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We investigate the geodesics of a Schwarzschild spacetime embedded in an isotropic expanding
cosmological background (McVittie metric). We focus on bound particle geodesics in a background
including matter and phantom dark energy with constant dark energy equation-of-state parameter w < −1
involving a future big rip singularity at a time t�. Such geodesics have been previously studied in the
Newtonian approximation and found to lead to dissociation of bound systems at a time trip < t�, which for a
fixed background w depends on a single dimensionless parameter ω̄0 related to the angular momentum and
depending on the mass and the size of the bound system. We extend this analysis to large massive bound
systems where the Newtonian approximation is not appropriate and we compare the derived dissociation
time with the corresponding time in the context of the Newtonian approximation. By identifying the time
when the general-relativistic analog of the effective potential Veff minimum disappears due to the repulsive
force of dark energy, we find that the dissociation time of bound systems occurs earlier than the prediction
of the Newtonian approximation. However, the effect is negligible for all existing cosmological bound
systems and it would become important only in hypothetical bound extremely massive (1020M⊙) and large
(100 Mpc) bound systems. We verify this result by explicitly solving the geodesic equations. This result is
due to an interplay between the repulsive phantom dark energy effects and the existence of the well-known
innermost stable orbits of Schwarzschild spacetimes.

DOI: 10.1103/PhysRevD.93.123520

I. INTRODUCTION

The simplest cosmological model that is consistent with
current cosmological observations is the ΛCDM model
where the observed accelerating expansion of the Universe
is attributed to a cosmological constant which introduces
repulsive properties to gravity at large distances [1–6]. The
cosmological constant may be described as a homogeneous
dark energy perfect fluid with constant energy density ρ
and negative pressure p with constant equation of state

w ¼ p
ρ
¼ −1: ð1:1Þ

A generalization of ΛCDM where the cosmic acceler-
ation is induced by a dark energy fluid with constant
equation of state introduces a new parameter w in the
models, which is constrained by cosmological observations
at the 1σ level to be in the range [7–10]

−1.5 < w < −0.7: ð1:2Þ

Based on these constraints and in the context of the
above minimal generalization of ΛCDM, there is a sig-
nificant probability that w < −1. For such a range of w, this
class of models predicts the existence of a future singularity
where the scale factor diverges at a finite future time.

This behavior emerges by solving the Friedmann equa-
tion in the presence of matter density ρm, dark energy
density ρx, and equation of state px ¼ wρx, which may be
written as [11,12]

_a2

a2
¼ 8πG

3
½ρm þ ρx�

¼ H2
0

�
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�
a0
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�
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a

�
3ð1þwÞ�

; ð1:3Þ

and

ä
a
¼ −

4πG
3

½ρm þ ρxð1þ 3wÞ�

¼ −
4πG
3

ρx½Ω−1
x þ 3w�

¼ −
4πG
3

ρx

�
Ω0

m

Ω0
x

�
a0
a

�
−3w

þ 1þ 3w

�
; ð1:4Þ

with the solution

aðtÞ ¼ aðtmÞ
½−wþ ð1þ wÞ t

tm
�− 2

3ð1þwÞ
; t > tm; ð1:5Þ

where tm is the time when the dark energy density becomes
larger than the matter density. Also, H0 is the present value
of the Hubble parameter and a0 is the present value of the
scale factor. For w < −1 the scale factor and its derivatives
diverge at a finite time known as the big rip time [13–16],
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t� ¼
w

1þ w
tm > 0: ð1:6Þ

This divergence results in a diverging repulsive gravi-
tational force which rips apart all bound systems at times
trip that depend on their binding energies and forms of
effective potentials.
An important question to address is, what is the physical

mechanism that induces this dissociation of bound systems
and what is the time when the dissociation occurs as
a function of w? In order to address this question, a
gravitationally bound system may be represented as a
single test particle bound in a circular orbit of radius r0
by the gravitational force of a central spherical massive
object of mass m. The features of the trajectory of the test
particle may be obtained in any of the following ways.
(1) Using a rough comparison of the attractive gravita-

tional force with the repulsive force induced by the
expansion [13].

(2) Using a derivation of the particle trajectory using
equations of motion in the Newtonian approxima-
tion which take into account the attractive gravita-
tional force, the repulsive force due to the expansion
as well as the centrifugal effects due to angular
momentum [12,17–19].

