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CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in
particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass
O(100 GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb)
cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be
produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1) -
symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-
antiparticle oscillations. Taking bino to be the lightest U(1),-symmetric particle, and assuming it decays
via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon

asymmetry of the Universe.
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I. INTRODUCTION

There are more baryons than antibaryons in the
Universe. Big bang nucleosynthesis [1] and cosmic micro-
wave background [2] measurements give the baryon
asymmetry of the Universe

where np) is the (anti)baryon number density and s is the
entropy density.

In order to explain this asymmetry three conditions must
be met [3]: (i) baryon number cannot be a conserved
quantity, (ii)) C and CP symmetries must be violated and
(iii) baryon-number- and CP-violating processes should
happen out of thermal equilibrium. Even though baryon
number is anomalously violated at high temperatures, there
is neither enough CP violation nor an out-of-equilibrium
process within the Standard Model (SM) to yield the
observed baryon asymmetry.

The baryon asymmetry of the Universe (BAU) is one of
the strongest motivations for the need for physics beyond
the SM. To some extent new physics models that deal with
BAU can be divided into three types. (1) Extending the SM
to include extra scalar particles can change the electroweak
transition to a first-order phase transition, which provides
out-of-equilibrium conditions. There can also be extra CP
violation in this extended Higgs sector. Two-Higgs-doublet
models and many variants of supersymmetric models are
the most studied examples of this type. (2) Extending the
SM with heavy particles that decay out of equilibrium to
SM particles. Examples include leptogenesis models with a
heavy right-handed neutrino. (3) A particle asymmetry can
first be produced in a dark sector and then transferred to the
SM sector. In these types of models, the origin of the
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asymmetry is often not studied due to a lack of under-
standing of the dark sector.' For reviews on different types
of genesis models, see, for example, [4-6].

In any baryogenesis scenario the origin of CP violation
is a crucial ingredient. CP violation in scalar extensions
of the SM often generates large electric dipole moments
(EDMs) for the elementary particles which is highly
constrained by null measurements of the electron EDM.
(See, for example, [7] for current EDM constraints in
two-Higgs-doublet models.) In leptogenesis models CP
violation is attained by interference between tree-level and
loop-level decays.

A recently revived way of producing large CP violation
in order to explain the BAU is through particle-antiparticle
oscillations. CP violation can be enhanced in oscillations”
if the decay width and the mass difference of the oscillating
particles are comparable. If, in addition, these particles
decay out of thermal equilibrium via baryon-/lepton-
number-violating interactions, these decays can explain
the observed baryon asymmetry. First studies of particle
oscillations as a source of baryon asymmetry (soft and
resonant leptogenesis [9-11]) neglected the time evolution
of CP violation in the early Universe. Later it was shown
that quantum effects [12] can be important for these
scenarios [13,14]. Detailed studies of flavor oscillations
in soft/resonant leptogenesis models also showed that the
time evolution of CP violation is important to find the
correct particle asymmetry [15-17]. However, these works
still only included effects of the expansion of the Universe

'There are also models that produce the baryon asymmetry and
a dark matter asymmetry through a common process.

*CP violation in oscillations exists only if there are both
oscillations and decays [8].
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on particle oscillations: As long as the Hubble rate H(T) is
larger than the oscillation frequency, @, particles do not
have sufficient time to oscillate. Since the particle oscil-
lations are suppressed, CP violation, and hence the particle
asymmetry, is also suppressed until @, > H(T). Another
quantum process that suppresses oscillations is the quan-
tum Zeno effect [18], also known as “a watched pot never
boils”: Flavor-sensitive scatterings hinder oscillations. This
effect was pointed out regarding neutrino oscillations in the
early Universe [19,20], but was largely left out of particle-
antiparticle oscillation discussions.” References [25,26]
incorporated elastic scatterings and annihilations in the
analysis of asymmetric dark matter oscillations. The effects
of flavor-sensitive and flavor-blind interactions on particle-
antiparticle oscillations were clearly identified in Ref. [26]
and cast out in the form of density matrix equations. (We
point out that CP violation was not considered in Ref. [26];
since dark matter does not decay, there cannot be CP
violation in this system.)4

In this work we will study CP violation in particle-
antiparticle oscillations in the early Universe by studying the
time evolution of the density matrix as outlined in Ref. [26].
Without any interactions, oscillations start when the expan-
sion rate of the Universe drops below the oscillation rate of
the particles, H(T) < w,. If the particles interact with the
relativistic plasma in the early Universe, the oscillations are
further delayed until I';,; < @, Where I is the rate of the
interaction (and depends on the nature of the process). In
order to enhance CP violation in these oscillations, particles
should oscillate at least a few times before they decay. The
longer the oscillations are delayed the less CP violation there
is. (Since the start of oscillations is directly related to the
baryon asymmetry in this scenario, we will address it
extensively throughout the text.) We will show that a particle
asymmetry can be produced via the oscillations and out-of-
equilibrium decays of a particle of mass O(100 GeV) with a
mass splitting and decay rate of O(107% eV) even in the
presence of interactions with O(ab-fb) cross sections. As a
specific example of this scenario, we will study a U(1),-
symmetric supersymmetry (SUSY) model with R-parity
violation. We will show that bino-antibino oscillations in
this model can explain the measured baryon asymmetry.

The rest of the paper is organized as follows. We start with
a short review of particle-antiparticle oscillations for a
pseudo-Dirac fermion in Sec. II. In Sec. III we study the
oscillations of an electroweak scale pseudo-Dirac fermion in
the early Universe [at temperature 7 ~ O(10-100 GeV)].
We include interactions, specifically elastic scatterings with

3For studies of quantum decoherence effects in flavor oscil-
lations in resonant leptogenesis, see, e.g., [21-24].

As a way to evade all quantum decoherence effects, the
authors of Ref. [27] used heavy particles that decay out-of-
equilibrium at very low temperatures to mesinos. In that case
there are no other processes that compete with oscillations and
mesino-antimesino oscillations enhance CP violation.
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light particles and annihilations. In Sec. IV we calculate the
baryon asymmetry that can be generated via the particle-
antiparticle oscillations. We consider a specific example of
this scenario in Sec. V. We give our concluding remarks
in Sec. VL

II. PARTICLE-ANTIPARTICLE OSCILLATIONS

In this section we briefly review particle-antiparticle
oscillations. (For details, see [28].) For simplicity let us
focus on a single generation of pseudo-Dirac fermions with
the mass Lagrangian

1 1
—Linass = Mym + B myyy + D) mynn + H.c. (2)

where y, n are two-component, left-handed Weyl fields
charged +1, —1 under a global U(1), respectively. Let us
define the Dirac field v,

v=() ®

Particle and antiparticle states can be written in terms of the
creation and annihilation operators

wix) =3 / dplb,(p)uy(p)e™ + di(p) vy (p)e ],

v =2 / dpld,(p)u, (p)e™ + b (p)v, (p)e~7"].

where 2177 =G d such that

’p
7)°2E,’

[p.s.y) = di(p)I0), [P s.w) = bi(p)[0).
Given the Majorana masses m,,,, particle and antiparticle
states mix, and y is called a pseudo-Dirac fermion. In order
to produce a baryon asymmetry, let us also consider the
following effective operators that violate baryon or lepton
number

—Line = g xBX + gnBX + g, yLY + gnLY +H.c., (4)

where B/L are states with +1 baryon/lepton number.
X, Y are states with zero baryon and lepton number and
are given by the details of the model. The effective coupling
constants g, ¢ have the proper dimensions to make the
Lagrangian dimension four. If they are heavy enough, y
particles and antiparticles can decay via these interactions
to baryons or leptons.

