For the two to be comparable, we need at
least A ∼ rn−2B. If this were true, we could neglect the
right-hand side of the equation for A (3.6) in this limit. If
this were not true, then the right-hand side of the equation
for B (3.7) can be neglected in this limit. In either case, one
of the equations will have the right-hand side zero—one
could solve this and substitute the solution in the other
equation as a source term. We also note that in either
situation, we additionally require normalizability of both
sets of perturbations. We will assume that the right-hand
side of equation (3.7) can be neglected. The other case
neglecting the right-hand side of the equation (3.6) is
almost identical computationally. This is due to the fact that

in the large n approximation, noting that λ2, for example, is
at least of order n2, the left-hand side of (3.7) is identical to
that of (3.6) with the replacement of A by B. The only
difference between the two cases is in the type of source
term in each of the equations.
Neglecting the right-hand side of (3.7), we have, in the

large n far region,

d2A
dr2

þ n
r
dA
dr

þ
�
−
k2v
r2

− λ2 − Ω2

�
A ¼

�
2

r

�
ΩB ð3:15Þ

d2B
dr2

þ n
r
dB
dr

þ
�
−
k2v
r2

− λ2 −Ω2

�
B ¼ 0: ð3:16Þ

The general solution for B is given in terms of modified

Bessel functions of order ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1Þ2

4
þ k2v

q
as

B ¼ r
1−n
2 ½D1Iνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þΩ2

p
rÞ þD2Kνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þΩ2

p
rÞ�:

ð3:17Þ

We note that the large n limit implies the limit of large
order and large argument for the modified Bessel functions,
due to ν ∼OðnÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
∼OðnÞ. Rewritingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ Ω2
p

r ¼ νz where z ¼
ffiffiffiffiffiffiffiffiffiffi
λ2þΩ2

p
ν r, we use standard

expansions for large order and large argument for the
modified Bessel functions. IνðνzÞ ∼ eνz → ∞ as r → ∞,
whereas KνðνzÞ ∼ e−νz → 0. Normalizability thus implies
in (3.17) that D1 ¼ 0.
We now need to match the solutions in the near region

and the far region in the overlap region b
n−1 ≪ r − b ≪ b.

To do this, first we use the asymptotic expansion for large
order and large argument of the modified Bessel functions
in B to obtain

B ¼ D2r
1−n
2

ffiffiffiffiffi
π

2ν

r
e−ν

ffiffiffiffiffiffiffiffi
1þz2

p �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p

z

�ν

ð1þ z2Þ−1
4

×

�
1þO

�
1

n

��
: ð3:18Þ

The form of (3.18) in the overlap region suitable for
matching is given by changing variables from r to R in
(3.18) using the approximate formula (3.8) valid in the
overlap region. In the large n approximation, this is

B ¼ D1R−1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ

p
2 : ð3:19Þ

The relevant asymptotic expansion of the modified Bessel
function used here is given in Appendix D.
We need to substitute the expression for B from (3.18)

and (3.19) in the right-hand side of the first equation in
(3.15) to get A. As can be checked (for details of handling
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source terms, we refer to Appendix B), A has the
same behavior as B as r → ∞. Further, in the overlap
region, we have the same power law behavior,

A ¼ ðconstÞR−1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ

p
2 . Thus Aþ B and A − B

have the same behavior.

1. Matching of solutions

For matching, we need to extend the near-region solution
to the overlap region. In order to do this, we use the
transformation properties of hypergeometric functions
relating functions of argument (1 − R) to those of argument
1=R. We will first consider the variable Aþ B in
subsection III. 1.

Aþ B ¼ ðR − 1ÞΩ̂bC1Fðp; q; 2Ω̂b; 1 − RÞ
¼ ðR − 1ÞΩ̂bC1½ ~c1R−pFðp; p − 1; p − qþ 1; 1=RÞ
þ ~c2R−qFðq; q − 1; q − pþ 1; 1=RÞ�;

where constants ~c1, ~c2 depend on p, q. To extend the
solution to the overlap region, we put ðR − 1Þ ≈ R as we are
sufficiently far from horizon and take the limit R → ∞ in
hypergeometric function. After this extension, explicitly
putting the values of ~c1 and ~c2, we get

Aþ B

¼ C1

Γðpþ q − cþ 1ÞΓðq − pÞ
ΓðqÞΓðq − cþ 1Þ R−1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ

p
2

þ C1

Γðpþ q − cþ 1ÞΓðp − qÞ
ΓðpÞΓðp − cþ 1Þ R−1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ

p
2 :

ð3:20Þ

Here c is a constant from the original hypergeometric
equations and c ¼ 2. As we are looking for stable solutions
for λ, Ω positive, for such values

1

2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2v þ λ̂2b2Þ

q
2

; ð3:21Þ

hence, we get a growing solution in R with pieces R−1=2þd

and R−1=2−d where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ

p
2

. Note that this
solution will always have the growing piece R−1=2þd since
its coefficient does not vanish for any Ω̂ ≥ 0. This can be
seen as follows:
The coefficient of the growing piece is

Γðpþ q − cþ 1ÞΓðp − qÞ
ΓðpÞΓðp − cþ 1Þ ;

and the gamma function is nonzero. The coefficient can go
to zero only at the poles of gamma functions in the

denominator. This can only occur when either p or
p − cþ 1 is a nonpositive integer. These two quantities are

p ¼ 1

2

h
1þ 2Ω̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2v þ λ̂2b2Þ

q i

p − cþ 1 ¼ −
1

2
þ Ω̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2v þ λ̂2b2Þ

q
2

:

It is easy to see that for our situation when Ω̂ ≥ 0 and
k̂v > 0 these quantities can never be nonpositive integers.
Thus the solution from the near region will always have the
growing piece. But the normalizable solution in the far
region is

Aþ B ¼ ðconstÞR−1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ

p
2 ; ð3:22Þ

which is a decaying solution. Therefore, we cannot match
the solutions from near and far region. There are no
unstable solutions for λ, Ω positive. A similar statement
holds for (A − B). Its expansion in the overlap region is
similar to (3.20) in that it has both pieces R−1=2þd and
R−1=2−d. The normalizable solution in the far region
extended to the overlap region has only the decaying term
R−1=2−d. Hence, a match is not possible.
So far, we have considered kv, Ω, λ ∼OðnÞ at least. We

could consider Ω, λ of lower order by setting them to be
zero. The match is still not possible unless we additionally
set kv ¼ 0. Since the IK variables are not defined for
kv ¼ 0, we cannot set it to be zero. In particular, in the static
limit, with Ω ¼ 0, we have no instability.
Thus we conclude that for Ω̂ real and non-negative, there

are no normalizable solutions to the vector perturbation
equations, and the black string/brane is stable.
By considering ω ¼ −iΩ and looking for oscillatory

solutions, we find that in the asymptotic region, the
modified Bessel functions are replaced by Bessel functions.
Both the linearly independent Bessel functions have similar
behavior asymptotically, and can be considered. Hence, the
solution from the far region will be any arbitrary linear
combination of the pieces R−1=2þd and R−1=2−d with the
replacement ω ¼ −iΩ in d. It can be matched to a solution
from the near region obeying suitable boundary conditions
at the horizon. This can be used to construct approximate
solutions to the perturbation equations. One can also
consider boundary conditions suitable for quasinormal
modes, such as ingoing at the horizon and outgoing at
infinity, and use the matching procedure to evaluate the
quasinormal modes.