(3) Using the full relativistic geodesic equations ob-
tained from a metric that is a solution of the Einstein
equations and interpolates between a Schwarzschild
metric and a Friedmann-Robertson-Walker (FRW)
metric. Such a metric is the McVittie metric [20].
Other approaches to such an interpolation may be
found in Refs. [21–24].

Previous studies have pursued the first two approaches
with results that are in qualitative agreement within a factor
of 3. According to the approach of Ref. [12], the disso-
ciation of the bound system is associated with the dis-
appearance of the minimum of the effective potential that
determines the radial motion of the test particle. This
minimum disappears when the dynamics become domi-
nated by the effects of the accelerating expansion of the
phantom cosmological background. Thus the dissociation
of a bound system occurs at a time trip given by

t� − trip ¼
16

ffiffiffi
3

p

9

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1þ 3wjp

6πj1þ wj ; ð1:7Þ

where T is the period of the gravitationally bound system
with massm, radius r0, and angular velocity ω0 of the form

ω2
0 ≡

�
2π

T

�
2

¼ Gm
r30

: ð1:8Þ

This result improves over the corresponding result of
Ref. [13] by a factor of 16

ffiffiffi
3

p
=9≃ 3 because it takes into

account the effects of the centrifugal term and provides a

clear definition of the dissociation time as the time when
the minimum of the effective potential disappears due to the
domination of the repulsive gravitational effects of the
expansion. On the other hand, the analysis of Ref. [12] is
limited by the fact that it uses the Newtonian approximation
for the dynamical equations of the particle orbits, and
therefore it may not be applicable for the analysis of the
dissociation of strongly bound systems like accretion
disks [25,26].
In this study we extend the analysis of Ref. [12] by going

beyond the Newtonian approximation and taking into
account relativistic effects. In particular, we consider the
full geodesics corresponding to the McVittie metric in a
phantom cosmological background. Using these geodesic
equations, we construct the general-relativistic analog of
the effective potential corresponding to bound particle
orbits and derive the time of dissociation (trip) when the
minimum of the potential disappears due to expansion
effects. These results are confirmed by comparing with
numerical solutions of the geodesic equations correspond-
ing to initial circular bounded orbits. We compare these
results with the corresponding results of previous studies
[12] obtained in the Newtonian limit.
The structure of this paper is the following. In the next

section we review the McVittie metric and its limits (FRW,
Newtonian, Schwarzschild). We also analyze the form of
the geodesics, define the general-relativistic analog of the
effective potential that determines the dynamics of the
bound orbits, and compare it with the corresponding
Newtonian approximation in the context of a phantom
cosmology. In Sec. III we present the numerical solution
of the geodesics for various parameter values showing the
dissociation of the bound systems. The times of dissociation
trip obtained by the numerical solution are also compared
with the time when the minimum of the general-relativistic
analog of the effective potential disappears due to the
repulsive effects of the accelerating cosmological expan-
sion. Comparisonwith the correspondingNewtonian results
is also made. Finally, in Sec. IV we conclude, summarize,
and discuss possible extensions on this analysis.

II. GEODESIC EQUATIONS
AND THEIR LIMITS

An acceptable way to describe a bound system
embedded in an expanding cosmological background is
provided by the McVittie metric [20]. This is a solution of
the Einstein equations which represents an embedding of
the Schwarzschild field in an isotropic cosmological back-
ground. For a flat cosmological background this metric is of
the form

ds2 ¼ −
�
f −

r2H2

c2

�
dðctÞ2 − 2rHf−1=2dtdr

þ f−1dr2 þ r2dΩ2; ð2:1Þ
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where m > 0 is a constant, dΩ2 ¼ dθ2 þ sin2 θdφ2,
f ¼ fðrÞ ¼ 1 − 2Gm=ðc2rÞ > 0, and H ¼ HðtÞ ¼ _a

a is
the Hubble parameter of the cosmological background.
In what follows we do not set c ¼ G ¼ 1 in order to clearly
show the Newtonian limit (c → ∞).
In Eq. (2.1) r is the physical spatial coordinate connected

with the comoving spatial coordinate ρ as ρ ¼ r
aðtÞ. Setting

m ¼ 0 and using the comoving coordinate, we obtain the
flat background FRW metric

ds2 ¼ −ð1 − r2H2ÞdðctÞ2 − 2rHdtdrþ dr2 þ r2dΩ2

¼ −dt2 þ a2ðdρ2 þ ρ2dΩ2Þ: ð2:2Þ

Similarly, by setting H ¼ 0 the metric (2.1) reduces to the
Schwarzschild metric.
The Schwarzschild–de Sitter metric may also be

obtained as a special case of the McVittie metric by fixing
the Hubble parameter to a constantH2 ¼ H2