Including the mass terms and focusing only on the
baryon-number-violating interactions, the Hamiltonian is
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H:M—%F, ()

Mp, M
M — D M ’
M, Mp

e y( l9,1* + |*g,1|2
29,9,

with

S R

g, 1> + g, |*

The masses M and M), are the renormalized masses.
The Dirac mass is multiplicatively renormalized from its

tree-level value, M = M. The loop contributions to the
m,+my,

tree-level Majorana mass m = are proportional to the
Dirac mass M and the U(1)-violating interaction coeffi-
cients. y is also proportional to the Dirac mass and is given
by the details of the model.

Note that even if the tree-level Majorana masses are zero,
they will be generated at loop level via the interactions
in Eq. (4). The loop contribution to the Majorana mass
6~ Clg,gyIM, where C depending on the details of the
model can be a dimensionful coefficient which also
incorporates the loop factors. On the other hand the decay
widthI" ~ C'(|g,|* + |g,|*)M, where C' is a coefficient that
has the appropriate dimensions and phase-space factors.
In this work, for simplicity, we assume a hierarchy of
couplings |g,| > |g,|. Hence the loop contributions to the
Majorana masses are smaller than the decay width of the
particles. (For example in [28] it was shown that for a
Yukawa-type interaction, §/T" ~ |g,|/|g,|.) Then, if the tree-
level Majorana masses were zero, one would expect the
loop-induced Majorana mass M, < I'. Later we will show
that in order to have large CP violation, we need M), ~ T
Hence, we take the tree-level Majorana mass, m, as a free
parameter and require that it is greater than the loop
contributions, such that M, = m.

The eigenstates of the Hamiltonian in Eq. (5) are

lwu) = ply) — qlwe), lyr) = plw) + qly°),

with eigenvalues wy ; , where H, L refer to heavy and light
states respectively. We also have

)
p
Mass and width differences between the heavy and light
eigenstates are defined as

_ Mj = (i/2)T
M12 - (l/z)rl2 '

’Interactions with states that are heavier than yw could
contribute to the Majorana masses while not changing the decay
rate. Hence raising the loop-induced Majorana mass relative to
the decay rate. There can also be models where M, ~I"
naturally. We leave this as a model building exercise.
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Am =my —m; = Roy — o),

Al = FH _FL - _2\(\3(G)H - CUL),

where

i i
g — Wy, = 2\/<M72 _EF]kZ) <M12 —§F12> .

The total width of the states is defined as I" = #

One can always rotate two linear combinations of y and 7
to make M and m real. We can also rotate BX to make g, or
gy real, but not necessarily both at the same time. Hence it is
possible to have a phase difference between M and I,
which will be a source of CP violation. From now on we
will assume the mass matrix is real, and put the relative
phase in the decay matrix.

|9y |

Assuming r = ] < 1, we can write
74
1 2reltr
r=r ) , 7
<2re""”r 1 ) ™
where
U= (lg,* + 9,*)r. (8)

In this approximation the oscillation parameters are
given by

Am~2m

YE T YEgp T 2reesdr
2
‘2'21——rsin¢r, p=arg (ﬂ&) =¢rtnm. (9)
p x 1%

The time evolution of a state that is purely a |y) or |w°) at
t=0is

() = g, (1)lw) = Lg_(1)we),

p
c c p
(1)) = g+ (1)|we) —Eg-(t)ll//% (10)
where
| t=1ryt —imy t—iT, t
92 (1) = 5 (emimt=itnt o mimacttiny (1)

A. CP violation

CP violation can be enhanced in particle-antiparticle
oscillations. We quantify the CP violation that is important
for baryogenesis as a single particle asymmetry,
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[ Tly/y“ = B)-T(y/y° - B)
‘T /o th(w/l//C — B) +T(y/y - B)’

(12)

where B and B refer to baryon and antibaryon final states
respectively. (Defining a lepton asymmetry through the
lepton-number-violating terms in L, is straightforward.)

|

Jooar(| B = [L1P)]g-P(1=7?)

PHYSICAL REVIEW D 93, 123528 (2016)

I'(y/w® — B) is the time-dependent decay rate for an
initially pure-|y) or |p¢) state to decay to a baryon
final state. Time integration is distributed over each
decay rate.

Using the results of the previous section, CP violation
becomes

€= N[ 1} — :
Je di(2lg: P+ (1 ZP + 12 P)|g_PI(1 + ) — 4r9[gg_(| Z]e? + [ 2]e-P)])

See Appendix A for details. There is no CP violation for
r=1or|g/p| =1 Forr < 1andx> I, the CP violation
can be approximated as

2xrsin ¢r
e 14
=2 (14)

As can be seen in Fig. 1, CP violation is maximized for
x~1,ie. Am~T.

III. OSCILLATIONS IN THE EARLY UNIVERSE

Particle-antiparticle oscillations in the early Universe are
different than those expected to be seen at colliders. In an
expanding universe with a dense and relativistic plasma, the
dynamics are defined by a competition between rates for
many processes. For example, even in the absence of any
interactions with the plasma, oscillations do not start as
long as w,,. =2m < H(T). Even after the Hubble rate
drops below the oscillation rate, the particles and anti-
particles might be interacting with the plasma such that the
states decohere. If, for example, only the particle states
were scattering with the plasma, elastic scatterings could
keep this state from oscillating into an antiparticle state.
However elastic scatterings that do not differentiate

1071 . . .
RN
102} AN 1
c 1073k \ J
1074} \\\\ E
N\
1073 . . . E
1074 1072 1 100 10
x=2m/T
FIG. 1. Amount of CP violation as defined in Eq. (13) (blue,

thick) and the approximation in Eq. (14) (orange, dashed). We use
r=0.1, singgpr = 0.5.

(13)

|
between particles and antiparticles
decoherence as discussed in [26].

Other complications with this early Universe study are
possible finite temperature effects. We will show later that
the baryon number production happens at temperatures
much less than the y-particle mass, T < M. Hence, we do
not expect thermal corrections to the particle mass to be
important. We also ignore thermal corrections (e.g. due to
finite-temperature SM fermion masses) to the decay rate.
Possibly the most important finite-temperature effect is
that on the Majorana mass, hence the mass difference
between the wy-particle mass eigenstates. Barring inter-
actions beyond those in Eq. (4), these corrections will be
proportional to the temperature and a combination of the
coupling constants. Since the renormalization corrections
to the mass difference are proportional to M, and since
T <M in the region of interest, we ignore thermal
corrections to the mass difference.

In Refs. [25,26] effects of oscillations in an asymmetric
DM scenario were studied. There are many similarities we
can draw from that picture, and a few differences, namely
that in our case, the particles/antiparticles decay allowing
CP violation in oscillations. In general, when oscillations,
annihilations and scatterings are present, the relevant
Boltzmann equations that define the particle number
densities (Y =n/s o ), fijlwi)(w;l, with the general-
ized quantum distribution functions f;;) are written in a
density matrix form as’

do not cause

ay . + Iy
ZHd—Z = —l(HY — YH ) - ;7[0i’ [Oi’YH

- Zs(0v>i (% {Y,0,Y0.} - qu), (15)
—

wherez = M/T, s = 24—’? g.(T)T? is the entropy density and
g.(T) is the effective number of relativistic degrees of
freedom at temperature 7 [we take g, ~ 100 for temper-
atures O(100 GeV)]. I',(I'_) is the elastic scattering rate

Gy - . . L
This equation describes nonrelativistic

Hamiltonian is given at p = 0).

particles (the
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that is flavor blind (sensitive) where “flavor” refers to
particle/antiparticle nature (see below), (o) is the annihi-
lation rate and O, = diag(1, +1). (Note that both types of
interactions can be present.) The density matrix and the
Hamiltonian are

v ( )’
lsz;x <
2,,;\/2—”9 P77 7> 1,
Ho ( M-il/2 m- irre"¢r> (16)
 \m—ilresic  M—ir/2 )

The first term in Eq. (15) describes oscillations (and
decays), the second term elastic scatterings and the third
term annihilations.

