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The Kerr solution in coordinates corotating with the horizon is studied as a testbed for a spacetime with a
helical Killing vector in the Ernst picture. The solution is numerically constructed by solving the Ernst
equation with a spectral method and a Newton iteration. We discuss convergence of the iteration for several
initial iterates and different values of the Kerr parameters.
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I. INTRODUCTION

Binary black holes in the latest stage before an eventual
merger were generally seen as the most promising sources
of gravitational waves to be detected with current ground-
based interferometers, and this has been done just recently
in Ref. [1]. Solutions to the Einstein equations for such
configurations can only be found numerically with current
knowledge, and considerable progress has been made in
the last decade in this context; see for instance Ref. [2]
for a recent review of the field. It is generally assumed
that there is a quasistationary phase of such a system before
the inspiral where the change of the radius of the binary
orbit due to emitted gravitational radiation is relatively
small during one complete turn. Detweiler [3–5] suggested
approximating this quasicircular phase by a system where
the outgoing radiation is exactly compensated by incoming
radiation. This approximation had been previously used
for binary charges of opposite sign in Maxwell theory by
Schönberg [6] and Schild [7].
In a general-relativistic context, this approximation

corresponds to the presence of a helical Killing vector.
For the phase of quasicircular orbits of binary systems, this
concept has proven very fruitful in numerical computations;
see for instance Refs. [8–20] and references therein.
Interesting numerical concepts have been developed in
these references; see also Refs. [21–23]. Helical Killing
vectors have also proven to be useful in post-Newtonian
calculations [24–26].
Spacetimes with a helical Killing vector are also inter-

esting from a mathematical point of view. If such a Killing
vector is global, the spacetime cannot have a regular null
infinity; see Refs. [27,28]. Loosely speaking the reason for
this is that the incoming radiation needed to compensate the
outgoing radiation in a nonlinear theory does not allow for
a regular null infinity. As discussed for instance in Ref. [29]

in a formal expansion, invariants of the Weyl tensor should
have an oscillation point at null infinity. A characteristic
feature of a helical Killing vector is the change of sign of its
norm at the light cylinder, a surface of cylindrical topology.
This can be understood most easily in Minkowski space-
time where ξ ¼ ∂t þ Ω∂ϕ with Ω ¼ const is a helical
Killing vector in standard cylindrical coordinates, i.e.,
one just passes into a rotating frame. The norm of the
Killing vector is in this case f ¼ 1 −Ω2ρ2, and the light
cylinder corresponds to ρc ¼ 1=Ω. In the rotating frame,
the helically reduced flat d’Alembert operator reads

L ≔ ∂ρρ þ
1

ρ
∂ρ þ ∂zz þ ð1 −Ω2ρ2Þ 1

ρ2
∂ϕϕ: ð1Þ

Inside the light cylinder the operator is elliptic, while
outside it is hyperbolic. Such spacetimes with signature
changes appear also in other relativistic contexts; see
Ref. [30]. Equations of mixed type are often a consequence
of symmetry reductions as here where the norm of the
Killing vector changes sign; see Ref. [31]. Operators of the
type (1) belong to the symmetric positive equations dis-
cussed in Refs. [32] and [33]. Questions of the existence
and uniqueness of solutions for equations in the context of
helical Killing vectors were discussed in Refs. [34,35], and
in a general context in Refs. [36–38]. Concrete examples
for helical Killing vectors in various settings were dis-
cussed in Refs. [39–42].
In Ref. [29] the existence of a helical Killing vector in a

spacetime was to used to factorize the metric with respect to
the symmetry in a projection formalism first applied by
Ehlers [43]; see also Refs. [44,45]. In this case the Einstein
equations can be written in the form of a complex Ernst
equation [46] which replaces the constraint equations in a
standard 3þ 1 decomposition. The remaining Einstein
equations describe a model of three-dimensional gravity
coupled to a sigma model; see Refs. [47,48].
This rather elegant form of the equations has the

disadvantage that the Killing horizons and the light cylinder
are singularities of the equations. Thus it is not clear
whether they are useful for numerical computations.
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To address this question, we study in this paper for a simple
test case whether the numerical issues in this formalism can
be surmounted. To this end we consider the exact Kerr
solution in a frame corotating with the horizon. In this
frame, the norm of the helical Killing vector vanishes at the
horizon and at the light cylinder. The 3-metric is prescribed,
and thus the only equation to be solved is the Ernst
equation. Note that this example does not test the change
of the symbol of the Ernst equation as in Eq. (1) from
elliptic to hyperbolic at the light cylinder. But the formal
solution constructed in the vicinity of the light cylinder in
Ref. [29] suggests that there should be a unique smooth
solution to the Ernst equation there—a hypothesis which
can be tested for instance numerically—and the biggest
challenge in this context in the Ernst picture will be the
singularity of the equation at the light cylinder. It is this
aspect which is present in the Kerr example in rotating
coordinates, and therefore we believe that the Kerr solution
provides an interesting test for the numerical approaches in
the binary case.
To solve the Ernst equation, we use a finite computa-

tional domain between the horizon and an outer radius
where the exact Kerr solution is imposed as boundary
values. The equations are solved with a spectral method and
a Newton iteration. The Komar integral is imposed in the
iteration to address nonuniqueness issues. It is shown that
the iteration converges rapidly unless the light cylinder is
close to the computational boundary. In this case the
iteration is amended with an Armijo scheme [49].
The paper is organized as follows. In Sec. II, we briefly

review the projection formalism and the Ernst equation. In
Sec. III we give the Ernst potential for the Kerr solution in
coordinates corotating with the horizon. In the same coor-
dinates, the Ernst equation is formulated in Sec. IV. The
numerical approaches used for the paper are presented in
Sec. V. In Sec. VI we discuss the convergence of the scheme
for various initial iterates and parameters of theKerr solution.
We add some concluding remarks in Sec. VII.