IV. NONSPHERICALLY SYMMETRIC SCALAR
PERTURBATIONS

The IK variables defined for scalar perturbations, Fab
and F, are (2.23)
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Fab ¼ fab þDaXb þDbXa

F ¼ HL þHT

n
−
Dar
r

Xa:

Our goal is to write eigenvalue equations 2δGμν ¼
−λ2hμν in terms of the IK variables to make them more
tractable, where δGμν is the linearized Einstein tensor of the
Schwarzschild-Tangherlini black hole metric. This involves
a lengthy computation for which we outline the steps. We
first use [21] to express 2δGμν in terms of Fab and F. We
note that the right-hand side of the eigenvalue equations is
not expressed in terms of either Fab of F. There are four IK
variables ðFrr; Frt; Ftt; FÞ. To simplify the equations fur-
ther, following IK [42], we construct three functions from
Fab, F;

W ¼ rn−2ðFt
t − 2FÞ Y ¼ rn−2ðFr

r − 2FÞ Z ¼ rn−2Fr
t :

ð4:1Þ

The goal is to take appropriate combinations of the
eigenvalue equations for δGμν so that they can be expressed
entirely in terms of just three perturbation variables W, Y
and Z. To accomplish this, we can invert the relations (4.1)
to obtain Fa

a and F in terms of W, Y and Z. For this, we
need the traceless part of the equation 2δGij ¼ −λ2hij
(written partly in terms of the new variables):

W þ Y þ 2nF ¼ 2λ2
r2

k2
HT: ð4:2Þ

We can write F in terms ofW, Y andHT using this relation.
Subsequently, using (4.2) and (4.1), we get

F ¼ −
W þ Y
2nrn−2

þ λ2

nk2
ðr2HTÞ ð4:3aÞ

Fr
t ¼

Z
rn−2

ð4:3bÞ

Ft
t ¼

Wðn − 1Þ − Y
2nrn−2

þ 2λ2

nk2
ðr2HTÞ ð4:3cÞ

Ft
t ¼

Yðn − 1Þ −W
2nrn−2

þ 2λ2

nk2
ðr2HTÞ: ð4:3dÞ

Our choice of variables is motivated by those of Ishibashi
and Kodama who studied the linearized Einstein equation
—their variables therefore correspond to (4.1) with λ is
zero. Hence, their expressions of Fa

a, F in terms of W, Y
and Z do not have the factors of HT that ours have.
Substituting our new variables in the eigenvalue equa-

tions, we obtain six equations (C1)–(C6) which are given in
Appendix C. Due to theHT factors in (4.3), these equations
have terms containing derivatives of HT in addition to
components of hμν.

Our goal is to get the final equations completely in terms
of W, Y and Z by taking suitable combinations of the
eigenvalue equations, in analogy with the work of Ishibashi
and Kodama, and despite the extraHT factors present in our
expressions. After a lengthy calculation, we have suc-
ceeded in obtaining the final equations completely in terms
of these variables, and all the HT factors cancel out. These
equations and the relevant details are given in (C7)–(C9) in
Appendix C. The important fact for us in the subsequent
analysis is that the scalar perturbation equations can be
reduced to three coupled second-order partial differential
equations forW, Y and Z. Our later computations are made
simpler by the further change of variables:

ψ̂ ¼ f1=2

rðn−4Þ=2
W ϕ̂ ¼ f1=2

rn=2
Y η̂ ¼ 1

rðn−2Þ=2f1=2
Z;

ð4:4Þ

where f ¼ ð1 − bn−1

rn−1Þ. We can assume a time dependence of
the form ψ̂ðr; tÞ ¼ eiωtψðrÞ for all three variables. Finally,
the three coupled perturbation equations are

−
d2ψ
dr2

þ
�
n3 − 2n2 þ 8n− 8

4nr2
þ f02

4f2
−
ðn2 þ 2n− 4Þ

2n
f0

fr

−
f00

2f
−
2ðn− 1Þ
nr2f

þ k2

fr2
þ λ2

f
−
ω2

f2

�
ψ ¼

�
4

f
−
2f0r
f2

�
ðiωÞη

þ
�
2ðn− 1Þ

nf
þ 2

n
−
nþ 2

n
rf0

f
−
r2f00

f
þ f02r2

2f2

�
ϕ ð4:5Þ

−
d2ϕ
dr2

þ
�
n3 − 2n2 þ 8n − 8

4nr2
þ f02

4f2
−
ðn2 þ 2n − 4Þ

2n
f0

fr

−
f00

2f
−
2ðn − 1Þ
nr2f

þ k2

fr2
þ λ2

f
−
ω2

f2

�
ϕ ¼ 2f0

f2r
ηðiωÞ

þ
�
2ðn − 1Þ
nr4f

−
2ðn − 1Þ

nr4
−
2 − n
nr3

f0

f
−

f00

r2f
þ f02

2f2r2

�
ψ

ð4:6Þ

−
d2η
dr2

þ
�
n2 − 2n
4r2

−
ðnþ 2Þf0

2rf
þ 3f02

4f2
−
3f00

2f

þ k2

fr2
−
ω2

f2
þ λ2

f

�
η ¼

�
f0

f
−
2

r

�
rðiωÞ
f

ϕ −
f0

f2
ðiωÞ
r

ψ :

ð4:7Þ

Although we have described the details in Appendix C,
we will state the eigenvalue equations that have been used
to obtain these coupled equations. The equation for ϕ is
obtained by combining the eigenvalue equations corre-
sponding to δGrr, trace of δGij, δGri and δGti. Similarly,
the equation for ψ is obtained by taking suitable combi-
nations of equations corresponding to δGrr, trace of δGij,
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δGri and δGti. The equation for η is obtained by combining
δGrt, δGri and δGti.
The equations (4.5)–(4.7) cannot be solved analytically.

In order to solve them, we have to take the large n limit of
the equations. The equations do not decouple, but as we
did for the vector case, we analyze the large n limit of
(4.5)–(4.7) in the near-horizon and far regions. We then
investigate, using matched asymptotic expansions, if the
two solutions match in the overlap region.

A. Far region

The far region is defined, as before, by r ≫ bþ b
n. In this

limit, we will take f → 1 and use the large n limit as well,
to neglect terms that have f0, f00 in the equations for ψ, ϕ
and η. Further, we retain only leading order in n pieces in
like terms. We have assumed k2, ω2 and λ2 are at least of
order n2 as it is the most general case. We can recover cases
where these quantities are of lesser order by putting them to
zero in our final answer (with some minor modifications),
except for k ¼ 0 (which would correspond to the s-mode).
In the far limit, the equations (4.6)–(4.7) are (replacing
Ω ¼ iω since we want to do a stability analysis):

−
d2ψ
dr2

þ
�
n2

4r2
þ k2

r2
þ λ2 þΩ2

�
ψ ¼ 2ϕþ 4Ωη ð4:8Þ

−
d2ϕ
dr2

þ
�
n2

4r2
þ k2

r2
þ λ2 þ Ω2

�
ϕ ¼ −f00

fr2
ψ þ 2f0

f2r
Ωη

ð4:9Þ

−
d2η
dr2

þ
�
n2

4r2
þ k2

r2
þ λ2 þ Ω2

�
η ¼ −2Ωϕ −

f0

f2r
Ωψ :

ð4:10Þ

We first consider the ϕ equation. We have listed terms on
the left-hand side of the type ðϕ=r2Þ. We note that terms
on the right-hand side are of the type ðψ=rnþ3Þ, ðη=rnþ1Þ.
For any of these terms to be considered—for example,
ðη=rnþ1Þ—the magnitude of η must be at least η ∼ ϕrn−1.
The same argument also holds for ψ—its magnitude must
be at least ψ ∼ ϕrnþ1 for the term proportional to it on the
right to be considered. As we will discuss later, there is no
solution to the equations (4.5)–(4.7) in the large n limit,
corresponding to this situation. Hence, in what follows, we
will assume that η and ψ are comparable in magnitude to ϕ
in the large n limit so that the right-hand side of (4.9) can be
neglected.
We can solve for ϕ and subsequently solve the equation

for ψ and η:

−
d2ϕ
dr2

þ
�
n2

4r2
þ k2

r2
þ λ2 þΩ2

�
ϕ ¼ 0 ð4:11Þ

Let ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ1
4

þ k2
q

. The general solution of (4.11) is given

in terms of modified Bessel functions as

ϕ ¼ D1

ffiffiffi
r

p
Iνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
rÞ þD2

ffiffiffi
r

p
Kνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
rÞ:
ð4:12Þ

The order ν of the modified Bessel functions is propor-
tional to n. As we have λ, Ω of order n, the large n limit
implies the large order and argument limit of the modified
Bessel functions. In this limit, IνðνzÞ ∼ eνz is a growing
solution and for normalizability, we need to choose
D1 ¼ 0. Hence,

ϕ ¼ D2

ffiffiffi
r

p
Kνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
rÞ: ð4:13Þ

As in the vector case, we need to find the expansion of
this solution in the overlap region next. We use the large
argument and order expansion of Kνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
rÞ and

retain terms to leading order in n. We then change
coordinates from r to R using (3.8) which is valid in the
overlap region. The outline of this calculation is given in
Appendix D. In terms of R, the leading order far solution
for ϕ in the overlap region becomes

ϕ ¼ D0R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðk̂2þλ̂2b2Þþ4Ω̂2b2

p
2 : ð4:14Þ

We, henceforth, denote scaled k, λ as k2=n2 ¼ k̂2 and
λ2=n2 ¼ λ̂2. To solve the equations for ψ and η, we will
use (4.13). The η equation (4.10) is tackled first. In this
equation, the term proportional to ψ on the right can be
neglected, due to the f0 term. −2Ωϕ, with ϕ given by
(4.13) appears as a source on the right in this equation.
We can find a particular solution to this equation by
the method of variation of parameters exactly as we
did in the vector case (detailed in Appendix B). The
computation is similar, and the relevant facts are:
the particular solution will decay exponentially as

r → ∞, and will have the power law behavior η ¼
ðconstÞR−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðk̂2þλ̂2b2Þþ4Ω̂2b2

p
2 in the overlap region. A similar

statement can be made for ψ.

