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In this paper, we study the expectation values of the induced charge and current densities for a massive
bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified
cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in
thermal equilibrium at finite temperature 7. These densities are calculated by decomposing them into the
vacuum expectation values and finite temperature contributions coming from the particles and antiparticles.
The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using
the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic
string and the one by the compactification. The charge density is an odd function of the chemical potential
and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the
azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic
function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on
the charge and current densities, including some limiting cases, the low- and high-temperature

approximations. We show that in all cases, the temperature enhances the induced densities.
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I. INTRODUCTION

The existence of a magnetic flux tube penetrating a
type II superconductor named ““vortex” was first demon-
strated by Abrikosov [1] by using the Ginzburg-Landau
theory of superconductivity. A few years later, Nielsen and
Olesen [2] proposed a relativistic theoretical model con-
sisting of Higgs and gauge fields, which possesses a static
vortex solution. In this model, the Higgs field plays the role
of the superconductivity order parameter. The influence of
the vortex from the Nielsen-Olesen model on the geometry
of the spacetime was investigated by Garfinkle [3]. The
author showed that the spacetime around the vortex is
asymptotically a Minkowski one minus a wedge. The core
of the vortex has a nonzero thickness and a magnetic flux
through it. A few years later, Linet [4] showed that under a
specific condition, the structure of the respective spacetime
corresponds to a conical one, with the conicity parameter
being expressed in terms of the energy per unit length of the
vortex. Meanwhile, Kibble [5] introduced the mechanisms
of symmetry breaking, phase transitions, and the topologi-
cal defects into the modern cosmology.

Accepting the validity of grand unified theories, one can
conclude that in the earliest stages, the Universe was hotter
and in a more symmetric state. Thus, in its expansion
process, the Universe cooled down and underwent a series
of phase transitions accompanied by spontaneous break-
down of symmetries which could result in topological
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defects. Cosmic strings are lines of trapped energy density
analogous to defects such as vortex lines in superconduc-
tors and superfluids. An enormous number of string-type
solutions have been found in many different field theoretic
models, including electroweak strings in the Weinberg-
Salam model and strings in grand unified theories [6]. They
can curve spacetime and be of cosmological and astro-
nomical significance in a large number of phenomena, such
as producing cosmic microwave background anisotropies,
non-Gaussianity and B-mode polarization, sourcing gravi-
tational waves, generation of high energy cosmic rays,
and gravitationally lensing astrophysical objects [7]. The
dimensionless parameter that characterizes the strength of
gravitational interactions of strings with matter is its
“tension” in Planck units Gu,, where G is Newton’s
constant, and y is the mass per unit length proportional
to the square of the symmetry breaking scale.

Many authors have considered quantum fields on space-
times containing conical singularities. These kinds of
manifolds are relevant for studying fields in the presence
of real conical singularities, namely, existing in the
Lorentzian section of the manifold as in the case of
idealized cosmic strings. Moreover, the presence of the
string allows effects such as particle-antiparticle pair
production by a single photon and bremsstrahlung radiation
from charged particles which are not possible in empty
Minkowski space due to the conservation of linear
momentum [8].

Another type of topological effect that is considered in
the literature is induced by the compactification of the
spatial dimension. The compact spatial dimensions are an
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inherent feature of most high energy theories of funda-
mental physics, including supergravity and superstring
theories. An interesting application of the field theoretical
models with compact dimensions is in nanophysics. The
long wavelength description of the electronic states in
graphene can be formulated in terms of the Dirac-like
theory in three-dimensional spacetime with the Fermi
velocity playing the role of the speed of light [9]. In
addition to the fermionic field, the scalar and gauge fields
originating from the elastic properties and describing
disorder phenomena, like the distortion of graphene lattice
and structure defects, should be taken into consideration
[10,11]. In graphene-made structures, like cylindrical and
toroidal carbon nanotubes, the background geometry for
the corresponding field theory contains one or two compact
dimensions. In quantum field theory, the periodicity con-
ditions imposed on the field operator along compact
dimensions modify the spectrum for the normal modes,
and, as a result, the vacuum expectation values of physical
observables are changed. In particular, many authors
have investigated the vacuum energy and stresses induced
by the presence of compact dimensions (for reviews, see
Refs. [12,13]). This effect known as the topological
Casimir effect is a physical example of the connection
between global properties of the spacetime and quantum
phenomena.

Cosmic strings also polarize the vacuum around it in a
way similar to the distortion of the vacuum leading to the
Casimir effect between two conducting planes forming a
wedge. The analysis of the vacuum polarization by a
magnetic flux tube at finite temperature in the cosmic
string spacetime has been developed in [14]. In [15], we
have analyzed the fermionic charge and current densities at
finite temperature in a (3 4+ 1)-dimensional cosmic string
spacetime considering the presence of a magnetic flux
running along its axis. Here we have decided to continue
in the same line of investigation considering a charged
scalar field in a more general situation, in arbitrary
dimensions and compactification along the z axis, for
the bosonic field. In condensed matter, in the context of
topological insulators, there have been efforts to study the
effects of interactions on the properties of the insulators
and bind bosons to topological defects including a vortex
and monopole analogous to the electronic topological
insulators [16]. In these systems, bosonic currents as well
as defect currents have been studied in detail. Also, the
bosonic charge carriers can play roles in the standard
Landau model for multiconstituent finite temperature
superfluids as well in some cosmic string models includ-
ing superconducting cosmic strings [17]. Bosonic super-
conductivity can happen if a charged bosonic field
condensates in the core of the string.

The plan of the paper is as follows: In the next section,
we introduce the background geometry and describe the
thermal Hadamard function for the massive charged
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bosonic quantum field in a higher-dimensional cosmic
string spacetime presenting a magnetic flux along its axis.
Moreover, we consider that the z axis along the string is
compactified to a circle and carries an extra magnetic flux.
Also, in Sec. III, we calculate the thermal average of the
charge density in this spacetime. We investigate various
asymptotic limits in detail, including the low- and high-
temperature limits and the limit when there is no compac-
tification. In this paper, we mainly explore the thermal
effects on the average of the current density. The only
nonzero components of the thermal average of the current
densities correspond to the azimuthal and axial ones. These
quantities are investigated in Secs. IV and V. We show that
the expectation value of the current densities can be
decomposed into the vacuum expectation value and the
contributions from particles and antiparticles. The behavior
of the current densities in the asymptotic regions of the
parameters are discussed in detail. Finally, in Sec. VI, we
give a brief conclusion about the results.

