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CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in
particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass
Oð100 GeVÞ] with CP violation in the early Universe in the presence of interactions with Oðab-fbÞ
cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be
produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a Uð1ÞR-
symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-
antiparticle oscillations. Taking bino to be the lightest Uð1ÞR-symmetric particle, and assuming it decays
via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon
asymmetry of the Universe.
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I. INTRODUCTION

There are more baryons than antibaryons in the
Universe. Big bang nucleosynthesis [1] and cosmic micro-
wave background [2] measurements give the baryon
asymmetry of the Universe

η≡ nB − nB̄
s

≃ 10−10; ð1Þ
where nBðB̄Þ is the (anti)baryon number density and s is the
entropy density.
In order to explain this asymmetry three conditions must

be met [3]: (i) baryon number cannot be a conserved
quantity, (ii) C and CP symmetries must be violated and
(iii) baryon-number- and CP-violating processes should
happen out of thermal equilibrium. Even though baryon
number is anomalously violated at high temperatures, there
is neither enough CP violation nor an out-of-equilibrium
process within the Standard Model (SM) to yield the
observed baryon asymmetry.
The baryon asymmetry of the Universe (BAU) is one of

the strongest motivations for the need for physics beyond
the SM. To some extent new physics models that deal with
BAU can be divided into three types. (1) Extending the SM
to include extra scalar particles can change the electroweak
transition to a first-order phase transition, which provides
out-of-equilibrium conditions. There can also be extra CP
violation in this extended Higgs sector. Two-Higgs-doublet
models and many variants of supersymmetric models are
the most studied examples of this type. (2) Extending the
SM with heavy particles that decay out of equilibrium to
SM particles. Examples include leptogenesis models with a
heavy right-handed neutrino. (3) A particle asymmetry can
first be produced in a dark sector and then transferred to the
SM sector. In these types of models, the origin of the

asymmetry is often not studied due to a lack of under-
standing of the dark sector.1 For reviews on different types
of genesis models, see, for example, [4–6].
In any baryogenesis scenario the origin of CP violation

is a crucial ingredient. CP violation in scalar extensions
of the SM often generates large electric dipole moments
(EDMs) for the elementary particles which is highly
constrained by null measurements of the electron EDM.
(See, for example, [7] for current EDM constraints in
two-Higgs-doublet models.) In leptogenesis models CP
violation is attained by interference between tree-level and
loop-level decays.
A recently revived way of producing large CP violation

in order to explain the BAU is through particle-antiparticle
oscillations. CP violation can be enhanced in oscillations2

if the decay width and the mass difference of the oscillating
particles are comparable. If, in addition, these particles
decay out of thermal equilibrium via baryon-/lepton-
number-violating interactions, these decays can explain
the observed baryon asymmetry. First studies of particle
oscillations as a source of baryon asymmetry (soft and
resonant leptogenesis [9–11]) neglected the time evolution
of CP violation in the early Universe. Later it was shown
that quantum effects [12] can be important for these
scenarios [13,14]. Detailed studies of flavor oscillations
in soft/resonant leptogenesis models also showed that the
time evolution of CP violation is important to find the
correct particle asymmetry [15–17]. However, these works
still only included effects of the expansion of the Universe

1There are also models that produce the baryon asymmetry and
a dark matter asymmetry through a common process.

2CP violation in oscillations exists only if there are both
oscillations and decays [8].
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on particle oscillations: As long as the Hubble rate HðTÞ is
larger than the oscillation frequency, ωosc, particles do not
have sufficient time to oscillate. Since the particle oscil-
lations are suppressed, CP violation, and hence the particle
asymmetry, is also suppressed until ωosc > HðTÞ. Another
quantum process that suppresses oscillations is the quan-
tum Zeno effect [18], also known as “a watched pot never
boils”: Flavor-sensitive scatterings hinder oscillations. This
effect was pointed out regarding neutrino oscillations in the
early Universe [19,20], but was largely left out of particle-
antiparticle oscillation discussions.3 References [25,26]
incorporated elastic scatterings and annihilations in the
analysis of asymmetric dark matter oscillations. The effects
of flavor-sensitive and flavor-blind interactions on particle-
antiparticle oscillations were clearly identified in Ref. [26]
and cast out in the form of density matrix equations. (We
point out that CP violation was not considered in Ref. [26];
since dark matter does not decay, there cannot be CP
violation in this system.)4

In this work we will study CP violation in particle-
antiparticle oscillations in the early Universe by studying the
time evolution of the density matrix as outlined in Ref. [26].
Without any interactions, oscillations start when the expan-
sion rate of the Universe drops below the oscillation rate of
the particles, HðTÞ < ωosc. If the particles interact with the
relativistic plasma in the early Universe, the oscillations are
further delayed until Γint < ωosc, where Γint is the rate of the
interaction (and depends on the nature of the process). In
order to enhance CP violation in these oscillations, particles
should oscillate at least a few times before they decay. The
longer the oscillations are delayed the lessCP violation there
is. (Since the start of oscillations is directly related to the
baryon asymmetry in this scenario, we will address it
extensively throughout the text.) We will show that a particle
asymmetry can be produced via the oscillations and out-of-
equilibrium decays of a particle of massOð100 GeVÞ with a
mass splitting and decay rate of Oð10−6 eVÞ even in the
presence of interactions with Oðab-fbÞ cross sections. As a
specific example of this scenario, we will study a Uð1ÞR-
symmetric supersymmetry (SUSY) model with R-parity
violation. We will show that bino-antibino oscillations in
this model can explain the measured baryon asymmetry.
The rest of the paper is organized as follows. We start with

a short review of particle-antiparticle oscillations for a
pseudo-Dirac fermion in Sec. II. In Sec. III we study the
oscillations of an electroweak scale pseudo-Dirac fermion in
the early Universe [at temperature T ∼Oð10–100 GeVÞ].
We include interactions, specifically elastic scatterings with

light particles and annihilations. In Sec. IV we calculate the
baryon asymmetry that can be generated via the particle-
antiparticle oscillations. We consider a specific example of
this scenario in Sec. V. We give our concluding remarks
in Sec. VI.

II. PARTICLE-ANTIPARTICLE OSCILLATIONS

In this section we briefly review particle-antiparticle
oscillations. (For details, see [28].) For simplicity let us
focus on a single generation of pseudo-Dirac fermions with
the mass Lagrangian

−Lmass ¼ Mχηþ 1

2
mχχχ þ

1

2
mηηηþ H:c: ð2Þ

where χ, η are two-component, left-handed Weyl fields
charged þ1, −1 under a global Uð1Þ, respectively. Let us
define the Dirac field ψ ,

ψ ¼
�

ηα

χ† _α

�
: ð3Þ

Particle and antiparticle states can be written in terms of the
creation and annihilation operators

ψðxÞ ¼
X
s¼�

Z fdp½bsðpÞusðpÞeipx þ d†sðpÞvsðpÞe−ipx�;

ψcðxÞ ¼
X
s¼�

Z fdp½dsðpÞusðpÞeipx þ b†sðpÞvsðpÞe−ipx�;

where fdp ¼ d3p
ð2πÞ32Ep

, such that

jp; s;ψi ¼ d†sðpÞj0i; jp; s;ψci ¼ b†sðpÞj0i:

Given the Majorana masses mχ;η, particle and antiparticle
states mix, and ψ is called a pseudo-Dirac fermion. In order
to produce a baryon asymmetry, let us also consider the
following effective operators that violate baryon or lepton
number

−Lint ¼ gχχBX þ gηηBX þ g0χχLY þ g0ηηLY þ H:c:; ð4Þ

where B=L are states with þ1 baryon/lepton number.
X, Y are states with zero baryon and lepton number and
are given by the details of the model. The effective coupling
constants g, g0 have the proper dimensions to make the
Lagrangian dimension four. If they are heavy enough, ψ
particles and antiparticles can decay via these interactions
to baryons or leptons.
Including the mass terms and focusing only on the

baryon-number-violating interactions, the Hamiltonian is

3For studies of quantum decoherence effects in flavor oscil-
lations in resonant leptogenesis, see, e.g., [21–24].

