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We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a
Friedmann-Lemaître-Robertson-Walker metric. This is made possible due to the existence of a nonlocal
integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace
metric. Both the spatially flat and nonflat cases are studied first in the presence of only the scalar field and
subsequently with the addition of noninteracting perfect fluids. It is verified that this addition does not
change the general form of the solution, but only the particular expressions of the scalar field and the
potential. The results are applied in the case of parametric dark energy models where we derive the scalar
field equivalence solution for some proposed models in the literature.
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I. INTRODUCTION

The search for particular solutions to Einstein’s general
relativity has been both intensive and fruitful over the past
100 years. As the years passed, less and less simple-form
solutions were found. This occurrence is very well depicted
in the case of cosmology: for many decades, the only
known solutions were simplified spatially homogeneous
models; the only solutions that were subsequently recog-
nized as the most general were the Bianchi type I (Kasner,
1921 [1]), type II (Taub, 1951 [2]) and type V solutions
(Joseph, 1966 [3]). Subsequently, the automorphisms
of the various Bianchi-type groups were used in order to
count the number of expected essential constants (Ellis
and MacCallum, 1969 [4]), while later on automorphisms
were seen to be induced by particular spacetime coordinate
transformations (Samuel and Ashtekar, 1991 [5],
Christodoulakis et al. [6]). Finally, the automorphisms
were used as Lie point symmetries of the corresponding
Einstein equations with the result of uncovering the entire
solution space for Bianchi types I–VII [7–10]. The situation
as described above naturally led many people working in
the field to turn to extended or alternative theories of
gravity. It is fair to say that such novelties are supported by
recent cosmological data (for instance, Refs. [11–13]).
The cosmological constant Λ, leading to the ΛCDM

cosmology, is one of the simplest extensions of the
Einstein-Hilbert action since it keeps the gravitational
action linear, the degrees of freedom, and the order of

the gravitational theory. However, while the ΛCDM cos-
mological model fits some of the cosmological data, it
suffers from two major drawbacks, i.e., fine-tuning and the
coincidence problem (for details, see Refs. [14,15]).
In order to surpass these problems, other theoretical

models which include new matter sources or higher-order
curvature invariants in the gravitational action have been
proposed (see, for instance, Refs. [16–20] and references
therein). More specifically, in scalar field cosmology, the
new terms added in the gravitational Lagrangian increase
the number of degrees of freedom by one, when consid-
ering a single scalar field, and the terms in the gravitational
field equations are the components of an energy-
momentum tensor. The scalar field models are categorized
into two classes, according to whether the basic fields are
defined in the coordinate (Einstein) frame or in its con-
formally equivalent (Jordan frame); in the latter, there exists
a coupling term in the action of the scalar field with the
curvature (for instance, the Brans-Dicke theory). Moreover,
other modified theories can be seen with the use of a
Lagrange multiplier as scalar-field theories, such as fðRÞ
gravity in the metric formalism, fðRÞ hybrid gravity
(where R is the scalar curvature in the Palatini formalism
and coincides with the Ricci scalar only for a linear
function f), or the higher-order fðR;□R;…Þ gravity
[21–23]. However, under conformal transformations the
two different frames (Einstein and Jordan) are related,
which means that a cosmological solution can pass from
one frame to the other [24,25].
In this workwe follow the old path, focusing our attention

on an isotropic and spatially homogeneous model with
matter and directing our analysis towards the investigation
of the entire solution space. Specifically, we consider a
Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime
and aminimally coupled scalar field with arbitrary potential.
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(For relevant results, see Ref. [26], in which the local
integrals of motion corresponding to the automorphisms
are used to completely integrate the relevant equations for the
Bianchi type I and V diagonal metrics; thus, the k ¼ 0, −1
cases of the presentwork should somehowbe included in this
reference, if only one could find the relevant transformation.)
We are interested in the analytic solutions of that cosmo-
logical model. Exact closed-form solutions without a matter
term or with a dust fluid can be found in Refs. [27–37] and in
the case of a nonminimal coupling inRefs. [38–40],while for
non-spatially-flat FLRW spacetimes some exact solutions
are contained in Refs. [41–43]. Further analytic solutions for
a scalar field model with the presence of a perfect fluid have
been presented in Refs. [44–48].
The major ingredient which enables the exhibition of the

entire solution space of our model is the use of nonlocal
conservation laws, which are generated by the elements of
the minisuperspace conformal algebra. The general analytic
solution is presented for every arbitrary scalar field potential
VðϕÞ, for a quintessence, or for a phantom field in both
spatially flat and/or nonflat FLRW metrics. Moreover, we
show that the same result also holds when additional
noninteracting perfect fluids are introduced in the field
equations.
The plan of the paper is as follows. The basic definitions

for our model and the mathematical properties that we use
are discussed in Sec. II. In Secs. III and IV we derive the
analytic solution for a minimally coupled scalar field in a
FLRW spacetime for arbitrary potential for the cases in
which the spatial curvature is k ¼ 0 and k ≠ 0, respectively.
In Sec. V we consider that our cosmological model admits
perfect fluids which are minimally coupled with the scalar
field and we derive the analytic solution of the model for an
arbitrary potential. Furthermore, in Sec. VI we demonstrate
the usefulness and analytic power of our results by deriving
some particular solutions of the field equations for specific
equation of state parameters of the total cosmological fluid.
In Sec. VII we discuss our results and draw our conclusions.