B. Near region

For the near-region behavior, it is convenient to
analyze equations (4.5)–(4.7) in the R variable given in
the near region by (3.8). We also expand ϕ, ψ and η in terms
of n as

ψ ¼
X
i≥0

ψ iðRÞ
ni

ϕ ¼
X
i≥0

ϕiðRÞ
ni

η ¼
X
i≥0

ηiðRÞ
ni

:

ð4:15Þ
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Taking the large n limit of (4.5)–(4.7), we obtain

d2ψ
dR2

þ 1

R
dψ
dR

−
�

1

4R2
þ 1

4ðR − 1Þ2R2
−

1

nR2ðR − 1Þ þ
k̂2 þ λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
ψ

¼ −
�

2

n2ðR − 1ÞRþ 2

n3R2
þ 1

R2ðR − 1Þ þ
1

2R2ðR − 1Þ2
�
ϕb2 −

�
4

nRðR − 1Þ −
2

RðR − 1Þ2
�
Ω̂b2η ð4:16Þ

d2ϕ
dR2

þ 1

R
dϕ
dR

−
�

1

4R2
þ 1

4ðR − 1Þ2R2
−

1

nR2ðR − 1Þ þ
k̂2 þ λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
ϕ

¼ −
�

2

n2ðR − 1ÞR −
2

n2R2
þ 1

R2ðR − 1Þ þ
1

2R2ðR − 1Þ2
�
ψ

b2
−
�

2

RðR − 1Þ2
�
Ω̂b2η ð4:17Þ

d2η
dR2

þ 1

R
dη
dR

−
�

1

4R2
þ 3

4ðR − 1Þ2R2
þ 1

R2ðR − 1Þ þ
k̂2 þ λ̂2b2

RðR − 1Þ þ
Ω̂2b2

ðR − 1Þ2
�
η

¼ −
�

1

ðR − 1Þ2R −
2

nðR − 1ÞR
�
Ω̂ϕb2 þ Ω̂

RðR − 1Þ2 ψ : ð4:18Þ

Our notation is k2=n2 ¼ k̂2, λ2=n2 ¼ λ̂2, iω ¼ Ω
and Ω2=n2 ¼ Ω̂2.
We have implicitly used the expansion (4.15) in these

equations. In fact, we are solving for the leading term in the
expansion of ϕ, ψ and η in the large n limit. From the
equations (4.16)–(4.18), it is clear that the leading terms ϕ0,
ψ0 and η0 in the expansion (4.15) all have to be nonzero.
Hence, we will not use the subscripts in the following
equations.
Taking linear combinations of ϕ and ψ simplifies the

system to a great extent. Denote ηb2 ¼ ~η and ϕb2 ¼ ~ϕ,
define

H ¼ ψ þ ~ϕ and G ¼ ψ − ~ϕ: ð4:19Þ

The equation for H decouples as η terms cancel out.

d2H
dR2

þ 1

R
dH
dR

−
�

1

4R2
−

1

4R2ðR − 1Þ2 −
1

R2ðR − 1Þ

þ ðk̂2 þ λ̂2b2Þ
RðR − 1Þ þ Ω̂2b2

ðR − 1Þ2
�
H ¼ 0 ð4:20Þ

This equation can be written as an hypergeometric
equation with regular singular points at 0,1 and ∞ by
making the ansatz H ¼ RðR − 1Þ12þΩ̂bM:

Rð1 − RÞ d
2M
dR2

þ ½3 − ð4þ 2Ω̂bÞR� dM
dR

þ ½ðk̂2 þ λ̂2b2Þ − 3Ω̂b − 2�M ¼ 0: ð4:21Þ

If 1þ 2Ω̂b ≠ m where m is a positive integer, the
solution of this equation is of the form

M ¼ C1Fðp; q; 1þ 2Ω̂b; 1 − RÞ þ C2ð1 − RÞ−2Ω̂b
× Fð3 − p; 3 − q; 1 − 2Ω̂b; 1 − RÞ; ð4:22Þ

where

p ¼ 1

2

h
3þ 2Ω̂b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðk̂2 þ λ̂2b2Þ þ 4Ω̂2b2

q i
q ¼ 1

2

h
3þ 2Ω̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðk̂2 þ λ̂2b2Þ þ 4Ω̂2b2

q i
: ð4:23Þ

In this case, for Ω̂b > 1
2
, there is an unambiguous way

to choose the behavior of the solution at the horizon.
Finiteness of H implies that in the general solution for
M, we must set C2 ¼ 0. For Ω̂b ≤ 1

2
, both linearly

independent solutions for H are finite. Thus there seems
to be some ambiguity in the choice of boundary
condition at the horizon. As in the vector case, we
argue that it is the original perturbation variables that
need to be finite at the horizon. Consulting (4.4) for the
definitions of the variables ϕ, ψ , ~η in terms of W, Y, Z,
we see that finiteness of W, Y, Z at the horizon implies
that C2 ¼ 0 even in this case.
We thus set C2 ¼ 0. Therefore, in the near region,

H ¼ C1RðR − 1Þ12þΩ̂bFðp; q; 1; 1 − RÞ: ð4:24Þ

Even in the case 1þ 2Ω̂b ¼ m, (4.24) is the appropriate
solution for finiteness of the perturbation at the horizon. For
matching, we need to write the asymptotic expansion of the
near-region solution in the overlap region. In order to do
this, we use the standard transformation formula:

H ¼ RðR − 1Þ12þΩ̂bC1Fðp; q; 1þ 2Ω̂b; 1 − RÞ ð4:25Þ
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¼ RðR − 1Þ12þΩ̂bC1½ ~c1R−pFðp; p − 2Ω̂b; p − qþ 1; 1=RÞ
þ ~c2R−qFðq; q − 2Ω̂b; q − pþ 1; 1=RÞ�; ð4:26Þ

where constants ~c1, ~c2 depend on p, q. The asymptotic
expansion forH in the overlap region is obtained by putting
ðR − 1Þ ≈ R and evaluating the hypergeometric functions
in the large R approximation.
The asymptotic expansion of the near-region solution for

H in the overlap region is

H ¼ C1

h
~c1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 þ ~c2R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2

i
:

ð4:27Þ

By the same reasoning as employed in vector case (3.20),
it can be argued that for Ω̂ ≥ 0 and k̂ > 0, the coefficient of
the growing piece ~c1 is never zero for any value of Ω̂.
We would like to do a similar procedure for the other

perturbation equations forG and ~η. The equations forG and
~η in the near region are

d2G
dR2

þ 1

R
dG
dR

−
�

1

4R2
þ 3

4R2ðR − 1Þ2 þ
1

R2ðR − 1Þ þ
ðk̂2 þ λ̂2b2Þ
RðR − 1Þ þ Ω̂2b2

ðR − 1Þ2
�
G

¼ 4Ω̂
RðR − 1Þ2 ~η ð4:28Þ

d2 ~η
dR2

þ 1

R
d~η
dR

−
�

1

4R2
þ 3

4R2ðR − 1Þ2 þ
1

R2ðR − 1Þ þ
ðk̂2 þ λ̂2b2Þ
RðR − 1Þ þ Ω̂2b2

ðR − 1Þ2
�
~η

¼ Ω̂b2

RðR − 1Þ2G: ð4:29Þ

Unfortunately, they are coupled. We cannot solve these
equations analytically in the near region as we did for H.
First, let us consider the special case when either one of G
or ~η is zero. Since the left-hand sides of both (4.28) and
(4.29) have the same differential operator, the two pos-
sibilities are computationally identical. Let us take the case
~η ¼ 0. Then we obtain the following general solution for G
(with ~η ¼ 0):