0 ¼ Λ
3
(where Λ

is the cosmological constant) and performing a coordinate
transformation [27]

X ¼ tþ uðrÞ; ð2:3Þ

with

u0ðrÞ ¼ H0r=c

� ffiffiffi
f

p �
f −

r2H2

c2

��
; ð2:4Þ

leading to the Schwarzschild–de Sitter (or Kottler) metric

ds2 ¼ −
�
1 −

2Gm
c2r

−
Λ
3
r2
�
dðcXÞ2

−
�
1 −

2Gm
c2r

−
Λ
3
r2
�

−1
dr2 þ r2dΩ2: ð2:5Þ

In the Newtonian limit, using comoving coordinates, the
McVittie metric may be written as [12,28,29]

ds2 ¼
�
1 −

2Gm
c2aðtÞρ

�
dðctÞ2

− aðtÞ2ðdρ2 þ ρ2ðdθ2 þ sin2θdφ2ÞÞ: ð2:6Þ

The Newtonian geodesics corresponding to the metric
(2.6) are of the form [24,30]

̈r −
ä
a
rþ Gm

r2
− r _φ2 ¼ 0; ð2:7Þ

and

r2 _φ ¼ L; ð2:8Þ

where r is the physical coordinate (r ¼ aρ) and L is the
angular momentum per unit mass (L ¼ ωr2, constant).

Combining Eqs. (2.7) and (2.8), we find the radial
dynamical equation in the Newtonian limit,

̈r ¼ ä
a
rþ L2

r3
−
Gm
r2

: ð2:9Þ

Notice that c does not appear in this equation since it is
nonrelativistic. If we ignore the term due to the expansion,
then the angular velocity of a test particle in a bound
circular orbit with radius r0 at an initial time t0 is obtained
from Eq. (2.9) as

_φðt0Þ2 ¼ ω2
0 ¼

Gm
r30

: ð2:10Þ

The radius of the circular orbit will be perturbed once the
expansion is turned on but the above Eq. (2.10) remains a
good approximation close to the end of the era of matter
domination [Eq. (2.9)] tm ¼ t0, when the expansion repul-
sive force is subdominant. It is convenient to rescale
Eq. (2.9) to a dimensionless form by defining the dimen-
sionless quantities r̄≡ r

r0
, ω̄0 ≡ ω0t0, and t̄≡ t

t0
. The choice

of this rescaling is made so that the effect of the expansion
is initially small (at time t̄ ¼ 1) and the initial minimum of
the effective potential is approximately at r̄ ¼ 1. Typical
values of ω̄0 are obtained using the scale and the mass of
bound systems. Thus ω̄0 is Oð1Þ for a cluster of galaxies,
about 200 for a galaxy, and 106 for the Solar System.
Assuming a constant w and using the form of the scale

factor in Eq. (1.5), the radial dynamical equation (2.9) takes
the form

̈r̄þ ω̄2
0

r̄2

�
1 −

1

r̄

�
þ 2

9

ð1þ 3wÞr̄
ð−wþ ð1þ wÞt̄Þ2 ¼ 0: ð2:11Þ

From Eq. (2.11), we derive the effective radial force in the
context of the Newtonian approximation,

Feff ¼ −
ω̄2
0

r̄2

�
1 −

1

r̄

�
−
2

9

ð1þ 3wÞr̄
ð−wþ ð1þ wÞt̄Þ2 ; ð2:12Þ

and the corresponding effective potential

Veff ¼ −
ω̄2
0

r̄
þ ω̄2

0

2r̄2
−
1

2
λðt̄Þ2r̄2; ð2:13Þ

where (for w < −1)