II. FORMALISM

In the general relativity framework, the background
geometry of the (D + 1)-dimensional flat spacetime cor-
responding to a generalized cosmic string lying along the z
axis can be described by the line element

ds* = di* —dr* — Pdg* — d? — dz)*,  (2.1)
where r > 0,0 < ¢ < ¢y = 21/q,

b (dx")?, and —o0 < x' < +00. The parameter ¢ codi-
fies the planar angle deficit, where in the case of D = 3 is
related to the linear mass density of the string u, by
g~' = 1 — 4u,. In the presence of a gauge field A, the field
equation governing the quantum dynamics of the charged
massive scalar field is

-0 << +OO, dZ||2 =

(D> + m?)p(x) = 0, (2.2)

where the differential operator in the field equation reads

D’ \/— D,(Vlgl¢*D,),
We assume that the direction along the z axis is compacti-

fied to a circle with length L, 0 < z < L, and the field obeys
the quasiperiodic boundary condition

D, =8, +ieA,. (23)

([ r, ¢ z+ L, Z||> 27””(,0(1‘ r, 45 Z, Z") (24)
with the constant phase # in the region [0, 1]. We shall
consider a constant vector potential as

A, =(0,0,4,,4.,0,...,0). (2.5)
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The azimuthal component A 4 is related to an infinitesimally
thin magnetic flux @, running along the string as
A, = —q®,/(2x), and the axial component A, is related
to the magnetic flux ®, enclosed by the z axis given by
A, =—-®,/L. It is easy to show that in the presence of
nonzero constant vector potential components AZH, the
physical parameters do not change and the results will
remain intact. Therefore, without loss of generality, we
shall consider AZ” = 0. As it is shown in [18], the general
normalized solution in this system takes the form

q/1 1/2 —iE t+ign¢~+ik;z+ik .z
@, (x) = m Jq‘nw‘(/lr)e 1 1Kz

(2.6)

where o represents the set of quantum numbers
(n,A.k;. k), J,(x) the Bessel function, n=0,£1,%2,...,

2>0, k,=2x(l+n)/L with [ =0,+1,+2,..., —c0 <
ki < oo with j =4,....D, and
a=eAy/q=—;/P, (2.7)

&y =2r/e being the quantum flux. The energy is
expressed in terms of 1 and / by the relation

E = \/ﬂ2+l}%+kﬁ+m2,
ky=2x(l+17)/L.

1=0,+1,42, ..., (2.8)

where

n=n+eA.L/(2n) =n—P,/P,. (2.9)
Before continuing our analysis, we would like to com-
ment about the quantum numbers defined above: The
momentum along the string axis k; is discrete due to the
compactification along its axis. As for the momenta along
extra dimensions, they have no restrictions. The quantum
number A can be understood as the modulo of the
momentum in the two-surface orthogonal to the z axis.
In order to understand this point, we have to develop the
summation over the quantum number n for the solution
Eq. (2.6) multiplied by a specific phase, as shown
below':

D eridnrain2g (x). (2.10)

Tn fact, there is some arbitrariness in the determination of the
normalization constant for the wave function Eq. (2.6). Only its
modulo is unequivocally determined.
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In the above summation, only the Bessel function and the
exponential in the angular variable are relevant. By
performing a rotation Ar = iz and by using the relation
J,(iz) = e™*?1,(z), it is possible to develop the sum
using an integral representation for the modified Bessel
function.” As a consequence, it can be shown by using
the result of [19] and returning to the original variable Ar
that the summation provides an incident plane wave with

moment 4 plus a scattering wave.

In order to obtain the expectation values of the charge
and current densities for the above bosonic field at finite
temperature 7', we shall use the thermal Hadamard function

G (x.x') = Tr[p(p" (X )g(x) + p(x)g* (¥))].  (2.11)
where p is the density matrix
p=2zle PO p—1T, (2.12)

In this equation, H is the Hamiltonian operator, Q a
conserved charge, ' the corresponding chemical potential,
and

Z = tr[e PH-1O)] (2.13)

is the grand canonical partition function. Expanding the
field operator over a complete set of solutions as

~

o) =Y lagpe” (1) + by (W) (2.14)
and using the following relations
S,
ANl A _ (e
wlpas o] = S 1
P O,/
A4 _ oo
tr[pb by) = E ] (2.15)

where i = ey’ and {q)((f), (p((,_)} a complete set of normal-
ized positive and negative energy solutions of Eq. (2.2), one

can obtain the expectation value in Eq. (2.11).
The bosonic current density operator is given by
Jy = ielg"(x)Dyo(x) — ¢(x)(Dop(x))].  (2.16)

The thermal average of the above current density can be
obtained in terms of the thermal Hadamard function as

“In fact, this procedure has been adopted in the Appendix A
of [19] to construct a closed expression for summation

Zneiqn¢1q\n+a\ (Z)

123521-3



A. MOHAMMADI and E.R. BEZERRA DE MELLO

(j,) = ieLimy_,[(0, — 0, + 2ieA,)GM(x,x)].  (2.17)

Substituting the bosonic field operator in Eq. (2.11) by
the expansion (2.14), and using the relations in Eq. (2.15),
we can separate the zero-temperature Hadamard function
and the one related to particles and antiparticles, as shown
below

N+ GV (K, (2.18)

where G(()l)(x, x’) is the zero-temperature Hadamard func-

tion and given by

G (ex) =37 3 o (el ()

(2 X:+._
q
= 3mPL 2 A dnsel (A1) g (37)

elanAg+ik Az+ik . Az ' A
X {e—tE,At + elE[Al}’
E;

(2.19)

and the one related to the particles and antiparticles, which
is given as follows:

)

xx _ZZZ(% El_j(o:_l)

o xY= +,—
- (MTZLZM aintal (A1) gna (A7)

eian¢+i1}1Az+ik”.AzH e—iEiAl
X
eﬂ(El_ﬂ) j— 1

E,
oiEiAl
+ eﬂ(El+ﬁ) —_ 1}.