4As a way to evade all quantum decoherence effects, the
authors of Ref. [27] used heavy particles that decay out-of-
equilibrium at very low temperatures to mesinos. In that case
there are no other processes that compete with oscillations and
mesino-antimesino oscillations enhance CP violation.
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H ¼ M −
i
2
Γ; ð5Þ

with

M ¼
�
MD MM

M�
M MD

�
;

Γ≃ γ

� jgχ j2 þ jgηj2 2g�χgη
2gχg�η jgχ j2 þ jgηj2

�
: ð6Þ

The masses MD and MM are the renormalized masses.
The Dirac mass is multiplicatively renormalized from its
tree-level value, MD ≃M. The loop contributions to the

tree-level Majorana massm ¼ mχþm�
η

2
are proportional to the

Dirac mass M and the Uð1Þ-violating interaction coeffi-
cients. γ is also proportional to the Dirac mass and is given
by the details of the model.
Note that even if the tree-level Majorana masses are zero,

they will be generated at loop level via the interactions
in Eq. (4). The loop contribution to the Majorana mass
δ ∼ Cjgχg�ηjM, where C depending on the details of the
model can be a dimensionful coefficient which also
incorporates the loop factors. On the other hand the decay
width Γ ∼ C0ðjgχ j2 þ jgηj2ÞM, where C0 is a coefficient that
has the appropriate dimensions and phase-space factors.
In this work, for simplicity, we assume a hierarchy of
couplings jgχ j ≫ jgηj. Hence the loop contributions to the
Majorana masses are smaller than the decay width of the
particles. (For example in [28] it was shown that for a
Yukawa-type interaction, δ=Γ ∼ jgηj=jgχ j.) Then, if the tree-
level Majorana masses were zero, one would expect the
loop-induced Majorana mass MM < Γ. Later we will show
that in order to have large CP violation, we need MM ∼ Γ.
Hence, we take the tree-level Majorana mass, m, as a free
parameter and require that it is greater than the loop
contributions, such that MM ≃m.5

The eigenstates of the Hamiltonian in Eq. (5) are

jψHi ¼ pjψi − qjψci; jψLi ¼ pjψi þ qjψci;

with eigenvalues ωH;L, where H, L refer to heavy and light
states respectively. We also have

�
q
p

�
2

¼ M�
12 − ði=2ÞΓ�

12

M12 − ði=2ÞΓ12

:

Mass and width differences between the heavy and light
eigenstates are defined as

Δm ¼ mH −mL ¼ ℜðωH − ωLÞ;
ΔΓ ¼ ΓH − ΓL ¼ −2ℑðωH − ωLÞ;

where

ωH − ωL ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M�

12 −
i
2
Γ�
12

��
M12 −

i
2
Γ12

�s
:

The total width of the states is defined as Γ ¼ ΓHþΓL
2

.
One can always rotate two linear combinations of χ and η

to makeM andm real. We can also rotate BX to make gχ or
gη real, but not necessarily both at the same time. Hence it is
possible to have a phase difference between M and Γ,
which will be a source of CP violation. From now on we
will assume the mass matrix is real, and put the relative
phase in the decay matrix.

Assuming r ¼ jgηj
jgχ j ≪ 1, we can write

Γ≃ Γ
�

1 2reiϕΓ

2re−iϕΓ 1

�
; ð7Þ

where

Γ ¼ ðjgχ j2 þ jgηj2Þγ: ð8Þ

In this approximation the oscillation parameters are
given by

x≡ Δm
Γ

≃ 2m
Γ

; y≡ ΔΓ
2Γ

≃ 2r cosϕΓ;���� qp
����≃ 1 −

2r
x
sinϕΓ; β≡ arg

�
q
p

gη
gχ

�
≃ ϕΓ � π: ð9Þ

The time evolution of a state that is purely a jψi or jψci at
t ¼ 0 is

jψðtÞi ¼ gþðtÞjψi −
q
p
g−ðtÞjψci;

jψcðtÞi ¼ gþðtÞjψci − p
q
g−ðtÞjψi; ð10Þ

where

g�ðtÞ ¼
1

2
ðe−imHt−1

2
ΓHt � e−imLt−1

2
ΓLtÞ: ð11Þ

A. CP violation

CP violation can be enhanced in particle-antiparticle
oscillations. We quantify the CP violation that is important
for baryogenesis as a single particle asymmetry,

5Interactions with states that are heavier than ψ could
contribute to the Majorana masses while not changing the decay
rate. Hence raising the loop-induced Majorana mass relative to
the decay rate. There can also be models where MM ∼ Γ
naturally. We leave this as a model building exercise.
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ϵ ¼
Z

∞

0

dt
Γðψ=ψc → BÞ − Γðψ=ψc → B̄Þ
Γðψ=ψc → BÞ þ Γðψ=ψc → B̄Þ ; ð12Þ

where B and B̄ refer to baryon and antibaryon final states
respectively. (Defining a lepton asymmetry through the
lepton-number-violating terms in Lint is straightforward.)

Γðψ=ψc → BÞ is the time-dependent decay rate for an
initially pure-jψi or jψci state to decay to a baryon
final state. Time integration is distributed over each
decay rate.
Using the results of the previous section, CP violation

becomes

ϵ ¼
R∞
0 dtðj pq j2 − j qp j2Þjg−j2ð1 − r2ÞR

∞
0 dtð½2jgþj2 þ ðj pq j2 þ j qp j2Þjg−j2�ð1þ r2Þ − 4rℜ½g�þg−ðj qp jeiβ þ j pq je−iβÞ�Þ

: ð13Þ

See Appendix A for details. There is no CP violation for
r ¼ 1 or jq=pj ¼ 1. For r < 1 and x ≥ 1, the CP violation
can be approximated as

ϵ≃ 2xr sinϕΓ

1þ x2
: ð14Þ

As can be seen in Fig. 1, CP violation is maximized for
x ∼ 1, i.e. Δm ∼ Γ.

III. OSCILLATIONS IN THE EARLY UNIVERSE

Particle-antiparticle oscillations in the early Universe are
different than those expected to be seen at colliders. In an
expanding universe with a dense and relativistic plasma, the
dynamics are defined by a competition between rates for
many processes. For example, even in the absence of any
interactions with the plasma, oscillations do not start as
long as ωosc ≃ 2m < HðTÞ. Even after the Hubble rate
drops below the oscillation rate, the particles and anti-
particles might be interacting with the plasma such that the
states decohere. If, for example, only the particle states
were scattering with the plasma, elastic scatterings could
keep this state from oscillating into an antiparticle state.
However elastic scatterings that do not differentiate

between particles and antiparticles do not cause
decoherence as discussed in [26].
Other complications with this early Universe study are

possible finite temperature effects. We will show later that
the baryon number production happens at temperatures
much less than the ψ-particle mass, T ≪ M. Hence, we do
not expect thermal corrections to the particle mass to be
important. We also ignore thermal corrections (e.g. due to
finite-temperature SM fermion masses) to the decay rate.
Possibly the most important finite-temperature effect is
that on the Majorana mass, hence the mass difference
between the ψ-particle mass eigenstates. Barring inter-
actions beyond those in Eq. (4), these corrections will be
proportional to the temperature and a combination of the
coupling constants. Since the renormalization corrections
to the mass difference are proportional to M, and since
T ≪ M in the region of interest, we ignore thermal
corrections to the mass difference.
In Refs. [25,26] effects of oscillations in an asymmetric

DM scenario were studied. There are many similarities we
can draw from that picture, and a few differences, namely
that in our case, the particles/antiparticles decay allowing
CP violation in oscillations. In general, when oscillations,
annihilations and scatterings are present, the relevant
Boltzmann equations that define the particle number
densities (Y ≡ n=s ∝

P
ψ ;ψcfijjψ iihψ jj, with the general-

ized quantum distribution functions fij) are written in a
density matrix form as6

zH
dY
dz

¼ −iðHY − YH†Þ −
X
þ;−

Γ�
2

½O�; ½O�;Y��

−
X
þ;−

shσvi�
�
1

2
fY; O�ȲO�g − Y2

eq

�
; ð15Þ

where z ¼ M=T, s ¼ 2π2

45
g�ðTÞT3 is the entropy density and

g�ðTÞ is the effective number of relativistic degrees of
freedom at temperature T [we take g� ∼ 100 for temper-
atures Oð100 GeVÞ]. ΓþðΓ−Þ is the elastic scattering rate

10–4 10–2 1 100 104

10–5

10–4

10–3

10–2

10–1

x = 2m /

FIG. 1. Amount of CP violation as defined in Eq. (13) (blue,
thick) and the approximation in Eq. (14) (orange, dashed). We use
r ¼ 0.1, sinϕΓ ¼ 0.5.