II. BASIC DEFINITIONS

It is a known fact that for many cosmological systems
there is a procedure of deriving valid minisuperspace
Lagrangians, whose dynamical content is the same as that
of the original system. These Lagrangians are by con-
struction singular in nature, since their equations of motion
are not all independent of each other (as is also true for the
general theory). This property is reflected in the time
reparametrization invariance of the system t ↦ fðtÞ, which
is a remnant of the four-dimensional diffeomorphism
invariance of the full theory.
It was proven in Ref. [49] that for singular systems

described by Lagrangians of the form

L̄ ¼ 1

2NðtÞ ḠμνðqÞ _qμðtÞ _qνðtÞ − NðtÞUðqÞ ð2:1Þ

all conformal Killing fields of Ḡμν can be used to write
down integrals of motion for the system. To make it
explicit, let us for simplicity perform a reparametrization
of the form N → n ¼ NU. Then, it can be seen that for the
equivalent system

L ¼ 1

2n
GμνðqÞ _qμ _qν − n; ð2:2Þ

where Gμν ¼ UḠμν, if there exist vector fields ξαðqÞ
defined on the configuration space for which the relation

£ξGμν ¼ ωðqÞGμν ð2:3Þ

holds, then the quantity

Q ¼ ξαpα þ
Z

nðtÞωðqðtÞÞdt; ð2:4Þ

with pα ¼ ∂L
∂qα, defines integrals of motion on the phase

space due to the existence of the Hamiltonian constraint

H ¼ 1

2
Gμνpμpν þ 1 ≈ 0: ð2:5Þ

It can be easily verified that, by virtue of Eq. (2.3), Q is a
constant of motion,

dQ
dt

¼ ∂Q
∂t þ fQ;Hg ¼ ωH ≈ 0:

In the special case were ω ¼ 0, i.e., the ξ’s are Killing
vectors of the scaled minisupermetric Gμν, Eq. (2.4) leads
to autonomous integrals of motion that do not exhibit any
explicit time dependence. On the other hand, when ω ≠ 0,
nonlocal integrals of motion emerge that are actually
rheonomic, due to the explicit time dependence brought
by the integral in Eq. (2.4).
The autonomous conserved quantities are commonly

used in the literature as a kind of selection rule to constrain
the potential U, or any arbitrary functions of the configu-
ration variables appearing in Eq. (2.1), so that the system is
forced to become integrable [33,36,48,50–54]. In our case,
we shall refrain from doing that. In the context of Einstein’s
relativity and a spatially flat/nonflat FLRW spacetime
minimally coupled with a scalar field ϕ, we use the most
general rheonomic integrals of motion we can write down,
so that the equations of motion can be solved for any
arbitrary potential VðϕÞ. The importance of this fact is
twofold: not only does it provide a mapping between
metrics and scalar field potentials for which the former are
solutions to Einstein’s equations, but it also proves that, for
this particular configuration (FLRW plus minimally
coupled scalar field), the induced system is completely
integrable for any (smooth enough) function VðϕÞ.
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The action of the system under consideration is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðRþ ϵϕ;μϕ
;μ þ 2VðϕÞÞ; ð2:6Þ

where R is the Ricci scalar and g is the determinant of the
spacetime metric gμν. We also allow for the existence of a
phantom field by introducing a pure sign constant ϵ ¼ �1.
As is well known, the variation of the above action with
respect to gμν yields the equations

Rμν −
1

2
Rgμν ¼ Tμν; ð2:7Þ

with

Tμν ¼ ϵϕ;μϕ;ν −
1

2
ðϵϕ;κϕ;κ − 2VðϕÞÞgμν ð2:8Þ

being the energy-momentum tensor for the matter part. The
variation of Eq. (2.6) with respect to the scalar field leads to
the Klein-Gordon equation (with arbitrary potential)

ϵ□ϕ − V 0ðϕÞ ¼ 0; ð2:9Þ

where the prime denotes differentiation with respect to the
field ϕ.
It can be easily shown that assuming that the metric has

the form

ds2¼−NðtÞ2dt2þaðtÞ2
�

1

1−kr2
dr2þr2dθ2þr2sin2θdφ2

�
ð2:10Þ

leads to the necessity that the scalar field is spatially
homogeneous, i.e., ϕ ¼ ϕðtÞ. The set of equations (2.7)–
(2.9), when reduced by the above demands, is equivalent to
the Euler-Lagrange equations derived by the Lagrangian