The nature of elastic scatterings and annihilations
depends on the details of the model. We will study a
specific model in Sec. V. For now let us consider a generic
effective four-fermion operator,

1 _ -
_ﬁscat = Pwral//frbfv (17)

where f is a light fermion, A is the interaction scale, and
= {1,7",ys5,7"'ys,0" = 5 [y*,v"]} gives the gamma-
matrix structure of the interaction. This effective operator
gives rise to both elastic scatterings (wf — wf) and
annihilations (yw® — ff). Under the transformation
v — ¢, flavor-blind and flavor-sensitive interactions are
defined as

flavor blind

flavor sensitive.

+£scat >
Escat - E
—HFescaty

If the interactions are flavor blind, O, is the identity
matrix and the second term in Eq. (15) is identically zero.
Hence flavor-blind scatterings do not cause decoherence.
However, as we will see, oscillations are delayed due to
flavor-blind annihilations.

In Fig. 2 we compare some representative rates for
several processes relevant for net particle number produc-
tion in the early Universe. These are given as follows.

1. The expansion rate of the Universe is

4r3g, T?
H(T) = — 1
( ) 45 Mpl’ ( 8)

where M, = 1.2 x 10" GeV is the Planck mass.
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go=1fb

Rates (eV)

z=M/T

FIG. 2. Comparison of the decay rate, the Hubble rate, the
oscillation frequency and the annihilation and the elastic scatter-
ing rates for scalar (solid) and vector (dashed) interactions for
M =300GeV, m=2x10%eV, T=100%eV, ¢6,=11b
(light), and 67 = 1 ab (dark).

2. The decay rate I" is determined by requiring that the
particles decay out of equilibrium:

I < H(T~M)=10" eV, (19)

for M =300 GeV. We take I' = 10° eV (such
that the y particles decay at 7 =30 GeV) as a
benchmark value.

3. The oscillation rate @ is set by the mass splitting
between the heavy and light mass eigenstates. For
pseudo-Dirac fermions @, ~ 2m where m = Bty
is the Majorana mass of the fermions. (CP violation
in oscillations is maximized for 2m ~I".) Oscilla-
tions cannot proceed before the Hubble rate drops
below w,,.. Neglecting scatterings and annihilations,
for particles of mass 300 GeV with a mass splitting
of 2 x 1076 eV the onset of oscillations is delayed
until z ~ 6 (see Fig. 2).

4. Elastic scatterings and annihilations affect oscilla-
tions. For a general study, we consider the Lagran-
gian in Eq. (17) with (i) scalar interactions, I'** = 1,
which are flavor blind and (ii) vector interactions,
['*? = y#, which are flavor sensitive.” For non-
relativistic y particles and assuming m; = 0, these
interactions give the following thermally averaged
annihilation and scattering cross sections:

. 3NMT NT?
(i) <6§nnv> = It <6§cat”> = 2Nt
.. NM? NT?
(ii) (oamv) = AT (Oka) = AT (20)

"In Sec. V we will consider binos scattering with SM fermions
via an sfermion exchange, which corresponds to A o m2; with
both flavor-blind and flavor-sensitive interactions.
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where v is the relative velocity of incoming particles
and N accounts for degrees of freedom, e.g. color
factors. Annihilations and scatterings can be en-
hanced significantly if there are many fermions with
interactions as in Eq. (17).

In Fig. 2 we plot the following annihilation and
scattering rates per particle (for M = 300 GeV):

() T =y oht) =
Fsscat = nf<5§gcatv> = 34,8532):5/[3507
() Ty =y ob) = 500
Fg/cat = nf<6;/catv> = 34;52):543507 (21)
where 6y = Y i an effective cross section and 1, ;

are (equilibrium) number densities. The annihilation
rate through a scalar operator is velocity suppressed
compared to the vector case. Annihilations are
Boltzmann suppressed compared to scatterings off
light fermions.
Unless otherwise noted, we use the following parameters
throughout this paper:

M=300GeV, m=2x10"0%eV,
r=0.1, singp=0.5,

'=10"%eV,
oy — ab-fb. (22)

These parameters are chosen as benchmark values. They are
by no means fine-tuned. The particle asymmetry propor-
tional to the CP violation parametrized by ¢ can be made
larger by an O(1) amount by changing r and sin ¢r. Mass of
the y particles can be O(TeV) or higher. Even though one
needs m ~ I to maximize the CP violation, an asymmetry as
small as 107! would not need O(1) CP violation. We will
show later that mass differences as large as O(eV) can
produce enough baryon asymmetry. The out-of-equilibrium
condition puts an upper bound on the decay width, I' <
10~* eV for M = 300 GeV. We use I' = 107° eV due to an
interesting collider signature: if produced, particles with a
width of 107 eV travel ~20 cm at a collider before they
decay, giving rise to displaced-vertex signatures. (A detailed
study of using displaced vertices to probe baryogenesis was
given in Ref. [29].) After setting this width, a mass difference
of 2x107% eV is chosen to make the oscillations more
visible. For effective cross sections larger than a fb, it is very
hard to produce enough asymmetry.

A. Toy case: Oscillations and decays

Let us first ignore annihilations and elastic scatterings in
Eq. (15) and study oscillations and decays in an expanding
universe. The Boltzmann equations in this case read

PHYSICAL REVIEW D 93, 123528 (2016)

déiz) _ _ZLHA(Z) + i—ZE(Z)v
di(;) = () = 2 feosdeTI(2) — isin =),
— - )+ e - ),

where we defined

Alz) =Y, =Y., =(z)
E(Z) = YV/ + Yl//[’

Yy
wpe T Yoy (24)

=Yy
=Y
We can solve for Z(z) from the first equation and plug it

into the third equation. Then, with a change of variables
y = 72, we have

d*A(y) dA(y)
0y + 2w, o + a)(Q)A(y) = —ea)(Q)Z(y), (25)
where
, T2 44m? : r
Of = =55+ =
O 4[2H(2)) VIZ + 4m?

€ is the measure of CP violation given in Eq. (14). This
differential equation can be solved analytically for zero and
nonzero CP violation.