6This equation describes nonrelativistic particles (the
Hamiltonian is given at p ¼ 0).
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that is flavor blind (sensitive) where “flavor” refers to
particle/antiparticle nature (see below), hσvi is the annihi-
lation rate and O� ¼ diagð1;�1Þ. (Note that both types of
interactions can be present.) The density matrix and the
Hamiltonian are

Y ¼
�

Yψ Yψψc

Yψcψ Yψc

�
;

Ȳ ¼
�

Yψc Yψψc

Yψcψ Yψ

�
;

YeqðzÞ≃
8<
:

135ζð3Þ
4π4g�

; z < 1

45

2π3
ffiffiffiffi
2π

p
g�
z3=2e−z; z > 1;

H ¼
�

M − iΓ=2 m − iΓreiϕΓ

m − iΓre−iϕΓ M − iΓ=2

�
: ð16Þ

The first term in Eq. (15) describes oscillations (and
decays), the second term elastic scatterings and the third
term annihilations.
The nature of elastic scatterings and annihilations

depends on the details of the model. We will study a
specific model in Sec. V. For now let us consider a generic
effective four-fermion operator,

−Lscat ¼
1

Λ2
ψ̄Γaψ f̄Γbf; ð17Þ

where f is a light fermion, Λ is the interaction scale, and
Γa ¼ f1; γμ; γ5; γμγ5; σμν ¼ 1

2
½γμ; γν�g gives the gamma-

matrix structure of the interaction. This effective operator
gives rise to both elastic scatterings (ψf → ψf) and
annihilations (ψψc → ff̄). Under the transformation
ψ → ψc, flavor-blind and flavor-sensitive interactions are
defined as

Lscat →

�þLscat; flavor blind

−Lscat; flavor sensitive:

If the interactions are flavor blind, Oþ is the identity
matrix and the second term in Eq. (15) is identically zero.
Hence flavor-blind scatterings do not cause decoherence.
However, as we will see, oscillations are delayed due to
flavor-blind annihilations.
In Fig. 2 we compare some representative rates for

several processes relevant for net particle number produc-
tion in the early Universe. These are given as follows.

1. The expansion rate of the Universe is

HðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�
45

r
T2

Mpl
; ð18Þ

where Mpl ≃ 1.2 × 1019 GeV is the Planck mass.

2. The decay rate Γ is determined by requiring that the
particles decay out of equilibrium:

Γ < HðT ∼MÞ≃ 10−4 eV; ð19Þ

for M ¼ 300 GeV. We take Γ ¼ 10−6 eV (such
that the ψ particles decay at T ≃ 30 GeV) as a
benchmark value.

3. The oscillation rate ωosc is set by the mass splitting
between the heavy and light mass eigenstates. For
pseudo-Dirac fermions ωosc ∼ 2m where m ¼ mχþmη

2

is the Majorana mass of the fermions. (CP violation
in oscillations is maximized for 2m ∼ Γ.) Oscilla-
tions cannot proceed before the Hubble rate drops
below ωosc. Neglecting scatterings and annihilations,
for particles of mass 300 GeV with a mass splitting
of 2 × 10−6 eV the onset of oscillations is delayed
until z ∼ 6 (see Fig. 2).

4. Elastic scatterings and annihilations affect oscilla-
tions. For a general study, we consider the Lagran-
gian in Eq. (17) with (i) scalar interactions, Γa;b ¼ 1,
which are flavor blind and (ii) vector interactions,
Γa;b ¼ γμ, which are flavor sensitive.7 For non-
relativistic ψ particles and assuming mf ¼ 0, these
interactions give the following thermally averaged
annihilation and scattering cross sections:

ðiÞ hσSannvi ¼
3NMT
4πΛ4

; hσSscatvi ¼
NT2

4πΛ4
;

ðiiÞ hσVannvi ¼
NM2

πΛ4
; hσVscatvi ¼

NT2

πΛ4
; ð20Þ

FIG. 2. Comparison of the decay rate, the Hubble rate, the
oscillation frequency and the annihilation and the elastic scatter-
ing rates for scalar (solid) and vector (dashed) interactions for
M ¼ 300 GeV, m ¼ 2 × 10−6 eV, Γ ¼ 10−6 eV, σ0 ¼ 1 fb
(light), and σ0 ¼ 1 ab (dark).

7In Sec. V we will consider binos scattering with SM fermions
via an sfermion exchange, which corresponds to Λ ∝ m2

sf with
both flavor-blind and flavor-sensitive interactions.
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where v is the relative velocity of incoming particles
and N accounts for degrees of freedom, e.g. color
factors. Annihilations and scatterings can be en-
hanced significantly if there are many fermions with
interactions as in Eq. (17).
In Fig. 2 we plot the following annihilation and

scattering rates per particle (for M ¼ 300 GeV):

ðiÞ ΓS
ann ¼ nψ hσSannvi ¼

3M3

4π
ffiffiffiffiffiffi
2π

p e−z

z5=2
σ0;

ΓS
scat ¼ nfhσSscatvi ¼

3ζð3ÞM3

8π2z5
σ0;

ðiiÞ ΓV
ann ¼ nψ hσVannvi ¼

M3

π
ffiffiffiffiffiffi
2π

p e−z

z3=2
σ0;

ΓV
scat ¼ nfhσVscatvi ¼

3ζð3ÞM3

2π2z5
σ0; ð21Þ

where σ0 ¼ NM2

πΛ4 is an effective cross section and nψ ;f
are (equilibrium) number densities. The annihilation
rate through a scalar operator is velocity suppressed
compared to the vector case. Annihilations are
Boltzmann suppressed compared to scatterings off
light fermions.

Unless otherwise noted, we use the following parameters
throughout this paper:

M¼ 300 GeV; m¼ 2× 10−6 eV; Γ¼ 10−6 eV;

r¼ 0.1; sinϕΓ ¼ 0.5; σ0 ¼ ab-fb: ð22Þ

These parameters are chosen as benchmark values. They are
by no means fine-tuned. The particle asymmetry propor-
tional to the CP violation parametrized by ϵ can be made
larger by anOð1Þ amount by changing r and sinϕΓ. Mass of
the ψ particles can be OðTeVÞ or higher. Even though one
needsm ∼ Γ to maximize theCP violation, an asymmetry as
small as 10−10 would not need Oð1Þ CP violation. We will
show later that mass differences as large as OðeVÞ can
produce enough baryon asymmetry. The out-of-equilibrium
condition puts an upper bound on the decay width, Γ≲
10−4 eV forM ¼ 300 GeV. We use Γ ¼ 10−6 eV due to an
interesting collider signature: if produced, particles with a
width of 10−6 eV travel ∼20 cm at a collider before they
decay, giving rise to displaced-vertex signatures. (A detailed
study of using displaced vertices to probe baryogenesis was
given in Ref. [29].) After setting this width, a mass difference
of 2 × 10−6 eV is chosen to make the oscillations more
visible. For effective cross sections larger than a fb, it is very
hard to produce enough asymmetry.

A. Toy case: Oscillations and decays

Let us first ignore annihilations and elastic scatterings in
Eq. (15) and study oscillations and decays in an expanding
universe. The Boltzmann equations in this case read

dΔðzÞ
dz

¼ −
Γ
zH

ΔðzÞ þ i
2m
zH

ΞðzÞ;
dΣðzÞ
dz

¼ −
Γ
zH

ΣðzÞ − 2Γr
zH

½cosϕΓΠðzÞ − i sinϕΓΞðzÞ�;
dΞðzÞ
dz

¼ −
Γ
zH

ΞðzÞ þ i
2m
zH

ΔðzÞ − i
2Γr sinϕΓ

zH
ΣðzÞ;

dΠðzÞ
dz

¼ −
Γ
zH

ΠðzÞ − 2Γr cosϕΓ

zH
ΣðzÞ; ð23Þ

where we defined

ΔðzÞ ¼ Yψ − Yψc ; ΞðzÞ ¼ Yψψc − Yψcψ ;

ΣðzÞ ¼ Yψ þ Yψc ; ΠðzÞ ¼ Yψψc þ Yψcψ : ð24Þ

We can solve for ΞðzÞ from the first equation and plug it
into the third equation. Then, with a change of variables
y ¼ z2, we have

d2ΔðyÞ
dy2

þ 2ξω0

dΔðyÞ
dy

þ ω2
0ΔðyÞ ¼ −ϵω2

0ΣðyÞ; ð25Þ

where

ω2
0 ¼

Γ2 þ 4m2

4½z2HðzÞ�2 ; ξ ¼ Γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ 4m2

p :

ϵ is the measure of CP violation given in Eq. (14). This
differential equation can be solved analytically for zero and
nonzero CP violation.