II. QUOTIENT SPACE METRICS AND
ERNST EQUATIONS

In this section we briefly summarize the approach to
binary black hole spacetimes with a helical Killing vector
of Ref. [29] based on quotient space metrics first used
in Ref. [43] (see also Ref. [44]) in the form adopted in
Ref. [45] and Ernst equations. The existence of a Killing
vector ξ, in adapted coordinates ξ ¼ ∂t where t is not
necessarily a timelike coordinate, can be used to establish a
simplified version of the field equations by dividing out
the group action. The norm of the Killing vector will be
denoted by f.
In this approach, the metric is written in the form

ds2 ¼ −fðdtþ kadxaÞðdtþ kbdxbÞ þ
1

f
habdxadxb; ð2Þ

latin indices always take the values 1,2,3 corresponding to
the spatial coordinate. Note that this decomposition is not
defined at the fixed points of the group action, i.e. the zeros
of f. The Einstein equations will be singular at the set
of zeros of f which is also a problem for a numerical
treatment. Note that this will not be the case in a standard
3þ 1 decomposition of spacetime. But as will be shown in
this paper, the related numerical issues can be controlled,
and thus the simplicity of the quotient space approach with
respect to a standard 3þ 1 decomposition can also be used
in a numerical approach.
The Einstein equations in vacuum can be put into the

form of the complex Ernst equation

fDaDaE ¼ DaEDaE: ð3Þ

Here the complex Ernst potential is given by E ¼ f þ ib
[46], where Da denotes the covariant derivative with
respect to hab, where the twist potential b is defined via
(ϵabc is the tensor density with ϵ123 ¼ 1=

ffiffiffi
h

p
)

kab ¼ 1

f2
ϵabcb;c; ð4Þ

where h is the determinant of hab, where kab ¼ kb;a − ka;b,
and where all indices are raised and lowered with hab.
The equations for the metric hab can be written in the

form

Rab ¼
1

2f2
ℜðE;aĒ;bÞ; ð5Þ

where Rab is the three-dimensional Ricci tensor corre-
sponding to hab. It is obvious that zeros of the norm of the
Killing vector are singular points of the equations.
Thus the equations for the metric function hab are the

three-dimensional Einstein equations with some energy-
momentum tensor which is a so-called sigma model; see
the discussion in Ref. [29] and references therein. Thus one
can introduce a 2þ 1 decomposition of the quotient space,
preferably a foliation with respect to some coordinate r in
which the horizons of the black holes are constant r
surfaces. It is well known that the six equations (5) split
in this case into three “evolution equations” containing
second-order derivatives with respect to this coordinate r,
and three “constraints” containing at most first derivatives
with respect to r; see Ref. [29] for the helical case. If both
of these pairs of equations are satisfied on the horizons,
it will be sufficient to solve one of them in the space in
between.
Thus the problem for binary black holes with a helical

Killing vector is reduced to solving the Ernst equation (3)
and three of the equations (5) which are of first order in the
derivatives with respect to this coordinate r (which need not
be related to spherical coordinates). All these equations are
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singular at the zeros of the norm f of the Killing vector,
the horizons and the light cylinder. In order to solve
these equations numerically, one is faced with a singular
boundary value problem with a singular light cylinder
the position and form of which is not known a priori.
In particular it has cylindrical topology and can thus not be
an r ¼ const surface.
As a test problem for these issues which is analytically

known, we will study in this paper the Kerr black hole in a
frame corotating with the horizon. The Kerr spacetime is
stationary and axisymmetric, and both Killing vectors ∂t
and ∂ϕ in an asymptotically nonrotating coordinate
system are commuting. This means that ξ ¼ ∂t þ Ω∂ϕ

is also a Killing vector for arbitrary constant value of Ω.
We will consider the value of Ω for which the norm of ξ
vanishes at the horizon of the Kerr black hole. In the
stationary axisymmetric case, the metric hab can be
chosen to be diagonal with a single unknown function;
see for instance Refs. [48,50]. This function can be
obtained via a line integration in closed form. With this
function given, the task is reduced to solving the Ernst
equation. The vector ka can be chosen to have just a ϕ
component which will be denoted by a. The model has a
vanishing f at the horizon for the Killing vector ∂t, a light
cylinder and the asymptotically rotating coordinate sys-
tem. Thus a numerical approach to reproduce the Kerr
solution in this setting could be possibly extended to the
case of binary black hole spacetimes with a helical Killing
vector. We treat this problem on a finite computational
domain bounded on one side by the black hole horizon
and on the other by the exact Kerr solution which we
impose for simplicity as a boundary condition. In the
general case one would impose instead boundary values
inferred from the asymptotic behavior of the solution,
for instance a solution to the linearized Einstein equations
as discussed in Ref. [29].
Note that we only consider the Ernst equation here since

it already has all relevant features we want to test for the
binary case with a helical Killing vector. The metric h is
given for a known Ernst potential via a first-order equation.
In the iterative approach to solve the equations we are
applying here, this means that in each step of the iteration
the metric h will be obtained via a quadrature. Thus to test
the approach for the Kerr solution, it is sufficient to give the
exact metric h and to solve merely the Ernst equation.

III. KERR SOLUTION IN ROTATING
COORDINATES

In this section we give the Kerr solution in the Ernst
formalism in coordinates corotating with the horizon. In
Boyer-Lindquist coordinates r, θ, ϕ, the Kerr solution for a
single black hole with mass m and angular momentum
J ¼ m2 sinφ takes the form (see for instance Ref. [50] and
references therein)

f ¼ r2 − 2mrþm2sin2φcos2θ
r2 þm2sin2φcos2θ

;

b ¼ −
2m2 sinφ cos θ

r2 þm2sin2φcos2θ
ð6Þ

and

a ¼ 2m2 sinφrsin2θ
r2 − 2mrþm2sin2φcos2θ

: ð7Þ

The parameter φ varies between 0, the Schwarzschild
solution, and π=2, the extreme Kerr solution. The metric
h reads

hrr ¼¼ r2 − 2mrþm2sin2φcos2θ
ðr − RÞðr − 2msin2 φ

2
Þ ;

hθθ ¼ r2 − 2mrþm2sin2φcos2θ;

hϕϕ ¼ ðr − RÞ
�
r − 2msin2

φ

2

�
sin2θ: ð8Þ

We also introduce the quantity ~J ¼ −2J which appears
up to a factor 8π in the computation of the Komar integral
(27). This discrepancy between the angular momentum as
defined for asymptotically flat spacetimes and the quantity
computed via the Komar integral is well known; see
exercise 6 of Sec. 11.2 in Ref. [51] and the general remarks
about the Komar integral in Ref. [52]. Since we work here
with the Komar integral, we are mainly interested in ~J in the
following.
The horizon is located in these coordinates at