λ2ðt̄Þ ¼ 2

9

ð1þ 3wÞ
ð−wþ ð1þ wÞt̄Þ2 : ð2:14Þ

The repulsive term due to the expansion (proportional to λ2)
increases with time, and at a time t̄rip given by Eq. (1.7) it
destroys the effective potential minimum induced by the
interplay between the attractive gravity and centrifugal
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terms. Thus a bound system gets dissociated by the
expansion at t̄ ¼ t̄rip [12].
This analysis made in the context of the Newtonian

approximation is inappropriate for some massive large
strongly bound systems where relativistic effects need to
be taken into account. A proper relativistic analysis requires
the use of the geodesic equations obtained from the
McVittie metric (2.1). These dynamical equations are of
the form [27]

̈r ¼ rf1=2H0_t2 þ
�
1 −

3Gm
c2r

�
L2

r3
−
Gm
r2

þ rH2; ð2:15Þ

̈t ¼ −
�
1 −

3Gm
rc2

�
f−1=2H_t2 −

2Gm
r2

f−1_t _rþf−1=2H:

ð2:16Þ

The overdot represents a derivative with respect to the
proper time and the prime represents a derivative with
respect to the coordinate time. A first integral of these
equations may also be obtained as

χ_t2 þ 2
α_t _r
c

−
f−1 _r2

c2
−

L2

c2r2
¼ 1; ð2:17Þ

where

χðt; rÞ ¼ f −
r2H2

c2
; αðt; rÞ ¼ rf−1=2H

c
: ð2:18Þ

We may choose _t > 0 along causal geodesics and focus on
the system of the radial geodesic (2.15) coupled with the
first integral (2.17).
As a first step towards the investigation of this system we

use a proper rescaling. In particular, we assume a back-
ground expansion model corresponding to a constant
w < −1 [Eq. (1.5)] and rescale the system using the scales
r0 (circular orbit radius in the absence of expansion) and
t0 ¼ tm. We then define the dimensionless quantities:
t̄≡ t=t0, τ̄≡ τ=t0 (τ is the proper time), r̄≡ r=r0,
m̄≡ Gm=r0c2, H̄ ≡Ht0, and ω̄0 ≡ ω0t0. Using the dimen-
sionless coordinates, the radial geodesic (2.15) and the first
integral (2.17) take the form

̈r̄ ¼ r̄f1=2H̄0 _̄t2 þ
�
1 −

3m̄
r̄

�
ω̄2
0

r̄3
−
m̄
r̄2

�
ct0
r0

�
2

þ r̄H̄2;

ð2:19Þ
�
f −

�
r0
ct0

�
2

r̄2H̄2

�
_̄t2 þ 2

�
r0
ct0

�
2

r̄ H̄ f−1=2_̄t _̄r

−
_̄r2

f

�
r0
ct0

�
2

−
ω̄2
0

r̄2

�
r0
ct0

�
2

¼ 1; ð2:20Þ

where f is expressed in terms of m̄ as

f ¼ 1 −
2m̄
r̄

: ð2:21Þ

We now determine the scale r0 for the relativistic case
considered here and compare with the corresponding
Newtonian scale. The general-relativistic analog of the
effective radial force in the absence of cosmological
expansion (H ¼ 0) takes the form

Feff ¼
�
1 −

3m̄
r̄

�
ω̄2
0

r̄3
−
m̄
r̄2

�
ct0
r0

�
2

; ð2:22Þ

which vanishes for (r̄ ¼ 1)

ω̄0 ¼
ct0
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄

1 − 3m̄

r
: ð2:23Þ

Equation (2.23) also constitutes the definition of the
scale r0 used for the rescaling of the geodesic equations.
From Eqs. (2.15) and (2.23) we obtain the dimensionless
form of the radial geodesic equation,