1. Without CP violation

For € = 0, the above differential equation describes a
damped oscillator with the solution

A(z) = Aexp (— ZHF(Z)) cos (% + 5) . (26)

where A and § are determined by initial conditions. Note
that if there is no CP violation and if the initial conditions
are symmetric [A(0) = 0], A(z) stays zero for all z and
there is no net y-number production as expected. In Fig. 3
we plot A(z) for asymmetric initial conditions, A(1) = Y.
One can also see in Fig. 3 that for smaller Majorana masses
(hence smaller oscillation frequency, since @, = 2m) the
onset of oscillations is delayed. [We use oscillations in
A(z) as a proxy for particle-antiparticle oscillations.] The
time when oscillations start z,,. can be approximated from
2m ~ H<Z0sc) as

Zosc ™~ 6

2x10°eV/ M
T e . (27)
m 300 GeV

123528-6
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No CPviolation, A(1) =Yg

0.0010 "

x=10 |

m=5x107° eV,
m=2x10%eVv, x=4
0.0005 /\ _______ m=025x10"5 eV, x=05 |
A@) /\ .
0.0000 \ / \\/AVA e
~0.0005}
0 10 20 30 4 50
z=MT

FIG. 3.
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Nonzero CP violation, A(1) =0

0.000012 | M = 300 GeV
I=10"%ev
0.00001 | ]
ér=m/6, r=0.1
8.x1076 |
@) 6 x1076 ]
4.x1078 |
2.x107 | /\
of N\Acae e
0 10 20 30 40 50

z=M/T

The y asymmetry for different values of the mass splitting and for M = 300 GeV, I' = 107® eV without annihilations or

scatterings. For smaller values of @, = 2m, oscillations are delayed. (Left) Without any CP violation, and A(1) = Y,. Since there is
no CP violation, no asymmetry is produced if the initial conditions are symmetric. (Right) Symmetric initial conditions, A(1) = 0, with

nonzero CP violation, r = 0.1, sin¢r = 0.5.

2. With CP violation

For nonzero ¢r and r, Eq. (25) describes a damped-
driven oscillator, where X(z) plays the role of a driving
force. To get an analytic solution in this case we assume
that particles and antiparticles are produced with equilib-
rium number densities, hence X(1)=2Y(1). In the
absence of annihilations or scatterings, the total number
density decays exponentially with the decay rate I'. Thus
we take

r
Z(z) = 2Y4(1)exp <_F(z)> for z > 1. (28)
With this driving force, Eq. (25) can be solved
analytically
r m
A(z) = AeY (l)exp | ——— sin?{ ———+ 65,
@ =cta)esp (= 75 )5 (i +9)
(29)

where again A and ¢ are determined by initial conditions.
Note that in this case, where there is CP violation, a
nonzero asymmetry is produced even with symmetric
initial conditions and it is proportional to the CP-violation
parameter e. This yw asymmetry is plotted for different
Majorana masses in Fig. 3. For m 2 I" the y particles
oscillate a few times before decaying and the asymmetry
is enhanced. In order to get a large asymmetry as well
as making the oscillations more apparent, we use m =
2 x 107 eV in the rest of our analysis.

B. Flavor-blind interactions

Let us now include scalar interactions, which are flavor
blind. As discussed earlier, flavor-blind elastic scatterings

do not affect the oscillations. However flavor-blind anni-
hilations change the Boltzmann equations in Eq. (23):

dA(z) T . 2m

dz zH(z)A(Z)+lZH(Z>H(Z)’

dZ(Z)__ I _ﬂcos —isingr=

dz zH(z)Z(Z) zH(Z)[ #rii(e) =)
S(Z)<6§nny>(z) 2 2 2
_T(z)(z (z2) —A%(2) +1T%(2)
—E%(z) —4Y2%(2)).

d=2(z)  T4s(2)(omt)(0)2(2) -, , . 2m

dz ZH(z) H(Z)—HZH(Z)A(Z)
2 rsingr
G

dll(z) T+ s(2) (o) (2)Z(2) 2T'rcos¢r

@ wn T

(30)

where the thermally averaged annihilation cross section
(65:a0)(z) is given in Eq. (20). We made the z dependence
of each term explicit in the above equations. For scalar
interactions we have (ov) =o0y/z with o, constant.
(Numerical solutions to these equations are given in Fig. 6.)

The density equations no longer have closed-form
solutions. However we can still make some comments
without a numerical solution and understand the oscillation
behavior as well as the asymmetry production via analytical
approximations.

(i) Annihilations drop out of equilibrium at z; when
I3n(z) = H(zy). This freeze-out temperature
depends on the annihilation cross section only
logarithmically
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(i)

M o
~In 5% 107 — ) (2% 31
4 n{ % (300 Gev> (1 fb)]’ (31)

which gives z; ~ 11-18 for 6, = ab-fb.

If there were no decays, this would give the
freeze-out density of particles, as in the weakly
interacting massive particle case,

s~ 1000 (L)

0o

However in our case the remaining particles decay
with a decay rate I'. We can approximate the total
number density at later times as

%(z) = Cexp <— %(ZQ X(zp) forz>zp (33)

where C is a numerical factor that can be found by

matching to Z.,(z) = ,,2;%;(, PPe % at z =z,

Flavor-blind annihilations cause decoherence, as
can be seen from the equations for I1(z) and =(z).
Due to this decoherence, oscillations are further
delayed. In order to (approximately) find when
oscillations start in the presence of flavor-blind
annihilations we look at the Boltzmann equations
for A(z) and E(z), setting I' =0. (Decays are
important for CP violation, but less so for oscil-
lations themselves.) We then arrive at an equation
for a damped harmonic oscillator, similar to the
one in Eq. (25):

d*A(y)
dy2

dA(y)
dy

+ 250)0

+w3A(y) =0, (34)

where y = 7> and

P §
"TyH’ - 2m

’

with the identification 215, = s{c5,,v)Z(z). This
equation cannot be solved analytically since ¢ is a
function of z. Specifically & decreases with de-
creasing temperature/growing z. For early times,
&> 1, the system is overdamped and there are no
oscillations. Oscillations only start when & < 1,
Wose ~ ann(zosc)9 which gives

M \3(2x10eV
Zose~In [ 107 2 S ().
300 GeV m Ifb

(35)

PHYSICAL REVIEW D 93, 123528 (2016)

For example for oy =1 fb oscillations start at
Zose ~ 16. (See Fig. 5.)

(iii) The w asymmetry A(z) is also suppressed due to
flavor-blind annihilations. We show this asymme-
try in Fig. 6 for different annihilation cross sec-
tions. In order to find an approximate expression
for A(z), first realize that I' ~ m ~ I[',,, when the
oscillations start. (We take I' ~ m to maximize the
CP violation in oscillations.) Hence, immediately
following the start of oscillations I',,, << T" and we
can ignore it in the Boltzmann equations. Further-
more oscillations start before annihilations freeze
out and y particles oscillate a few times before
they decay for interaction scales we consider
(0o = ab-fb). Then we can solve Eq. (25) for
7> Zose With

E(Z) = 2qu(zosc) exp <_ 2111—‘(2)> s

and with symmetric initial conditions to find the y
asymmetry

A(2) = €Y oy (2osc) €XP (— 2HF(Z)> sin? <2:<Z)> .
(36)

We emphasize that the behavior before the
oscillations start, where the annihilation rate is
much larger than the mass difference and the decay
rate, is not covered in this approximation. We also
ignore annihilations altogether right after the os-
cillations start. However there is a window where
Wose > Lamn 2 T for z > 7., Which should affect
the size of the asymmetry as well as the frequency
of the oscillations. Furthermore we omitted the
freeze out of annihilations. Hence the above
approximation is expected to underestimate the
asymmetry. Still it estimates the maximum y
asymmetry within an order of magnitude for the
parameters given in Eq. (22). In Fig. 4 we compare
this approximation to the numerical solutions
of Eq. (30).