Because of this separation for thermal Hadamard function,
the same will happen for the vacuum expectation value of
the current density

(2.20)

<.]1/> = <jv>0 + <j1/>T’ (221)
where (j,)7 =>_,_, _(j.), is sum of contributions of
particles and antiparticles in the current density originating
from the nonzero temperature. The bosonic charge and
current densities at zero temperature have been investigated
in [18] for zero chemical potential. Therefore, we are
mainly concerned with the contributions from particles and
antiparticles provided by the second term in the right-hand
side of (2.21). In the limit 7 — 0, we expect this term
vanishes and only the first term, the zero-temperature
contribution, survives.
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III. CHARGE DENSITY

First, we consider the charge density corresponding to
the v = 0 component of Eq. (2.17). Substituting the thermal
Hadamard function in this equation and concerning just the
contributions from particles and antiparticles, we have

{or = D (27\P-2L Z’”q\nw\

1 1
x Lﬂ(&—m —1 PE 1]’ (3.1)

with the notation

gz/dknAm

It has been shown in [18] that the formal expression for the
vacuum expectation value of the charge density (jj), is
given in terms of a divergent integral. However, in order
to obtain a finite and well-defined result, a cutoff function
was introduced. So, the integral could be evaluated. Finally,
by subtracting the Minkowskian contribution (a =0
and ¢ = 1) from the regularized expression, the cutoff
function could be safely removed, and, as a consequence, a
vanishing renormalized charge density was obtained,
Le., <JO> O(ren) — =0.

As can be seen from (3.1), the thermal charge density is
an odd function of g. When the chemical potential j is
zero, the contributions from the particles and antiparticles
cancel each other, and the total charge density vanishes.
The presence of the nonzero chemical potential imbalances
the particle-antiparticle contributions and creates nonzero
charge density. In Eq. (3.1), the charge density is an even
periodic function of the parameter o with the period equal
to 1, which means that it is a periodic function of the
magnetic flux with a period equal to the quantum flux.
Presenting the parameter a as

d f im . (3.2)

|=—00 n=—00

a = ny+ ap, (3.3)
where ny is the integer part and « the fractional part of «,
choosing |ap| < 1/2, it will be shown shortly that the
bosonic charge and current densities are only dependent on
the fractional part o, which resembles the Aharonov-Bohm
effect.

Notice that the bosonic chemical potential, in contrast to
the fermionic one, which can have any value in principle, is
restricted by |fi| < €y, €y being the minimum of energy.
Therefore, E; + ji is always positive, and we can simply use
the following series expansion

(e =1)! =
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in our analysis. Using the above expansion in (3.1), we

have
. Zeq . +oo  fo
<J0>T:(2H)T2L/deIA ‘Mlz Z A al (A7)

X i e /PEi sinh (). (3.5)
=

In order to develop the summation over /, we apply the

Abel-Plana summation formula in the form [20,21]

[Se]

> g+ f(+7)

|[=—0

_ / " dulg(u) + g(~u)]f (u)
. g(idu)
+ l/o dulf (i (—iu)] Z 227 u+z/1n ’

(3.6)
J

<.]0> Tc
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which helps to separate the part in the charge density
induced by the compactification. Taking g(u) = 1 and

22 4+(2zu/L)?

2“1 dk, [ di S A2 (A
! i2+k2+m n:Z_oo q|n+a|( r)

x Z sinh(jii) sin < jﬂ\/k2 -
=1

due to the compactification. As we shall see, this contri-
bution goes to zero in the limit L — oo.

Let us first calculate the string part. In order to make it
workable, we use the integral representation below

oI /22 K A m?

" dss—2e~ AR K ) =2 /457 (3.11)

i
V7 Jo

So, we can calculate the integral over 4 by using [22]

o0 5 e_rz/(2’7>
/ dide ™™ J2(Ar) = L(r*/(2n)).  (3.12)
0
The integral over k| is easily done as
/dk”e SKi = (z/52)0-3)/2, (3.13)

Therefore, we obtain the following result for the string
contribution of the charge density

flu)=e (3.7)
by using (3.6), we can write the charge density as
o)z = Uo)rs + Uo)7es (3.8)
with
. eq 00 “+o00 +oo )
<JO>Ts :m dkll 0 dA - dk Z /Ijq\nﬂl\ (/1)‘)
x ) 7P sinh(j) (3.9)
j=1
being the contribution induced by the string and
1 1
2 2
—A=m > |:eLk+2m'f1 1 + oLk—2mii _ J (3.10)
[
. 4eqp D=2 2 /52
{Jo)rs = () @07 , dss™ 7 F(q, ap, r*/257)
xS jsinh(jgp)e -2 (3 14)
j=1
where we have introduced [18]
+00
F(q’ao’ Z) = Z Iq|n+(1\ (Z)
0 cosh(y
:1 ez_g/ dyez h(q,ao y)
q 7 Jo cosh(gqy) — cos(qr)
[4/2]/
+2 Z cos (2zkay)e?<osrk/a) | (3.15)
k=1
with the notation
h(q.a, y) = sin[(1 = ag|)gz] cosh(|ao|gy)
+ sin (|ag|gr) cosh [(1 — |ag|)gy]. (3.16)
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Note that [¢/2] stands for the integer part of ¢/2 and the
prime on the summation in (3.15) and hereafter means that
the term k = ¢/2 should be taken with the coefficient 1/2
when ¢ is an even number. For ¢ < 2, the summation on k
does not contribute.

Substituting the expression found for F(q, ag, r?*/2s?)
into (3.14) and integrating over parameter s, using the
following relation

] 4eﬁmD+1 ©
<.]O>TS = (2” D+l /2 Z.] sinh ]ﬁﬂ)

q9 [ h(q7 o, )’)
- ;A dy cosh(qy) — cos(qr) f(D+1)/2(2mSj(ﬁ, y)) }

In the above relation, we have introduced the following
notations

= \[2P/4+ rsint (ak/g).
y) = \/ JB? /4 + rPeosh(y/2),

(3.19)
|

(Jo)7e

The following integral representation

—IL /12+p+k2+m
NGRS f/

PHYSICAL REVIEW D 93, 123521 (2016)

o ) (d-1)/4
A dss™de=as=bs7 — <g> K(4-1)2(2Vab)
(3.17)

leads to the final result for the thermal average of the charge
density as

lq/2]

fosny2(jmpP) +2 Z/ cos (2zkay) f(p+1)2(2me; 1 (B. q))

k=1

(3.18)

K,(x) being the MacDonald function. The first term in
(3.18) corresponds to the Minkowskian part in the
absence of the conical defect and magnetic flux (g =1
and ag = 0).