̈r̄ ¼ r̄f1=2H̄0 _̄t2 þ
�
1 −

3m̄
r̄

�
ω̄2
0

r̄3
−
ð1 − 3m̄Þω̄2

0

r̄2

þ r̄H̄2: ð2:24Þ

Similarly, the dimensionless form of the first integral
(2.17) is

�
f −

r̄2m̄H̄2

ω̄2
0ð1 − 3m̄Þ

�
_̄t2 þ 2m̄

ω̄2
0ð1 − 3m̄Þ r̄ H̄ f−1=2_̄t _̄r

−
_̄r2

fω̄2
0

m̄
1 − 3m̄

−
m̄

r̄2ð1 − 3m̄Þ ¼ 1: ð2:25Þ

The Newtonian limit is obtained for c → ∞, which
corresponds to

m̄≡ Gm
c2r0

→ 0; f → 1: ð2:26Þ

As expected, in this limit we obtain _̄t ¼ 1 from the integral
equation (2.25), while the radial equation reduces to the
corresponding Newtonian equation (2.9). Similarly, in this
limit the scale r0 [defined through Eq. (2.23)] reduces to
the corresponding Newtonian scale [Eq. (2.10)] since
c2m̄ ¼ Gm

r0
.

Therefore, assuming a fixed expanding cosmological
background, the geodesics in the McVittie metric are fully
determined by two dimensionless parameters m̄ and ω̄0,
while the corresponding Newtonian orbits are determined
by a single parameter (ω̄0) and are obtained as the limit
m̄ → 0 of the relativistic orbits. The dimensionless param-
eters m̄ and ω̄0 are obtained from the mass m (measured in
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solar massesM⊙) and the scale r0 (measured in Mpc) of the
physical system by the relations

m̄≃ 5 × 10−20m
r0

; ð2:27Þ

ω̄0 ≃ 1780

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄

1 − 3m̄

r
; ð2:28Þ

while the reverse relations are

m≃ 3.5 × 1022m̄
ω̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄

1 − 3m̄

r
; ð2:29Þ

r0 ≃ 1780

ω̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄

1 − 3m̄

r
: ð2:30Þ

In the Schwarzschild limit (H ¼ 0) the radial geodesic
equation becomes

̈r̄ ¼
�
1 −

3m̄
r̄

�
ω̄2
0

r̄3
−
ð1 − 3m̄Þω̄2

0

r̄2
: ð2:31Þ

The general-relativistic analog of the effective radial force
has two roots given by

r̄ ¼ 1; r̄ ¼ 3m̄
1 − 3m̄

: ð2:32Þ

The root r̄ ¼ 1 is easily shown (by considering the
derivative of Feff ) to correspond to a stable circular orbit for
m̄ < 1

6
, while for 1

6
< m̄ < 1

3
the root r̄ ¼ 3m̄

1−3m̄ > 1 corre-
sponds to a (weakly) stable circular orbit. We therefore
recover the well-known fact that the innermost stable
circular orbit of the Schwarzschild metric is obtained for
m̄ ¼ 1

6
which corresponds to a radius r0 ¼ 6Gm

c2 .
In Fig. 1 we show Veff obtained by integration of Feff of

Eq. (2.22) for m̄ ¼ 0.15 < 1
6
and for m̄ ¼ 0.19 > 1

6
.

The plot shows the development of the local maximum of
Veff at r̄ ¼ 1 when m̄ > 1

6
and the development of a new

minimum at r̄ > 1. Interestingly, the new minimum is
weaker and there is less restoring force for perturbations
towards larger r̄. Thus, as m̄ increases towards the limiting
value of 1

3
(beyond this value there is no circular orbit) the

circular orbit becomes less stable and susceptible to destabi-
lization by the repulsive effects of the accelerating expansion.
We now turn to the expansion to investigate how this

affects Feff and the potential of the radial geodesics. For
definiteness we set w ¼ −1.2 (t̄� ¼ 6), which corresponds
to a phantom background expansion consistent with current
observational constraints [7]. Feff may be obtained in the
general-relativistic geodesics when expansion is present by
solving the first integral (2.25) for _̄t2 and substituting it into
the radial geodesic (2.24). Assuming a slow shift of the
location of the potential minimum with time, we ignore the
terms proportional to _̄r in constructing Feff and Veff . This
approximation is justified in the next section where we
obtain the numerical solution of the full system of the
coupled geodesic equations (2.25) and (2.24). The Feff thus
obtained is of the form

Feff ¼ r̄f1=2H̄0
"
1þ m̄

r̄2ð1−3m̄Þ
f − r̄2H̄2m̄

ω̄2
0
ð1−3m̄Þ

#

þ
�
1 −

3m̄
r̄

�
ω̄2
0

r̄3
−
ð1 − 3m̄Þω̄2

0

r̄2
þ r̄H̄2: ð2:33Þ

The corresponding general-relativistic analog of the
effective potential Veff may be obtained by numerically
integrating Feff as