G ¼ D1ðR − 1Þ12þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þΩ̂2b2

p
Fð ~p; ~q; 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2b2

p
; 1 − RÞ

þD2ðR − 1Þ12−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þΩ̂2b2

p

× Fð1 − ~p; 1 − ~q; 1 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2b2

p
; 1 − RÞ: ð4:30Þ

Here,

~p ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2b2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2 þ λ̂2b2Þ

q
2

and

~q ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2b2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω̂2b2 þ 4ðk̂2 þ λ̂2b2Þ

q
2

:

Finiteness at the horizon implies we must set D2 ¼ 0.
This solution can be written in the overlap region

using the asymptotic expansion of the hypergeometric
function as with H. In the overlap region, the form of G

is nearly identical to (4.27)—the only difference is in
the numerical values of the constants ~c1 and ~c2. As
before coefficient of the growing piece is never zero.
The solution for G in the static limit is given by
plugging Ω̂ ¼ 0 and D2 ¼ 0 in (4.30), since in the
static limit, the equations for G and ~η decouple. The
solution for ~η is identical to that of G in this limit. What
is relevant is that in the asymptotic region, we are still
left with an expansion for either of these functions, of
the form (4.27) with Ω̂ ¼ 0, and the coefficient of the
growing piece nonzero.
Let us now consider the equations for G and ~η in the

general case when they are both coupled. We split the
near region into the very near horizon region and the far
limit of the near region. In the very near horizon region,
we use the approximation R − 1 ≪ 1 so that R ∼ 1 and
keep only the dominant terms with highest powers of
(R − 1) in the denominator in (4.28) and (4.29). This is
the region 1 < R ≪ 2. The far limit of the near region is
defined by the regime where R ≫ 1, so that ðR − 1Þ ≈ R,
which can be applied to the coupled equations (4.28)
and (4.29). We will evaluate the solutions to the coupled
equations in both regimes and present a matching
argument between these two regimes in the ‘overlap’
region 1 < R < 2. We note that the definition of the
overlap region here is not as precise as the overlap
region between the near and far region in the large
n limit.
In the very near horizon region approximation, the

equations (4.28) and (4.29) reduce to
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d2G
dR2

þ dG
dR

þ
�
−
3

4
− Ω̂2b2

�
1

ðR − 1Þ2G ¼ 4Ω̂
ðR − 1Þ2 ~η

ð4:31aÞ

d2 ~η
dR2

þ d~η
dR

þ
�
−
3

4
− Ω̂2b2

�
1

ðR − 1Þ2 ~η ¼
Ω̂b2

ðR − 1Þ2G:

ð4:31bÞ

These equations are still coupled. To simplify them further,
we rewrite (4.31) in terms of the new coordinate
y ¼ lnðR − 1Þ. Also we write G and ~η as

~η ¼ ey=2P G ¼ ey=2Q:

In the very near horizon limit y → −∞, we now obtain
coupled differential equations with constant coefficients
which can be solved analytically,

d2Q
dy2

¼ ð1þ Ω̂2b2ÞQþ 4Ω̂P

d2P
dy2

¼ ð1þ Ω̂2b2ÞPþ Ω̂b2Q:

In the case Ω̂b ≠ 1, the general solutions for ~η and G are

G ¼ C1ð4Ω̂ÞðR − 1Þ32þΩ̂b þ C2ð4Ω̂ÞðR − 1Þ−1
2
−Ω̂b

þ C3ð4Ω̂ÞðR − 1Þ−1
2
þΩ̂b þ C4ð4Ω̂ÞðR − 1Þ32−Ω̂b

ð4:32Þ

~η ¼ C1ð2Ω̂bÞðR − 1Þ32þΩ̂b þ C2ð2Ω̂bÞðR − 1Þ−1
2
−Ω̂b

þ C3ð−2Ω̂bÞðR − 1Þ−1
2
þΩ̂b þ C4ð−2Ω̂bÞðR − 1Þ32−Ω̂b:

ð4:33Þ

As expected, four arbitrary constants characterize the
general solutions for these two coupled ordinary differ-
ential equations. Let us now discuss the boundary con-
ditions. A natural choice is finiteness of G and ~η at the
horizon. However, we recall that it is the original pertur-
bations variables W, Y, Z that need to be finite at the
horizon for consistency of linearized perturbation theory. If
we again refer back to (4.4) for the definitions of the
variables ϕ, ψ , ~η in terms ofW, Y, Z, we see that finiteness
of W, Y, Z at the horizon makes the choice of boundary
conditions very simple. W, Y are related to G by a factor
ðR − 1Þ−1

2. This implies the following: Regardless of the
value of Ω̂b, we must set C2 ¼ 0. For 0 < Ω̂b < 1, C3 ¼ 0

and C1; C4 ≠ 0. For Ω̂b > 1, C4 ¼ 0 and C1; C3 ≠ 0.
A special case is Ω̂b ¼ 1. The solutions for G and ~η for

which the original perturbation variables are finite at the
horizon, are

G ¼ C1ðR − 1Þ52 þ C4ð4Ω̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
R − 1

p
;

~η ¼ C1

b
2
ðR − 1Þ52 − 2C4

ffiffiffiffiffiffiffiffiffiffiffi
R − 1

p
: ð4:34Þ

Let us now look at (4.28), (4.29) in the far limit of the
near region where we consider R to be large. In this limit,
ðR − 1Þ ≈ R:

d2G
dR2

þ 1

R
dG
dR

−
�
1

4
þ k̂2 þ λ̂2b2 þ Ω̂2b2

�
1

R2
G ¼ 4Ω̂

R3
~η

ð4:35Þ

d2 ~η
dR2

þ 1

R
d~η
dR

−
�
1

4
þ k̂2 þ λ̂2b2 þ Ω̂2b2

�
1

R2
~η ¼ Ω̂b2

R3
G:

ð4:36Þ

To analyze this equation, we first consider G and ~η to
have a similar R dependence in the large R limit. In this
case, we can neglect the right-hand side of both the
equations as it will be subleading for large R. The resulting
equations are decoupled and are Euler differential equa-
tions with solution

G ¼ ~η ¼ a1R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 þ a2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 ;

ð4:37Þ

and similarly for ~η.
An alternative scenario in the far limit of the near region

is one where G has a higher power of R than ~η in the far
region. We can then neglect the right-hand side in (4.35).
The solution for G will be same as (4.37). We can solve for
~η using this solution as a source term in (4.36). By doing
this using standard Green’s function methods, we obtain a
solution for ~η which does not tally with the form of the
solution for ~η from the far region. This indicates we cannot
have this alternative scenario. The possibility of ~η having a
higher power of R than G can be ruled out in a similar way.

C. Matching of Solutions

We are investigating if the black string is unstable under
scalar perturbations (λ;Ω > 0). In the overlap region, the
solution from the near region for H is a growing solution

with both exponents of R, R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 and

R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 present and the coefficient of the grow-

ing piece always nonzero.
However, the normalizable solution from the far region is

of the following form in the overlap region:

ϕ ¼ D0R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 ; ð4:38Þ
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with the same exponent for ψ and η as well. SinceG,H and
~η are sums, differences or scalar multiples of ϕ, ψ , η, the
form of H from the far region has only the decaying piece

R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 . Thus there are no unstable modes of the

type H for the black string/brane for scalar perturbations
with angular momentum l ≠ 0.
Further, in the static limit Ω̂ ¼ 0, the same matching

argument can be used to conclude from (4.30) with D2 ¼ 0
that there are no unstable modes of any type (H, G or ~η).
The same statement can also be made in the nonstatic case
when either one of G or ~η is zero.
Let us now consider the general case when both G and

~η are nonzero. In the far limit of the near region, G is of
the form (4.37), and a similar expression holds for ~η
since the equations decouple. In the overlap region
1 < R < 2, the far region (decoupled) solution is of
the form (4.30) with arbitrary constants D1 and D2.
The solution for G from the far limit of the near region,
in the overlap region is

G ¼ D1ðR − 1Þ12þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þΩ̂2b2

p
Fð ~p; ~q; 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2b2

p
; 1 − RÞ

þD2ðR − 1Þ12−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þΩ̂2b2

p

× Fð1 − ~p; 1 − ~q; 1 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2b2

p
; 1 − RÞ: ð4:39Þ

The hypergeometric functions in this expression for G in
the overlap region are expanded as a series in R − 1.
Now, from the very near horizon region, the solutions for
G and ~η are given by (4.33), with finiteness of the
perturbation required at the horizon. For example, let us
consider Ω̂b > 1. In the very near horizon region,

G ¼ C1ð4Ω̂ÞðR − 1Þ32þΩ̂b þ C3ð4Ω̂ÞðR − 1Þ−1
2
þΩ̂b: ð4:40Þ

~η ¼ C1ð2Ω̂bÞðR − 1Þ32þΩ̂b þ C3ð−2Ω̂bÞðR − 1Þ−1
2
þΩ̂b:

ð4:41Þ

If we consider C1; C3 > 0, then in the very near horizon
region, both G and G0 are positive. Similarly, if both
C1; C3 < 0 then both G and G0 are negative. If C1 > 0,
C3 < 0, then both ~η and ~η0 are positive. If C1 < 0,
C3 > 0, then both ~η and ~η0 are negative. Thus, irrespec-
tive of the sign of the constants, either one of the two
functions, G or ~η will be such that the function and its
derivative are of the same sign in the very near horizon
region. For example, let this function be G. It needs to
match with the expression for G from the far limit of the
near region (4.30) in the overlap region for some D1 and
D2. We cannot match exact powers of (R − 1) from both
sides, as this overlap region is not very precisely defined.
The exponents coming from the very near horizon region
depend crucially on the coupling terms, whereas in the
far limit of the near region, the solutions are decoupled.