R ¼ 2mcos2 φ
2
. At the horizon we have for Eq. (7)

a ¼ −1=ΩBH ¼ −2m cot
φ

2
ð9Þ

where ΩBH is the angular velocity that can be attributed to
the horizon with respect to an observer at infinity. The
metric function hϕϕ vanishes at the horizon.
The solution is here given in an asymptotically

nonrotating frame. Using a transformation of the form
ϕ0 ¼ ϕþ Ωt, we get

g000 ¼ g00 þ 2Ωg03 þ Ω2g33;

g003 ¼ g03 þ Ωg33: ð10Þ

For f and a this implies

f0 ¼ fð1þΩaÞ2 −Ω2hϕϕ=f;

a0f0 ¼ afð1þΩaÞ −Ωhϕϕ=f: ð11Þ

In corotating coordinates (Ω ¼ ΩBH), we have for Eq. (7)
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1þΩa ¼ ðr − RÞðr − 2msin2 φ
2
cos2θÞ

r2 − 2mrþm2sin2φcos2θ
: ð12Þ

Thus f0 vanishes in coordinates corotating with the horizon
as r − R for r → R because of the linear term in hϕϕ. The
term ð1þ ΩaÞ2 is quadratic in r − R.
For the Kerr solution in Boyer-Lindquist coordinates,

Eq. (11) implies with ~r ¼ r=R

f0 ¼ ~r − 1

~r2 þ tan2 φ
2
cos2θ

�
−sin2

φ

2
cos2

φ

2
sin2θð~r3 þ ~r2Þ

þ
�
1 − sin2

φ

2
sin2θ − sin4

φ

2
sin2θcos2θ

�
~r

− tan2
φ

2
cos2θ þ tan2

φ

2
sin4

φ

2
sin2θcos2θ

�
ð13Þ

and

a0f0 ¼ 2m tan φ
2
sin2θð~r − 1Þ

~r2 þ tan2 φ
2
cos2θ

�
−cos4

φ

2
ð~r3 þ ~r2Þ

− cos2
φ

2

�
1þ sin2

φ

2
cos2θ

�
~rþ sin4

φ

2
cos2θ

�
:

ð14Þ

The function f0 in Eq. (14) is shown for φ ¼ 1 in Fig. 1.
For the derivatives of b in Eq. (4) one finds in Boyer-

Lindquist coordinates

b0r ¼
a0θf

02

ððr −mÞ2 −m2cos2φÞ sin θ ð15Þ

and

b0θ ¼ −
a0rf02

sin θ
: ð16Þ

Here and in the following the index in b0r denotes the partial
derivative with respect to the coordinate, here r. Integrating
we find

b0 ¼ sin φ
2
cos φ

2
cos θð~r − 1Þ2ðtan2 φ

2
cos2θ − 2~r − 1Þ

~r2 þ tan2 φ
2
cos2θ

:

ð17Þ
Obviously an integration constant was chosen such that b0
has a zero of second order at the horizon. For r → ∞, it is
proportional to r cos θ. It is a smooth function for all ~r > 1.
The function is shown for φ ¼ 1 in Fig. 2.
The remaining metric functions of h are changed

by multiplication with a factor f0=f. It is obvious that
f0 ¼ a0f0 ¼ 0 on the horizon. For large values of r sin θ, the
norm f0 of the Killing vector becomes negative at the
light cylinder. All nonvanishing components of h except
hϕϕ0 ¼ hϕϕ will vanish there as f0. The function b0 is as
expected odd in Ω and ζ and grows linearly in ζ for r → ∞.
The functions a0f0 and f0 grow as ρ2. These kinematic
contributions due to the asymptotically rotating coordinate
system will also be present in the case with a helical Killing
vector. For completeness we note the asymptotic behavior
of the metric functions for the Kerr solution (which
also holds for general asymptotically flat spacetimes) in
Boyer-Lindquist coordinates,

f ¼ 1 −
2m
r

þ 0ð1=r3Þ;

b ¼ −2m2 sinφ
cos θ
r2

ð1þ 0ð1=r2ÞÞ;

a ¼ 2m2 sinφ
sin2θ
r

ð1þ 0ð1=rÞÞ: ð18Þ

FIG. 1. Real part of the Ernst potential for the Kerr solution in
coordinates corotating with the horizon (13) for φ ¼ 1.

FIG. 2. Imaginary part of the Ernst potential for the Kerr
solution in coordinates corotating with the horizon (17) for
φ ¼ 1.
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This implies in corotating coordinates

f0 ¼
�
1 −

1

~r
−
tan2 φ

2
cos2θ

~r2

�

×

�
−sin2

φ

2
cos2

φ

2
sin2θð~r2 þ ~rÞ þ 1 − sin2

φ

2
sin2θ

− sin4
φ

2
sin2θcos2θ þ 0ð1=~rÞ

�
; ð19Þ

and

b0 ¼ −2 sin
φ

2
cos

φ

2
~r cos θ

×

�
1 −

1

2~r

�
3þ tan2

φ

2
cos2θ

�
þ 0ð1=~r2ÞÞ

�
; ð20Þ

up to some irrelevant constant. Note thatm2 sinφ is just the
angular momentum. If one replaces this quantity by J, one
gets the behavior in the general case.
Note that the Ernst potential for the Kerr solution is

often given in so-called Weyl coordinates since it
takes a particularly simple form in these coordinates.
But in Weyl coordinates, the metric functions are not
regular at the horizon (they have a cusp-like behavior
where the axis intersects the horizon). Since the spectral

methods we apply in this paper for the numerical
solution of the Ernst equation are best adapted to analytic
functions, we do not use this form of the coordinates
here.