Veffðr̄Þ ¼ −
Z

r̄

1

Feffðr̄0dr̄0Þ: ð2:34Þ

In Fig. 2 we show a plot of Veff for m̄ ¼ 0 and m̄ ¼ 0.05
with the effects of expansion turned off. The plot shows that

FIG. 1. The general-relativistic analog of the effective potential Veff as a function of r̄ in a static universe when ω̄0 ¼ 300 for
m̄ ¼ 0.15 < 1

6
and m̄ ¼ 0.19 > 1

6
.
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the relativistic effects tend to make the bound state weaker
and more susceptible to dissociation due to the effects of
the expansion. This effect is related to the development of
the local maximum (Fig. 1) of the general-relativistic
potential for a radius smaller than the radius of the stable
orbit (potential minimum), which is also the reason for the
existence of an innermost stable circular orbit. Thus, in
contrast to naive intuition, the stronger effects of gravity in
the relativistic case tend to destabilize rather than stabilize
bound systems.
This is also demonstrated in Fig. 3(a) where the effects of

the expansion have been turned on (H ≠ 0, w ¼ −1.2) but
the time shown is before the bound system dissociation
time t̄rip. Clearly, the binding power of the relativistic
potential has been weakened on large scales in both the
relativistic (lower curve) and the Newtonian case (upper
curve). Figure 3(b) shows the form of the effective potential
for t ¼ 3.5tm.
At that time the system has been dissociated according to

the full relativistic analysis, but it remains bound according
to the Newtonian approximation.

It is therefore clear that relativistic effects tend to
destabilize bound systems, leading to an earlier dissociation
(smaller value of t̄rip) compared to the predictions in the
context of the Newtonian approximation. In the next
section we verify this result with a full numerical solution
of the geodesic equations (2.24) and (2.25) and we present
a quantitative analysis of the magnitude of the relativistic
correction required for various bound systems defined by
the dimensionless parameters ω̄0 and m̄.

III. QUANTITATIVE ANALYSIS: THE TIME
OF BOUND SYSTEM DISSOCIATION

In the previous section we defined the time of
dissociation of a bound system as the time when the
minimum of Veff disappears due to the effects of
the expansion. In the context of a numerical solution of
the system of geodesic equations, this definition is not as
useful because Feff and Veff are only probed at the location
of the solution r̄ðt̄Þ with no information about neighboring
values of r̄ which could determine the binding status and
stability of the system.
By comparing the dissociation times predicted by Veff

with the form of the trajectories r̄ðt̄Þ, we concluded that, to
within a good approximation, the minimum of Veff dis-
appears when the solution r̄ðt̄Þ diverges by about 20% from
its initial equilibrium value. We thus use this as a criterion
of dissociation when solving the system of geodesic
equations numerically. Due to the different nature of this
criterion we expect only qualitative agreement between the
values of t̄rip obtained from the potential minimum and
those obtained from the numerical trajectories r̄ðt̄Þ.
However, as will be discussed below, in most cases the
agreement is good even at the quantitative level.
We solved the system of geodesic equations (2.24)–

(2.25) with initial conditions corresponding to t̄i ¼ 1 and r̄i
corresponding to the minimum of Veff at t̄ ¼ t̄i ¼ 1
(including expansion). This value was (in all cases

FIG. 2. The general-relativistic analog of the effective potential
Veff for m̄ ¼ 0 and m̄ ¼ 0.05 with the effects of expansion turned
off when ω̄0 ¼ 5.