C. Flavor-sensitive interactions

Now let us investigate the effects of vector interactions,
which are flavor sensitive. Particularly important in this
case are elastic scatterings. If a scattering process probes
the particle or antiparticle nature of the y particles,
oscillations cannot proceed. (This is called the quantum
Zeno effect.) This can be seen from the Boltzmann
equations with flavor-sensitive interactions:

123528-8
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FIG. 4. Comparison of the numerical solutions to the Boltzmann equations (solid) and the approximations given in the text (dashed)
for the y asymmetry A(z) in the presence of (left) flavor-blind and (right) flavor-sensitive interactions. For the numerical solutions we
use the initial condition A(1) = 0, while for the analytical approximation we use A(z < z,.) = 0. The following parameters are used in
both plots: M =300 GeV,T' = 10"° eV, m =2 x 107 eV, r = 0.1, sin¢pp = 0.5.

dA(z) T . 2m
dz ~ zH(2) Alz)+ "eH() =)
d=(z) r 2I'r cos ¢r
RGN O R
Wrsingr | s(a)lobur)(0)
R = TS R
— A2(z) + B2(2) ~ TR(2) - 4Y2,(2)).
dE(Z) o _F + 2F¥:al(z> r:( ) + lziA( )
iz HGE) O TZHR TS
2Irsin ¢p
~ag e
dll(z) T+ 20%(z) ., 2[rcos¢r
dz ZH(z) 1) ZH(z) 2@ (7

Following the arguments of the previous section to
describe the y asymmetry, one can show that oscillations
start only when @y ~ 'y (Zose)» 1-€-

Nan 35 (2 x 1070 eV\ /3 [ g \ /5
Zose = OV 300 GeV m 1) -

(38)

Compared to the flavor-blind annihilations, oscillations
are delayed much further due to flavor-sensitive scatterings
(with similar cross sections). This is expected since elastic
scatterings off light particles in the plasma are not
Boltzmann suppressed at temperatures 7 ~ O(100 GeV).
Oscillations start at z ~ 80 for a flavor-sensitive elastic
scattering cross section oy = 1 fb (compared to z ~ 18 for
flavor-blind annihilations.) Since the w-particle number
density is already less than 10710 by z ~ 40, the asymmetry
produced (after the oscillations start) would be too small
compared to the BAU. In Fig. 5 we show z,.. vs the mass
difference for different interaction strengths.

An approximation for the y asymmetry can be found
following the steps that led to Eq. (36), with one change.
Now the oscillations start after annihilations freeze out.
Hence we solve Eq. (25) for z > z,,. with

X(z) = exp (- %(z)) Z(zf).

and find the asymmetry

()= (aie)

where X(z;) is given in Eq. (32). We show the comparison
between the above approximation and the numerical results

A(Z) _ 62(22]0)

) flavor blm(%l oA
------ flavor sensitive

ol 0 Ts<o e 25

Zosc 10 Pt o s m e e TR s s s s T e e
; ‘ ‘ ‘
1078 1074 1072 1
m (eV)
FIG.5. The time when the oscillations start, z,., vs the Majorana

mass m for flavor-blind (solid, blue/orange) and flavor-sensitive
(dashed, blue/orange) interactions as well as the Hubble suppres-
sion without interactions (solid, gray). [Plotted are Eqgs. (27), (35)
and (38).] Note that the oscillation frequency is related to the
Majorana mass as @y, = 2m. We also show the freeze-out
temperature z; (dotted) given in Eq. (31).

123528-9



SEYDA IPEK and JOHN MARCH-RUSSELL

M =300 GeV

m=2x10"%eV
' P=10"%eV

ér =7/6

1079+

Flavor blind

M =300 GeV
Fm=2x10"%eV

r=10"%ev

or =7/6

Flavor sensitive

1 10 100
z=MIT

FIG. 6.

PHYSICAL REVIEW D 93, 123528 (2016)

1079+

10-12

z=MT

(Left) The total w-number density X(z) and (Right) the y asymmetry A(z) (with symmetric initial conditions) for different

cross sections. The following parameters are used in both plots: M = 300 GeV, I" = 10% eV, m =2 x 107% eV, r = 0.1 (solid), 0.3
(dashed), sin ¢ = 0.5. (Top) Flavor-blind interactions delay oscillations due to annihilations, until @, ~ I',,,. This corresponds to
Zose ~ 16(9) for an annihilation cross section of 1 fb (1 ab). (Bottom) Flavor-sensitive interactions delay oscillations due to elastic
scatterings, until @, ~ - This corresponds to zy, ~ 20(8) for an annihilation cross section of 1 ab (1072 ab). Without interactions
the oscillations start at z,. ~ 6. CP violation, and hence the asymmetry, is smaller for larger cross sections since oscillations are delayed
longer. The baryon asymmetry of the Universe 7 = 107!% is shown for reference.

in Fig. 4. We also show the numerical solutions to Eq. (37)
for Z(z) and A(z) in Fig. 6.

IV. (APPROXIMATE) BARYON ASYMMETRY
OF THE UNIVERSE

A. Baryon asymmetry via B-violating interactions

So far we have only discussed the yw asymmetry.
However, our main purpose is to produce the baryon
asymmetry of the Universe. For that we need to add to
the set of Boltzmann equations in Eq. (15) two more
equations describing the evolution of baryon and anti-
baryon densities. These equations take into account proc-
esses that change the baryon number, such as inelastic
scatterings BX; — wX,. Obviously one needs to know the
details of the model to properly set up and solve the relevant
Boltzmann equations. We will do this after we introduce a
model in Sec. V. However, as long as the oscillations are
delayed till z > 1, the general workings of this scenario are
quite robust towards the details of a model and it is helpful

to give an approximate picture. Hence we first focus on
baryon-number-violating terms in Eq. (4) and assume that
there are no other baryon-number-violating interactions.
(Baryogenesis via the lepton-number-violating terms is
relatively straightforward and we will mention it in the
next section.)

Before solving for the baryon asymmetry, let us revisit the
oscillation dynamics in the presence of flavor-blind annihi-
lations as they relate to the production of a baryon asymmetry.
(Flavor-sensitive interactions follow a similar story.)

For a mass difference of 2 x 107 eV and effective cross
section o, = ab-fb, oscillations start at z,. ~ 9-16. At this
point the annihilation rate is Boltzmann suppressed and
drops below the decay rate very quickly. The Hubble rate is
already much smaller than the mass difference for z > 6
(see Fig. 2). Hence when the oscillations start they proceed
as described in Sec. II. Furthermore y particles oscillate a
few times before they decay. (Note that this is very different
from soft leptogenesis models in which oscillations are
thought to start at z < 1.)

123528-10
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With these in mind we can write the Boltzmann
equations for the baryon and antibaryon number densities
for z > z,. > 1 as

vy T, T,
2B Y, + Yy,

dz zH(z) " zH(z) "

dYB FW I:‘WC

8 _ Y, + Yy, 40
dz zH(z) " zH(z) " (40)

where ', =I'(y — BX),I,, =I'(y — B X) (and similarly
for y¢). We ignore inverse decays B — Xy for T < M. We
make the following approximations for z > z,.,

Fl// + fw = er' + l:‘l//(. = F,
I, —T, =T, — [, =e

Defining
Xp=Yp+ VY, Ap=Yp—Yp,

the differential equations for the total baryon number and
the baryon asymmetry are

d :ZH—()Z(Z)’ TZZZH—(Z)Z(Z)' (41)

dZp(z) r dAg(z) el’
Z

The baryon asymmetry is proportional to the CP violation
parametrized by e. These equations are solved together with
Eq. (15). Corresponding baryon asymmetries are shown in
Fig. 7 in the presence of flavor-blind or flavor-sensitive
interactions. A large enough baryon asymmetry can be
produced with flavor-blind interactions with cross sections
as high as O(fb). The delay of oscillations is stronger for
flavor-sensitive interactions. In this case, in order to

3 Flavor blind
1073 F I—
M =300 GeV AN
106 M=2x 1076 eV .. ogp=1ab
(9] 6 .xr A aemmmS e —————
8 Ir=10"°%eV e <
c 2 N
-§ ¢r =m/6 / \ kN
3 ] .
< 40} INOIE oo =11b]
e .
1 \
\
AB(Z) \ \
10-12 ran [\
1 10 100
z=MIT
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produce an asymmetry of 10710, the elastic scattering cross
section should be O(ab) or less.