L ¼ 2a2

n
ða2VðϕÞ − 3kÞð−6_a2 þ ϵa2 _ϕ2Þ − n; ð2:11Þ

with the dots indicating the time derivatives. Note that we
have written the Lagrangian in the form (2.2), and the
scaled lapse function n is related to the original N
appearing in Eq. (2.10) by

N ¼ n
2aða2VðϕÞ − 3kÞ : ð2:12Þ

We choose to start working in the lapse parametrization
which leads to a Lagrangian with a constant potential
UðqÞ ¼ 1, due to the fact that it simplifies the relations for
the corresponding integrals of motion. The scaled minis-
upermetric in this case is

Gμν ¼ 4a2ða2VðϕÞ − 3kÞ
�−6 0

0 ϵa2

�
ð2:13Þ

and any of its conformal Killing fields can be used to define
integrals of motion for the corresponding system.

III. SPATIALLY FLAT FLRW SPACETIME

As we shall see in the next section, although the cases
k ¼ 0 and k ≠ 0 can be treated simultaneously, we choose
to express the solution for the spatially flat case separately,
since its simplicity helps us better understand the imple-
mented methodology.
In the k ¼ 0 case, the minisupermetric (2.13) exhibits a

homothetic vector

ξ ¼ a
6

∂
∂a ð3:1Þ

which is independent of the scalar field potential VðϕÞ and
satisfies £ξGμν ¼ Gμν. This results in the existence of a
conserved quantity in phase space that is written as

Q ¼ a
6
pa þ

Z
nðtÞdt ¼ a

6

∂L
∂ _a þ

Z
nðtÞdt

¼ −
4a5 _aVðϕÞ

n
þ
Z

nðtÞdt: ð3:2Þ

Thus, we are led to consider the relation

Q ¼ κ ð3:3Þ

(where κ is a constant) as a first integral for the relevant
system of equations of motion.
Before proceeding let us mention a few facts from the

theory of constrained systems. The number of true degrees
of freedom is found by the relation 1

2
ðM − 2F − SÞ, where

M is the dimension of the full phase space, while F and S
are the numbers of first- and second-class constraints,
respectively. In our case the full phase space is spanned
by n, a, ϕ together with the corresponding momenta. At the
same time there exist two first-class constraints pn ≈ 0 and
H ≈ 0, both representing the invariance of the action under
arbitrary time reparametrizations t ¼ fð~tÞ, which means
that there exists only one true degree of freedom. This can
be seen by algebraically solving the constraint equation
∂L
∂n ¼ 0 with respect to n and substituting the result into the
two remaining Euler-Lagrange equations. Then, it is found
that only one independent equation remains. Thus, the
general solution can be obtained by solving any convenient
combination of t ¼ fða;ϕÞ as the time parameter. This
interesting property of constrained systems can be
exploited for adopting different and more convenient gauge
choices, in order for the system of equations to be
integrated. In what follows we appoint ϕ as the time
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variable t, while n and a are to be derived with the help of
the integrals of motion and one of the Euler-Lagrange
equations. Of course, the choice ϕ ¼ t has as a prerequisite
the assumption that ϕ can be considered (at least locally) as
an invertible function of time. The latter is guaranteed by
the inverse function theorem as long as ϕðtÞ is differ-
entiable with _ϕ ≠ 0. As a result, the case of a constant
scalar field—which corresponds to the known pure cos-
mological constant solution—cannot be included in the
following analysis. Of course, it can be considered as a
separate case, for ϕ ¼ c and by selecting the scale factor a
as the time parameter. Let us now proceed by fixing the
gauge through the choice ϕðtÞ ¼ t. At the same time we
express the scaled lapse function nðtÞwith the help of a new
nonconstant function hðtÞ, and we reparametrize the
potential—which now can be considered as a function of
time VðtÞ—with respect to a new (again nonconstant)
function AðtÞ:

nðtÞ ¼ _hðtÞ; ð3:4aÞ

VðtÞ ¼ ðhðtÞ − κÞ _hðtÞ
4 _AðtÞ : ð3:4bÞ

As a result, Eq. (3.3) reduces to a local expression,

aðtÞ5 _aðtÞ − _AðtÞ ¼ 0;

that can be easily integrated to give

aðtÞ ¼ �61=6ðAðtÞ þ c1Þ1=6: ð3:5Þ

Substituting the above solution into the Euler-Lagrange
equation for aðtÞ leads to

2ðAðtÞ þ c1Þ _AðtÞ _hðtÞ þ ðκ − hðtÞÞð _AðtÞ2 − 6ϵðAðtÞ
þ c1Þ2Þ ¼ 0; ð3:6Þ

which implies that

AðtÞ ¼ μ4

6
exp

�
−
Z _h� ð _h2 þ ϵðκ − hÞ2Þ1=2

κ − h
dt

�
− c1;

