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Rolling tachyon field models are among the candidates suggested as explanations for the recent
acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to
variations of the fine-structure constant α. Here we take advantage of recent observational progress and use
a combination of background cosmological observations of type Ia supernovas and astrophysical and local
measurements of α to improve constraints on this class of models. We show that the constraints on α imply
that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy
equation of state ð1þ w0Þ < 2.4 × 10−7 at the 99.7% confidence level. Therefore current and forthcoming
standard background cosmology observational probes cannot distinguish this class of models from a
cosmological constant, while detections of α variations could possibly do so since they would have a
characteristic redshift dependence.

DOI: 10.1103/PhysRevD.93.123524

I. INTRODUCTION

Identifying the physical mechanism behind the recent
acceleration of the universe [1,2] is arguably the most
pressing problem of modern physics and cosmology. While
current data is broadly in agreement with a cosmological
constant, which is also the simplest available explanation
(at least in the sense of requiring the smallest number of
additional parameters), such an explanation comes with the
cost of significant and well-known fine-tuning problems. It
is therefore essential to explore possible alternative theo-
retical scenarios while simultaneously identifying new
observational probes that can lead to a more detailed
characterization of the properties of the dark side of the
universe and to discriminating tests between competing
paradigms.
The most obvious alternative to a cosmological constant

consists of invoking dynamical degrees of freedom, of
which scalar fields are the simplest realization. If such
fields are indeed present, one expects them to couple to
the rest of the model, unless a yet-unknown symmetry is
postulated to suppress these couplings [3–5]. In particular,
a coupling of the field to the electromagnetic sector will
lead to spacetime variations of the fine-structure constant
α—see [6,7] for recent reviews on this topic. There are
some indications of such a variation [8], at the relative level
of variation of a few parts per million and in the approxi-
mate redshift range 1 < z < 3. An ongoing dedicated
Large Program at ESO’s Very Large Telescope (VLT) is
aiming to test them [9,10], and the next generation of

high-resolution ultrastable spectrographs will significantly
improve the sensitivity of these tests.
Regardless of the outcome of these studies (i.e., whether

they provide detections of variations or just null results)
these measurements have cosmological implications that
go beyond the mere fundamental nature of the tests
themselves. These have been recently explored using
currently available data [11–13], and forecasts for various
future facility scenarios have been discussed in some detail
[14,15]. These previous studies mostly focused on canoni-
cal scalar fields. However, the techniques developed therein
are more generic, and here we will exploit them in the
context of a different class of models.
Constraints on Dirac-Born-Infeld (DBI) type dark

energy models from varying α have first been discussed
in [16]. They point out that the DBI action based on string
theory naturally gives rise to a coupling between gauge
fields and a scalar field responsible for the universe’s
acceleration. In other words, the field dynamics itself leads
to α variations. They place constraints on specific choices
of potentials, finding that some fine-tuning is needed for the
potentials they consider: the potentials must be quite flat.
Here we extend this analysis by exploiting the availability
of additional data, but also carry out the analysis for more
generic potentials and provide additional insight into the
physical interpretation and relevance of the resulting
constraints.
A rolling tachyon is an example of a Born-Infeld scalar,

and these are well motivated in string theory [17,18]. The
interaction of scalar fields with gauge fields will naturally
lead to fine-structure constant variations. A further relevant
difference is that whereas the coupling of a quintessence
field to matter and radiation is not fixed by the standard
model of particle physics, these models provide an example
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where the form of these couplings can be obtained more
directly from a fundamental theory, specifically from an
effective D-brane action [16]. Therefore, apart from their
intrinsic interest, they are also useful as a benchmark to
study the discriminating power of future facilities among
different classes of models since, as we will show, they do
have some interesting distinguishing features.

II. COSMOLOGICAL AND
ASTROPHYSICAL DATA SETS

Wewill constrain tachyon dark energy models by using a
slightly extended version of the data sets that were also
used in [11–13], as follows:

(i) Cosmological data: we use the Union2.1 data set of
580 type Ia supernovas [19] as well as a set of 35
Hubble parameter measurement, of which 28 are
described in the compilation of Farooq and Ratra
[20] while seven more recent ones come from the
work of Moresco et al. [21,22]. We will assume that
the observations leading to these data sets are not
affected by possible α variations. While a varying α
is known to affect the luminosity of type Ia super-
novas, a recent analysis shows [23] that for parts-
per-million level α variations the effect is too small
to have an impact on current data sets. As will be
shown in what follows, this data will mainly con-
strain the matter density of the universe, effectively
providing us with a prior on it.