Now, let us calculate the induced charge density
originating from the compactification. By making a

change of variable as p = \/ k?
(3.10), we obtain

—kﬁ—/lz—m2 in

Ly/P+ki+24m’  too

4eq - co~N s g
G Zcos 2ati) [ aiy [ aii [ dpp N () D sinh(ig) sin(igp).
\/p + Kk + 4%+ m" =0 Jj=1

makes it possible to integrate over p, 4, and k| analytically. The integration over p is given below

A dppe™?"s sin(jpp) =

(3.20)
—(22+p? +k2+m~)r —PL?/4s% (321)
Jﬂ\/_ o= IP /A5 (3.22)

Integration over 4 and Kk, will be the same as (3.12) and (3.13), respectively. Therefore, using the expression (3.15), the
contribution of the compactification in the thermal charge density is

SeﬂmD+l ® ®

(") re :WZCOS 2xli) stmh Jpi) { Fw+1)2(mp(B)

q « h(q’a()’ y)
- ﬂ/) @ cosh(gy) — cos(gx) fw41)2(2md;, (P, y))}

la/2]

)+2 Z/ cos (2zkag) f (p+1)/2(2mao; 11 (B, q))
k=1

(3.23)
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where we have introduced the following notations:

Pit(B) =[PP PLE 0)10(B.q) = P4+ PL2 A+ Psin(ak/q).  8,4(B.y) = \[B2/4-+ PLE/4+ Peosh?(y/2).
(3.24)

In the limit L — oo, using the asymptotic expansion for the MacDonald function for large arguments, we obtain

0y 4efmPH! & e~k 2 q [ h(q.ao.y)
() ge= 27) YT R Zcos(Zﬂln L) /221 sinh(jpi) 1+22 cos (2mkay) ——A dycosh(qy) ~cos(gn) [

(3.25)
As can be seen, the above expression goes exponentially to zero at this limit.
The total charge density at thermal equilibrium with temperature 7" reads
SeﬂmD“ oo la/2]
(7°) = (°)m + R 'cos(2ali}) lesmh JBR) {2; cos (2mkag) f (p1)2(2ma ;14 (B. q))
q [ h(q.a.y)
-= d 2mé; 3.26
”/)' yCOSh(qy) _ COS(qﬂ) f(D+1 /2( m (lB y))} ( )
where the Minkowskian part (¢ = 1 and oy, = 0) is as follows:
. 8 eﬁmDJrl ®©
(O = WZ cos(2xli) ZJ sinh(jBf) f (p+1)2(mp;i(B)), (3.27)
=

and the prime on the summation over / means that we should take the term / = 0 with a factor of 1/2. This term corresponds
to the charge density when there is no compactification. Note that the Minkowskian contribution is independent of the
distance from the string and, therefore, is homogeneous in space.

In the massless case, the chemical potential j is also zero because of the condition |ii| < m, and, therefore, the charge
density vanishes.

In the absence of the conical defect ¢ = 1, we have

8epmPt!l ©

1 0 h(l, ay,
(J°) :WZ cos(2zl) ZJ sinh(jpji) { Fosy2(mp;i(B)) _%A dyco(shz—oz(;/yz))f(0+1)/z(2m<3j,l(ﬂY))}y

(3.28)

with h(1, ag, y) = sin (|ag|r)[cosh (|ag|y) + cosh ((1 = |ao|)y)]-

Now, let us consider the behavior of the charge density in different asymptotic regions of the parameters. First, we
investigate the region near the string. In contrast with the fermionic case, which may present a divergent result [15], the
charge density is finite on the string. This can be easily obtained by analyzing the integral of the last term in (3.26) taking
r = 0. The result is

N SeﬂmD+l ®
() = WZ cos(2zln) Z]smh Jﬂﬂ)f D+1 /2(’"/’/1(5))
j=1
x 1+2[qz/§]/cos(2nka)—g/mdy hlg. a. ) (3.29)
— " x o cosh(gy) —cos(gz) | '
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At low temperatures T < m, r~!, the dominant contribution comes from the term j = 1, which leads to

. ﬂemDHe/}f‘ oo / ~ -1/2 o
(%) = WZ cos(2xli) (mm) e VPFEL?)
1=0

lq/2]
/ q [*® h(q’aO’y)
x<1+2 g cos (2zka —/ d , 3.30
{ — ( 0) T Jo ycosh(qy) - cos(qzz)} (3:30)

where we have used the asymptotic expansion for large arguments for the MacDonald function as K, (z) ~ \/%e‘z. Since

|ii| < m, the above equation tends to zero at the zero-temperature limit which is the expected result, as we discussed before.
When the temperature goes to zero, we should retrieve the result obtained in [18] at zero temperature, which is zero.

At high temperatures or large distances from the string, the main contribution to the charge density in (3.26) comes from
large j and, consequently, this representation is not convenient for these limiting cases. In order to find a more convenient
representation in this limit, first we make the replacement

pjsinh(jpi) = 0 cos[ijpp)] (3.31)

in the part induced by the cosmic string and magnetic flux and then use the relation [23]

+00 1/2 +o
> cos(ib)f, (my/ B + @) = i’zzy S [@j+ bR /B + P (ay) DY ), (3.32)
j= '

with b = ifji and v = (D + 1)/2. Using the relation [x**f,(x)]' = —x*~1f,_,(x), we obtain

(5]

(z;;iz/w lio cos(2li)) 3 (=i + 2ixj/B)bP2(B)

j==s0

(%) = (" =

lq/2]
x {2 3 cos (2kag) f o (\/ PL? + 4r* sin (nk/q)b, (ﬂ))
k=1

[ h , ,
-4 /O dy Cosh(;;]) Oiocﬁ(q”) Fopt (\/ PL2 + drcos®(y/2)b,(6) } (3.33)

where b;(f) = \/(27j + ipji)? /f* 4 m> and the Minkowskinan contribution is given in (3.27). In both limiting cases, high
temperatures or large distances from the string, the dominant contribution comes from the terms with j = —1 and j = 1.

The main focus of this paper is to investigate the thermal effect on the charge and current densities. In Fig. 1, we plot the
charge density, ignoring the Minkowskian part, as a function of the parameter 7 for three different values of temperature

02 I
& R
o 0.l = 0. — S——
= R N
N =
= =
v >
l S e - L
N 0. R = 0.1
=z =
-0.2 L
—0.1
L | L ) ) 1
0 0.25 0.5 0.75 1 0. 0.25 0.5 0.75 1
n i

FIG. 1. The charge density induced by the string and magnetic flux as a function of the parameter 7 for two different values oy = 0 (left
panel) and o, = 0.25 (right panel). The graphs are plotted for 7/m = 0.1, 1,3, mr = 0.5, ¢ = 1.5, mL = 1.0, D = 3, and u/m = 0.5.
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FIG. 2. The total charge density as a function of the parameter mr for two different values # = 0.1 (left panel) and 7 = 0.7
(right panel). The graphs are plotted for 7/m = 0.1, 1, 3, mr = 0.5, ¢ = 2.5, ay = 0.25, mL = 1.0, D =3, and p/m = 0.5.