ð3:7Þ

where μ is a nonzero constant. It can be easily checked that
Eqs. (3.4a)–(3.4b) together with Eqs. (3.5) and (3.7)
completely solve the system of the Euler-Lagrange equa-
tions of the Lagrangian (2.11) for k ¼ 0 in the gauge ϕ ¼ t
[and hence Einstein’s equations (2.7)]. The function hðtÞ
remains free, reflecting the arbitrariness of the potential
VðtÞ through Eq. (3.4a).
It can be seen fromEqs. (3.5) and (3.7) that the constant c1

is not important for the solution, so we might as well
consider it to be zero. The same is true for κ, since one only

needs to define a new parametrization as hðtÞ ¼ κþ
exp ðω

2
− 3

R
ϵ
_ω dtÞ. It can be verified that with this form

for hðtÞ, the lapse function NðtÞ [as given by Eq. (2.12)]
together with the scale factor aðtÞ and the potential VðtÞ
assume the values

NðtÞ ¼ 1

3
μ2 _ωe3

R
ϵ
_ωdt; aðtÞ ¼ μ2=3eω=6;

VðtÞ ¼ 3ð _ω2 − 6ϵÞe−6
R

ϵ
_ωdt

4μ4 _ω2
ð3:8Þ

when _ω > 0 and

NðtÞ ¼ −
2ϵμ2e−

ω
2

_ω
; aðtÞ ¼ μ2=3e−

R
ϵ
_ωdt;

VðtÞ ¼ −
eωð _ω2 − 6ϵÞ

8ϵμ4
ð3:9Þ

when _ω < 0. [We have chosen to adopt the plus solution in
Eq. (3.7); the same applies for the minus case with an
interchange of the previous relations with respect to the sign
of _ω.] However, it is easy to check that in the second case of
Eq. (3.9), if we choose to express ω with respect to a new
function gðtÞ, through a relation ω ¼ −6

R
ϵ
_g dt, then we

acquire the first set of relations (3.8) with gðtÞ in place of
ωðtÞ. Henceforth, given the fact that ω in the solution is
arbitrary, without loss of generality we can consider only
Eq. (3.8), since the solution can always be brought into this
form. The resulting line element with the additional help of a
scaling r ↦ rμ−2=3 and a reparametrization μ ¼ ffiffiffi

3
p

m can
be written as

ds2 ¼ −m4 _ω2e6
R
ðϵ= _ωÞdtdt2

þ eω=3ðdr2 þ r2dθ2 þ r2sin2θdφ2Þ; ð3:10Þ
and the respective scalar field potential for each ωðtÞ is

VðtÞ ¼ ð _ω2 − 6ϵÞe−6
R
ðϵ= _ωÞdt

12m4 _ω2
: ð3:11Þ

So, given any nonconstant functionω, there is a line element
(3.10) satisfying the equations of motion with the corre-
sponding potential (3.11).
The solution (3.10) can be further simplified by

performing a change in the time variable from t to ω.
Since ω is an arbitrary function of t, we choose to invert the
relation ωðtÞ by the use of an arbitrary function FðωÞ
defined as follows:

t ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ
F0ðωÞ
6

r
dω; ð3:12Þ

with the prime denoting differentiation with respect to the
argument ω. The line element (3.10)—with a slight
redefinition of the FðωÞ function [FðωÞ ↦ FðωÞ−
logm4] that does not alter Eq. (3.12)—can be written as
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ds2 ¼ −eFðωÞdω2 þ eω=3ðdr2 þ r2dθ2 þ r2sin2θdφ2Þ;
ð3:13Þ

while the potential (3.11) transforms to

VðωÞ ¼ 1

12
e−FðωÞð1 − F0ðωÞÞ; ð3:14Þ

and of course the scalar field that completes the solution is

ϕðtÞ ¼ t ↦ ϕðωÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ
F0ðωÞ
6

r
dω: ð3:15Þ

The set (3.13)–(3.15) satisfies the Einstein plus Klein-
Gordon equations in the new time variable ω, with FðωÞ
remaining of course an arbitrary function due to the fact
that we have not adopted a particular form for the potential.
It is to be noted that exactly the same procedure applies if,
instead of Eq. (3.12), we consider the time change

t ¼ −
R ffiffiffiffiffiffiffiffiffiffiffi

ϵ F0ðωÞ
6

q
dω. The only thing that changes is the

sign in front of the integral in Eq. (3.15). Thus, for the line
element (3.13) and potential (3.14), both þ=− solutions for
ϕ are valid.
Given the energy-momentum tensor (2.8), it is a well-

known fact that the behavior of matter due to the scalar field
can be effectively simulated by a perfect fluid, whose
energy density and pressure are