IV. ERNST EQUATION IN COROTATING
COORDINATES AND KOMAR INTEGRAL

In this section we formulate the Ernst equation in
Boyer-Lindquist coordinates corotating with the horizon.
This equation will be solved numerically in the following
sections. At some outer radius we impose the exact Kerr
solution in rotating coordinates as a boundary condition. At
the horizon, the vanishing of the norm of the Killing vector
will be imposed. It will be argued that these two boundary
conditions do not specify the solution uniquely due to a
degree of freedom at the horizon (the order of the vanishing
there can be essentially arbitrary which corresponds to a
freedom of choosing the radial coordinate). Thus we use
the Komar integral to ensure that the mass computed via the
Komar integral at the horizon coincides with the Arnowitt-
Deser-Misner mass. This uniquely specifies the solution to
the Ernst equation.
In the corotating coordinates introduced in the previous

section, the determinant of h does not vanish at the horizon.
The Ernst equation reads

f

�
Err þ

1

ðr −mÞ2 −m2cos2φ
ð2ðr −mÞEr þ Eθθ þ cot θEθÞ

�
¼ E2

r þ
E2
θ

ðr −mÞ2 −m2cos2φ
: ð21Þ

Rescaling the coordinates in such a way that the radius of the horizon is equal to 1, ~r ¼ r=ð2mcos2 φ
2
Þ, we get

f

�
E ~r ~r þ

1

ð~r − 1Þð~r − tan2 φ
2
Þ
��

2~r −
1

cos2 φ
2

�
E ~r þ Eθθ þ cot θEθ

��
¼ E2

~r þ
E2
θ

ð~r − 1Þð~r − tan2 φ
2
Þ : ð22Þ

Since the real part of the Ernst potential vanishes for
~r ¼ 1 as ~r − 1, the left-hand and the right-hand sides of the
equation are well behaved at the horizon. Note that the
extreme Kerr solution for φ ¼ π=2 corresponds to a higher-
order singularity of the equation since tanðφ=2Þ ¼ 1 in this
case. This is the reason why it is numerically challenging to
reach the extreme Kerr solution in this setting.
The idea is to solve the Ernst equation for the Kerr

solution with boundary data at the horizon and at some
finite outer radius. The problem with this approach is that
the horizon is a singular surface of the Ernst equation, and
that a regularity condition at the horizon does not uniquely
specify the solution. This can be seen best in the example of
the Schwarzschild solution, i.e., Kerr for φ ¼ 0. In this case
one gets for the Ernst equation (b ¼ 0, no θ dependence)

ðln fÞrr þ
2r − 1

rðr − 1Þ ðln fÞr ¼ 0:

This equation has the general solution

f ¼ c1

�
r − 1

r

�
c2
; ð23Þ

where c1, c2 are constants. The constant c1 will be fixed at
infinity or the outer boundary condition, but it can be seen
that the condition f ¼ 0 will not fix c2 which does not have
to be an integer. Thus the solution is not uniquely specified
by the above conditions. This is also the case for φ ≠ 0. The
Ernst potential is invariant under multiplication by a real
constant. This freedom is fixed by the outer boundary
condition. Looking for a formal solution to the Ernst
equation in terms of a power series in r − 1 near the
horizon, f¼f0ðθÞðr−1Þnfþ���, b ¼ b0ðθÞðr − 1Þnb þ � � �,
we find for all nb > nf

nb ¼ 2nf; ð24Þ
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whereas nf ∈ R with nf > 1=2 and f0, b0 are free. This
corresponds to a freedom in the choice of the radial
coordinate, ~r − 1↦ð~r − 1Þc where c is an arbitrary positive
constant. Thus one has to formulate the boundary value
problem in a way that nf ¼ 1 is enforced in order to get the
Kerr solution in the wanted form.

To a certain extent, the above nonuniqueness at the
horizon is addressed by using dependent variables of the
form f ¼ ð~r − 1ÞF and b ¼ ð~r − 1Þ2B. If F and B are finite
at the horizon, the minimal order of the vanishing of
the Ernst potential there is at least assured. With x ¼ cos θ,
the Ernst equation takes in this case the form

Ffð~r − 1Þð~r − tan2ðφ=2ÞÞF~r ~r þ ð2~r − 1 − tan2ðφ=2ÞÞF~r þ F þ ð1 − x2ÞFxx − 2xFxg
− ð~r − 1Þð~r − tan2ðφ=2ÞÞðF2

~r − ðð~r − 1ÞB~r þ 2BÞ2Þ − ð1 − x2ÞðF2
x − ð~r − 1Þ2B2

xÞ ¼ 0; ð25Þ

and

Ffð~r − 1Þð~r − tan2ðφ=2ÞÞB~r ~r þ ð4~r − 1 − 3tan2ðφ=2ÞÞB~r þ 2Bþ ð1 − x2ÞBxx − 2xBxg
− 2ð~r − tan2ðφ=2ÞÞF~rðð~r − 1ÞB~r þ 2BÞ − 2ð1 − x2ÞFxBx ¼ 0: ð26Þ

This is the form of the Ernst equation to be solved in the
following sections numerically.
It turns out that this form of the equations still does not

have the Kerr solution as the unique solution. Therefore we
consider in the following the Komar integral associated to
the Killing vector with components ξkZ

2π

0

Z
π

0

gik;1gi0g11
ffiffiffiffiffiffi
−g

p
dθdϕ; ð27Þ

which will be computed at the horizon. Thus one gets for
the Killing vector ∂t the Komar integrand