1. Without CP violation

For ϵ ¼ 0, the above differential equation describes a
damped oscillator with the solution

ΔðzÞ ¼ A exp

�
−

Γ
2HðzÞ

�
cos

�
m

HðzÞ þ δ

�
; ð26Þ

where A and δ are determined by initial conditions. Note
that if there is no CP violation and if the initial conditions
are symmetric [Δð0Þ ¼ 0], ΔðzÞ stays zero for all z and
there is no net ψ -number production as expected. In Fig. 3
we plotΔðzÞ for asymmetric initial conditions,Δð1Þ ¼ Yeq.
One can also see in Fig. 3 that for smaller Majorana masses
(hence smaller oscillation frequency, since ωosc ≃ 2m) the
onset of oscillations is delayed. [We use oscillations in
ΔðzÞ as a proxy for particle-antiparticle oscillations.] The
time when oscillations start zosc can be approximated from
2m ∼HðzoscÞ as

zosc ∼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × 10−6 eV

m

r �
M

300 GeV

�
: ð27Þ
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2. With CP violation

For nonzero ϕΓ and r, Eq. (25) describes a damped-
driven oscillator, where ΣðzÞ plays the role of a driving
force. To get an analytic solution in this case we assume
that particles and antiparticles are produced with equilib-
rium number densities, hence Σð1Þ≃ 2Yeqð1Þ. In the
absence of annihilations or scatterings, the total number
density decays exponentially with the decay rate Γ. Thus
we take

ΣðzÞ ¼ 2Yeqð1Þ exp
�
−

Γ
2HðzÞ

�
for z > 1: ð28Þ

With this driving force, Eq. (25) can be solved
analytically

ΔðzÞ≃ AϵYeqð1Þ exp
�
−

Γ
2HðzÞ

�
sin2

�
m

2HðzÞ þ δ

�
;

ð29Þ

where again A and δ are determined by initial conditions.
Note that in this case, where there is CP violation, a
nonzero asymmetry is produced even with symmetric
initial conditions and it is proportional to the CP-violation
parameter ϵ. This ψ asymmetry is plotted for different
Majorana masses in Fig. 3. For m≳ Γ the ψ particles
oscillate a few times before decaying and the asymmetry
is enhanced. In order to get a large asymmetry as well
as making the oscillations more apparent, we use m ¼
2 × 10−6 eV in the rest of our analysis.

B. Flavor-blind interactions

Let us now include scalar interactions, which are flavor
blind. As discussed earlier, flavor-blind elastic scatterings

do not affect the oscillations. However flavor-blind anni-
hilations change the Boltzmann equations in Eq. (23):

dΔðzÞ
dz

¼−
Γ

zHðzÞΔðzÞþ i
2m

zHðzÞΞðzÞ;

dΣðzÞ
dz

¼−
Γ

zHðzÞΣðzÞ−
2Γr
zHðzÞ½cosϕΓΠðzÞ− isinϕΓΞðzÞ�

−
sðzÞhσSannviðzÞ

2zHðzÞ ðΣ2ðzÞ−Δ2ðzÞþΠ2ðzÞ

−Ξ2ðzÞ−4Y2
eqðzÞÞ;

dΞðzÞ
dz

¼−
ΓþsðzÞhσSannviðzÞΣðzÞ

zHðzÞ ΞðzÞþ i
2m

zHðzÞΔðzÞ

− i
2ΓrsinϕΓ

zHðzÞ ΣðzÞ;

dΠðzÞ
dz

¼−
ΓþsðzÞhσSannviðzÞΣðzÞ

zHðzÞ ΠðzÞ−2ΓrcosϕΓ

zHðzÞ ΣðzÞ;

ð30Þ

where the thermally averaged annihilation cross section
hσSannviðzÞ is given in Eq. (20). We made the z dependence
of each term explicit in the above equations. For scalar
interactions we have hσvi ¼ σ0=z with σ0 constant.
(Numerical solutions to these equations are given in Fig. 6.)
The density equations no longer have closed-form

solutions. However we can still make some comments
without a numerical solution and understand the oscillation
behavior as well as the asymmetry production via analytical
approximations.

(i) Annihilations drop out of equilibrium at zf when
ΓS
annðzfÞ≃HðzfÞ. This freeze-out temperature

depends on the annihilation cross section only
logarithmically

FIG. 3. The ψ asymmetry for different values of the mass splitting and for M ¼ 300 GeV, Γ ¼ 10−6 eV without annihilations or
scatterings. For smaller values of ωosc ¼ 2m, oscillations are delayed. (Left) Without any CP violation, and Δð1Þ ¼ Yeq. Since there is
no CP violation, no asymmetry is produced if the initial conditions are symmetric. (Right) Symmetric initial conditions, Δð1Þ ¼ 0, with
nonzero CP violation, r ¼ 0.1, sinϕΓ ¼ 0.5.
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zf ∼ ln

�
5 × 107

�
M

300 GeV

��
σ0
1 fb

��
; ð31Þ

which gives zf ∼ 11–18 for σ0 ¼ ab-fb.
If there were no decays, this would give the

freeze-out density of particles, as in the weakly
interacting massive particle case,

ΣðzfÞ ∼ 10−10
�
300 GeV

M

��
1 fb
σ0

�
z2f: ð32Þ

However in our case the remaining particles decay
with a decay rate Γ. We can approximate the total
number density at later times as

ΣðzÞ≃ C exp

�
−

Γ
2HðzÞ

�
ΣðzfÞ for z > zf; ð33Þ

where C is a numerical factor that can be found by
matching to ΣeqðzÞ ¼ 45

π2
ffiffiffiffi
2π

p
g�
z3=2e−z at z≃ zf.

(ii) Flavor-blind annihilations cause decoherence, as
can be seen from the equations for ΠðzÞ and ΞðzÞ.
Due to this decoherence, oscillations are further
delayed. In order to (approximately) find when
oscillations start in the presence of flavor-blind
annihilations we look at the Boltzmann equations
for ΔðzÞ and ΞðzÞ, setting Γ ¼ 0. (Decays are
important for CP violation, but less so for oscil-
lations themselves.) We then arrive at an equation
for a damped harmonic oscillator, similar to the
one in Eq. (25):

d2ΔðyÞ
dy2

þ 2ξω0

dΔðyÞ
dy

þ ω2
0ΔðyÞ ¼ 0; ð34Þ

where y ¼ z2 and

ω0 ≡ m
yH

; ξ≡ ΓS
ann

2m
;

with the identification 2ΓS
ann ¼ shσSannviΣðzÞ. This

equation cannot be solved analytically since ξ is a
function of z. Specifically ξ decreases with de-
creasing temperature/growing z. For early times,
ξ ≫ 1, the system is overdamped and there are no
oscillations. Oscillations only start when ξ < 1,
ωosc ∼ ΓS

annðzoscÞ, which gives

zosc∼ ln

�
107

�
M

300GeV

�
3
�
2×10−6 eV

m

��
σ0
1 fb

��
:

ð35Þ

For example for σ0 ¼ 1 fb oscillations start at
zosc ∼ 16. (See Fig. 5.)

(iii) The ψ asymmetry ΔðzÞ is also suppressed due to
flavor-blind annihilations. We show this asymme-
try in Fig. 6 for different annihilation cross sec-
tions. In order to find an approximate expression
for ΔðzÞ, first realize that Γ ∼m ∼ Γann when the
oscillations start. (We take Γ ∼m to maximize the
CP violation in oscillations.) Hence, immediately
following the start of oscillations Γann ≪ Γ and we
can ignore it in the Boltzmann equations. Further-
more oscillations start before annihilations freeze
out and ψ particles oscillate a few times before
they decay for interaction scales we consider
(σ0 ¼ ab-fb). Then we can solve Eq. (25) for
z > zosc with

ΣðzÞ≃ 2YeqðzoscÞ exp
�
−

Γ
2HðzÞ

�
;

and with symmetric initial conditions to find the ψ
asymmetry

ΔðzÞ≃ ϵYeqðzoscÞ exp
�
−

Γ
2HðzÞ

�
sin2

�
m

2HðzÞ
�
:

ð36Þ

We emphasize that the behavior before the
oscillations start, where the annihilation rate is
much larger than the mass difference and the decay
rate, is not covered in this approximation. We also
ignore annihilations altogether right after the os-
cillations start. However there is a window where
ωosc > Γann ≳ Γ for z > zosc, which should affect
the size of the asymmetry as well as the frequency
of the oscillations. Furthermore we omitted the
freeze out of annihilations. Hence the above
approximation is expected to underestimate the
asymmetry. Still it estimates the maximum ψ
asymmetry within an order of magnitude for the
parameters given in Eq. (22). In Fig. 4 we compare
this approximation to the numerical solutions
of Eq. (30).