However, if Ω̂ is large and b > 1, the coupling terms will
not be significant in the overlap region. This can be seen
from the equation for G, (4.28) for example, where the
coupling term is 4Ω̂

RðR−1Þ2 ~η. A comparable term on the left

is Ω̂2b2

ðR−1Þ2 G which in the overlap region could be larger

than the coupling term for sufficiently large Ω̂. We can
match features of the solutions from both sides. Let G
and G0 have the same sign from the very near horizon
region. Then at leading order in (R − 1), in order to
match this feature with (4.30), we need D1 ≠ 0, since a
solution with D1 ¼ 0 will have a sign opposite to its
derivative. If D1 ≠ 0, then in the far limit of the near
region, we will have an expansion containing a piece

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 which will not match with the solution

from the asymptotic region. Thus, G must be the trivial
solution. Plugging this in the equation for ~η, we can
conclude the same for it.
This heuristic argument is not as water-tight as the case

of the perturbationH due to the overlap region between the
very near horizon region and the far limit of the near region
not being very precisely defined. However, since the
problematic coupling terms are not significant for Ω̂ large,
we do not believe there are any unstable modes of the form
G or ~η at least in that case.
We can discuss the case of λ andΩ being lower order in n

by setting them to zero. This is still no match between the
near and far region solutions. We cannot set k ¼ 0 since we
are considering nonspherically symmetric modes.
If we wish to study stable oscillatory modes with real

ω ¼ −iΩ, then in the far region, modified Bessel functions
are replaced by Bessel functions. In this case, normal-
izability of the perturbation allows for both the linearly
independent Bessel functions. Thus, in the overlap region,
the far region solution is an arbitrary linear combination of

both R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 and R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 . This can be

matched to any solution from the near region, such as one
obeying quasinormal mode boundary conditions. The
technique of matched asymptotic expansions yields an
approximate solution.

V. SUMMARY

In this paper, we report on substantial progress in the
analysis of nonspherically symmetric perturbations of the
black string/flat black brane. The perturbations are decom-
posed in terms of the scalar, vector and tensor spherical
harmonics on the n-sphere part of the brane metric. By an
appropriate choice of gauge, and by generalizing pertur-
bation variables introduced by Ishibashi and Kodama for
black hole perturbation theory, we have rewritten the brane
perturbation equations in a vastly simplified form. The
tensor perturbations which reduce to an ODE for a single
function have already been discussed in [16] and do not
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lead to instabilities. It is the vector and scalar perturbations
that have eluded analysis before. In our formulation, the
vector perturbations reduce to a system of two coupled
ODEs. The scalar perturbations reduce to three coupled
ODEs. To analyze stability of the black string/brane, we
have assumed a time behavior eΩt for the perturbations, and
investigated if there are normalizable solutions to the
perturbation equations with Ω real and positive.
A breakthrough in the analysis of the vector and scalar

perturbations comes from the use of the large n limit of
general relativity [14,15]. The vector equations decouple
in the near-horizon region and the asymptotic region. Due
to the large n limit, these regions are well defined, and
we employ the technique of matched asymptotic expan-
sions to rule out instabilities. We require finiteness of the
perturbations at the horizon for consistency of perturba-
tion theory and normalizability asymptotically. One minor
detail in the vector perturbations is that defining Ω ¼ nΩ̂,
for 0 < Ω̂b < 1 (r ¼ b being the horizon location), both
linearly independent solutions to each equation are not
finite at the horizon. We, therefore, need Ω̂b ≥ 1. We do
not understand if this is of any significance in the large n
limit. Static perturbations with Ω̂ ¼ 0 do not lead to
instabilities.
Of the three scalar perturbation equations, one decou-

ples in the near-horizon and asymptotic regions. As in
the vector case, we show this does not lead to insta-
bilities. The other two perturbations remain coupled in
the near-horizon region, although they can be solved
asymptotically. If any one of them is zero, the other
does not lead to instabilities. In the case when both are
nonzero, we employ a two step matching procedure. We
split the near-horizon region into two regions with an
overlap, solve the two coupled equations in the two
regions, and match their features in the overlap region.
We then argue that this solution does not match with the
asymptotic solution, and that these perturbations cannot
also lead to instability. The split of the near-horizon
region into two, and the overlap region of the two is not
as neat as the large n split of the spacetime into a near-
horizon and far region. However, for reasons outlined at
the end of Sec. IV, we believe these perturbations do not
lead to instability. In the static limit Ω ¼ 0, we can show
that none of the three scalar perturbations leads to an
instability.
Taken together, these results in the large n limit provide

direct evidence from the analysis of the equations them-
selves that the Gregory-Laflamme instability is the only
instability of the flat black brane. We have also shown that
the corresponding Gross-Perry-Yaffe mode for semiclass-
ical black hole perturbations is the unique unstable mode in
the large n limit. The above analysis can also be used to
study stable perturbations with time dependence eiωt, such
as quasinormal modes. In this case, the matching procedure
we have outlined can be used to obtain the quasinormal

mode frequencies and approximate analytical solutions for
the perturbations.

VI. DISCUSSION

The results of this paper have demonstrated the power
of the large D limit of general relativity in tackling
difficult problems in black brane perturbation theory. This
has many immediate applications. As a natural next step,
we are working on the nonspherically symmetric quasi-
normal modes of the black string in this limit. Computing
the leading-order quasinormal modes is very simple given
the results of our paper. However, we need an under-
standing of the effect of 1=D corrections on the modes
computed by matching the near-region and far-region
solutions at leading order. We have not considered these
corrections in our paper because we have done a stability
analysis for which there are no unstable modes at the
leading order and no match between the near region and
asymptotic solutions.
Other projects we hope to address immediately are a

study of brane perturbations with a nonzero cosmological
constant, as well as an analysis of the perturbations of
charged black p-branes considered by Gregory and
Laflamme in [2]. It was found in [2] that the GL instability
disappears for the extremal black p-brane. It would be
interesting to know how the perturbation analysis of non-
spherically symmetric perturbations of extremal black p-
branes differs from the nonextremal ones.
Our simplified perturbation equations are amenable to a

numerical study to investigate several aspects of stable
black brane perturbations. We hope this work also serves as
a pointer for tackling more difficult problems such as a
direct study of nonspherically symmetric perturbations of
curved black branes.