ðg03;rg03 þ g00;rg00Þg11
ffiffiffiffiffiffi
−g

p
: ð28Þ

With

g11
ffiffiffiffiffiffi
−g

p ¼ R2ð~r − 1Þð~r − tan2ðφ=2ÞÞ sin θ ¼ hϕϕ
sin θ

ð29Þ

and

g00 ¼ −
1

f
þ fa2

hϕϕ
; g03 ¼ −

af
hϕϕ

; ð30Þ

the Komar integrand (28) takes the form

ððlnfÞrhϕϕþaarf2Þ=sinθ¼ðlnfÞrhϕϕ=sinθ−abθ: ð31Þ
At the horizon one has

f ¼ −
tan2ðφ=2Þsin2θ

1þ tan2ðφ=2Þcos2θ ;

a ¼ −2m cotðφ=2Þ;

fr ¼
1

2mcos4ðφ=2Þ
1 − tan2ðφ=2Þcos2θ

ð1þ tan2ðφ=2Þcos2θÞ2 ;

ar ¼ −
1 − tan2ðφ=2Þcos2θ

sin2ðφ=2Þ tanðφ=2Þsin2θ : ð32Þ

Thus one gets

4πm
cos2ðφ=2Þ

Z
π

0

1 − tan2ðφ=2Þcos2θ
ð1þ tan2ðφ=2Þcos2θÞ2 sin θdθ ¼ 8πm;

the Komar mass up to a factor 8π.
There is a second Killing vector in the Kerr metric, ∂ϕ,

for which the Komar integrand reads

ðg03;rg00 þ g33;rg03Þ
ffiffiffiffiffiffi
−g

p
g11

¼ ðhϕϕðar þ 2aðln fÞrÞ − hϕϕ;raþ a2arf2Þ
1

sin θ
ð33Þ

which at the horizon takes the form

a
sinθ

ðaraf2−hϕϕ;rÞ
¼−4m2cotðφ=2Þsinθ

×

�
1

cos2ðφ=2Þ
1− tan2ðφ=2Þcos2θ

ð1þ tan2ðφ=2Þcos2θÞ2þ1−2cos2ðφ=2Þ
�
:

Integrating we find −16πm2 sinφ ¼ 8π ~J.
The Komar mass can also be computed in corotating

coordinates, and Eqs. (31) and (33) hold with a0 and f0
instead of a and f respectively. However there one has
that a0f0 vanishes as f0 at the horizon; see Eq. (14). In this
case the integrand of the Komar mass reads at the horizon
−ð1 − tan2ðφ=2ÞÞ sin θ, i.e., it does not contain information
on the function F at the horizon because of the logarithmic
derivative in Eq. (31). We get

8πmcos2ðφ=2Þð1 − tan2ðφ=2ÞÞ ¼ 8πðmþΩ ~JÞ:

Thus it is not useful to assure the nonvanishing of F at the
horizon by imposing the value 8πðmþΩ ~JÞ for the Komar
integral in numerical computations. But it will allow in the
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case of binary black holes with a helical Killing vector to
relate the values computed at the horizon to (asymptotically
defined) multipoles of an asymptotically flat spacetime
imposed at the outer computational boundary.
The Komar integrand (33) for the Killing vector ∂ϕ red-

uces on the horizon to 2mcos2ðφ=2Þa0ð1 − tan2ðφ=2ÞÞ sin θ.
Since at the horizon one has with Eq. (10)

a0 ¼ −
4m

sinðφÞ cosðφÞ
1 − tan2ðφ=2Þcos2θ

ð1þ tan2ðφ=2Þcos2θÞ2
þ 2m cotðφ=2Þ;

we get for the Komar integral as before 8π ~J. This condition
will be imposed in the numerical solution of the Ernst
equation.
To compute this integral, the function a has to be known,

and this implies that a constant in b is fixed on the horizon.
The function a can be computed from Eq. (16),

a~r ¼ −
Bθ

F2
2mcos2ðφ=2Þ sin θ ð34Þ

and from Eq. (15)

aθ ¼ −
ð~r − 1ÞB~r þ 2B

F2
2mcos2ðφ=2Þð~r − tan2ðφ=2Þ sin θ:

ð35Þ

V. NUMERICAL APPROACHES
TO THE ERNST EQUATION

In this section we outline the numerical approaches
to solve the Ernst equation in the form (25) and (26). To
approximate derivatives, we use a pseudospectral approach
in ~r and x based on discretizing both coordinates. The
resulting system of finite dimension for the discretized F
and B is then solved with a Newton-Armijo iteration.

A. Polynomial interpolation and differentiation
matrices

To solve the Ernst equation, we need to approximate
numerically the derivative of a function F∶ ½−1; 1�↦C.
To this end we use polynomial interpolation as detailed for
instance in Ref. [53]. We introduce on ½−1; 1�, the N þ 1
Chebyshev collocation points

lj ¼ cos

�
jπ
N

�
; j ¼ 0;…; N; ð36Þ

whereN is some natural number. The Lagrange polynomial
pðlÞ of order N satisfying the relations pðljÞ ¼ F ðljÞ,
j ¼ 0;…; N is then constructed. The derivative of F at the
collocation points lj is approximated via the derivative of
this polynomial,

F 0ðljÞ ≈ p0ðljÞ ≕
XN
k¼0

DjkF ðlkÞ;

where D is a differentiation matrix. The matrices D for
Chebyshev collocation points are given in Ref. [53], and a
Matlab code to generate them can be found in Ref. [54].
Second derivatives of the function F will be approximated
by D2F, where Fj ¼ F ðljÞ, j ¼ 0;…; N. This method is
known to show spectral convergence for analytic functions,
i.e., an exponential decrease of the numerical error with N.
This pseudospectral approach is equivalent to an

approximation of the function F by a (truncated) series
of Chebyshev polynomials TnðlÞ, n ¼ 0;…; N, where