Let us emphasize that we assume that a nonzero baryon
asymmetry is only produced after the oscillations start,
setting A(z < zos.) = 0. However, even though oscillations
are suppressed for z < z,,, some CP asymmetry is
produced. (This can be seen as a nonzero y asymmetry
for z <z, in Fig. 6.) In either case, the maximum
asymmetry is approximated well by

Ap(z > Zose) = €X(Zosc)- (42)

Note that for larger mass differences the oscillations
start earlier, as can be seen in Fig. 5. Since X(zu) is
larger for smaller z,,, one might expect to get a larger
baryon asymmetry for a larger mass difference. However
for a given decay rate, as the mass difference gets larger,
CP violation (¢ o I'/m) gets smaller. In Fig. 8 we show
the final baryon asymmetry, Agz(z — o), for different
mass differences and decay rates for both flavor-blind
and flavor-sensitive interactions with 6y = 1 ab. There
is a wide range of decay rates and mass differences that
can accommodate the correct baryon asymmetry of the
Universe.

B. Baryon asymmetry via L-violating interactions

In the previous sections we focused on baryon-number-
violating interactions. If, however, lepton-number-violating
terms in Eq. (4) dominate, the picture slightly changes. The
lepton-antilepton asymmetry is still given by Eq. (41) (by
just changing the label B — L) under similar assumptions.
If we ignore the baryon-number-violating terms, a (B — L)
asymmetry is produced in this case. If this asymmetry is
produced before the electroweak (EW) transition, it can be
turned into a baryon asymmetry by sphalerons, which are
active during the EW transition, 7 = 130 GeV [30]. The

o ———— Flavor sensitive
1073 f %(2) f-u
Y
\~\._..
SO
M =300 GeV ~ : 2
~
_ -6 ~o op=10"" a
s 10-6 | m72><‘10 eV __..\-N; .................... ]
o I'=10"°%ev .
g ‘ > o9 =1ab
g or =7/6 o 00 =1 ab
2 : e
< 1079 L A(Z) H 1 [N i
H ] M
: 1 A
T A
v
AB(Z) ‘\ '-‘
10-12 ‘ L
1 10 100

z=MIT

FIG.7. The total y-number density X(z), the y asymmetry A(z) and the baryon asymmetry Ay (z) for 6y = 1 fb (solid), 1 ab (dashed),
1072 ab (dotted) and M = 300 GeV, m =2 x 107 eV, I' = 1076 eV, r = 0.1, sin ¢pp = 0.5. The baryon asymmetry of the Universe
1 = 10710 is shown for reference. The oscillations are delayed longer for flavor-sensitive interactions: For an effective cross section
oo = 1 ab (dashed) the oscillations start at z,,. ~ 9 if the interaction is flavor blind, while they start at z,,,. ~ 20 if the interaction is flavor
sensitive. With the parameters used, not enough baryon asymmetry is produced for ¢, 2 10 ab with flavor-sensitive interactions.
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FIG. 8. The final baryon asymmetry, Agz(z = o) vs the
Majorana mass for different decay rates and for both flavor-
blind (dashed) and flavor-sensitive (solid) interactions with
o9 =1 ab, M =300 GeV, r = 0.1, and sin ¢ = 0.5. For mass
differences (Am = 2m) larger than ~1072 eV, oscillations start
Zose <5 and there is little difference between flavor-blind
and -sensitive interactions. If the mass difference is smaller than
1072 eV, oscillations are delayed longer for flavor-sensitive
interactions. (See also Fig. 5.) Hence the baryon asymmetry is
smaller (compared to flavor-blind interactions).

baryon asymmetry produced by (B — L)-conserving spha-
leron processes is given by (for M = 300 GeV)

22 + 4ny

Ap=-——"""H
B 766 + 13ny,

Ar(z~2), (43)

where ny is the number of Higgs doublets.

A few remarks are in order at this point. In order to
produce a lepton asymmetry before the EW transition,
oscillations should start at 7 > 130 GeV. This means
that the oscillation frequency @y, > H(T ~ 130 GeV)=
10~ eV. With O(ab) annihilation cross sections and with
I'~m =107 it is possible to produce enough lepton
asymmetry before the EW transition. However, note that
with the parameters used in Eq. (22), the oscillations start at
T <« 100 GeV even without any annihilations. Hence not
enough lepton asymmetry is produced before the EW
transition for the benchmark scenario.

V. BARYOGENESIS VIA PSEUDO-DIRAC
BINO OSCILLATIONS

The scenario described in the previous sections can be
realized in any UV theory with pseudo-Dirac fermions. In this
section, as a concrete example, we show that pseudo-Dirac
bino oscillations within the model introduced in Ref. [28]8
could generate the baryon asymmetry of the Universe.

8In Ref. [28] the focus was gluino interactions. Gluinos interact
strongly. Their annihilation cross section would be too big to fall
out of equilibrium. Hence we study bino interactions here.

PHYSICAL REVIEW D 93, 123528 (2016)

A. The model

The model we study is a SUSY model with an approxi-
mate global U(1), symmetry. The SM particles are not
charged under this global U(1), while all the supersym-
metric partners have +1 R charge. With this R-charge
assignment, the gauginos cannot have Majorana masses. In
order to give Dirac mass to the bino we introduce the super
field ®¢ whose fermion component S, the singlino, is the
Dirac partner of the bino. In order to give nongauge
couplings to the singlino, we introduce the superfields
®j5 and P transforming under the SM gauge group in the
same way as d and d*, respectively. The field content of the
model that is relevant for us is shown in Table 1. We will
only give a short summary of the complete model focusing
on the parts that are most relevant to baryogenesis. For
details see Ref. [28].

The mass Lagrangian for the bino and the singlino is

~ 1 -~
—Linass = MpBS + z (mBB B +mSSS) + H.c., (44)

where M, is the Dirac mass and mj ¢ are U(1)g-breaking
Majorana masses. The Dirac mass

cD

Mo =7,
M

(45)

arises from a spurion term where ¢ is a dimensionless
parameter, D is a SUSY-breaking order parameter and A, is
the messenger scale. Majorana mass terms for the gauginos
will be generated by anomaly mediation [31-33], which
gives, e.g., a Majorana bino mass

Fy. (46)

TABLE 1. Part of the particle content and their associated
quantum numbers under the SM gauge group and U(1). All the
fermion fields are left-handed Weyl spinors. B is the bino and S is
its Dirac partner, the singlino. ¢p, ¢pj are superpartners of some
exotic heavy vectorlike quarks. g, i, d, ¢, e are the SM fermion
fields. Generational indices are suppressed for simplicity.