FIG. 3. (a) Veff when the effects of the expansion have been turned on (H ≠ 0, w ¼ −1.2) but the time shown is before the bound
system dissociation time t̄rip. (b) The form of Veff for t ¼ 3.5tm, where the system has been dissociated according to the full relativistic
analysis but it remains bound according to the Newtonian approximation.
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considered) close to r̄ ¼ 1 corresponding to the minimum
of Veff without the effects of the expansion. In Fig. 4 we
show the solution r̄ðtÞ for ω̄0 ¼ 5, ω̄0 ¼ 200 when
m̄ ¼ 0.1, superposed with the corresponding radial func-
tion obtained in the Newtonian approximation (m̄ ¼ 0).
The trend for earlier dissociation in the relativistic treatment
compared to the Newtonian approach is clear. However, the
difference of dissociation times decreases as ω̄0 increases.
As shown in Fig. 4, the bound system dissociation time

t̄rip is well represented by the time when the size r̄ðtÞ of the
system has increased by about 20% compared to its
equilibrium value. Given the rapid increase of the physical
size of the system after dissociation, the assumed relative
size increase for dissociation does significantly affect the
obtained value for t̄rip. This is less accurate for larger
systems [smaller ω̄0 shown in Fig. 4(a)] when the disso-
ciation proceeds more smoothly. Notice also that in all

cases _̄r is small before the dissociation, which justifies the
fact that we ignored it in the construction of the general
relativistic analog of the effective potential.
Figure 5(a) shows the value of t̄rip as a function of ω̄0 for

various values of m̄. The curve for m̄ ¼ 0 corresponds to
the Newtonian limit. As m̄ increases, the relativistic
correction to the value of t̄rip increases dramatically for
low values of ω̄0 (large massive systems). Therefore, the
dissociation of some large and strongly bound systems due
to the expansion proceeds significantly earlier than antici-
pated in the context of the Newtonian approach. This is also
demonstrated in Fig. 5(b) where we show t̄rip as a function
of m̄ for various values of ω̄0. The thick dots correspond to
dissociation times obtained using the numerical solution of
the geodesic equations r̄ðtÞ, while the lines were obtained
using Veff of Eq. (2.34) by finding the time when the
potential minimum disappears.

FIG. 4. The radius r̄ as a function of t̄ when ω̄0 ¼ 5 and ω̄0 ¼ 200 for several values of m̄. The red points correspond to the time when
the size r̄ðtÞ of the system has increased by about 20% compared to its equilibrium value. The black points correspond to the time when
the minimum of Veff disappears. Notice that the scale of the t̄ axis in the right plot is different and therefore the agreement between red
and black points is much better.

FIG. 5. (a) The value of t̄rip as a function of ω̄0 for various values of m̄. (b) The value of t̄rip as a function of m̄ for various values of ω̄0.
The thick dots correspond to dissociation times obtained using the numerical solution of the geodesic equations rðtÞ, while the lines
were obtained using the effective potential of Eq. (2.34) by finding the time when the potential minimum disappears.
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Notice however that systems with ω̄0 larger than about
104 (relatively small systems) have dissociation times t̄rip
that are practically indistinguishable from the Newtonian
approximation, independent of the value of m̄. An appre-
ciable deviation of the value of t̄rip from the Newtonian
approximation occurs for low values of ω̄0 (5–100) and
large values of m̄ [Oð10−1Þ]. This range of parameters
corresponds to large and massive systems (e.g., a size of
about 10–100 Mpc and mass 106 times larger than a typical
cluster of galaxies). Such systems where relativistic cor-
rections are important need to fulfil two conditions.
(1) They need to be large so that the cosmological

acceleration repulsive force is important even at early
times. Thus t̄rip is relatively small (early dissociation)
even at the Newtonian level, allowing for significant
change in the context of the relativistic correction.

(2) They also need to be massive so that their
Schwarzschild radius (and the innermost stable
orbit) is comparable (a few times smaller) to their
initial stable orbit radius.

We stress that most cosmological bound systems have a
m̄ that is much smaller than 1

3
. In particular, for a cluster of

galaxies m̄≃ 10−5, for a galaxy m̄≃ 10−6, and for the
Solar System m̄≃ 10−11. For such systems the Newtonian
approach provides an accurate approach for the dissociation
time t̄rip.
Even some systems that are considered strongly bound

(m̄≃ 0.1) such as an accretion disk around a neutron star
are not large enough to have an appreciable difference of
t̄rip due to relativistic effects (they have a very large ω̄0).
A system with appreciable relativistic corrections of the
dissociation time would be a hypothetical bound system
with mass 1020 M⊙ and size about 100 Mpc (about 106

times more massive than a cluster of galaxies).
In Table I we show the parameter values and the

corresponding level of relativistic corrections to the dis-
sociation time for some typical bound systems.
Figure 6(a) shows the mass of physical systems as a

function of the dimensionless parameter ω̄0 for various
values of m̄. Somephysical bound systems are also indicated
in the plot. Similarly, Fig. 6(b) shows the size of physical
systems as a function of the dimensionless parameter ω̄0 for
various values of m̄. An accretion disk around a neutron star