C. Flavor-sensitive interactions

Now let us investigate the effects of vector interactions,
which are flavor sensitive. Particularly important in this
case are elastic scatterings. If a scattering process probes
the particle or antiparticle nature of the ψ particles,
oscillations cannot proceed. (This is called the quantum
Zeno effect.) This can be seen from the Boltzmann
equations with flavor-sensitive interactions:

SEYDA IPEK and JOHN MARCH-RUSSELL PHYSICAL REVIEW D 93, 123528 (2016)

123528-8



dΔðzÞ
dz

¼ −
Γ

zHðzÞΔðzÞ þ i
2m

zHðzÞΞðzÞ;

dΣðzÞ
dz

¼ −
Γ

zHðzÞΣðzÞ −
2Γr cosϕΓ

zHðzÞ ΠðzÞ

þ i
2Γr sinϕΓ

zHðzÞ ΞðzÞ − sðzÞhσVannviðzÞ
2zHðzÞ ðΣ2ðzÞ

− Δ2ðzÞ þ Ξ2ðzÞ − Π2ðzÞ − 4Y2
eqðzÞÞ;

dΞðzÞ
dz

¼ −
Γþ 2ΓV

scatðzÞ
zHðzÞ ΞðzÞ þ i

2m
zHðzÞΔðzÞ

− i
2Γr sinϕΓ

zHðzÞ ΣðzÞ;

dΠðzÞ
dz

¼ −
Γþ 2ΓV

scatðzÞ
zHðzÞ ΠðzÞ − 2Γr cosϕΓ

zHðzÞ ΣðzÞ: ð37Þ

Following the arguments of the previous section to
describe the ψ asymmetry, one can show that oscillations
start only when ωosc ∼ ΓV

scatðzoscÞ, i.e.

zosc ≃ 80

�
M

300 GeV

�
3=5

�
2 × 10−6 eV

m

�
1=5

�
σ0
1 fb

�
1=5

:

ð38Þ

Compared to the flavor-blind annihilations, oscillations
are delayed much further due to flavor-sensitive scatterings
(with similar cross sections). This is expected since elastic
scatterings off light particles in the plasma are not
Boltzmann suppressed at temperatures T ∼Oð100 GeVÞ.
Oscillations start at z ∼ 80 for a flavor-sensitive elastic
scattering cross section σ0 ¼ 1 fb (compared to z ∼ 18 for
flavor-blind annihilations.) Since the ψ-particle number
density is already less than 10−10 by z ∼ 40, the asymmetry
produced (after the oscillations start) would be too small
compared to the BAU. In Fig. 5 we show zosc vs the mass
difference for different interaction strengths.

An approximation for the ψ asymmetry can be found
following the steps that led to Eq. (36), with one change.
Now the oscillations start after annihilations freeze out.
Hence we solve Eq. (25) for z > zosc with

ΣðzÞ≃ exp

�
−

Γ
2HðzÞ

�
ΣðzfÞ;

and find the asymmetry

ΔðzÞ≃ ϵΣðzfÞ
2

exp

�
−

Γ
2HðzÞ

�
sin2

�
m

2HðzÞ
�
; ð39Þ

where ΣðzfÞ is given in Eq. (32). We show the comparison
between the above approximation and the numerical results

FIG. 5. The timewhen the oscillations start, zosc, vs theMajorana
mass m for flavor-blind (solid, blue/orange) and flavor-sensitive
(dashed, blue/orange) interactions as well as the Hubble suppres-
sion without interactions (solid, gray). [Plotted are Eqs. (27), (35)
and (38).] Note that the oscillation frequency is related to the
Majorana mass as ωosc ¼ 2m. We also show the freeze-out
temperature zf (dotted) given in Eq. (31).

FIG. 4. Comparison of the numerical solutions to the Boltzmann equations (solid) and the approximations given in the text (dashed)
for the ψ asymmetry ΔðzÞ in the presence of (left) flavor-blind and (right) flavor-sensitive interactions. For the numerical solutions we
use the initial condition Δð1Þ ¼ 0, while for the analytical approximation we use Δðz < zoscÞ ¼ 0. The following parameters are used in
both plots: M ¼ 300 GeV, Γ ¼ 10−6 eV, m ¼ 2 × 10−6 eV, r ¼ 0.1, sinϕΓ ¼ 0.5.
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in Fig. 4. We also show the numerical solutions to Eq. (37)
for ΣðzÞ and ΔðzÞ in Fig. 6.

IV. (APPROXIMATE) BARYON ASYMMETRY
OF THE UNIVERSE

A. Baryon asymmetry via B-violating interactions

So far we have only discussed the ψ asymmetry.
However, our main purpose is to produce the baryon
asymmetry of the Universe. For that we need to add to
the set of Boltzmann equations in Eq. (15) two more
equations describing the evolution of baryon and anti-
baryon densities. These equations take into account proc-
esses that change the baryon number, such as inelastic
scatterings BX1 → ψX2. Obviously one needs to know the
details of the model to properly set up and solve the relevant
Boltzmann equations. We will do this after we introduce a
model in Sec. V. However, as long as the oscillations are
delayed till z > 1, the general workings of this scenario are
quite robust towards the details of a model and it is helpful

to give an approximate picture. Hence we first focus on
baryon-number-violating terms in Eq. (4) and assume that
there are no other baryon-number-violating interactions.
(Baryogenesis via the lepton-number-violating terms is
relatively straightforward and we will mention it in the
next section.)
Before solving for the baryon asymmetry, let us revisit the

oscillation dynamics in the presence of flavor-blind annihi-
lations as they relate to the production of a baryon asymmetry.
(Flavor-sensitive interactions follow a similar story.)
For a mass difference of 2 × 10−6 eV and effective cross

section σ0 ¼ ab-fb, oscillations start at zosc ∼ 9–16. At this
point the annihilation rate is Boltzmann suppressed and
drops below the decay rate very quickly. The Hubble rate is
already much smaller than the mass difference for z > 6

(see Fig. 2). Hence when the oscillations start they proceed
as described in Sec. II. Furthermore ψ particles oscillate a
few times before they decay. (Note that this is very different
from soft leptogenesis models in which oscillations are
thought to start at z≲ 1.)

FIG. 6. (Left) The total ψ -number density ΣðzÞ and (Right) the ψ asymmetry ΔðzÞ (with symmetric initial conditions) for different
cross sections. The following parameters are used in both plots: M ¼ 300 GeV, Γ ¼ 10−6 eV, m ¼ 2 × 10−6 eV, r ¼ 0.1 (solid), 0.3
(dashed), sinϕΓ ¼ 0.5. (Top) Flavor-blind interactions delay oscillations due to annihilations, until ωosc ∼ Γann. This corresponds to
zosc ∼ 16ð9Þ for an annihilation cross section of 1 fb (1 ab). (Bottom) Flavor-sensitive interactions delay oscillations due to elastic
scatterings, until ωosc ∼ Γscat. This corresponds to zosc ∼ 20ð8Þ for an annihilation cross section of 1 ab (10−2 ab). Without interactions
the oscillations start at zosc ∼ 6. CP violation, and hence the asymmetry, is smaller for larger cross sections since oscillations are delayed
longer. The baryon asymmetry of the Universe η≃ 10−10 is shown for reference.
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With these in mind we can write the Boltzmann
equations for the baryon and antibaryon number densities
for z > zosc ≫ 1 as

dYB

dz
¼ Γψ

zHðzÞYψ þ Γψc

zHðzÞYψc ;

dYB̄

dz
¼ Γ̄ψ

zHðzÞYψ þ Γ̄ψc

zHðzÞYψc ; ð40Þ

where Γψ ≡ Γðψ → BXÞ, Γ̄ψ ≡ Γðψ → B̄ X̄Þ (and similarly
for ψc). We ignore inverse decays B → Xψ for T ≪ M. We
make the following approximations for z > zosc,

Γψ þ Γ̄ψ ≃ Γψc þ Γ̄ψc ≃ Γ;

Γψ − Γ̄ψ ≃ Γψc − Γ̄ψc ≃ ϵΓ:

Defining

ΣB ¼ YB þ YB̄; ΔB ¼ YB − YB̄;

the differential equations for the total baryon number and
the baryon asymmetry are

dΣBðzÞ
dz

¼ Γ
zHðzÞΣðzÞ;

dΔBðzÞ
dz

¼ ϵΓ
zHðzÞΣðzÞ: ð41Þ

The baryon asymmetry is proportional to the CP violation
parametrized by ϵ. These equations are solved together with
Eq. (15). Corresponding baryon asymmetries are shown in
Fig. 7 in the presence of flavor-blind or flavor-sensitive
interactions. A large enough baryon asymmetry can be
produced with flavor-blind interactions with cross sections
as high as OðfbÞ. The delay of oscillations is stronger for
flavor-sensitive interactions. In this case, in order to

produce an asymmetry of 10−10, the elastic scattering cross
section should be OðabÞ or less.
Let us emphasize that we assume that a nonzero baryon

asymmetry is only produced after the oscillations start,
setting Δðz < zoscÞ ¼ 0. However, even though oscillations
are suppressed for z < zosc, some CP asymmetry is
produced. (This can be seen as a nonzero ψ asymmetry
for z < zosc in Fig. 6.) In either case, the maximum
asymmetry is approximated well by

ΔBðz > zoscÞ≃ ϵΣðzoscÞ: ð42Þ

Note that for larger mass differences the oscillations
start earlier, as can be seen in Fig. 5. Since ΣðzoscÞ is
larger for smaller zosc, one might expect to get a larger
baryon asymmetry for a larger mass difference. However
for a given decay rate, as the mass difference gets larger,
CP violation (ϵ ∝ Γ=m) gets smaller. In Fig. 8 we show
the final baryon asymmetry, ΔBðz → ∞Þ, for different
mass differences and decay rates for both flavor-blind
and flavor-sensitive interactions with σ0 ¼ 1 ab. There
is a wide range of decay rates and mass differences that
can accommodate the correct baryon asymmetry of the
Universe.