T/m = 0.1, 1, and 3. The left panel corresponds to oy = 0
(in the absence of the magnetic flux) and the right one to
ay = 0.25. As can be seen, the absolute value of the charge
density increases with the temperature. Therefore, the
temperature intensifies the induced charge density. If the
contribution of particles (antiparticles) is greater than
antiparticles (particles), it will be even greater if one
increases the temperature. Comparing the left and right
graphs shows that depending on the value of a;, which is a
measure for the magnetic flux, the relative contribution of
the particle and antiparticles may reverse. Also, these
graphs confirm that the charge density is an even function
of 7.

Figure 2 shows the total charge density as a function of
the distance from the string for three different values of
temperature 7/m = 0.1, 1, and 3. The left panel corre-
sponds to #7 = 0.1 and the right one to 77 = 0.7. Also, here
we can see that increasing the temperature from zero
creates nonzero charge density which originates from
nonzero chemical potential, and as much as the temper-
ature is higher, the effect on the charge density is higher
too. At large distances from the string, the effect of the
string and the magnetic flux running through it is
negligible, and the charge density tends to the
Minkowskian contribution at temperature 7, which is
constant in space. This can be seen in all curves in this
figure, which converged to specific values depending on
the temperature. Comparing the left and right graphs, it is
clear that different values of 7 can reverse the importance
of the particle and antiparticle contributions in the charge
density. This behavior depends on the value of 77 being less
or greater than 0.5.

IV. AZIMUTHAL CURRENT DENSITY

It is not difficult to show that the radial current density
(j') and the ones in the extra dimensions (j’) for i >4
vanish. So, the azimuthal and axial current densities are the
only ones that are nonzero. First, we calculate the induced

azimuthal current density considering the v = 2 component
in (2.17). In this case, we have

e 2
(o) = —(2@%2% (n+ a)J§|n+a\ (Ar)

I I
X Lﬂ(Ez—ﬁ) 1t E - 1]' (1)

The corresponding analysis for the vacuum induced azi-
muthal current was given in [18]. Here, we shall analyze the
thermal contribution. Note that the azimuthal current
density is an odd periodic function of the parameter «,
which means that in the absence of the magnetic flux along
the string, it vanishes. Also, it is an even function of the
chemical potential . In the absence of the chemical
potential, the contribution of the particles and antiparticles
coincide.

By using the series representation (3.4), the equation for
the azimuthal current density reduces to

. 2eq2
(o) = —m/dku
x/ dﬂZElni_mn—l—a

I=—00
X Z e PE cosh(jpp).
Jj=1

vl (A7)

(4.2)

Using again the Abel-Plana summation formula, it is
possible to separate the string and compactification con-
tributions so as in the previous section. Choosing g(u) = 1
and taking

e—jﬁ /12+(27ru/L)2+kﬁ+m2

flu) =
\//12 + (27u/L)?* + kj + m*

, (4.3)
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the azimuthal current density can be written as

(2)r = (2drs + U2)7es (4.4)
where the string induced part is given by
o e—j/)’ lz+k2+kﬁ+m2

(j2)rs = 26;10 z/dkll/ ‘W/ dk i‘ (n+a) T3, () D

n=—oco = \//12 + k2 + kﬁ + m?

cosh(jfii).  (4.5)

and the compactification induced one as

. 266] +o00
<.]2>Tc /dkll/ dM/ dk (n+a) q|n+a|('1r)
Prkitm? ,,_

—0o0

. TNy
St UM ) e+ o
=1

\/k2 _ klzl _ /12 _ m2 eLk+2zri77 -1 eLk—Zm'ﬁ -1 :

Let us first consider the string contribution in the azimuthal current density. Using the integral representation (3.21) and
then integrating over 4 and k in the same way as in (3.12) and (3.13), we obtain

. 8eq’ o = , .
<.]2>Ts = _W\/O dss DG(q, ), r2/2S Z s2 (R /A+r2[2)s72 COSh(Jﬁﬂ), (47)

J=1

where we have introduced the notation [18]

+oo
G(q.a0.2) = Z (n+ a)lq\nJra\ (2)
z 0 Sinh(y)e_z C()Sh(y)g(q7 ag, y) 2Z [%] /
=— y +—= sin (27k/ q) sin (2zkay ) 2 <257k/9) (4.8)
gz Jo cosh(qy) — cos(qr) q° =
with
9(q. ag. x) = sin (grag) sinh [(1 = |ao|)gy] — sinh (gyay) sin [(1 — [a|)g7]. (4.9)

Substituting the above result into (4.7), we can integrate over s and obtain the following result

lq/2]

8emPH! /
(Phrs = Gioeir Zcosh i) lz sin (2k/q) sin (2ka) (1) 2(2me; 1 (8. )
k=1

g [ sinh(y)g(q,a.y)
+ o 0 dy COSh(qy) — COS(qﬂ) f(D+1)/2(2mSj(ﬂ7 y)) ’ (410)

where c; (. q) and s;(f5,y) are given in (3.19).
Now, we turn to the part induced by the compactification of the string along its axis. To calculate this part, we start with

the change of variable as p = \/ k* — ki — 2> —m? in Eq. (4.6), which gives
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4 o
() = — e 2Zcos ) / dk, / i / dp
#(2) \/P +kj+ 22+ m?

X Z n+a)J |n+a| (Ar) Zcosh (jpi) cos(jpp). (4.11)

n=—oo

Using the integral representation (3.21) and then performing the integration over 4 and k| with the help of (3.12) and (3.13),
besides the integration over p given below

A " dpe" cos(jpp) = g TP/ (4.12)

we obtain the following general expression

la/2]

. 16emP+ I )
(P)re = 20 /chos 2xlij) Zcosh jpin) {Z sin (27k/q) sin (27kao)f (p1)/2(2m0;11(B. q))
k=1

q [« sinh(y)g(q.ao.y)
T 0 dycosh(qy) — cos(qn) f(D+l>/2(2m5j,l(ﬂ’)’))}» (4.13)

which tends to zero in the limit L — oo.
The total azimuthal current density at temperature 7" is given by

[q/2]
. 16emP* .
(j2) = L BT E cos(2xlij) E cosh(jpp) { E sin (27k/ q) sin (2zkag) f (p11)2(2me; k(B q))

q [, sinh(y)g(q.a9.y)

+ 27 Jo ycosh(qy) — cos(gn)

fp+1)2(2ms; (P, y))}’ (4.14)

where the parameters 6;, (/. ¢) and &;,(f3, y) are the ones introduced in (3.24). Also, the prime on the summation over j
means the term j = 0 should be taken by a factor 1/2. This term corresponds to the charge density at zero temperature. As
mentioned in the previous section, the term / = 0 gives the azimuthal current density in the absence of the compactification,
(j?)7,. In the absence of the magnetic flux, the azimuthal current density vanishes, which means that the Minkowkian part
is zero.