ρϕðtÞ ¼ Tμνuμuν; ð3:16aÞ

PϕðtÞ ¼
1

3
Tμνhμν; ð3:16bÞ

where uμ ¼ ϕ;μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gκλϕ;κϕ;λ

p is the comoving four-velocity and

hμν ¼ gμν þ uμuν is the metric of the three-surfaces normal
to the direction of uμ.
In our case, the solution (3.13)–(3.15) leads to the simple

expressions

ρϕðωÞ ¼
1

12
e−FðωÞ; ð3:17aÞ

PϕðωÞ ¼
1

12
e−FðωÞð2F0ðωÞ − 1Þ; ð3:17bÞ

from which we can deduce the equation of state

Pϕ ¼ ð2F0ðωÞ − 1Þρϕ; ð3:18Þ

and we can see that the parameter γϕ ¼ Pϕ

ρϕ
now contains the

arbitrary function FðωÞ. This expression allows for the
study of general cases for the scalar field potential.

IV. FLRW WITH SPATIAL CURVATURE

Due to the fact that, when k ≠ 0, the configuration-space
vector (3.1) no longer generates a homothecy of Gμν, the
situation becomes more complicated. However, it can be
seen that there exists a conformal vector ξ ¼ ∂

∂ϕ with a

corresponding factor a2V 0ðϕÞ
a2VðϕÞ−3k, i.e.,

£ξGμν ¼
a2V 0ðϕÞ

a2VðϕÞ − 3k
Gμν: ð4:1Þ

Subsequently, the following nonlocal integral of motion
can be defined:

Q ¼ pϕ þ
Z

aðtÞ2nðtÞV 0ðϕðtÞÞ
aðtÞ2VðϕðtÞÞ − 3k

dt

¼ ∂L
∂ _ϕ þ

Z
aðtÞ2nðtÞV 0ðϕðtÞÞ
aðtÞ2VðϕðtÞÞ − 3k

dt

¼ 4ϵa4 _ϕða2VðϕÞ − 3kÞ
n

þ
Z

aðtÞ2nðtÞV 0ðϕðtÞÞ
aðtÞ2VðϕðtÞÞ − 3k

dt:

ð4:2Þ

It can be straightforwardly checked that the equationQ ¼ κ
is a first integral of the Klein-Gordon equation (2.9) (or
equivalently, of the Euler-Lagrange equation with respect
to ϕ).
Again, we choose the gauge ϕðtÞ ¼ t and parametrize

the dependent variables as

nðtÞ ¼ 2_hða2V − 3kÞ
a2 _V

; ð4:3aÞ

VðtÞ ¼
Z

_w
a6

dt; ð4:3bÞ

with wðtÞ and hðtÞ being nonconstant functions of time.
Now, the corresponding equation (3.3) reduces to

2ϵ _w
_h

þ 2h − κ ¼ 0

and can be immediately integrated to yield

hðtÞ ¼ 1

2

�
κ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c1 þ κ2 − 8ϵw

q �
: ð4:4Þ

By choosing to express wðtÞ as

wðtÞ ¼ a _v
_a
þ 1

8ϵ
ð4c1 þ κ2Þ − 6v; ð4:5Þ

where vðtÞ is a new function of time, we can substitute
Eq. (4.3) together with Eq. (4.4) into the quadratic con-
straint ∂L

∂n ¼ 0 to get
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−
6_a _v
ϵa

þ 36v _a2

ϵa2
þ 3ka4 − 6v ¼ 0; ð4:6Þ

with the solution

vðtÞ ¼ exp

�Z �
6_a
a

−
ϵa
_a

�
dt

��Z
ka5 exp ð− R ð6_aa − ϵa

_a ÞdtÞ
2_a

dtþ c2

�
; ð4:7Þ

where c2 is an integration constant. Thus, the process is complete and the resulting line element [where for simplicity we set
aðtÞ ¼ eω=6] can be written as

ds2 ¼ −eω _ω2

36
�
2eω−6

R
ðϵ= _ωÞdt

�
c2 þ 3k

R exp ð6
R
ðϵ= _ωÞdt−ω

3
Þ

_ω dt
�
− ke

2ω
3

� dt2 þ eω=3
�

1

1 − kr2
dr2 þ r2dθ2 þ r2sin2θdφ2

�
; ð4:8Þ

which for k ¼ 0 can, by an appropriate reparametrization of the integration constant c2 ¼ 1
72m4, be brought exactly into the

form (3.10). The corresponding scalar field potential for each nonconstant function ω is

VðtÞ ¼
6e−ω

�
ð _ω2 − 6ϵÞeω−6

R
ðϵ= _ωÞdt

�
c2 þ 3k

R exp ð6
R
ðϵ= _ωÞ−ω

3
dtÞ

_ω dt
�
þ 3ke

2ω
3

�
_ω2

; ð4:9Þ

which again, for k ¼ 0 and c2 ¼ 1
72m4, becomes Eq. (3.11).