B. Baryon asymmetry via L-violating interactions

In the previous sections we focused on baryon-number-
violating interactions. If, however, lepton-number-violating
terms in Eq. (4) dominate, the picture slightly changes. The
lepton-antilepton asymmetry is still given by Eq. (41) (by
just changing the label B → L) under similar assumptions.
If we ignore the baryon-number-violating terms, a (B − L)
asymmetry is produced in this case. If this asymmetry is
produced before the electroweak (EW) transition, it can be
turned into a baryon asymmetry by sphalerons, which are
active during the EW transition, T ≃ 130 GeV [30]. The

FIG. 7. The total ψ-number density ΣðzÞ, the ψ asymmetry ΔðzÞ and the baryon asymmetryΔBðzÞ for σ0 ¼ 1 fb (solid), 1 ab (dashed),
10−2 ab (dotted) and M ¼ 300 GeV, m ¼ 2 × 10−6 eV, Γ ¼ 10−6 eV, r ¼ 0.1, sinϕΓ ¼ 0.5. The baryon asymmetry of the Universe
η≃ 10−10 is shown for reference. The oscillations are delayed longer for flavor-sensitive interactions: For an effective cross section
σ0 ¼ 1 ab (dashed) the oscillations start at zosc ∼ 9 if the interaction is flavor blind, while they start at zosc ∼ 20 if the interaction is flavor
sensitive. With the parameters used, not enough baryon asymmetry is produced for σ0 ≳ 10 ab with flavor-sensitive interactions.
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baryon asymmetry produced by (B − L)-conserving spha-
leron processes is given by (for M ¼ 300 GeV)

ΔB ¼ −
22þ 4nH
66þ 13nH

ΔLðz ∼ 2Þ; ð43Þ

where nH is the number of Higgs doublets.
A few remarks are in order at this point. In order to

produce a lepton asymmetry before the EW transition,
oscillations should start at T ≳ 130 GeV. This means
that the oscillation frequency ωosc > HðT ∼ 130 GeVÞ≃
10−5 eV. With OðabÞ annihilation cross sections and with
Γ ∼m≳ 10−5 it is possible to produce enough lepton
asymmetry before the EW transition. However, note that
with the parameters used in Eq. (22), the oscillations start at
T ≪ 100 GeV even without any annihilations. Hence not
enough lepton asymmetry is produced before the EW
transition for the benchmark scenario.

V. BARYOGENESIS VIA PSEUDO-DIRAC
BINO OSCILLATIONS

The scenario described in the previous sections can be
realized in anyUV theorywith pseudo-Dirac fermions. In this
section, as a concrete example, we show that pseudo-Dirac
bino oscillations within the model introduced in Ref. [28]8

could generate the baryon asymmetry of the Universe.

A. The model

The model we study is a SUSY model with an approxi-
mate global Uð1ÞR symmetry. The SM particles are not
charged under this global Uð1ÞR while all the supersym-
metric partners have þ1 R charge. With this R-charge
assignment, the gauginos cannot have Majorana masses. In
order to give Dirac mass to the bino we introduce the super
field ΦS whose fermion component S, the singlino, is the
Dirac partner of the bino. In order to give nongauge
couplings to the singlino, we introduce the superfields
ΦD̄ and ΦD transforming under the SM gauge group in the
same way as d̄ and d̄�, respectively. The field content of the
model that is relevant for us is shown in Table I. We will
only give a short summary of the complete model focusing
on the parts that are most relevant to baryogenesis. For
details see Ref. [28].
The mass Lagrangian for the bino and the singlino is

−Lmass ¼ MD
~BSþ 1

2
ðm ~B

~B ~BþmSSSÞ þ H:c:; ð44Þ

where MD is the Dirac mass and m ~B;S are Uð1ÞR-breaking
Majorana masses. The Dirac mass

MD ¼ cD
ΛM

ð45Þ

arises from a spurion term where c is a dimensionless
parameter,D is a SUSY-breaking order parameter and ΛM is
the messenger scale. Majorana mass terms for the gauginos
will be generated by anomaly mediation [31–33], which
gives, e.g., a Majorana bino mass

m ~B ¼ βðgYÞ
gY

Fϕ: ð46Þ

FIG. 8. The final baryon asymmetry, ΔBðz → ∞Þ vs the
Majorana mass for different decay rates and for both flavor-
blind (dashed) and flavor-sensitive (solid) interactions with
σ0 ¼ 1 ab, M ¼ 300 GeV, r ¼ 0.1, and sinϕΓ ¼ 0.5. For mass
differences (Δm ¼ 2m) larger than ∼10−2 eV, oscillations start
zosc < 5 and there is little difference between flavor-blind
and -sensitive interactions. If the mass difference is smaller than
10−2 eV, oscillations are delayed longer for flavor-sensitive
interactions. (See also Fig. 5.) Hence the baryon asymmetry is
smaller (compared to flavor-blind interactions).

TABLE I. Part of the particle content and their associated
quantum numbers under the SM gauge group and Uð1ÞR. All the
fermion fields are left-handed Weyl spinors. ~B is the bino and S is
its Dirac partner, the singlino. ϕD, ϕD̄ are superpartners of some
exotic heavy vectorlike quarks. q, ū, d̄, l, ē are the SM fermion
fields. Generational indices are suppressed for simplicity.

Fields SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞR
Q ¼ ~qþ θq 3 2 1=6 1
Ū ¼ ~̄uþ θū 3̄ 1 −2=3 1

D̄ ¼ ~̄dþ θd̄ 3̄ 1 1=3 1

L ¼ ~lþ θl 1 2 −1=2 1

Ē ¼ ~̄eþ θē 1 1 1 1
ΦD̄ ¼ ϕD̄ þ θψ D̄ 3̄ 1 1=3 1
ΦD ¼ ϕD þ θψD 3 1 −1=3 1
W ~B;α ⊃ ~Bα 1 1 0 1

ΦS ¼ ϕs þ θS 1 1 0 0

8In Ref. [28] the focus was gluino interactions. Gluinos interact
strongly. Their annihilation cross section would be too big to fall
out of equilibrium. Hence we study bino interactions here.
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βðgYÞ is the beta function for the hypercharge coupling
constant gY and Fϕ is a conformal parameter satisfying

m3
3=2

16π2M2
Pl

≲ jFϕj≲m3=2: ð47Þ

m3=2 is the gravitino mass. Note that we do not need a light
gravitino to have a small Majorana mass for the bino. We
assume that the gravitino is heavy enough (heavier than
∼keV) such that binos mostly decay to SM fermions (via
R-parity-violating interactions). A Majorana mass for the
singlino could arise from the Uð1ÞR-violating superpotential
term Z

d2θmSΦ2
S þ H:c: ð48Þ

We assume all Uð1ÞR-violating terms are small, mS ≪ MD.
Then we can define the pseudo-Dirac bino in this model as

ψ ~B ¼
�

~B

S†

�
; ð49Þ

and follow the oscillation picture described in Sec. II where
bino-antibino states mix. (It should be clear from context if
the word “bino” refers to the Weyl spinor ~B or the pseudo-
Dirac fermion ψ ~B.) We take the lightest neutralino to be
purely bino so that there is no mixing between, for example,
the bino, singlino and the Dirac partner of the wino.
Uð1ÞR-conserving interactions of the bino and the

singlino include

−L ⊃
ffiffiffi
2

p
gYYR

~Bd̄i
~̄di þ yisd̄iϕD þ H:c:; ð50Þ

where YR is the hypercharge of the right-handed down-
type quark.
The new scalars ϕD, ϕD̄ can be assumed to be degenerate

with mass μD and with the mass mixing term

B2
DD̄ϕDϕD̄ þ H:c:; ð51Þ

where B2
DD̄ ¼ cDD̄D

2

Λ2
M

and cDD̄ a constant.