APPENDIX A: TENSOR PERTURBATIONS

For n ≥ 3, we consider metric perturbations proportional
to the tensor spherical harmonics Tij on Sn, which are
symmetric tensors defined by

ðΔ̂n þ k2TÞTij ¼ 0; Ti
i ¼ 0; D̂jT

j
i ¼ 0:

k2T ¼ lðlþ n − 1Þ − 2; l ¼ 1; 2;…: ðA1Þ

These metric perturbations satisfy hab ¼ hai ¼ 0;
hij ¼ 2rð4−nÞ=2ΦTij. For these perturbations of the black

string, we assume the ansatz Φðt; r; zÞ ¼ ~ΦðrÞeiωteiλTz.
Unstable (normalizable) modes of the string correspond
to imaginary values of ω. The equation for ~Φ follows from
the Einstein equations. This was derived in [18] for static
perturbations with ω ¼ 0, and the time dependence adds
only one extra term. Defining the coordinate r� by
dr� ¼ dr=f, the equation for ~Φ is of the form
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�
−

d2

dr2�
þ V

�
~Φ ¼ ω2 ~Φ; ðA2Þ

where

VðrÞ ¼ f
r2

�
k2T þ 2nþ ðn2 − 10nþ 8Þ

4
þ n2

4

�
b
r

�
n−1

�
þ λ2Tf:

As can be seen, this potential is positive, and thus there are
no normalizable solutions to (A2) with ω pure imaginary.
The black string is stable under this class of perturbations,
and with ω ¼ 0, this also proves the semi-classical stability
of the Schwarzschild-Tangherlini black holes under tensor
perturbations without the need to resort to a large n limit.
This analysis has been done by H Kodama [16] and in the
context of stability of the Schwarzschild-Tangherlini metric
under Ricci flow, in [18].
Kudoh [17] has analyzed the tensor and vector pertur-

bations of the black string, and a numerical analysis of
scalar perturbations in an approximation. This has been
done using the IK variables. However, the work suffers
from serious errors. For example, a cross-check is that the
eigenvalue equation (A2) must reduce to the linearized
Einstein equations on Schwarzschild-Tangherlini black
holes for λ ¼ 0, given in Ishibashi and Kodama’s paper
[20] as well as older work of Gibbons and Hartnoll [19].
It indeed does. However, Kudoh’s equation for tensor
perturbations, given by equation (39) in [17], does not
match (A2) and does not reduce to the relevant equations of
Ishibashi and Kodama, or Gibbons and Hartnoll upon
setting λ ¼ 0. We believe the likely errors are typos in
the coefficients of the f and f0 terms in equation (39) in
[17]. Similarly for the vector case, it is claimed in [17] that
the equations for ðFr; FtÞ completely decouple. We explic-
itly show that the same equations do not decouple even in
the large n limit. Our equations in the vector case match
those of H Kodama in [16]—Kodama uses gauge invariant
variables on the brane, and we use a gauge-fixed formalism.
However, this only results in an extra constraint and
equation in Kodama’s case. Thus we believe that there
are errors in the analysis of Kudoh [17] that invalidate many
of the claims in that paper.

APPENDIX B: HANDLING SOURCE TERMS

Here, we take as an example, the first of the equa-
tions (3.15), which is given by

d2A
dr2

þ n
r
dA
dr

þ
�
−
k2v
r2

− λ2 −Ω2

�
A ¼

�
2

r

�
ΩB: ðB1Þ

In subsection (III.2), B was evaluated and found to be

r−ðn−1Þ=2KνðνzÞ where z ¼
ffiffiffiffiffiffiffiffiffiffi
λ2þΩ2

p
ν r. Let us take

A ¼ r−ðn−1Þ=2S. Then the equation (B1) becomes a modi-
fied Bessel equation with source terms. This is

d2S
dz2

þ 1

z
dS
dz

−
�
1þ ν2

z2

�
S ¼ 2Ω̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ̂2 þ Ω̂2
z

q KνðνzÞ: ðB2Þ

The Wronskian of the two linearly independent solutions
to the homogeneous equation W½IνðνzÞ; KνðνzÞ� ¼ 1

z. We
use the method of variation of parameters to write the
solution to (B2). This takes the form (replacing

dz ¼
ffiffiffiffiffiffiffiffiffiffi
λ2þΩ2

p
ν dr)

S ¼ −
2Ω̂
ν

IνðνzÞ
Z

ðKνðνzÞÞ2dr

þ 2Ω̂
ν

KνðνzÞ
Z

KνðνzÞIνðνzÞdr: ðB3Þ

Inserting the asymptotic expansions for modified
Bessel equations for large argument and order, we note
that as r → ∞, S → 0 exponentially as e−νz. In the
overlap region, we can change variables from r to R
using (3.8) and KνðνzÞIνðνzÞ ∼ ½1þ ðλ2þΩ2

ν2
Þb2�−1=2. We

have dr ∼ dR=R, and from Appendix D we observe
that in the large n approximation in the overlap region,
KνðνzÞ ¼ cR−d where c is a constant and d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4Ω̂2b2þ4ðk̂2vþλ̂2b2Þ
p

2
. By a similar computation, IνðνzÞ ¼

~cRd. Using this, we evaluate (B3) in the overlap
region to obtain S ¼ ðconstÞR−d, and A ¼ r−ðn−1Þ=2S ¼
ðconstÞR−1=2−d.

APPENDIX C: EQUATIONS FOR SCALAR
PERTURBATIONS

In this section, we give an outline of the procedure to get
equations in terms of W, Y, Z variables. We first write
equations 2δGμν ¼ −λ2hμν in terms of these.
Equation for δGti:

∂tW þ ∂rZ ¼ λ2rn−2
�
Xt þ

1

k2
∂tðr2HTÞ

�
: ðC1Þ

Equation for δGri:

∂rY þ f0

2f
Y −

f0

2f
W −

1

f2
∂2
t Z

¼ λ2rn−2
�
Xr þ

1

k2
∂rðr2HTÞ

�
: ðC2Þ

Equation for δGr
t :
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�
k2

r2
− f00 −

nf0

r

�
Z þ f∂t∂rY þ

�
2f
r
−
f0

2

�
∂tY þ f∂t∂rW −

�ðn − 2Þf
r

þ f0

2

�
∂tW ¼ −λ2rn−2frt

−
2λ2

nk2

�
n∂t∂rðr2HTÞ −

nf0

2
∂rðr2HTÞ

�
: ðC3Þ

Equation for δGr
r:

1

f
∂2
t W −

f0

2
∂rW þ 1

f
∂2
t Y −

�
f0

2
þ nf

r

�
∂rY þ

�
n − 1

r2
ðf − 1Þ þ ðnþ 2Þf0

2r
þ f00

n

�
W

þ
�
1 − f
r2

−
3n − 2

2r
f0 −

n − 1

n
f00 þ k2 − nK

r2

�
Y þ 2n

rf
∂tZ ¼ −λ2rn−2frr

−
2λ2

nk2

�
−
nk2

r2
ðHTr2Þ −

n
f
∂2
t ðr2HTÞ þ

nf0

2
∂rðr2HTÞ þ

n2f
r

∂rðr2HTÞ
�

ðC4Þ

Equation for δGi
i:

1

2f
∂2
t W þ f0

4
∂rW −

f
2
∂2
rY −

�
3f0

4
þ f

r

�
∂rY þ

�ðn − 1Þðn − 2Þðf − 1Þ
2nr2

þ ð6n − 4 − n2Þf0
4nr

þ f00

2n

�
W

þ
�ðn − 1Þðn − 2Þðf − 1Þ

2nr2
þ ð−n2 þ 2n − 4Þf0

4nr
−
ðn − 1Þf00

2n

�
Y

þ
�
1

rf
−

f0

2f2

�
∂tZ þ 1

f
∂t∂rZ ¼ −λ2rn−2HL −

λ2

nk2

�ðn − 1Þk2
r2

ðHTr2Þ

− nf∂2
rðr2HTÞ þ

n
f
∂2
t ðr2HTÞ − nf0∂rðr2HTÞ −

nðn − 1Þf
r

∂rðr2HTÞ
�
: ðC5Þ

Equation for δGt
t:

− f∂2
rW þ

�
n − 4

r
f −

f0

2

�
∂rW − f∂2

rY −
�
f0

2
þ 4f

r

�
∂rY

−
�
n − 1

r2
−
ð2n − 3Þf

r2
þ n − 2

2r
f0 þ n − 1

n
f00 −

k2

r2

�
W

−
�
n − 1

r2
−
n − 3

r2
f þ ðn − 2Þf0

2r
−
f00

n

�
Y ¼ −λ2rn−2ftt

−
2λ2

nk2

�
−
nk2

r2
ðHTr2Þ þ nf∂2

rðr2HTÞ þ
nf0

2
∂rðr2HTÞ þ

n2f
r

∂rðr2HTÞ
�
: ðC6Þ

As discussed before, the right-hand side of these equations has components of ðfab; Xa;HL;HTÞ. To get them in terms of
W, Y, Z, we have to combine these equations. Let us expand our variables in terms of these components:

W
rn−2

¼ ftt −
2

f
∂tXt þ

�
f0 −

2f
r

�
Xr − 2HL −

2HT

n

Y
rn−2

¼ frr þ 2f∂rXr þ
�
f0 −

2f
r

�
Xr − 2HL −

2HT

n
Z

rn−2
¼ frt þ f∂rXt þ f∂tXr − f0Xt:

The finalW, Y and Z equations are as follows: Looking at the expression of Z, we see that adding (C3) and derivatives of
(C1) and (C2) with appropriate coefficients will give the right-hand side of the resulting equation in terms of the Z variable:
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∂2
rZ −

1

f2
∂2
t Z −

�ðn − 2Þ
r

þ f0

f

�
∂rZ −

�
k2

fr2
−
f00

f
−
nf0

fr

�
Z

−
�
2

r
−
f0

f

�
∂tY −

f0

f
∂tW ¼ λ2

f
Z: ðC7Þ

Similarly adding (C4), the derivative of (C2) and (C5) will give us the equation for Y.