By adopting a suitable time change, as in the previous
section, the result can be significantly simplified. We
perform the transformation [where again we utilize a
nonconstant function SðωÞ]

t ¼ �
Z �

1

6ϵ

�
S00ðωÞ
S0ðωÞ þ

1

3

��
1=2

dω ð4:10Þ

(for any of the two signs in the above equation the treatment
is exactly the same). Then, the line element (4.8)—with the
help of an allowable (k ≠ 0) redefinition

SðωÞ ¼ exp

�
12k

Z
eFðωÞ−ω=3dω

�
−
6c2
k

ð4:11Þ

which leads to the absorption of the nonessential constant
c2—simplifies to

ds2 ¼ −eFðωÞdω2 þ eω=3
�

1

1 − kr2
dr2 þ r2dθ2

þ r2sin2θdφ2

�
; ð4:12Þ

while the corresponding potential becomes

VðωÞ ¼ 1

12
e−FðωÞð1 − F0ðωÞÞ þ 2ke−ω=3; ð4:13Þ

with the scalar field ϕðωÞ [since in the previous gauge
ϕðtÞ ¼ t] given now by Eq. (4.10) after the substitution of
Eq. (4.11),

ϕðωÞ ¼ �
Z �

1

6ϵ
ðF0ðωÞ þ 12keFðωÞ−ω=3Þ

�
1=2

dω; ð4:14Þ

where theþ or − sign corresponds to the relevant choice of
time transformation in Eq. (4.10).
As a result, the set of relations (4.12)–(4.14) satisfies

Einstein’s equation plus a scalar field for the case k ≠ 0,
with FðωÞ remaining again arbitrary. It can be seen that if
one considers k ¼ 0, then the solution (4.12)–(4.14)
becomes exactly (3.13)–(3.15). It is noteworthy that this
occurs despite the fact that in the process of deriving the
relations (4.12)–(4.14) the assumption k ≠ 0 has been
taken into account [see Eq. (4.11)].
As in the previous case, starting from the relations

(3.16a)–(3.16b), we can compute the energy density and
the pressure of the matter content in terms of the function
FðωÞ,

ρϕðωÞ ¼
1

12
e−FðωÞ þ 3ke−ω=3; ð4:15aÞ

PϕðωÞ ¼
1

12
e−FðωÞð2F0ðωÞ − 1Þ − ke−ω=3; ð4:15bÞ

leading to the equation of state

Pϕ ¼
�
2eω=3ð3F0ðωÞ − 1Þ
3ð36keFðωÞ þ eω=3Þ −

1

3

�
ρϕ: ð4:16Þ

Again, we can notice the difference with respect to
Eqs. (3.17a)–(3.17b) due to the contribution of k.
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V. INCLUSION OF AN ADDITIONAL
PERFECT FLUID

All the previous considerations can be slightly modified
to consider an additional perfect-fluid matter source
together with the scalar field. The extra contribution to
the energy-momentum tensor is given by

T μν ¼ ðρþ PÞ ~uμ ~uν þ Pgμν; ð5:1Þ

where ~uμ ¼ ð1=NðtÞ; 0; 0; 0Þ is the four-velocity of the
comoving observer and ρ, P are the energy density and the
pressure of the fluid, respectively. In what follows we shall
assume a barotropic equation of state of the form P ¼ γρ,
with γ being a constant. It is known that the energy-
momentum tensor of a perfect fluid (5.1) can be recovered
by varying the matter Lagrangian density Lm ∝ ρ with
respect to gμν when a continuity equation T μν

;ν ¼ 0 is
assumed to be a priori valid [55,56].
The same procedure can also be applied in the minis-

uperspace approach. By considering a FLRW spacetime,
the continuity equation for T μν becomes a differential
equation that involves ρ, P, and the scale factor a.
Substitution of the equation of state that we mentioned
leads to the well-known solution

ρ ¼ ma−3ð1þγÞ; ð5:2Þ

where m is a constant of integration. The addition of an
extra term Lm ¼ −2 ffiffiffiffiffiffi−gp

ρ ¼ −2Nma−3γ to the minisuper-
space Lagrangian can be seen, which correctly reproduces
the set of the reduced Einstein’s equations. In the para-
metrization in which the potential is constant, i.e., when
we set

N ¼ n
2ðma−3γ − 3kaþ a3VðϕÞÞ ; ð5:3Þ

with n being the new “lapse” function, the aforementioned
Lagrangian is written as

L ¼ 2a
n
ðma−3γ þ a3VðϕÞ − 3akÞð−6_a2 þ ϵa2 _ϕ2Þ − n:

ð5:4Þ

It is an easy task to verify that the Euler-Lagrange equations
of Eq. (5.4) are equivalent to Einstein’s equations

Rμν −
1

2
gμνR ¼ Tμν þ T μν ð5:5Þ

when reduced by the ansatz of an FLRW spacetime.
Thus, the corresponding minisuperspace metric we are

interested in is

Gμν ¼ 4aðma−3γ þ a3VðϕÞ − 3akÞ
�−6 0

0 ϵa2

�
: ð5:6Þ

We aim to consider both cases of a spatially flat and a
nonflat universe, but since the treatment is quite similar to
what has already been done we shall state the results in a
more condensed manner.