Fields SU(3), SUQ), U(l), U,
0=g+0q 3 2 1/6 1
U=i+0a 3 1 -2/3 1
b—i+oa 3 1 31
L=¢+6¢ 1 2 -1/2 1
E=c¢+0e 1 1 1 1
Dy = ¢p + Owp 3 1 1/3 1
Dy = ¢p + Oy 3 1 -1/3 1
Wj, D B, 1 1 0 1
by =, +0S 1 1 0 0
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B(gy) is the beta function for the hypercharge coupling
constant gy and F', is a conformal parameter satisfying

m
miﬁzwwM<mm (47)
ms, is the gravitino mass. Note that we do not need a light
gravitino to have a small Majorana mass for the bino. We
assume that the gravitino is heavy enough (heavier than
~keV) such that binos mostly decay to SM fermions (via
R-parity-violating interactions). A Majorana mass for the
singlino could arise from the U(1)-violating superpotential
term

/ d*Omg®2 + H.c. (48)

We assume all U(1)g-violating terms are small, mg << M.
Then we can define the pseudo-Dirac bino in this model as

wg—(i), (49)

and follow the oscillation picture described in Sec. II where
bino-antibino states mix. (It should be clear from context if

the word “bino” refers to the Weyl spinor B or the pseudo-
Dirac fermion y.) We take the lightest neutralino to be
purely bino so that there is no mixing between, for example,
the bino, singlino and the Dirac partner of the wino.

U(1)g-conserving interactions of the bino and the
singlino include

—L > V2gyYgBd;d; + yisdipp +He.,  (50)
where Yy is the hypercharge of the right-handed down-
type quark.

The new scalars ¢, ¢ can be assumed to be degenerate
with mass pp and with the mass mixing term

C‘DDD2
2
AM

where B2 - = and cpp a constant.

1. R-parity-violating bino decays

In order to have CP violation in pseudo-Dirac bino
oscillations, the bino must decay. We assume that the bino
is the lightest R-charged particle and decays via U(1)g-
breaking interactions. We also assume R parity is broken
so that there is baryon/lepton number violation. (For an
extended review of R-parity-violating interactions and
phenomenological constraints, see, for example, [34].)
We include the following R-parity- and U(1),-symmetry-
violating interactions

PHYSICAL REVIEW D 93, 123528 (2016)
WZ = /Iijk/LinDk + /,{Z]LIQ/(DD + H.C.,

1
5 = 5 430D, D+ 20D, ®p + He.  (52)

Wy has lepton-number-violating terms, while Wy has
baryon-number-violating terms. The supersymmetric
Lagrangian contains the interactions

1
—[,D/ll]kf qjdk+luf qJ¢D+ /ll]kuddk

Let us now assume that all the squarks and ¢p, ¢p are
heavier than the bino and can be integrated out. The
effective four-fermion Lagrangian is

Lo = gB ka q;dy + g S q;dy + g Bu dd

+ gS'UkSu d; dk +H.c., (54)
with

g/~ \/_nglt/k ’ ykj'ijB%)D
Bijk 32 2 S.ijk ™ ,“D ’
"
/" \/_gyﬂljk g// N /1;/] DD (55)
e T o

where m, is a common sfermion mass. We assume that ¢,
¢p are heavier than the squarks such that |g3'| > [gs/|
and |g%| > |g§

Comparing Eq. (54) with Eq. (4) and assuming one
generation of fermions we can identify

9% =9  G=9" g=9. =g (56)

If the baryon-number-violating terms dominate over the
lepton-number-violating ones, then the decay rate is

5
P = 525 (lg3f + o). (57)

For |g;| > |gs|, the decay rate can be parametrized as

Mp \5 /10 TeV\*4/ 2" \2
=10 eV D . 58
© <300 GeV) ( my > (10—2) (58)

2. Bino annihilations and elastic scatterings

As discussed in Sec. III annihilations and elastic scatter-
ings of the binos are very important in studying pseudo-
Dirac bino oscillations in the early Universe. For small
mass splittings (m < eV), we can treat the binos as purely
Dirac to find the annihilation and elastic scattering cross
sections. Since we assume that the lightest neutralino is a
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pure bino, even for binos heavier than W/Z bosons,
annihilations into fermion final states dominate [35].
Hence we use the effective Lagrangian

2

97
—Leus = QWBnyLWBF}’M(gV+gA75>F (59)
where
7 RS R T R 0
1% 2 ) A 2 ) f; ’

and Y, p is the hypercharge of the fermion f; ;. The
thermally averaged annihilation cross section is [36]

QYM D 4 QYM D
(G ¥) = S 2 2N NpYE=06"20 pa (60)
where the sum is over all SM fermions. The color factor
Ny = 3 for quarks and 1 for leptons.

The bino has both flavor-blind (axial-vector) and flavor-
sensitive (vector) interactions. Since the annihilation rate is
exponentially suppressed compared to the elastic scattering
rate, the delay in oscillations is governed by the flavor-
sensitive scattering part of the interactions. Then the
relevant thermally averaged scattering cross section is

B 167rm ZNf

where the sum is taken over all SM fermions except the
top quark.

4T2
=039 (e1)
ﬂmsf

<gscat

B. Baryon asymmetry of the Universe

Now that we have a complete model, we can study
baryon-number generation described in Sec. IV in more
detail. In order to find the net particle number, we need
the rates of processes that change that particle number.
Focusing only on baryon-number-violating interactions,
processes that change the baryon number by one unit in this
model are shown in Fig. 9.

u (j

W, ° .< d d u
d N

U d d d

R d P, " u

FIG.9. Processes that change baryon number by one (AB = 1).
The four-fermion vertices are given in Eq. (54).
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As discussed in Sec. IV, baryon asymmetry is produced
at low temperatures, z = M /T > 10 for squarks of mass
O(10 TeV). Hence we can ignore processes with y/y* in
the final state, such as dd — yii. We can also ignore 3 — 1
processes, e.g. wdd — i, since they are phase-space sup-
pressed. Inelastic 2 — 2 scatterings such as yii — dd,
which do not affect oscillations, happen with a rate much
smaller than the decay rate of the binos for z =2 5 (see
Fig. 10). Hence we also ignore these scatterings.

The only relevant processes for determining the baryon
asymmetry are bino/antibino decays to a final state with
baryon number +1 or —1, bino annihilations and elastic
bino scatterings via vector interactions. The study in
Sec. IV can be followed straightforwardly. With these
approximations the relevant Boltzmann equations for
7> Zoge Al

di(z) T

S<Gannv>
dz ZH(z) 22) - 2zH(z) (2(2) - 47%,).
dAg(z) el
& H() (z). (62)

We emphasize that the baryon asymmetry is produced
only after the oscillations start, when the mass difference
becomes larger than the (flavor-sensitive) elastic scattering
rate, m 2 Ugcqrs

_36(_Mp 10 TeV\ /5 (2 x 1076 eV /3
Cose 300 GeV /) \ my m ‘

(63)

For sfermion masses smaller than a few TeV (and
Majorana masses smaller than 107 eV), oscillations start
at z > 40, when the bino abundance is highly suppressed.
Thus it is not possible to get the right baryon asymmetry
with sfermions lighter than O(10 TeV). [We find that

mg = 10 TeV
mgs = 20 TeV
s
)
3
g %,
7X
9 Wosc =2 M
Decay rate \\ S
\ ~
\ ~
10-8 ) \ S
1 10 100

z=MIT

FIG. 10. Comparison of the decay rate, the Hubble rate, the
oscillation frequency, the annihilation rate, the elastic and
inelastic scattering rates for M = 300 GeV, m =2 x 107 eV
my =2TeV,and T =107 eV.
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FIG. 11. The total y number X(z), the y asymmetry A(z) and

the baryon asymmetry Ag(z) for myq = 10 TeV (solid), 20 TeV
(dashed) and M =300 GeV, m =2x10% eV, ' =107° eV,
r=0.1, sin¢r = 0.5.

sfermions as light as 3 TeV can be accommodated in the
parameter region with " ~ 107 eV and m ~ (1-1072) eV.]
Baryon asymmetries for sfermion masses 10-20 TeV are
shown in Fig. 11.