In what follows, we shall provide some limiting cases for the total azimuthal current density. In the absence of the conical
defect ¢ = 1, the azimuthal current density reduces to

. 8 inh(y)g(1
() = 2;”;3 /zzcos el Zcosh i) [y h . /30) D foiaams (6.3). (415)

with ¢(1, ay, x) = sin (za) sinh [(1 — |ay|)y] — sinh (yag) sin (|ag|7).
For the massless boson’ using the MacDonald function for small arguments, we have

0 o (lg/2]
(j?) ~ Bel +T+ Z cos(2xli) Z {Z sin (27k/q) sin (2zkag) 267, (. q)] 7P+
1=0 Jj=0 \ k=1
q [« sinh(y)g(q.ao.y)
+% 0 dycosh(qy) —COS(qr[){ 5 (B, )]+ /2}' (4.16)

*Massless boson implies y = 0.
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In the limit r — 0, discarding the zero-temperature part, which is divergent in this limit (see the discussion in [18]), the
nonzero-temperature azimuthal current density is finite when |a| > 1/¢. Knowing || < 1/2, the only possibility is g > 2.

In this case, we can simply take r = 0, which results in

16emP+

[a/2]

(Vg = (2 DA Z cos(2xli) Zcosh JB)f (D412 (mp; 1 (B)) {Z/ sin (27k/ q) sin (27ka)

L4 Smh(y)g(q,ao,y)]

2z Jo ycosh(qy)—cos(q;z) )

k=1

(4.17)

For the case |ay| < 1/¢, the dominant contribution to the integral over y comes from large values of y. Replacing the

integrand by its asymptotic form, one obtains

D+1 (mr)—2<1—\(lo\ﬂi)
(Zn.)(D+3)/2

— 2~ (1=laol)a (g

. 16egm
<J2>T ~

1=0 =1

’cos(Zﬂlﬁ) i cosh(jpp) +

r)?0=2mlsign(aq) sin(gm(1 — ao|))I[1 = (1 = |ao)) g% f (D+1)/2+(1-1ao)g—1 (MPj.1(B))]-

2712014 sin(gaom)T[1 = |ao|g)f (p+1)/2+ g g1 (M1 (B))

(4.18)

At low temperatures T < m, r~!, the contributions of j = 0, zero-temperature contribution, and j = 1 are dominant.
Using the large argument asymptotic expansion of the MacDonald function, (4.14) reduces to

2emP!

1/2 i
<j2>vmz cos(2xli) [(mlL) V2emmil (m\/m) e<‘m\/m+ﬁﬂ)}

lq/2]
I, . q o
X {22 sin (2zk/q) sin (2zkay) +2”/0 dy

k=1

sinh(y)g(q, @, y) } (4.19)

cosh(qy) — cos(gn)

in which, since |fi| < m, the second term in the square brackets goes to zero at the zero-temperature limit, as expected, and
the total current is dominated by the zero-temperature contribution (;2),,.

To investigate the behavior of the total azimuthal current density at high temperatures or large distances from the string,
we need again to find a more suitable representation. In order to do that, we make the replacement cosh (jfji) = cos (ijf).
Following the same procedure as in the case of the charge density, we obtain

S b2 ()

j==%0

. 8e -y -
(?) = 2075 ; cos(2x1i) 2

la/2]
{Zl sin (2zk/q) sin (2zkay ) f p )2 <\/ZZL2 + 47 sin (zk/q)b, (ﬂ))

L9 sinh(y)g(_q,ao’y) fD/Z(\/lsz +4rzcosh2(y/2)bj(ﬂ))},

27 Jo cosh(gqy) — cos(gn)

with b;(8) = \/(2zj + ip1)?/p* + m>. In the aforemen-
tioned limits, the contributions of j = —1 and j =1 are
dominant.

In Fig. 3, we exhibit the behavior of the azimuthal
current density in the absence of compactification, i.e.,
considering only the / = 0 term in (4.14), as a function of
the parameter « for three different values of temperature,
T/m =0, 1, and 3. The thermal effect shows the same
feature as in the charge density. Increasing the temperature
intensifies the current. The value of the current density to be
positive or negative is just related to the direction of the
current. This graph also confirms that the azimuthal current
density is an odd function of «j.

(4.20)

|

Figure 4 shows the compactification part of the azimu-
thal current density as a function of the parameter ¢ for
three different values of temperature, 7/m = 0, 1, and 3. In
the left and right panels, 7 = 0.1 and # = 0.7 are consid-
ered, respectively. As before, increasing the temperature
leads to a greater current density. Also, depending on the
value of 77 being smaller or greater than 0.5, the direction of
the current is inverted. Also, we observe that the intensity of
the current increases with 7. In Fig. 5, we plot the total
azimuthal current density as a function of the distance
from the string for three different values of temperature,
T/m =0, 1, and 3. Again, increasing the temperature
creates greater current density. Also, comparing the left and
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0.04 right graphs, which are plotted for two different values of

7n=0.0 and 77 =0.7, shows different behavior of the
current density. As can be seen in the figure, the value
of the azimuthal current density goes to the Minkowskian
contribution, which is zero in this case.

0.02

()sfe m*

-0.02 V. AXTAL CURRENT DENSITY

Now we shall investigate the axial current density, which
is the v = 3 component in (2.17). In this case, we have

-0.04

-0.5
@y . eq Akp s
(J3)r = _WZEJ”‘””'(M)
FIG. 3. The azimuthal current density in the absence of o
compactification as a function of the parameter a,. The graphs { 1 1

are plotted for 7/m =0, 1, 3, mr=0.5, ¢ =15, mL = 1.0, ePE=I) _q . ePEi+n) _ 1]’ (5.1)
D =3, and u/m = 0.5.

where lgl is given in (2.8). With the help of the series
expansion (3.4), it results in

0.05 0.03
JUCLILEDN .. JUTTTTINN .
- .. ',‘ N
0.025+ . .~ 0.015+ . N
. S e .
l' .“ . \‘

-+ e e——— . <. e mm—— *,

= :"/”‘ ~~§~s N 0'. —"‘— ~~\\ ‘\

] ‘o =0 ) - N4

=3 0 ~ 3 0 ~ -
(;\ 0. ~~~ ’/’l' (}T\ \‘ \\ ———f .