(ii) Laboratory data: we will use the atomic clock
constraint on the current drift of α of Rosenband
et al. [24],

_α

α
¼ ð−1.6� 2.3Þ × 10−17 yr−1; ð1Þ

which we can also write in a dimensionless form by
dividing by the present-day Hubble parameter,

1

H0

_α

α
¼ ð−2.2� 3.2Þ × 10−7: ð2Þ

This is the strongest available laboratory constraint
on α only. Other existing laboratory constraints are
weaker and also depend on other couplings. (The
interested reader can find a summery of other
atomic clock tests in [25].) Additionally we will
consider the constraint from the Oklo natural
nuclear reactor [26]

Δα
α

¼ ð0.5� 6.1Þ × 10−8; ð3Þ

at an effective redshift z ¼ 0.14, though it turns
out that for this class of models the atomic clock
measurement is more constraining.

(iii) Astrophysical data: we will use both the spectro-
scopic measurements of α of Webb et al. [8] (a large
data set of 293 archival data measurements) and the
smaller but more recent data set of 11 dedicated
measurements listed in Table I. The latter include the
early results of the UVES Large Program for Testing
Fundamental Physics [9,10], which is expected to be
the one with a better control of possible systematics.

Our main interest in the present work is to constrain
the coupling of the field to the electromagnetic sector.
As we will see in the next section, in this class of models
this is equivalent to constraining the dark energy equation
of state—and consequently also the shape of the potential.
For this reason we will fix the Hubble parameter to be
H0 ¼ 70 km=s=Mpc, while this coupling and the matter
density will be our free parameters. For simplicity we
further assume a flat universe, so Ωm þΩϕ ¼ 1, and
the Ωi denote the present-day values. These choices are
fully consistent with the cosmological data sets we use,
and also with constraints from the cosmic microwave
background [31].

III. TACHYON DARK ENERGY MODELS

The tree-level D-brane action is a Dirac-Born-Infeld type
action containing both gauge fields and scalar fields such as
tachyons [17,18], and this action naturally gives rise to the
coupling of the Born-Infeld scalars to the gauge fields,
which can account for a varying α. Rolling tachyon fields
naturally arise in string theory, as discussed in [17,18],
and they have been suggested as a candidate to explain the
acceleration of the universe [17]. The cosmology of a

TABLE I. Recent dedicated measurements of α. Listed are,
respectively, the object along each line of sight, the redshift of the
measurement, the measurement itself (in parts per million), the
spectrograph, and the original reference. The first measurement is
the weighted average from eight absorbers in the redshift range
0.73 < z < 1.53 along the lines of sight of HE1104-1805A,
HS1700þ6416 and HS1946þ7658, reported in [27] without the
values for individual systems. The UVES, HARPS, HIRES and
HDS spectrographs are respectively in the VLT, ESO 3.6m, Keck
and Subaru telescopes.

Object z Δα=α (ppm) Spectrograph Ref.

3 sources 1.08 4.3� 3.4 HIRES [27]
HS1549þ 1919 1.14 −7.5� 5.5 UVES/HIRES/HDS [10]
HE0515 − 4414 1.15 −0.1� 1.8 UVES [28]
HE0515 − 4414 1.15 0.5� 2.4 HARPS/UVES [29]
HS1549þ 1919 1.34 −0.7� 6.6 UVES/HIRES/HDS [10]
HE0001 − 2340 1.58 −1.5� 2.6 UVES [30]
HE1104 − 1805A 1.66 −4.7� 5.3 HIRES [27]
HE2217 − 2818 1.69 1.3� 2.6 UVES [9]
HS1946þ 7658 1.74 −7.9� 6.2 HIRES [27]
HS1549þ 1919 1.80 −6.4� 7.2 UVES/HIRES/HDS [10]
Q1101 − 264 1.84 5.7� 2.7 UVES [28]
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homogeneous tachyon scalar field as dark energy was first
studied in [32], and the α variation for a Born-Infeld scalar
coupled to the gauge field has been previously discussed in
[16], who obtain some qualitative constraints which will be
further quantified by us. Here we first summarize and then
extend both of these analyses.