1. R-parity-violating bino decays

In order to have CP violation in pseudo-Dirac bino
oscillations, the bino must decay. We assume that the bino
is the lightest R-charged particle and decays via Uð1ÞR-
breaking interactions. We also assume R parity is broken
so that there is baryon/lepton number violation. (For an
extended review of R-parity-violating interactions and
phenomenological constraints, see, for example, [34].)
We include the following R-parity- and Uð1ÞR-symmetry-
violating interactions

WL ¼ λijk
0LiQjD̄k þ λ0ijLiQjΦD̄ þ H:c:;

WB ¼ 1

2
λ00ijkŪiD̄jD̄k þ λ00ijŪiD̄jΦD̄ þ H:c: ð52Þ

WL has lepton-number-violating terms, while WB has
baryon-number-violating terms. The supersymmetric
Lagrangian contains the interactions

−L ⊃ λ0ijkliqj
~̄dk þ λ0ijliqjϕD̄ þ 1

2
λ00ijkūid̄j

~̄dk

þ λ00ijūid̄jϕD̄ þ H:c: ð53Þ

Let us now assume that all the squarks and ϕD, ϕD̄ are
heavier than the bino and can be integrated out. The
effective four-fermion Lagrangian is

−Leff ¼ g0~B;ijk
~Bliqjd̄k þ g0S;ijkSliqjd̄k þ g00~B;ijk

~Būid̄jd̄k

þ g00S;ijkSūid̄jd̄k þ H:c:; ð54Þ

with

g0~B;ijk ¼
ffiffiffi
2

p
gYλ0ijk
3m2

sf

; g0S;ijk ¼
ykλ0ijB

2
DD̄

μ4D
;

g00~B;ijk ¼
ffiffiffi
2

p
gYλ00ijk
3m2

sf

; g00S;ijk ¼
ykλ00ijB

2
DD̄

μ4D
; ð55Þ

wheremsf is a common sfermion mass. We assume that ϕD,
ϕD̄ are heavier than the squarks such that jg ~B

0j ≫ jgS0j
and jg00~Bj ≫ jg00Sj.
Comparing Eq. (54) with Eq. (4) and assuming one

generation of fermions we can identify

gχ ≡ g00~B; g0χ ≡ g ~B
0; gη ≡ g00S; g0η ≡ gS0: ð56Þ

If the baryon-number-violating terms dominate over the
lepton-number-violating ones, then the decay rate is

Γ ¼ M5
D

ð32πÞ3 ðjg
00
~B
j2 þ jg00Sj2Þ: ð57Þ

For jg00~Bj ≫ jg00Sj, the decay rate can be parametrized as

Γ≃ 10−6 eV

�
MD

300 GeV

�
5
�
10 TeV
msf

�
4
�

λ00

10−2

�
2

: ð58Þ

2. Bino annihilations and elastic scatterings

As discussed in Sec. III annihilations and elastic scatter-
ings of the binos are very important in studying pseudo-
Dirac bino oscillations in the early Universe. For small
mass splittings (m ≪ eV), we can treat the binos as purely
Dirac to find the annihilation and elastic scattering cross
sections. Since we assume that the lightest neutralino is a
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pure bino, even for binos heavier than W=Z bosons,
annihilations into fermion final states dominate [35].
Hence we use the effective Lagrangian

−Lscat ¼
g2Y
m2

sf

ψ̄ ~BγμPLψ ~BF̄γ
μðgV þ gAγ5ÞF; ð59Þ

where

gV ¼ Y2
R þ Y2

L

2
; gA ¼ Y2

R − Y2
L

2
; F ¼

�
fL
f†R

�
;

and YL;R is the hypercharge of the fermion fL;R. The
thermally averaged annihilation cross section is [36]

hσannvi ¼
g4YM

2
D

8πm4
sf

X
f

NfY4
f ≃ 0.6

g4YM
2
D

πm4
sf

; ð60Þ

where the sum is over all SM fermions. The color factor
Nf ¼ 3 for quarks and 1 for leptons.
The bino has both flavor-blind (axial-vector) and flavor-

sensitive (vector) interactions. Since the annihilation rate is
exponentially suppressed compared to the elastic scattering
rate, the delay in oscillations is governed by the flavor-
sensitive scattering part of the interactions. Then the
relevant thermally averaged scattering cross section is

hσscatvi ¼
g4YT

2

16πm4
sf

X
f

NfY4
f ≃ 0.3

g4YT
2

πm4
sf

; ð61Þ

where the sum is taken over all SM fermions except the
top quark.

B. Baryon asymmetry of the Universe

Now that we have a complete model, we can study
baryon-number generation described in Sec. IV in more
detail. In order to find the net particle number, we need
the rates of processes that change that particle number.
Focusing only on baryon-number-violating interactions,
processes that change the baryon number by one unit in this
model are shown in Fig. 9.

As discussed in Sec. IV, baryon asymmetry is produced
at low temperatures, z ¼ M=T ≫ 10 for squarks of mass
Oð10 TeVÞ. Hence we can ignore processes with ψ=ψc in
the final state, such as dd → ψ ū. We can also ignore 3 → 1
processes, e.g. ψdd → ū, since they are phase-space sup-
pressed. Inelastic 2 → 2 scatterings such as ψ ū → dd,
which do not affect oscillations, happen with a rate much
smaller than the decay rate of the binos for z≳ 5 (see
Fig. 10). Hence we also ignore these scatterings.
The only relevant processes for determining the baryon

asymmetry are bino/antibino decays to a final state with
baryon number þ1 or −1, bino annihilations and elastic
bino scatterings via vector interactions. The study in
Sec. IV can be followed straightforwardly. With these
approximations the relevant Boltzmann equations for
z > zosc are

dΣðzÞ
dz

≃ −
Γ

zHðzÞΣðzÞ −
shσannvi
2zHðzÞ ðΣ

2ðzÞ − 4Y2
eqÞ;

dΔBðzÞ
dz

≃ ϵΓ
zHðzÞΣðzÞ: ð62Þ

We emphasize that the baryon asymmetry is produced
only after the oscillations start, when the mass difference
becomes larger than the (flavor-sensitive) elastic scattering
rate, m≳ Γscat,

zosc ≃ 36

�
MD

300 GeV

��
10 TeV
msf

�
4=5

�
2 × 10−6 eV

m

�
1=5

:

ð63Þ

For sfermion masses smaller than a few TeV (and
Majorana masses smaller than 10−6 eV), oscillations start
at z > 40, when the bino abundance is highly suppressed.
Thus it is not possible to get the right baryon asymmetry
with sfermions lighter than Oð10 TeVÞ. [We find that

FIG. 9. Processes that change baryon number by one (ΔB ¼ 1).
The four-fermion vertices are given in Eq. (54).

FIG. 10. Comparison of the decay rate, the Hubble rate, the
oscillation frequency, the annihilation rate, the elastic and
inelastic scattering rates for M ¼ 300 GeV, m ¼ 2 × 10−6 eV,
msq ¼ 2 TeV, and Γ ¼ 10−6 eV.
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sfermions as light as 3 TeV can be accommodated in the
parameter region with Γ ∼ 10−4 eV andm ∼ ð1–10−2Þ eV.]
Baryon asymmetries for sfermion masses 10–20 TeV are
shown in Fig. 11.

VI. SUMMARY AND OUTLOOK

In this paper we studied the oscillations of a pseudo-
Dirac fermion, ψ with mass M ¼ 300 GeV using the
density matrix description of Ref. [26] that incorporates
the Hubble expansion, elastic scatterings and annihilations
into the time evolution of the number densities. The ψ
particles decay out of thermal equilibrium if their decay rate
Γ < HðT ∼MÞ ∼ 10−4 eV. As benchmark values we took
Γ ¼ 10−6 eV and a mass difference between the heavy and
light mass eigenstates, Δm ¼ 4 × 10−6 eV. We assumed
that these new particles and their antiparticles were pro-
duced with a thermal number density at temperatures much
higher than their mass. If there is also CP violation in the
system, it is enhanced for Γ ∼ Δm. In this case, a ψ
asymmetry is produced at later times even if the initial
densities are symmetric. Furthermore if the decays of the ψ
particles violate baryon number, then a baryon asymmetry
can be produced. The size of the baryon asymmetry
depends strongly on when the oscillations start and how
they proceed in the early Universe. Here we summarize the
main points of our analysis.