TnðlÞ ¼ cosðn arccosðlÞÞ: ð37Þ

A Chebyshev collocation method consists in approximating
F via

P
N
n¼0 cnTnðlÞ, where the spectral coefficients cn are

given by,

F ðljÞ ¼
XN
n¼0

cnTnðljÞ; j ¼ 0;…; N: ð38Þ

Note that because of Eq. (37), the coefficients cn in
Eq. (38) can be computed via a fast cosine transformation
(fct) which is closely related to the fast Fourier transform
(fft); see Ref. [53]. Since the fct is in contrast to the fft not a
precompiled command in Matlab being used here, it is
considerably slower than the latter. Thus we apply here the
pseudospectral approach in computations. But the fct
allows one to control the resolution in terms of the
Chebyshev coefficients: as for Fourier coefficients of real
analytic functions, it is known that Chebyshev coefficients
of such functions decrease exponentially with n. This
allows one to ensure that the computed functions have
the expected analyticity properties. In addition it permits
one to control the resolution of the solution in terms of
Chebyshev polynomials: if the Chebyshev coefficients
decrease to machine precision (here 10−16, in practice
limited to roughly 10−14 because of unavoidable rounding
errors), maximal resolution with this approach has been
reached.
For the Ernst equation, we discretize r ∈ ½1; R�, where R

is the radius of the outer boundary, via rj ¼ Rð1þ ljÞ=2þ
ð1 − ljÞ=2, j ¼ 0; 1;…; Nr with the lj from Eq. (36).
Similarly we discretize the coordinate x ¼ cos θ. Since
the Kerr solution is axisymmetric, it is sufficient to
consider θ ∈ ½0; π=2�. Thus we can write xj ¼ ð1þ ljÞ=2
j ¼ 0; 1;…; Nθ with the lj from Eq. (36). For the Ernst
potential of the Kerr solution (13) and (17) with φ ¼ 1 we
get the Chebyshev coefficients shown in Fig. 3. It can be
seen that the coefficients decrease to machine precision
with Nr ¼ 30 and Nθ ¼ 20.
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B. Newton-Armijo iteration

The discretization introduced in the previous section
gives matrices with components Fð~rj; xkÞ, Bð~rj; xkÞ,
j ¼ 0;…; Nr, k ¼ 0;…; Nθ. These are combined into a
vector G of length 2ðNr þ 1ÞðNθ þ 1Þ. This discretization
implies that the equations (13) and (17) are discretized in
the same way. The discretized equations can be combined
into a system of 2ðNr þ 1ÞðNθ þ 1Þ nonlinear equations of
the form GðGÞ ¼ 0.
This system of equations will be solved iteratively with a

Newton-Armijo method giving iterate nþ 1 in dependence
of iterate n,

Gnþ1 ¼ Gn − λJac−1GðGnÞ; ð39Þ

where Jac is the Jacobian of G with respect to G taken for
G ¼ Gn, and where 0 < λ ≤ 1 is a parameter (to be
discussed below) equal to 1 in the standard Newton
iteration. Note that the Jacobian is a matrix of order
2ðNr þ 1ÞðNθ þ 1Þ × 2ðNr þ 1ÞðNθ þ 1Þ. It is known that
the standard Newton iteration (λ ¼ 1) converges quadrati-
cally. But the convergence is local, i.e., the initial iterate Gn
has to be close to the exact solution to ensure convergence;
see for instance the discussion in Ref. [55] and references
therein.
If the initial iterate G0 is not close enough to the solution,

the standard Newton iteration fails in general to converge.
A simple approach is to use some relaxation in the
iteration, i.e., choose a value of λ < 1. This can restore
convergence, but the quadratic convergence will be lost.
Whereas this could be acceptable in the two-dimensional
setting studied here, it certainly will not be in the three-
dimensional problem for which this is a test case. But as
will be discussed in the following section, even here one
might be forced to use prohibitively small values of λ to
avoid divergence. Therefore we apply an Armijo approach,
i.e., a dynamical adjustment of the value of λ.

For each Gn in the iteration, the norm N n ≔ ∥GðGnÞ∥∞
is computed. If N nþ1 < ϵ, where ϵ is the prescribed
accuracy we wish to achieve (in our case typically 10−10

or smaller) the iteration is stopped. If this is not the case, it
is checked whether N nþ1 < ð1 − αλÞN n. Here α is some
constant which is chosen to be 10−4. If the condition is met,
the new iterate Gnþ1 is computed via Eq. (39) without
changing the current value of λ.
If this is not the case, i.e., if the new iterate would give a

worse (up to a factor αλ which can be freely chosen)
solution to the equation GðGÞ ¼ 0 than the previous one,
a line search is performed: first the value of λ is halved
to give a ~λ, and the corresponding value of N l ≔
∥GðGl

nþ1Þ∥∞ is computed, where Gl
nþ1 is the Gnþ1 of

Eq. (39) with the current value of λ. If this norm is smaller
than ð1 − αλÞN n, the new value is determined by a fitting
to a quadratic model: the interpolation polynomial passing
through the three values of the norms N n for λ ¼ 0, N nþ1

for λ ¼ λo ¼ 1 and N l for λ ¼ ~λ reads

pðλÞ ¼ ðλ − λoÞðλ − ~λÞ
λo ~λ

N n þ
ðλ − λoÞλ
ð~λ − λoÞ~λ

N l

þ λðλ − ~λÞ
λoðλo − ~λÞN nþ1:

The minimum value λm of this polynomial is taken as the
new ~λ unless it is smaller than λ=10 (in this case λ=10 is
taken) or larger than λ=2 (in this case λ=2 is taken). If the
condition N l < ð1 − α~λÞN n is still not met, the above
approach is iterated with the new ~λ and λo replaced by the
old value of ~λ. The line search is stopped if the current value
of ~λ is smaller than 10−2.
The next step of the Newton iteration is then started

again with λ ¼ 1. For details of the approach, the reader is
referred to Ref. [55]. The method considerably generalizes
the admissible choices for the initial iterate to achieve
convergence of the Newton iteration. But obviously the
closer this initial iterate is to the wanted solution, the more
rapid will be the convergence.