A. A slow-roll tachyon parametrization

We start by focusing on the tachyon part of the DBI
action. Generically its Lagrangian can be written

Ltac ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ∂aϕ∂aϕ
p

; ð4Þ

with the energy density and pressure being given by

ρϕ ¼ VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ∂aϕ∂aϕ
p ð5Þ

pϕ ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ∂aϕ∂aϕ
p

: ð6Þ

We will consider the case of a homogeneous field in a
Friedmann-Lemaitre-Robertson-Walker background, con-
taining also matter. In that case we have

H2 ¼ 8πG
3

ðρm þ ρϕÞ ð7Þ

and

ϕ̈

1 − _ϕ2
þ 3H _ϕþ 1

V
dV
dϕ

¼ 0: ð8Þ

Note that the tachyon field equation of state and sound
speed are

wϕ ¼ _ϕ2 − 1 ≥ −1; ð9Þ

c2s ¼ 1 − _ϕ2 ≤ 1; ð10Þ

it is also useful to write

_ρϕ ¼ −3Hð1þ wϕÞρϕ ¼ −3Hρϕ _ϕ
2: ð11Þ

In the case where the tachyon is the single component (i.e.,
neglecting matter as well as radiation) there is a well-known
solution [33],

a ∝ tn ð12Þ

ϕ ¼
ffiffiffiffiffiffi

2

3n

r

t ð13Þ

which ensues for the potential

VðϕÞ ¼ n
4πG

�

1 −
2

3n

�

1=2 1

ϕ2
: ð14Þ

Now, we start by noting that in these models the field is
constrained to be slow rolling (especially so if it induces α
variations, as we will shortly confirm), and in that case the
scalar field equation can be approximated to

3H _ϕ ∝ −
d lnV
dϕ

: ð15Þ

Moreover, the right-hand side of this equation is a function
of the field ϕ and the field is approximately constant. We
can thus Taylor-expand the field, and write the Friedmann
equation as follows:

H2

H2
0

¼ Ωmð1þ zÞ3 þΩϕ

�

1þ
�

V 0

V

�

0

ðϕ − ϕ0Þ
�

ð16Þ

with, from the scalar field equation,

ðϕ − ϕ0Þ ¼ −
1

3

�

1

H
V 0

V

�

0

ðt − t0Þ: ð17Þ

We therefore have

H2

H2
0

¼ Ωmð1þ zÞ3 þ ð1 − ΩmÞ
�

1 −
1

3H0

�

V 0

V

�

2

0

ðt − t0Þ
�

;

ð18Þ

where we also used Ωm þ Ωϕ ¼ 1. Now, given the slow-
roll approximation the correction term in square brackets is
expected to be small, and therefore the calculation of the
ðt − t0Þ term can be done assuming the ΛCDM limit (in
other words, the differences will be of higher order), which
allows an analytic calculation to be done. After some
algebra we find

H2

H2
0

¼ Ωmð1þ zÞ3 þ ð1 − ΩmÞ
�

1þ 2

9
λ2fðΩm; zÞ

�

; ð19Þ

where we have defined the dynamically relevant dimen-
sionless parameter

λ ¼ 1

H0

�

V 0

V

�

0

ð20Þ

and the redshift-dependent correction factor is
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fðΩm;zÞ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Ωm
p ln

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Ωm
p Þð1þ zÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Ωm
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3þ1−Ωm

p :

ð21Þ

It is also useful to calculate the dark energy equation of
state in these models. This can be straightforwardly done
using the relation

dρϕ
dz

¼ 3
1þ wϕ

1þ z
ρϕ ð22Þ

and leads to

1þ wϕ ¼ _ϕ2

¼ λ2

9þ 2λ2fðΩm; zÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Ωm
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðΩm; zÞ
p

EðΩm; zÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −ΩmÞEðΩm; zÞ

p ; ð23Þ

where for convenience we also defined

EðΩm; zÞ ¼ Ωmð1þ zÞ3 þ 1 −Ωm: ð24Þ

As expected the field speed parametrizes the deviation of
the dark energy equation of state from the cosmological
constant value. Note that this equation of state ð1þ wϕÞ
tends to zero at high redshifts; in other words, these are
thawing dark energy models. In particular, the equation of
state at the present day is

1þ w0 ¼ _ϕ2
0 ¼

λ2

9
; ð25Þ

providing further physical insight into the role of the
parameter λ.

B. Time variation of α

We now turn to the interaction part of the DBI
Lagrangian which is responsible for the α variation. This
has the form [16–18]

Lint ¼
ð2παs0Þ2
4β2

VðϕÞTrðg−1Fg−1FÞ þ…; ð26Þ

where g and F are the traces of the four-dimensional
metric and the Maxwell tensor respectively, αs0 (not to be
confused with the fine-structure constant) is related to the
string mass scale via Ms ¼ 1=

ffiffiffiffiffiffi

αs
0p

, and β is a warped
factor. (We note that the DBI Lagrangian contains further
terms that are of similar order in the gauge field, but these
are not relevant for our work since they do not contribute
to the α variation. A more systematic discussion can be
found in [17,18].)