1. After being produced, particles and antiparticles
cannot start oscillating right away. Even without
any interactions, ψ particles do not have sufficient
time to oscillate before the Hubble rate drops below
the oscillation frequency, ωosc ¼ Δm > HðTÞ. For a
mass difference smaller than 10−6 eV full oscilla-
tions only start when T ≳M=10.

2. For electroweak scale particles that fall out of thermal
equilibrium at T ≲M, interactions with light (SM)
particles inhibit oscillations. For interaction cross

sections larger than Oð10−2abÞ, this delay is stronger
than the one due to the expansion of the Universe. If
the interactions cannot differentiate between a particle
and an antiparticle (flavor-blind interactions), elastic
scatterings do not affect oscillations. However oscil-
lations are delayed due to particle-antiparticle anni-
hilations. Oscillations can be delayed until T ∼M=20
for an annihilation cross section ∼fb.

3. If there are light particles that scatter off of the ψ
particles, and if these scatterings differentiate be-
tween a particle and an antiparticle (flavor-sensitive
interactions), oscillations are delayed further. Since
the elastic scattering rate is not Boltzmann sup-
pressed (if there are light particles to scatter with),
the delay due to scatterings is stronger than the
delay due to annihilations. For a flavor-sensitive
elastic scattering cross section ∼fb, oscillations can
be delayed until T ∼M=80. We showed the relation-
ship between the oscillation-onset temperature and
the mass difference for different interaction types
and strengths in Fig. 5.

4. We showed in Fig. 7 that a large baryon asymmetry
can be produced if interactions that delay oscilla-
tions are not stronger than OðfbÞ. For stronger
interactions oscillations are usually delayed until
the total ψ density is too small to produce a large
asymmetry even with Oð1Þ CP violation.

As a concrete example of this scenario, we studied
pseudo-Dirac bino oscillations in a Uð1ÞR-symmetric
SUSY model with R-parity violation. If the lightest
neutralino is a pure bino, it decays via R-parity-violating
interactions. Assuming baryon-number-violating bino
decays dominate we showed that when the binos decay
out of thermal equilibrium, they can produce a sufficiently
large baryon asymmetry to explain the baryon asymmetry
of the Universe. However in order to produce enough
asymmetry, sfermions need to be heavier than a few TeV
lest bino oscillations are delayed too much due to strong
elastic scatterings with light SM fermions.
An important collider signature of this scenario is

displaced vertices. Since these particles with electroweak
scale masses decay out of thermal equilibrium, their decay
rate Γ≲ 10−4 eV. Consequently, if they are produced at
colliders, they will travel more than a few mm before
decaying. (See Ref. [29].) Furthermore, if there are lepton-
number-violating decays (as well as baryon-number-
violating decays), the decays can produce a same-sign
lepton asymmetry [28].
On the model building side, the oscillations can be

embedded in a dark sector and be the source of the dark
matter relic density together with the baryon asymmetry. As
pointed out in Refs. [25,26], one usually imposes a global
Uð1Þ symmetry on the dark sector such that the dark matter
particle is stable. However this global symmetry must be
broken due to gravity. Then it is expected, e.g., the fermions

FIG. 11. The total ψ number ΣðzÞ, the ψ asymmetry ΔðzÞ and
the baryon asymmetry ΔBðzÞ for msq ¼ 10 TeV (solid), 20 TeV
(dashed) and M ¼ 300 GeV, m ¼ 2 × 10−6 eV, Γ ¼ 10−6 eV,
r ¼ 0.1, sinϕΓ ¼ 0.5.
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in the dark sector are pseudo-Dirac particles and they
undergo particle-antiparticle oscillations as described in
this work. If, for example, the global symmetry is Uð1ÞB−L,
an asymmetry that is produced by oscillations in the dark
sector can be transferred into the SM baryon asymmetry.
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APPENDIX A: TIME-DEPENDENT
DECAY RATES

From Eq. (4) we have

hBXj − Ljψi ¼ gχ ; hBXj − Ljψci ¼ gη;

hB̄ X̄ j − Ljψi ¼ g�η; hB̄ X̄ j − Ljψci ¼ g�χ : ðA1Þ

Using Eq. (10) we write the time-dependent decay
rates as

ΓðψðtÞ → BXÞ ¼ γjhBXj − LjψðtÞij2 ¼ γ

����gχgþ − gη
q
p
g−

����2 ¼ γ

�
jgχ j2jgþj2 þ jgηj2

���� qp
����2jg−j2 − 2ℜ

�
q
p
g�χgηg�þg−

��
;

ΓðψðtÞ → B̄ X̄Þ ¼ γjhB̄ X̄ j − LjψðtÞij2 ¼ γ

����g�ηgþ − g�χ
q
p
g−

����2 ¼ γ

�
jgηj2jgþj2 þ jgχ j2

���� qp
����2jg−j2 − 2ℜ

�
q
p
g�χgηg�þg−

��
;

ΓðψcðtÞ → BXÞ ¼ γjhBXj − LjψcðtÞij2 ¼ γ

����gηgþ − gχ
p
q
g−

����2 ¼ γ

�
jgηj2jgþj2 þ jgχ j2

����pq
����2jg−j2 − 2ℜ

�
p
q
g�ηgχg�þg−

��
;

ΓðψcðtÞ → B̄ X̄Þ ¼ γjhB̄ X̄ j − LjψcðtÞij2 ¼ γ

����g�χgþ − g�η
p
q
g−

����2 ¼ γ

�
jgχ j2jgþj2 þ jgηj2

����pq
����2jg−j2 − 2ℜ

�
p
q
g�ηgχg�þg−

��
;

ðA2Þ

where γ is determined by the details of the specific model. Then

ΓðψðtÞ → BXÞ − ΓðψðtÞ → B̄ X̄Þ ¼ γjgχ j2ð1 − r2Þ
�
jgþj2 −

���� qp
����2jg−j2

�
;

ΓðψðtÞ → BXÞ þ ΓðψðtÞ → B̄ X̄Þ ¼ γjgχ j2
�
ð1þ r2Þ

�
jgþj2 þ

���� qp
����2jg−j2

�
− 4ℜ

�
q
p

gη
gχ

g�þg−

��
;

ΓðψcðtÞ → BXÞ − ΓðψcðtÞ → B̄ X̄Þ ¼ γjgχ j2ðr2 − 1Þ
�
jgþj2 −

����pq
����2jg−j2

�
;

ΓðψcðtÞ → BXÞ þ ΓðψcðtÞ → B̄ X̄Þ ¼ γjgχ j2
�
ð1þ r2Þ

�
jgþj2 þ

����pq
����2jg−j2

�
− 4ℜ

�
p
q

g�η
g�χ

g�þg−

��
: ðA3Þ

We also have

q
p

gη
gχ

¼ r

���� qp
����eiβ; p

q

g�η
g�χ

¼ r

����pq
����e−iβ: ðA4Þ

These can be combined to get Eq. (13). To take the time integrals we use Eq. (11) and get

jg�j2 ¼
e−Γt

2

�
cosh

�
ΔΓ
2

t

�
� cosðΔmtÞ

�
;

g�þg− ¼ e−Γt

2

�
sinh

�
ΔΓ
2

t

�
þ i sinðΔmtÞ

�
: ðA5Þ
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APPENDIX B: BOLTZMANN EQUATIONS

The Boltzmann equations from Eq. (15) are

Hz
dYψ

dz
¼ −ΓYψ þ imðYψψc − Yψcψ Þ − Γrðe−iϕΓYψψc þ eiϕΓYψcψ Þ − shσviþðYψYψc þ YψψcYψcψ − Y2

eqÞ
− shσvi−ðYψYψc − YψψcYψcψ − Y2

eqÞ;

Hz
dYψc

dz
¼ −ΓYψc − imðYψψc − Yψcψ Þ − Γrðe−iϕΓYψψc þ eiϕΓYψcψÞ − shσviþðYψYψc þ YψψcYψcψ − Y2

eqÞ
− shσvi−ðYψYψc − YψψcYψcψ − Y2

eqÞ;

Hz
dYψψc

dz
¼ −ΓYψψc þ imðYψ − YψcÞ − ΓreiϕΓðYψ þ YψcÞ − shσviþYψψcðYψ þ YψcÞ − 2Γ−Yψψc ;

Hz
dYψcψ

dz
¼ −ΓYψcψ − imðYψ − YψcÞ − Γre−iϕΓðYψ þ YψcÞ − shσviþYψcψðYψ þ YψcÞ − 2Γ−Yψcψ : ðB1Þ
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