∂2
rY −

1

f2
∂2
t Y −

�
n
r
−
f0

f

�
∂rY −

�
−
2ðn − 1Þ
nr2f

þ −n2 þ 2n − 2

nr2
þ ð2 − nÞ

nrf
f0 −

f00

f
þ f02

2f2
þ k2

r2f

�
Y

−
�
−
2ðn − 1Þ
nr2f

þ 2n − 2

nr2
þ 2 − n

nrf
f0 þ f00

f
−

f02

2f2

�
W þ 2f0

f3
∂tZ ¼ λ2

f
Y: ðC8Þ

To obtain the equation for W, we add (C6), the derivative of (C1), (C5) and (C2):

∂2
rW −

1

f2
∂2
t W −

�ðn − 4Þ
r

−
f0

f

�
∂rW −

�
−
2ðn − 1Þ
nr2f

þ n2 − 2

nr2
þ ð2 − 3nÞ

nrf
f0 −

f00

f
þ f02

2f2
þ k2

r2f

�
W

−
�
−
2ðn − 1Þ
nr2f

−
2

nr2
þ 2þ n

nrf
f0 þ f00

f
−

f02

2f2

�
Y −

�
2f0

f3
−

4

rf2

�
∂tZ ¼ λ2

f
W: ðC9Þ

We see that the extra HT terms automatically vanish
and the equations are coupled. In the static limit, the Z
equation decouples and we get coupled equations
for ðW;YÞ.

APPENDIX D: EXPANSION OF MODIFIED
BESSEL FUNCTIONS

In this section, we write the expansion of
Kνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þΩ2

p
rÞ in terms of R. In the modified Bessel

function Kνð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
rÞ, both the Bessel function order ν

and argument
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ Ω2

p
r are of the same order in n. As we

are working in the large n approximation, we have to use
expansions for modified Bessel functions of large order and
large argument.
Let us denote κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þΩ2

p
. For simplicity of calcu-

lation, we define a new coordinate z ¼ κr=ν. Here,

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 1

4
þ k2

r
≈
n
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k̂2

p
: ðD1Þ

The far region solution (4.13) can now be written as

ϕ ¼ D2

ν

κ

ffiffiffi
z

p
KνðνzÞ:

The large order and large argument expansion of this
expression is

ffiffiffi
z

p
KνðνzÞ ¼

ffiffiffiffiffi
π

2ν

r ffiffiffi
z

p
ð1þ z2Þ1=4 e

−νη
�
1þ

X∞
m¼1

ð−1Þm umð~tÞ
νm

�
;

ðD2Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ ln

�
z

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
�

~t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p

and umð~tÞ are polynomials in ~t. We are only considering
terms to highest order in n. We ignore the polynomial terms
as they are divided by ν. Substituting for η we get, up to a
constant,

ffiffiffi
z

p
KνðνzÞ ≈

1

zν
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ

ffiffiffi
z

p
ð1þ z2Þ1=4

× exp½−ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
�: ðD3Þ

In order to express KνðνzÞ in the overlap region, we
write this expression in terms of R. Here, R ¼ rn−1

bn−1. To
expand the expression in orders of n, we use the
following definition of r in terms of R, valid in the
overlap region,

r ¼ b

�
1þ lnR

n − 1

�
:

We will now look at each term in (D3) individually. For
zν, the term is directly proportional to rn. Hence, we use the
definition rn ¼ bnR for large n:

1

zν
¼

�
ν

κ

�
ν 1

rν
¼

�
ν

κ

�
ν

b−νR−ν
n ¼

�
ν

κb

�
ν

R−
ffiffiffiffiffiffiffi
1þ4k̂2

p
2 : ðD4Þ
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The next term becomes

½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
�ν

¼ exp

�
ν ln

�
1þ

�
1þ κ2b2

ν2

��
1þ 2

lnR
n

��
1=2

��

¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2b2

ν2

s �ν

exp

� κ2b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2b2

ν2

q
νnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2b2

ν2

q
Þ
lnR

�
:

ðD5Þ

κ and ν are of order n. Hence, the constant multiplying
lnR is of order 1. Similarly, substituting for z, we get

exp½−ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
� ¼

�
1þ κ2b2

ν2

�−ν=2

× exp

"
−κ2b2

nν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2b2

ν2

q lnR

#
: ðD6Þ

The coefficient of lnR is of order 1 in this term. The
remaining term in (D3) becomes

ffiffiffi
z

p
ð1þ z2Þ1=4 ¼

�
1þ ν2

κ2b2

�−1=4

× exp

�
ν2

2nκ2b2

�
1þ ν2

κ2b2

�−1
lnR

�
: ðD7Þ

Here, the constant multiplying lnR is of order 1=n.
Therefore, this term is subleading in comparison with the
other terms in expansion. We are interested in terms that are
leading order in n. In the final expression, we neglect this
term. Substituting all the expressions in R back in (D3), we
get the following expression for ϕ (we have absorbed all the
constants in D0):

ϕ ¼ D0R−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 : ðD8Þ

Notice that in the final expression, we have neglected
terms coming from

ffiffiffi
z

p
as they are subleading. Hence, we

can write

KνðνzÞ ¼ ðconstÞR−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 : ðD9Þ

Expansion for the modified Bessel function of first kind
IνðνzÞ for large order and large argument is

IνðνzÞ ¼
1ffiffiffiffiffiffiffiffi
2πν

p 1

ð1þ z2Þ1=4 e
νη

�
1þ

X∞
m¼1

umð~tÞ
νm

�
: ðD10Þ

We can obtain expansion of IνðνzÞ in the overlap region
in the large n approximation by replacing ð−νÞ by ν in the
expansion of KνðνzÞ. The final expression for Iν is

IνðνzÞ ¼ ðconstÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4Ω̂2b2þ4ðk̂2þλ̂2b2Þ

p
2 : ðD11Þ

[1] R. Gregory and R. Laflamme, Black Strings and p-Branes
are Unstable, Phys. Rev. Lett. 70, 2837 (1993).

[2] R. Gregory and R. Laflamme, Evidence for the stability of
extremal black p-branes, Phys. Rev. D 51, R305 (1995).

[3] B. Kol, The phase transition between caged black holes and
black strings: A review, Phys. Rep. 422, 119 (2006).

[4] D. J. Gross, M. J. Perry, and L. G. Yaffe, Instability of flat
space at finite temperature, Phys. Rev. D 25, 330 (1982).

[5] H. S. Reall, Classical and thermodynamic stability of black
branes, Phys. Rev. D 64, 044005 (2001).

[6] T. Harmark, V. Niarchos, and N. A. Obers, Instabilities of
black strings and branes, Classical Quantum Gravity 24, R1
(2007).

[7] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[8] S. S. Gubser and I. Mitra, Instability of charged black holes
in anti-de Sitter space, arXiv:hep-th/0009126.

[9] S. S. Gubser and I. Mitra, The evolution of unstable black
holes in anti-de Sitter space, J. High Energy Phys. 08 (2001)
018.

[10] T. Hirayama, G. Kang, and Y. Lee, Classical stability of
charged black branes and the Gubser-Mitra conjecture,
Phys. Rev. D 67, 024007 (2003).

[11] J. L. Hovdebo and R. C. Myers, Black rings, boosted strings
and Gregory Laflamme, Phys. Rev. D 73, 084013 (2006).

[12] U. Miyamoto, Analytic evidence for the Gubser-Mitra
conjecture, Phys. Lett. B 659, 380 (2008).

[13] V. Cardoso and O. J. C. Dias, Rayleigh-Plateau and Gregory
Laflamme instabilities of black strings, Phys. Rev. Lett. 96,
181601 (2006).

[14] V. Asnin, D. Gorbonos, S. Hadar, B. Kol, M. Levi, and U.
Miyamoto, High and low dimensions in the black hole
negative mode, Classical Quantum Gravity 24, 5527 (2007).

[15] R. Emparan, R. Suzuki, and K. Tanabe, The large D limit of
General Relativity, J. High Energy Phys. 06 (2013) 009.