(r≃ 50 km,M ≃ 1.4 M⊙) is out of the range of these plots
as it has m̄≃ 0.1 but ω̄0 ≃ 1020 [see also Eqs. (2.27) and
(2.28)].As shown inTable I, despite the relatively largevalue
of m̄ of such a strongly bound system, its dissociation time
would practically be identical to the one derived in the
context of the Newtonian approximation due to its relatively
small size and large value of ω̄0.
Relativistic corrections tend to change slowly when the

size of a given bound decreases. Such a decrease implies an
increase of both m̄ and ω̄0. The parameter values and the
corresponding relativistic corrections as the scale of a
typical cluster shrinks by a factor of 5 are shown in
Table II. Notice that the increase of ω̄0 appears to be more
important during the shrinking a system than the increase of
m̄, and therefore the relativistic corrections to t̄rip decrease
slowly as the size of the bound system is reduced.

TABLE I. The parameter values and the corresponding level of relativistic corrections to the dissociation time for some typical bound
systems. The last column shows the difference in t̄rip between the Newtonian approximation and the relativistic value t̄nrrip − t̄grrip , where
t̄nrrip is the value of t̄rip in the Newtonian approximation and t̄grrip is the relativistic value.

System Mass (M⊙) Size (Mpc) ω̄0 m̄ Δtrip
Solar System 1.0 2.3 × 10−9 3.5 × 106 2.1 × 10−11 < 10−8

Milky Way Galaxy 1.0 × 1012 1.7 × 10−2 1.8 × 102 2.9 × 10−6 2.4 × 10−7

Typical Cluster 1.0 × 1015 1.0 12 4.9 × 10−5 5.9 × 10−5

Accretion Disk (neutron star) 1.5 3.3 × 10−19 4.3 × 1021 0.22 < 10−8

Hypothetical Large Massive 3.0 × 1020 1.0 × 102 9.1 0.15 0.93

FIG. 6. The mass of physical systems as a function of the
dimensionless parameter ω̄0 for various values of m̄ (upper
frame) and the size of physical systems as a function of the
dimensionless parameter ω̄0 for various values of m̄ (lower
frame).
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IV. CONCLUSION AND DISCUSSION

We have demonstrated that when relativistic effects are
taken into account, the dissociation of bound systems in
phantom cosmologies occurs earlier than predicted in the
Newtonian approximation used by previous studies. The
correction in all known bound systems is small. However,
there are hypothetical cosmologically large and massive
bound systems where the correction is significant.
Our results indicate that the Newtonian approximation is

fairly accurate for known bound systems and therefore a
relativistic analysis is not required in order to obtain
accurate results for the dissociation times for these systems.
However, our analysis remains physically interesting and
important based on the following arguments:

(i) The correct analysis is the general-relativistic analy-
sis we implemented and it is important to know that
this analysis gives credibility to the Newtonian
approximation of previous analyses [12]. In analogy,
the Friedmann equation has a Newtonian derivation
but it cannot be credible until it is verified by a fully
general-relativistic analysis. Thus, our analysis is
useful and physically relevant even for known bound
systems.

(ii) We have shown that there are physical systems that
have relativistically derived dissociation times that
are very different compared to the Newtonian
prediction. Even though such systems are not ex-
pected to exist in our Universe, they could in
principle exist and therefore their properties are
physically interesting.

Interesting extensions of the present analysis include the
following:
(1) The analysis of more general classes of geodesics

like infalling radial geodesics with no angular
momentum which at the time of the big rip are
close or even beyond the black hole horizon.

(2) The use of McVittie geodesics to derive the relativ-
istic corrections on the turnaround radius, which is
the nonexpanding shell furthest away from the
center of a bound structure. In the context of the
Newtonian approximation the maximum possible
value of the turnaround radius for w ¼ −1 (ΛCDM)
is equal to ð3GM=Λc2) [31]. The numerical analysis
MATHEMATICA files used for the production of the
figures may be downloaded from Supplemental
Material [32].
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