This implies, by comparison to the standard Yang-Mills
case, that the value of the fine-structure constant in this
case is

αðϕÞ ¼ β2M4
s

2π

1

VðϕÞ ; ð27Þ

and therefore in these models the fine-structure constant is
inversely proportional to the tachyon potential. Expressing
this in terms of the relative variation of α with respect to the
present day, we finally obtain

Δα
α

ðzÞ≡ αðzÞ − α0
α0

¼ Vðϕ0Þ
VðϕÞ − 1; ð28Þ

with α0 ∼ 1=137 being the present-day value. Thus a
negative value of Δα=α corresponds to a smaller value
of α in the past (meaning a weaker electromagnetic
interaction), which in this class of models corresponds
to a larger value of the potential VðϕÞ.
Given this explicit dependence on the scalar field

potential we can now use the same Taylor expansion of
the previous subsection, and rewrite this as

Δα
α

≃ −
�

V 0

V

�

0

ðϕ − ϕ0Þ≃ 1

3H0

�

V 0

V

�

2

0

ðt − t0Þ: ð29Þ

This implies that in these models the fine-structure constant
is always smaller in the past (and varies approximately
linearly in time). Finally we can write

Δα
α

¼ −
2

9
λ2fðΩm; zÞ; ð30Þ

which shows that the dimensionless parameter λ also
provides the overall normalization for this variation. We
could even write the suggestive

H2

H2
0

¼ Ωmð1þ zÞ3 þ ð1 − ΩmÞ
�

1 −
Δα
α

ðzÞ
�

: ð31Þ

This makes it clear that in this class of models any
deviations from the ΛCDM behavior must be small, as
we now further quantify.
Indeed, we can trivially write the present-day rate of

change of the fine-structure constant

1

H0

�

_α

α

�

0

¼ 1

3H2
0

�

V 0

V

�

2

0

; ð32Þ

or equivalently, in terms of the present-day dark energy
equation of state

1

H0

�

_α

α

�

0

¼ 1

3
λ2 ¼ 3 _ϕ0

2 ¼ 3ð1þ w0Þ: ð33Þ
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Now, as pointed out in the previous section this drift rate
is constrained by laboratory measurements with atomic
clocks [24]

1

H0

�

_α

α

�

0

¼ ð−2.2� 3.2Þ × 10−7; ð34Þ

showing that in these models w0 is effectively indistin-
guishable from a cosmological constant, although they
can have a distinctive astrophysical variation of α. In this
sense these models are effectively a physical realization of
the more phenomenological Bekenstein-Sandvik-Barrow-
Magueijo class of models [34]. This constraint also implies
that the field speed today must be tiny,

_ϕ0 ≤ 10−3; ð35Þ
justifying our slow-roll approximation and also motivating
the choice of a logarithmic prior for λ.
Despite the fact that our analysis is generic (with the

relevant information on the shape of the potential being
encapsulated in the parameter λ), we can as an exercise
compute λ and the α variation for the three specific classes
of models that were considered in [16]. For the exponential
potential

VðϕÞ ¼ V0e−μϕ ð36Þ
we have

λ ¼ −
μ

H0

ð37Þ

and

Δα
α

¼ eμðϕ−ϕ0Þ ≃ μðϕ − ϕ0Þ; ð38Þ

while for the inverse polynomial potential

VðϕÞ ¼ M4−nϕ−n ð39Þ
we have

λ ¼ −
n

H0ϕ0

ð40Þ

and

Δα
α

¼
�

ϕ

ϕ0

�

n
− 1≃ n

ϕ0

ðϕ − ϕ0Þ; ð41Þ

and finally for the massive rolling scalar potential

VðϕÞ ¼ V0e
1
2
M2ϕ2 ð42Þ

we have

λ ¼ M2ϕ0

H0

ð43Þ

and

Δα
α

¼ e
M2

2
ðϕ2

0
−ϕ2Þ ≃ −

M2

2
ðϕ2 − ϕ2

0Þ≃ −M2ϕ0ðϕ − ϕ0Þ
ð44Þ

as expected.