NONSPHERICALLY SYMMETRIC BLACK STRING … PHYSICAL REVIEW D 93, 124002 (2016)

124002-19

http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevD.51.R305
http://dx.doi.org/10.1016/j.physrep.2005.10.001
http://dx.doi.org/10.1103/PhysRevD.25.330
http://dx.doi.org/10.1103/PhysRevD.64.044005
http://dx.doi.org/10.1088/0264-9381/24/8/R01
http://dx.doi.org/10.1088/0264-9381/24/8/R01
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://arXiv.org/abs/hep-th/0009126
http://dx.doi.org/10.1088/1126-6708/2001/08/018
http://dx.doi.org/10.1088/1126-6708/2001/08/018
http://dx.doi.org/10.1103/PhysRevD.67.024007
http://dx.doi.org/10.1103/PhysRevD.73.084013
http://dx.doi.org/10.1016/j.physletb.2007.10.088
http://dx.doi.org/10.1103/PhysRevLett.96.181601
http://dx.doi.org/10.1103/PhysRevLett.96.181601
http://dx.doi.org/10.1088/0264-9381/24/22/015
http://dx.doi.org/10.1007/JHEP06(2013)009


[16] H. Kodama, Perturbations and stability of higher dimen-
sional black holes, Lect. Notes Phys. 769, 427 (2009).

[17] H. Kudoh, Origin of black string instability, Phys. Rev. D
73, 104034 (2006).

[18] S. Dutta and V. Suneeta, Investigating stability of a class of
black hole spacetimes under Ricci flow, Classical Quantum
Gravity 27, 075012 (2010).

[19] G. Gibbons and S. Hartnoll, Gravitational instability in
higher dimensions, Phys. Rev. D 66, 064024 (2002).

[20] A. Ishibashi and H. Kodama, Perturbations and stability of
black holes in higher dimensions, Prog. Theor. Phys. Suppl.
189, 165 (2011).

[21] A. Ishibashi, H. Kodama, and O. Seto, Brane world
cosmology—Gauge invariant formalism for perturbation,
Phys. Rev. D 62, 064022 (2000).

[22] R. A. Konoplya, K. Murata, J. Soda, and A. Zhidenko,
Looking at the Gregory-Laflamme instability through qua-
sinormal modes, Phys. Rev. D 78, 084012 (2008).

[23] A. O. Starinets, Quasinormal modes of near-extremal black
branes, Phys. Rev. D 66, 124013 (2002).

[24] P. K. Kovtun and A. O. Starinets, Quasinormal modes and
holography, Phys. Rev. D 72, 086009 (2005).

[25] R Emparan and K Tanabe, Universal quasinormal modes of
large D black holes, Phys. Rev. D 89, 064028 (2014).

[26] R. Emparan, R. Suzuki, and K. Tanabe, Instability of
rotating black holes: large D analysis, J. High Energy Phys.
06 (2014) 106.

[27] R. Emparan, R. Suzuki, and K. Tanabe, Decoupling and
non-decoupling dynamics of large D black holes, J. High
Energy Phys. 07 (2014) 113.

[28] R. Emparan, R. Suzuki, and K. Tanabe, Quasinormal modes
of (Anti)-de Sitter black holes in the 1=D expansion, J. High
Energy Phys. 04 (2015) 085.

[29] R. Emparan, D. Grumiller, and K. Tanabe, Large D gravity
and Low D strings, Phys. Rev. Lett. 110, 251102 (2013).

[30] R. A. Konoplya and A. Zhidenko, Instability of D dimen-
sional extremally charged Reissner-Nordstrom (de Sitter)

black holes: Extrapolation to arbitrary D, Phys. Rev. D 89,
024011 (2014).

[31] O. J. C. Dias, G. S. Hartnett, and J. E. Santos, Quasinormal
modes of asymptotically flat rotating black holes, Classical
Quantum Gravity 31, 245011 (2014).

[32] R. Suzuki and K. Tanabe, Stationary black holes: Large D
analysis, J. High Energy Phys. 09 (2015) 193.

[33] R. Suzuki and K. Tanabe, Non-uniform black strings and the
critical dimension in the 1/D expansion, J. High Energy
Phys. 10 (2015) 107.

[34] K. Tanabe, Black rings at large D, J. High Energy Phys. 02
(2016) 151.

[35] K. Tanabe, Instability of de Sitter–Reissner-Nordstrom
black hole in the 1/D expansion, arXiv:1511.06059.

[36] B. Chen, Z.-Y. Fan, P. Li, and W. Ye, Quasinormal modes of
gauss-Bonnet black holes at large D, J. High Energy Phys.
01 (2016) 085.

[37] R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe, and T.
Tanaka, Effective theory of black holes in the 1/D expan-
sion, J. High Energy Phys. 06 (2015) 159.

[38] R. Emparan, R. Suzuki, and K. Tanabe, Evolution and
Endpoint of the Black String Instability: Large D Solution,
Phys. Rev. Lett. 115, 091102 (2015).

[39] R. Emparan, K. Izumi, R. Luna, R. Suzuki, and K. Tanabe,
Hydro-elastic complementarity in black branes at large D,
arXiv:1602.05752.

[40] S. Bhattacharyya, A. De, S. Minwalla, R. Mohan, and A.
Saha, A membrane paradigm at large D, J. High Energy
Phys. 04 (2016) 076.

[41] S. Bhattacharyya, M. Mandlik, S. Minwalla, and S. Thakur,
A charged membrane paradigm at large D, J. High Energy
Phys. 04 (2016) 128.

[42] H. Kodama and A. Ishibashi, A master equation for
gravitational perturbation of maximally symmetric black
holes in higher dimensions, Prog. Theor. Phys. 110, 701
(2003).

AMRUTA SADHU and VARDARAJAN SUNEETA PHYSICAL REVIEW D 93, 124002 (2016)

124002-20

http://dx.doi.org/10.1007/978-3-540-88460-6
http://dx.doi.org/10.1103/PhysRevD.73.104034
http://dx.doi.org/10.1103/PhysRevD.73.104034
http://dx.doi.org/10.1088/0264-9381/27/7/075012
http://dx.doi.org/10.1088/0264-9381/27/7/075012
http://dx.doi.org/10.1103/PhysRevD.66.064024
http://dx.doi.org/10.1143/PTPS.189.165
http://dx.doi.org/10.1143/PTPS.189.165
http://dx.doi.org/10.1103/PhysRevD.62.064022
http://dx.doi.org/10.1103/PhysRevD.78.084012
http://dx.doi.org/10.1103/PhysRevD.66.124013
http://dx.doi.org/10.1103/PhysRevD.72.086009
http://dx.doi.org/10.1103/PhysRevD.89.064028
http://dx.doi.org/10.1007/JHEP06(2014)106
http://dx.doi.org/10.1007/JHEP06(2014)106
http://dx.doi.org/10.1007/JHEP07(2014)113
http://dx.doi.org/10.1007/JHEP07(2014)113
http://dx.doi.org/10.1007/JHEP04(2015)085
http://dx.doi.org/10.1007/JHEP04(2015)085
http://dx.doi.org/10.1103/PhysRevLett.110.251102
http://dx.doi.org/10.1103/PhysRevD.89.024011
http://dx.doi.org/10.1103/PhysRevD.89.024011
http://dx.doi.org/10.1088/0264-9381/31/24/245011
http://dx.doi.org/10.1088/0264-9381/31/24/245011
http://dx.doi.org/10.1007/JHEP09(2015)193
http://dx.doi.org/10.1007/JHEP10(2015)107
http://dx.doi.org/10.1007/JHEP10(2015)107
http://dx.doi.org/10.1007/JHEP02(2016)151
http://dx.doi.org/10.1007/JHEP02(2016)151
http://arXiv.org/abs/1511.06059
http://dx.doi.org/10.1007/JHEP01(2016)085
http://dx.doi.org/10.1007/JHEP01(2016)085
http://dx.doi.org/10.1007/JHEP06(2015)159
http://dx.doi.org/10.1103/PhysRevLett.115.091102
http://arXiv.org/abs/1602.05752
http://dx.doi.org/10.1007/JHEP04(2016)076
http://dx.doi.org/10.1007/JHEP04(2016)076
http://dx.doi.org/10.1007/JHEP04(2016)128
http://dx.doi.org/10.1007/JHEP04(2016)128
http://dx.doi.org/10.1143/PTP.110.701
http://dx.doi.org/10.1143/PTP.110.701