A. The k= 0 case

The vector ξ ¼ ∂
∂ϕ remains a conformal Killing vector

satisfying the relation

£ξGμν ¼
a3ðγþ1ÞV 0ðϕÞ

a3ðγþ1ÞVðϕÞ þm
Gμν; ð5:7Þ

and the corresponding nonlocal integral of motion is

Q ¼ pϕ þ
Z

n
a3ðγþ1ÞV 0ðϕÞ

a3ðγþ1ÞVðϕÞ þm
dt

¼ 4ϵa3ð1−γÞ _ϕða3ðγþ1ÞVðϕÞ þmÞ
n

þ
Z

n
a3ðγþ1ÞV 0ðϕÞ

a3ðγþ1ÞVðϕÞ þm
dt: ð5:8Þ

It can be seen that Q ¼ const together with the quadratic
constraint equation ∂L

∂n ¼ 0 satisfy the complete set of Euler-
Lagrange equations for the case k ¼ 0 and thus Einstein’s
equations.
We proceed in the same manner as before: at first we fix

the gauge by setting ϕðtÞ ¼ t, which allows us to easily
reparametrize the potential as a time function. Next, a
suitable parametrization of the “lapse” n can be chosen so
that the equation Q ¼ const can be turned into a local
expression through writing down the integrand as a total
derivative. The procedure is almost similar to the case k ≠ 0
without a fluid. So, for the sake of brevity, we skip the full
calculations and present the complete solution of the
system in the gauge ϕ ¼ t:

aðtÞ ¼ eω=6; ð5:9Þ

nðtÞ ¼
�
6

_ω
−

_ω

ϵ

��
−
1

2
c1eI − 2ϵmeI

×
Z

e−ð
1
2
ðγ−1ÞωþIÞ

_ω
dtþ 1

3
me−

1
2
ðγ−1Þω

�
1=2

; ð5:10Þ

VðtÞ ¼ 3e−
1
2
ðγþ2Þω

2 _ω2

��
c1 þ 4ϵm

Z
eð−1

2
ðγ−1Þω−IÞ

_ω
dt

�

× ð6ϵ − _ω2Þeð12γωþIÞ − 4ϵme
ω
2

�
; ð5:11Þ
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with c1 being a constant of integration, ωðtÞ an unspecified
nonconstant function (reflecting the arbitrariness of the
scalar field potential), and I being given by

I ¼ ω − 6

Z
ϵ

_ω
dt: ð5:12Þ

Note here that Eq. (5.10) is the scaled lapse and not the one
that enters the metric. The latter is given by Eq. (5.3)
(with k ¼ 0).
As was also done in the previous sections, the above

expressions can be significantly simplified when perform-
ing a suitable time parametrization. In this case if one
adopts the transformation

ϕðtÞ ¼ t ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6ϵ

�
γ þ 1

2
þ S00ðωÞ

S0ðωÞ
�s
dω ð5:13Þ

with SðωÞ being parametrized as

SðωÞ¼ exp

�
−6ðγþ1Þm

Z
eFðωÞ−

1
2
ðγþ1Þωdω

�
−

3c1
ðγþ1Þm;

ð5:14Þ

the emerging line element takes the exact general form of
Eq. (3.13); of course, in this case the corresponding
potential becomes

VðωÞ ¼ 1

12
e−FðωÞð1 − F0ðωÞÞ þ 1

2
ðγ − 1Þme−

1
2
ðγþ1Þω

ð5:15Þ

while the scalar field ϕðωÞ is given, through Eqs. (5.13)
and (5.14), as

ϕðωÞ

¼ �
Z �

1

6ϵ

�
F0ðωÞ − 6ðγ þ 1ÞmeFðωÞ−1

2
ðγþ1Þω

��
1=2

dω:

ð5:16Þ

It can be easily checked that Eqs. (3.13), (5.15), and (5.16)
solve Einstein’s equation (5.5) with a scalar field plus a
perfect fluid for an arbitrary function FðωÞ. As a result,
even in this case, the system has been fully integrated
without having to choose a specific form for the potential.
Once more, with the help of Eqs. (3.16a)–(3.16b), one

can derive in this gauge the relations for the energy density
ρϕ and the pressure Pϕ of the scalar field,