> . Se~aa - o > ® R - .
~ . —— ~ i3 ”

v. " ‘\ D
. .
‘\ 0" “* 0"
-0.025F A B -0.015F N i
. . . .
S. . AT -
-0.05 . . > -0.03 . >
-0.5 -0.25 0. 0.25 0.5 -0.5 0. 0.25 0.5
) @

FIG. 4. The compactification part of the azimuthal current density as a function of the parameter a, for two different values 77 = 0.1
(left panel) and 7 = 0.7 (right panel). The graphs are plotted for T/m =0, 1,3, mr = 0.5, g = 1.5, mL = 1.0, D = 3, and u/m = 0.5.

0.08

0.06

(/e m

0.02F

FIG. 5. The total azimuthal current density as a function of the parameter mr for two different values 7 = 0.0 (left panel) and 7 = 0.7
(right panel). The graphs are plotted for 7/m =0, 1, 3, mr =0.5, ¢ = 2.5, ay = 0.25, mL = 0.1, D =3, and u/m = 0.5.
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(Ja)r = _Qif)%/dk”A da Z ki Z Jz‘nw‘ (4r) Ze ~IPEL cosh(jpir). (5.2)

[=—0 n=—co

Again, the summation on the quantum number / can be developed by using the Abel-Plana formula. For this case, we take
g(u) = 27u/L and f(u) as in (4.3). One can show that (j3), vanishes, which is the consequence of the function g(u) being
an odd function. So, the only nonzero term is the one induced by the compactification. Therefore, we have

+0co
. - ieq )
(J3)re = 7(27)P- 2/dk||/ d/l/l/ o dkk Z Jq\n+(z\(h)

n=—0o0

cos(jwkz—kﬁ—ﬂz—mz) [ 1 ! (5.3)

Lk+2rip _ 1 ,Lk=2min _ 1"
\/k2—k|2|—12—m2 e 1 e 1

After some intermediate steps, following the same procedure as in the previous sections, the total axial current density at
temperature 7 is presented in the form

x Y~ cosh(jpj)
j=1

(/2]
. 8eLmPtl &
()= (27) D1 /2lem 2xlip) Z cosh(jpj) { Fon2(mpji(B) +2Z cos (2mkag) f(p+1)/2(2mo; 1 4(P. q))

k=1

_q[* h(q. a. y) m
ﬂA dy cosh(qy) = cos(q7) f+1)2(2md; (. )’))} (5.4)

where h(q, ag, y) is the one introduced in (3.16). Because this current density is induced due to the compactification, in the
limit L — oo, it vanishes. Also, we can see that this current density is an even function of the chemical potential z. In the
absence of the chemical potential, the particles and antiparticles have the same contributions. The equation for the thermal
axial current density reduces to the following expression in the absence of conical defect, i.e., g = 1,

. 8eLmP+l & 1 [ h(l,a,
()= (2; ,,7;1 /Zlem 2xli) Z cosh(jpp) {f D+1 /z(mpjl(ﬂ))—ﬂ/o dyco(shz—o([(;/yz))f D+1 /2(2’"5 1B, Y))}
(5.5)

Now, we shall analyze the axial current in some specific limits. Let us start with the massless field. So, taking m = 0, the
expression (5.4) reduces to

A 4€LF(D+1 ) o0 , (i1 [Q/z] (D41)/2
() = i 2 lem 2ali) D 3 (73(8)/2) P02 123 cos (2mkan) 207,46 )1
Jj=0 k=1
q [* h(g, g, y) .
_ﬂ/o 4y cosh(qy) — cos(qr) [ i y)} o /2}' 56)

By analyzing the integral of the last term in (5.4), we can see that the axial current density is finite on the string core. The
corresponding expression can be obtained by taking r = 0. The result is

8eLmPtl &

(*) = lem 220) Z cosh(jBi) f p+1)2(mp;i(B))
j=0

(2”) (D+1)/2
2 q [« h(q, a,y)
142 2rkay) — =+ 0 . 7
x{ + kzz:l cos (2mkay) ﬂ% dycosh(qy) —cos(qﬂ)} (5.7)

Another interesting analysis is related to the behavior of the axial current in the low- and high-temperature limits. At low
temperatures T < m, r~1, the induced axial current density reduces to
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FIG. 6. The axial current density induced by the string and magnetic flux as a function of the parameter # for two different
values ag = 0 (left panel) and ay = 0.25 (right panel). The graphs are plotted for 7/m =0, 1, 3, mr =0.5, ¢ = 1.5, mL = 1.0,

D =3, and u/m=0.5.

LemP+!

(%) ~

[q/2]/ g [
142 2rkay) — =
x{ + Z cos (2rkay) ”/0

k=1

lesm 2rli) [(mlL) 1/2g=miL 4 (mW) 2
z)

e(ﬁﬁ—m\/m)}

Y cosh(gqy) — cos(gn)

h<qva0vy) }, (58)

where the second term in the square brackets tends to zero in the limit 7 — O.

Now, let us investigate the behavior of the axial current density at high temperatures or large distances from the string. As
before, we need again to find a better representation. In order to do that, we make the replacement cosh (jfii) = cos (ijfi)
as in the case of the azimuthal current density. Following the same procedure, we obtain

. lq/2]
4615‘/2/}215111(2”1;1 Z bP(p {ZZ sin (2zk/q) sin (2zka) fD/z(\/12L2+4”2 sin (7k/q)b (ﬂ))

() =P+

Jj==c0

q [® h(q,ay, )
_ ”A dy Cosh(qy) — Cos(qﬂ) fD/z (\/[2L2 + 4rzcoSh2(y/2)bj(ﬂ)) },

where the Minkowskian part (¢ =1 and ay=0) is
given by
8eLmP+l &
.3 o . ~
(Fom = 7(2”)@“)/2 ; Isin(2zlR)
= ! . ~
X Z COSh(]ﬂ/")f(D+l)/2(mpj,l(ﬁ))’ (5.10)

J=0

and the second contribution is induced by the string and
magnetic flux. Figure 6 exhibits the axial current density
induced by the string and magnetic flux as a function of the
parameter 7 for three different values of temperature,
T/m =0, 1, and 3. We plot this current density for two
different values of ay: @y = 0 and oy = 0.25. They show
that the behavior of the current is different in the presence
and absence of the magnetic flux. Moreover, the absence or

(5.9)

|

presence of the magnetic flux inverts the direction of the
axial current density. In this case, also the higher temper-
ature provides greater current density. Furthermore, these
figures confirm that the axial current density is an odd
function of 7.