C. Boundary values and Komar integral

At the boundaries of the computational domain, it might
be necessary to impose boundary conditions in order to
avoid a degenerate Jacobian in Eq. (39). On the axis
θ ¼ π=2 and at the horizon ~r ¼ 1, this is not necessary
since the equations (25) and (26) are singular there. Thus
the condition of regularity determines the solution there,
and instead of a boundary condition, just the partial
differential equation (PDE) can be imposed.
The situation is different at the outer boundary r ¼ R and

in the equatorial plane θ ¼ 0 where boundary conditions
have to be enforced. At the former, just the exact Kerr
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FIG. 3. Logarithm of the Chebyshev coefficients of the Ernst
potential of the Kerr solution in rotating coordinates for φ ¼ 1.
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solution in corotating coordinates (13) and (17) will be
imposed. Alternatively the asymptotic solution (19) and
(20) could be prescribed as will be done in the binary case.
In the equatorial plane, we use just the equatorial symmetry
of the solution which implies Fθð~r; 0Þ ¼ bð~r; 0Þ ¼ 0.
The conditions at the outer boundary and in the equatorial

plane will be implemented via the Lanczos τ method [56].
The idea is to eliminate parts of the equation JacðGnþ1 −
GnÞ þ GðGnÞ ¼ 0 and to replace them with the boundary
conditions. Thus we replace the equations corresponding to
~r ¼ R by the Kerr solution there, and the equations corre-
sponding to the equatorial plane by the symmetry conditions
on the Ernst potential. The derivative with respect to x is
approximated as all x derivatives with the corresponding
differentiationmatrix. It is known (see e.g. Ref. [53]) that the
τ method does not implement the boundary conditions
exactly, but rather with the same spectral accuracy at which
the solution of the PDE is approximated.
In a similar way the Komar integral (33) is imposed. To

determine the integrand at the horizon, we numerically
integrate Eq. (35) to determine the function a. This is
done by inverting the matrix Dx (the differentiation matrix
corresponding to the coordinate x) with a vanishing
boundary condition implemented at the horizon via a τ
method. The integral over the horizon is then computed
with the Clenshaw-Curtis method: as already mentioned,
the polynomial interpolation on Chebyshev collocation
points is equivalent to a Chebyshev collocation method
(38). Thus if an integrand is expanded in terms of
Chebyshev polynomials,

Z
1

−1
F ðlÞdl ≈

XN
n¼0

cn

Z
1

−1
TnðlÞdl ¼

XN
n¼0

wnF ðlnÞ

[the last step following from the collocation method (38)
relating cn and F ðlnÞ] where the wn, n ¼ 0;…; N are
some known weights (see Ref. [54] for a Matlab code to
generate them). The Clenshaw-Curtis scheme is also a
spectral method.
The condition that the Komar integral is equal to 8π ~J is

again imposed via a τ-method as above. But this time an
equation has to be replaced in Eq. (39) which is not
redundant as before. We generally take the equation
corresponding to Eq. (26) on the intersection of the horizon
and the axis or the intersection of the horizon and equatorial
plane. Thus the Komar integral will be implemented in the
iteration in the same way as the boundary conditions.
Note that the uniqueness of the Kerr solution to the Ernst

equation at the horizon could be imposed with different
methods, for instance by studying the equation for lnF and
lnB near the horizon. The reason why we consider the
Komar integral here is again to have a test case for the
binary case with a helical Killing vector. If one studies there
the model with a helical Killing vector in the vicinity of the
black holes in an otherwise asymptotically flat spacetime,

the asymptotic multipole mass and angular momentum
have to be related to the Komar integralsmþ Ω~J computed
locally at the two horizons for a given Ω. This can be
imposed during the iteration as in Ref. [10] where this was
studied for a conformally flat theory of gravitation. To
prepare for this, we study here the computation of the
Komar integrals and how to use relations following from
them in the iteration.

VI. EXAMPLES

In this section, the numerical approach detailed in the
previous section will be tested for various initial iterates for
various values of the parameter φ. Generally the iteration
converges more rapidly the smaller φ is, i.e., the farther the
solution is from the extreme Kerr solution.
In this section we always choose the outer radius R ¼ 3.

In Fig. 4, it can be seen that the light cylinder will be for
values of φ larger than 0.5 in the computational zone.
Convergence of the scheme in this case will indicate that
the light cylinder does not pose an insurmountable problem
for the iteration.
Throughout this section we work with Nr ¼ 31 and

Nθ ¼ 20 collocation points, numbers which ensure the
necessary resolution as shown by Fig. 3: the Chebyshev
coefficients decrease to machine precision for φ ≤ 1. Since
we impose the Komar integral in order to obtain a unique
solution at the horizon as discussed before, the condition
for the Komar integral replaces one of the equations in
Eq. (39). This procedure eventually leads generically to a
unique solution (for special values of the parameters, there
can still be other solutions to the Ernst equation satisfying
the boundary conditions), but it can destabilize the iteration
if the initial iterate is too far from the wanted solution. This
is also the reason why we do not present a study of the
dependence on the parameters Nr and Nθ. For smaller
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FIG. 4. Light cylinders of the Kerr solution (13) in corotating
coordinates for the values of φ ¼ 0.6, 0.8, 1.0, 1.2 from right
to left.
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values of these, the iteration will not converge because of
the imposed Komar integral replacing one of the equations.
And without this integral, the solution to the Ernst equation
will not be unique.
We first consider several initial iterates for the case φ ¼ 1

for which according to Fig. 4 the light cylinder extends
through most of the computational domain. This is already a
fast spinning black hole and thus provides a good test of the
scheme. As the first initial iterate we take a factor λ times the
exact Kerr solution. It can be seen in Table I that for both
λ ¼ 0.9 and λ ¼ 1.1 the iteration converges without any line
search to the order 10−12 (the code is stopped as soon as the
residual drops below 10−11). The L∞ norm of the difference
between the numerical and exact solutions is in this case of
the order of 10−12. A similar behavior is observed if the exact
Kerr solution plus 0.1 times a Gaussian in ~r is taken as
the initial iterate. If we take as the initial iterate the exact
Kerr solution for φ ¼ 0.9, the iteration converges after five
iterations to the order of 10−12. This appears to be the optimal
accuracy reachable with the approach. The above examples
show that the iteration is stable and converges rapidly
for various initial iterates to an accuracy of better than
10−11 both as a residual to the numerically implemented
equations and compared to the exact solution.
The used form of the Ernst equation does not allow one