IV. CONSTRAINTS ON THE MODEL

The work of [32] does a simple comparison with early
type Ia supernova observations. Here we will extend this,
using both the more recent Union2.1 supernova data set
and also a set of Hubble parameter measurements dis-
cussed in the previous sections [20–22]. We assume a flat
universe and carry out a two-parameter analysis ðΩm; λÞ
with a flat prior on the former and a logarithmic prior on
the latter. In principle we could include H0 as a third
parameter, but we note that the Union2.1 data set we use
already has H0 ¼ 70 km=s=Mpc. For the fine-structure
constant measurements we will use the aforementioned
data sets.
Our results are summarized in Figs. 1 and 2. As expected

the cosmological data sets fix the matter density, with the α
measurements having very little impact on it since the
dependence is only logarithmic. Specifically, marginalizing
over λ we find the following constraint:

Ωm ¼¼ 0.29� 0.03; ð45Þ

at the three sigma (99.7%) confidence level, which is fully
compatible with other extant cosmological data sets. On
the other hand, the αmeasurements strongly constrain λ, for
the reasons already explained in the previous section. In
particular we notice that the Webb et al. data set leads to a

FIG. 1. 2D likelihood in the λ-Ωm plane, for the combination
of the cosmological, astrophysical and laboratory data sets. One,
two and three sigma contours are shown.
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two-sigma detection of a nonzero λ, but the coupling is
consistent with zero for other measurements of α and also
for the combination of all the data sets we studied. In this
case we find, marginalizing over Ωm,

λ < 7.8 × 10−4; 68.3% C:L: ð46Þ

λ < 1.5 × 10−3; 99.7% C:L: ð47Þ

In particular, this leads to an extremely strong constraint
on the value of the present-day dark energy equation of
state

ð1þ w0Þ < 2.4 × 10−7; 99.7% C:L: ð48Þ

It is clear that neither current nor foreseen standard probes
of background cosmology will be unable to detect such a
small deviation from w0 ¼ −1. Thus the only possibilities to
distinguish these models from the ΛCDM paradigm would
be to rely on their clustering properties (whose study is left
for subsequent work) or to use astrophysical measurements
of the redshift dependence of α.

V. CONCLUSIONS

We used a combination of astrophysical spectroscopy
and local laboratory tests of the stability of the fine-
structure constant α, complemented by background cos-
mological data sets, to constrain a class of rolling tachyon
models. Part of the motivation for these models stems from
the fact, emphasized for example in [32], that the tachyon
Lagrangian generalizes the one for a relativistic particle,
just like the one for quintessence generalizes that for a
nonrelativistic particle. Moreover they are well motivated
from string theory, and they naturally couple to gauge fields
in a calculable way, in particular leading to a variation of
the fine-structure constant α.
At the phenomenological level the interesting feature

of these models is that a single parameter—effectively
the steepness of the potential, in dimensionless units—
determines both the dark energy equation of state and the
overall level of the α variations. Moreover, these are
necessarily thawing models with a monotonically increas-
ing value of α (in other words, smaller values of α in
the past). The current local and astrophysical tests of the
stability of α therefore place strong constraints on the
steepness of the potential, and imply that the present-day
value of the dark energy equation of state, although not
exactly −1, is effectively indistinguishable from it if one
restricts oneself to standard observational probes.
Presently these constraints are dominated by the atomic

clock tests [24], but forthcoming improvements in astro-
physical measurements will allow significantly stronger
constraints. Specifically the ESPRESSO spectrograph, due
for commissioning in the Spring of 2017, and ELT-HIRES,
foreseen for the European Extremely Large Telescope,
will be ideal for this task. A roadmap for these studies is
outlined in [7], and more detailed forecasts of the future
impact of these measurements may be found in [15].
Last but not least, our work demonstrates the importance

of testing the stability of nature’s fundamental couplings
over a broad range of redshifts and accurately mapping their
behavior. As this class of rolling tachyon models shows, this
may turn out to be the best way we have of identifying
deviations from the ΛCDM paradigm, at least in the next
decades. Moreover, in the event of confirmed detections of
variations such a mapping is a powerful discriminator, since
different classes of models lead to significantly different
behaviors for the redshift dependence of α—e.g., compare
the present models with the canonical ones studied in

FIG. 2. 1D marginalized likelihood for Ωm (top panel) and λ
(bottom panel). In both cases the blue dashed lines correspond to
the combination of cosmological and Webb et al. data, the blue
dash-dotted line corresponds to the combination of cosmological,
Table I and Oklo data, the red dotted line corresponds to the
combination of cosmological and atomic clock data, and the
black solid line corresponds to the combination of all data sets.
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[11–13]. We leave a more detailed description of this model
selection process for subsequent work.
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