VI. SUMMARY AND OUTLOOK

In this paper we studied the oscillations of a pseudo-
Dirac fermion, y with mass M = 300 GeV using the
density matrix description of Ref. [26] that incorporates
the Hubble expansion, elastic scatterings and annihilations
into the time evolution of the number densities. The y
particles decay out of thermal equilibrium if their decay rate
[ < H(T ~M) ~107* eV. As benchmark values we took
I" = 107 eV and a mass difference between the heavy and
light mass eigenstates, Am = 4 x 107 eV. We assumed
that these new particles and their antiparticles were pro-
duced with a thermal number density at temperatures much
higher than their mass. If there is also CP violation in the
system, it is enhanced for I'~ Am. In this case, a y
asymmetry is produced at later times even if the initial
densities are symmetric. Furthermore if the decays of the y
particles violate baryon number, then a baryon asymmetry
can be produced. The size of the baryon asymmetry
depends strongly on when the oscillations start and how
they proceed in the early Universe. Here we summarize the
main points of our analysis.

1. After being produced, particles and antiparticles
cannot start oscillating right away. Even without
any interactions, y particles do not have sufficient
time to oscillate before the Hubble rate drops below
the oscillation frequency, w,. = Am > H(T). For a
mass difference smaller than 107° eV full oscilla-
tions only start when T > M/10.

2. For electroweak scale particles that fall out of thermal
equilibrium at 7 < M, interactions with light (SM)
particles inhibit oscillations. For interaction cross

PHYSICAL REVIEW D 93, 123528 (2016)

sections larger than O(10~2ab), this delay is stronger
than the one due to the expansion of the Universe. If
the interactions cannot differentiate between a particle
and an antiparticle (flavor-blind interactions), elastic
scatterings do not affect oscillations. However oscil-
lations are delayed due to particle-antiparticle anni-
hilations. Oscillations can be delayed until 7 ~ M /20
for an annihilation cross section ~fb.

3. If there are light particles that scatter off of the y
particles, and if these scatterings differentiate be-
tween a particle and an antiparticle (flavor-sensitive
interactions), oscillations are delayed further. Since
the elastic scattering rate is not Boltzmann sup-
pressed (if there are light particles to scatter with),
the delay due to scatterings is stronger than the
delay due to annihilations. For a flavor-sensitive
elastic scattering cross section ~fb, oscillations can
be delayed until 7 ~ M /80. We showed the relation-
ship between the oscillation-onset temperature and
the mass difference for different interaction types
and strengths in Fig. 5.

4. We showed in Fig. 7 that a large baryon asymmetry
can be produced if interactions that delay oscilla-
tions are not stronger than O(fb). For stronger
interactions oscillations are usually delayed until
the total yw density is too small to produce a large
asymmetry even with O(1) CP violation.

As a concrete example of this scenario, we studied
pseudo-Dirac bino oscillations in a U(1)g-symmetric
SUSY model with R-parity violation. If the lightest
neutralino is a pure bino, it decays via R-parity-violating
interactions. Assuming baryon-number-violating bino
decays dominate we showed that when the binos decay
out of thermal equilibrium, they can produce a sufficiently
large baryon asymmetry to explain the baryon asymmetry
of the Universe. However in order to produce enough
asymmetry, sfermions need to be heavier than a few TeV
lest bino oscillations are delayed too much due to strong
elastic scatterings with light SM fermions.

An important collider signature of this scenario is
displaced vertices. Since these particles with electroweak
scale masses decay out of thermal equilibrium, their decay
rate I' < 10~* eV. Consequently, if they are produced at
colliders, they will travel more than a few mm before
decaying. (See Ref. [29].) Furthermore, if there are lepton-
number-violating decays (as well as baryon-number-
violating decays), the decays can produce a same-sign
lepton asymmetry [28].

On the model building side, the oscillations can be
embedded in a dark sector and be the source of the dark
matter relic density together with the baryon asymmetry. As
pointed out in Refs. [25,26], one usually imposes a global
U(1) symmetry on the dark sector such that the dark matter
particle is stable. However this global symmetry must be
broken due to gravity. Then it is expected, e.g., the fermions
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in the dark sector are pseudo-Dirac particles and they
undergo particle-antiparticle oscillations as described in
this work. If, for example, the global symmetry is U(1)5_;,
an asymmetry that is produced by oscillations in the dark
sector can be transferred into the SM baryon asymmetry.
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APPENDIX A: TIME-DEPENDENT
DECAY RATES

From Eq. (4) we have

<BX| - E|l//‘> = 9y
(BX |- Llve) = g

(BX| = Lly) = g,.

(BX|—Lly) = g;. (A1)

Using Eq. (10) we write the time-dependent decay
rates as

ql?, q . .

= lg- —25Yf<—ggg g_>],
p" | p At

ql? q

= Ig_2—25ﬁ<—g*gg*g_>}
p‘ | p AT

p2 2 P .
— lg- —2?Yf<—ggg g_)],
q" | q "

g4 * + lg, 2

c Ry Ry c * « P 2 p 2 P . *
() = BX) = 7B X | L P =7lsi0, - 6320 =l Plo. P + bl 2] - - 20 (Ligan )|
(A2)
where y is determined by the details of the specific model. Then
- - q 2
C0) = 5X) = 1) = B) = 7l (1 = ) (lo. P = | o)
B 5 2 2 2, |4 9 9y
r(0) = 83 + T = B) = 7lg P01+ ) o+ |2 o] -4 (22214 ) ).
ly
c c DY p 2
() = 53) =T () = B) =g, P = 1) (1. - |2 o)
¢ ¢ &5 2 2 2 PP (P9 .
L(ye(1) = BX) + T(w(1) » BX) =ylg,[*| (1 + ) |lg:]> + 4 lg_|*| —4n a9 ) (A3)
ly
We also have
L p—_ Eg—z:r Plo-ip, (A4)
P 9y P q 9y q
These can be combined to get Eq. (13). To take the time integrals we use Eq. (11) and get
—I't AT
lg+]> = ¢ leosh (=7 + cos(Amt)|,
2 2
—I't AT
gig. = "2 {sinh <2 r) + isin(Amt)]. (AS)
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APPENDIX B: BOLTZMANN EQUATIONS

The Boltzmann equations from Eq. (15) are

day, , :
sz—z‘” =-TY, +im(Y,,c = Yye,) =Tr(e7 Y, c + €Y c,) = s(ov) (Y, Yo + Ve ¥ye, — Y3)
- S<O'U>_(YWYWC - YWW“Y‘I/LV/ - qu),
dy . _ : :
sz—l =—TY,c —im(Yye = Y,e,) =Tr(eY, c +e?Y,c,) = s{ov) (Y, Ve + Y, Yye, — Y3)
- S<O'1}>_(YWYWC - Y'I/l//“ YWL‘W - qu),
dY e ,
Hz—" = -TY,c +im(Y, = Y,c) =Tre? (Y, + Y ) —s{ov) Yy, (Y, + Y,e) = 20_Y e,
dz wy v v v Y + 5wy \ Ly v wy
dy . ,
HZ% =—IYe, —im(Y, = Y,) =Tre7 (Y, +Y,c) = s(ov), Yye, (Y, +Y,c) =20 Y,0,. (B1)
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