Figure 7 shows the total axial current density as a
function of the distance from the string for three
different values of temperature, 7/m =0, 1, and 3.
The current density is plotted for two different values
of #=0.1 and # =0.7, which are shown in the left
and right panels, respectively. As in all other cases,
increasing the temperature induces greater current
density. All curves in this figure tend to the
Minkowskian contribution, which is independent of
the distance, with the corresponding temperature.
Also, depending on the value of the parameter 7 being
smaller or greater than 0.5, the direction of the axial
current can be inverted.
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(Pem?

The total axial current density as a function of the parameter mr for two different values 77 = 0.1 (left panel) and 77 = 0.7 (right

panel). The graphs are plotted for 7/m =0, 1, 3, ay = 0.25, ¢ = 1.5, mL = 1.0, D =3, and u/m = 0.5.

VI. CONCLUSION

In this paper, we have investigated the finite temperature
expectation values of the charge and current densities for a
massive bosonic field with nonzero chemical potential in
the geometry of a higher-dimensional compactified cosmic
string with magnetic fluxes, one along the string core and
the other enclosed by the compact dimension. In contrast to
the fermionic chemical potential, which, in general, can
have any value, the bosonic one is restricted by |fz| < €, €
being the minimum of energy. In order to calculate the
thermal expectation value of these densities at temperature
T, we had to calculate the thermal Hadamard function.
Working with the grand canonical ensemble and also
expanding the field operator over a complete set of
normalized positive and negative energy solutions, we
have decomposed the thermal Hadamard function and,
consequently, the densities to the vacuum expectation
values (j*), and finite temperature contributions from
the particles and antiparticles (j*);. In the limit 7 — O,
the latter goes to zero. The charge density is an even
periodic function of the magnetic flux with a period equal
to the quantum flux and odd function of the chemical
potential. Moreover, the azimuthal (axial) current density is
an odd (even) periodic function of the magnetic flux with
the same period and even function of the chemical
potential. We have shown that the bosonic charge and
current densities depend only on the fractional part of the
ratio of the magnetic flux by the quantum one, o, which is
an Aharonov-Bohm-like effect. Also, we have shown that
although the components of the current densities along the
extra dimensions are zero, the charge, azimuthal, and axial
current densities are affected by the higher dimensions.
Thanks to the Abel-Plana formula, we could decompose the
densities to the part induced by the string and the one by the
compactification. In the limit L —, co the latter vanishes.

For the charge density, the zero-temperature expectation
value vanishes and the finite temperature contribution is

given by (3.26). When the chemical potential is zero, the
contributions from the particles and antiparticles cancel
each other, and, therefore, the total charge density vanishes.
For the case where the bosonic field is massless, the
chemical potential is zero, and, consequently, the total
charge density vanishes. When the chemical potential is
nonzero, the particle-antiparticle contributions are not
balanced, which creates nonzero charge density. In contrast
with the fermionic case, which may present a divergent
result at the core of the string, the charge density for the
bosonic field is finite on the string and has been given in
(3.29). The behavior of the charge density at low temper-
ature can be obtained directly from (3.26) by keeping the
terms with j = 1. The corresponding result is given in
(3.30). To investigate the high temperature and large
distances from the string, an alternative expression for
the charge density, convenient for these limiting cases, is
provided in (3.33). Increasing the temperature from zero
creates nonzero charge density, which originates from
nonzero chemical potential. If the contribution of particles
(antiparticles) is greater than the antiparticles (particles), it
will be even greater by increasing the temperature. This
means that the temperature intensifies the magnitude of the
induced charge density. Depending on the value of «, the
relative contribution of the particle and antiparticles may
reverse. This result is exhibited in Fig. 1. At large distances
from the string, the effect of the string and the magnetic
flux running through it is negligible, and the charge density
tends to the Minkowskian contribution at temperature 7'
which is homogeneous in space. Also, we have shown that
different values of 77 can reverse the relevance of the particle
and antiparticle contributions in the charge density. This
behavior depends on the value of 77 being less or greater
than 1/2. This behavior is displayed in Fig. 2.

The total azimuthal current density, which is given by
(4.14), vanishes in the absence of the magnetic flux. In the
limit » — 0, the zero-temperature contribution diverges.
However, the finite temperature contribution converges
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when |ay| > 1/¢g. In this case, we have obtained this
contribution of the current density on the string which is
given in (4.17). For a massless bosonic field, the general
expression is simplified to (4.16). As in the case of the
charge density, to investigate the high temperature and large
distances from the string, a more convenient expression for
the azimuthal current density is provided by (4.20). As
before, increasing the temperature leads to a higher current
density. Also, it has been explicitly shown in Fig. 4 that
depending on the value of 7 being smaller or greater than
1/2 can invert the direction of the current. We have shown
that the value of the azimuthal current density at large
distances from the string goes to the Minkowskian con-
tribution, which is zero in this case.

The axial current induced by the string is zero, and the
only nonzero contribution is the one induced by the
compactification, which is given by (5.4). For the massless
bosonic field, it reduces to (5.6). The axial current is finite
on the string and can be easily obtained as shown in (5.7),
taking r = 0. Again, we have provided a more convenient
representation given by (5.9) to study the high-temperature
and large distances approximations. As in the other cases,
the axial current density increases with the temperature.
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We have also shown that the behavior of the system is
different in the presence and absence of the magnetic flux.
The presence of the magnetic flux can invert the direction
of the axial current density, as shown in Fig. 6. As before,
the axial current density at large distances from the string
tends to the Minkowskian contribution with the corre-
sponding temperature, which is independent of the dis-
tance. Also, depending on the value of the parameter 7
being lower or greater than 1/2, the direction of the axial
current can be inverted.

Finally, we would like to highlight the fact that all the
induced charge and current densities present a strong
dependence with the temperature. In fact, these quantities
are amplified by thermal effects. We can say that this is one
of the most important results presented in this paper.
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