to treat the extreme Kerr solution in this way. The reason for
this is that the horizon no longer corresponds to a regular
singularity of the equations in this case, and that the light
cylinder touches the horizon. It would be necessary to
address this case explicitly, but this is not the goal here.
However, it is interesting to note that one gets rather close
to the extreme Kerr solution. One just has to find better
initial iterates in this case to get convergence. For φ ¼ 1.5,
we again get rapid convergence for an initial iterate of a
factor λ times the exact solution; see Table II. Note that in
this case the exact location of the light cylinder is the

correct one of the wanted Kerr solution. The situation is
similar for an initial iterate of the exact solution plus a small
Gaussian in ~r, but only for a Gaussian of maximum 0.01,
not for 0.1 as before in Table I. There is also no
convergence if the exact Kerr solution with φ ¼ 1.4 is
taken; one has to be as close as φ ¼ 1.495. In all cases the
L∞ norm of the difference between the numerical and exact
solutions is of the order of 10−10.
The above results indicate that it might be possible to

start the iteration close to the static Schwarzschild solution
and use the found numerical solution for a given value of φ
as initial iterates for larger values of φ. This would allow
one to increase the angular momentum of the black hole in
the iterations. The steps have to be smaller the closer one is
to the extreme black hole. Problems in this approach are
obviously related to the location of the light cylinder.
Whereas an initial iterate of the form of the exact Kerr
solution multiplied by some factor leads to rapid conver-
gence, this is not the case for an initial iterate with a clearly
different form of the light cylinder. This is not surprising
since the latter corresponds to a singularity of the Ernst
equation. In fact it can be seen in Table III that the iteration
converges rapidly up to values of φ ¼ 0.5 if the initial
iterate is the Kerr solution with φ − 0.1. It is clear from
Fig. 4 that in these cases, there is no light cylinder in the
computational domain. Convergence problems appear for
φ ¼ 0.6 and φ ¼ 0.7 for which the light cylinder appears
very close to the outer computational boundary R ¼ 3.
Here the initial iterate must be close to the final solution,
i.e., the light cylinder should be close to its exact location.
For larger values of φ, the light cylinder is not only
localized close to the boundary as can be seen in Fig. 4,
and the iteration converges again rapidly. Thus it appears
that special care has to be taken in the choice of the initial
iterate if the light cylinder appears only close to the outer
boundary of the computational domain, or if it is close to
the horizon as in almost extreme black holes.

TABLE II. A table of the convergence of the iteration scheme
for φ ¼ 1.5 and various initial iterates.

initial iterate iterations ∥u − uKerr∥∞
0.9uKerrðφ ¼ 1.5Þ 14 2.0 � 10−10
1.1uKerrðφ ¼ 1.5Þ 8 2.1 � 10−10
uKerrðφ ¼ 1.495Þ 10 2.1 � 10−10
uKerrðφ ¼ 1.5Þ þ 0.01 expð−~r2Þ 6 2.0 � 10−10

TABLE III. A table with the convergence of the iterative
solution of the Ernst equation for various values of φ. The initial
iterate is always the exact Kerr solution for φ − 0.1 except for the
cases marked with a star: for φ ¼ 0.6, the iteration is started with
the value 0.51, for φ ¼ 0.7 with φ ¼ 0.66.

φ iterations ∥u − uKerr∥∞
0.1 6 4.8 � 10−12
0.2 9 3.3 � 10−12
0.3 8 3.8 � 10−12
0.4 30 2.1 � 10−12
0.5 9 2.5 � 10−11
0.6� 24 2.4 � 10−12
0.7� 9 2.5 � 10−12
0.8 6 1.3 � 10−11
0.9 6 1.3 � 10−12
1 7 1.9 � 10−12

TABLE I. A table of the convergence of the iteration scheme for
φ ¼ 1 and various initial iterates.

initial iterate iterations ∥u − uKerr∥∞
uKerrðφ ¼ 0.9Þ 7 1.9 � 10−12
1.1uKerrðφ ¼ 1Þ 5 1.7 � 10−12
uKerrðφ ¼ 1Þ þ 0.1 expð−~r2Þ 6 1.7 � 10−12
0.9uKerrðφ ¼ 1Þ 5 2.1 � 10−12
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VII. OUTLOOK

In the previous section we have shown that the Ernst
equation in the form (25) and (26) can be solved iteratively
for a Kerr black hole in a frame corotating with the horizon.
The numerically challenging part is the location of the light
cylinder which is a singularity for the equation. The main
problems arise if the light cylinder is located close to the
boundary of the computational domain or close to the
horizon as in almost extreme black holes. It was shown that
these difficulties could be addressed by performing line
searches in the iteration.
A technical problem of the Ernst equation is the fact that

the latter is homogeneous in the Ernst potential which
implies that with E also a constant times E is a solution. In
addition the order of the vanishing of the Ernst potential at
the horizon is not uniquely fixed. Thus the asymptotic
behavior of the Ernst potential together with a regularity
condition at the horizon does not uniquely identify the
solution. Therefore we used the Komar integral for the
Killing vector ∂ϕ to establish a unique solution.

The above results indicate that the Ernst approach should
also allow a numerical solution in the case of binary black
holes with a helical Killing vector. The idea is to use
adapted coordinates as bispherical coordinates in which
the horizons are given as constant coordinate surfaces, for
instance the approach in Ref. [57]. The Einstein equations
in the projection formalism will be solved with a spectral
method and a Newton-Armijo approach as in the present
paper on a finite computational domain. At the boundary of
the computational domain, a solution to the linearized
Einstein equations as in Ref. [29] or an asymptotically flat
solution will be imposed as boundary conditions. This will
be the subject of further work.
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