ρϕ ¼ 1

12
e−FðωÞ −me−

1
2
ðγþ1Þω; ð5:17aÞ

Pϕ ¼ 1

12
e−FðωÞð2F0ðωÞ − 1Þ − γme−

1
2
ðγþ1Þω: ð5:17bÞ

On the other hand, one can easily verify that for the perfect
fluid

ρ ¼ me−
1
2
ðγþ1Þω; ð5:18Þ

with the pressure being given of course by P ¼ γρ. The
comoving velocities for the perfect fluid ~uμ and the one

constructed by the scalar field uμ ¼ ϕ;μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gκλϕ;κϕ;λ

p ¼ eFðωÞ=2

are by definition the same for the given line element (a
possible difference in sign is of no significance since only
quadratic expressions appear in the energy-momentum
tensor). Thus, one can immediately add the energy densities
and pressures to get the net quantities

ρtot ¼ ρϕ þ ρ ¼ 1

12
e−FðωÞ; ð5:19aÞ

Ptot ¼ Pϕ þ P ¼ 1

12
e−FðωÞð2F0ðωÞ − 1Þ; ð5:19bÞ

which are identical to Eqs. (3.17a)–(3.17b). The same
result can also be obtained formally by adding the two
energy-momentum tensors. The sum of Tμν þ T μν leads to
the same energy-momentum tensor that is obtained in the
k ¼ 0 case without an additional fluid.
As a result, we can conclude that, as expected in the

context of a FLRW geometry, the perfect fluid can always
be “absorbed” by the scalar field in the following sense: a
system with a perfect fluid (with a linear barotropic
equation) and a (minimally coupled) scalar field (5.16)
with potential (5.15), exhibits the same dynamical behavior
in comparison to another cosmological system possessing a
single (minimally coupled) scalar field (3.15) with poten-
tial (3.14).

B. The k ≠ 0 case

In this section we conclude our analysis by considering
the open/closed universe cases. The vector ξ ¼ ∂

∂ϕ is once
more a conformal Killing vector, for which

£ξGμν ¼
a3γþ3V 0ðϕÞ

−3ka3γþ1 þ a3γþ3VðϕÞ þm
Gμν ð5:20Þ

holds. The nonlocal integral of motion that corresponds
to ξ is

N. DIMAKIS et al. PHYSICAL REVIEW D 93, 123518 (2016)

123518-8



Q ¼ pϕ þ
Z

nðtÞ a3ðγþ1ÞV 0ðϕÞ
−3ka3γþ1 þ a3ðγþ1ÞVðϕÞ þm

dt

¼ 4ϵa3ð1−γÞ _ϕð−3ka3γþ1 þ a3ðγþ1ÞVðϕÞ þmÞ
n

þ
Z

na3ðγþ1ÞV 0ðϕÞ
−3ka3γþ1 þ a3ðγþ1ÞVðϕÞ þm

dt: ð5:21Þ

As in all previous cases, the relations Q ¼ const and ∂L
∂n ¼ 0 are sufficient to completely integrate the system of the Euler-

Lagrange equations of motion. In the gauge ϕ ¼ t the solution becomes

aðtÞ ¼ eω=6; ð5:22Þ

nðtÞ ¼ ð6
_ω −

_ω
ϵÞffiffiffi
6

p
�
2me−

1
2
ðγ−1Þω − 3c1eI − 12ϵeI

Z
e−I−

1
2
ðγ−1Þωðm − 3ke

1
6
ð3γþ1ÞωÞ

_ω
dt − 6ke

2ω
3

�
1=2

; ð5:23Þ

VðtÞ ¼ −
3e−

1
2
ðγþ2Þω

2 _ω2

��
c1 þ 4ϵ

Z
e−I−

1
2
ðγ−1Þωðm − 3ke

1
6
ð3γþ1ÞωÞ

_ω
dt

�
ð _ω2 − 6ϵÞeIþ1

2
γω − 12ke

1
6
ð3γþ4Þω þ 4me

ω
2

�
; ð5:24Þ

where c1 is a constant of integration, I is given again by Eq. (5.12), and ωðtÞ remains an arbitrary nonconstant function.
By performing a time transformation and introducing a new function SðωÞ

ϕðωÞ ¼ tðωÞ ¼ �
Z �

−18S000ðωÞ þ 3ð3γ − 1ÞS00ðωÞ þ ð3γ þ 1ÞS0ðωÞ
18ϵðð3γ þ 1ÞS0ðωÞ − 6S00ðωÞÞ

�
1=2

dω; ð5:25Þ

which we can associate to an another function FðωÞ through the relation

S00ðωÞ ¼ 1

6
e−ðγþ7

6
Þωð18c1eðγþ5

6
ÞωþFðωÞþS0ðωÞðð3γ þ 1Þeðγþ7

6
Þω þ 72keðγþ5

6
ÞωþFðωÞ − 36ðγ þ 1Þme

1
6
ð3γþ4ÞωþFðωÞÞ

−12ð3γ þ 1ÞkSðωÞeðγþ5
6
ÞωþFðωÞÞ; ð5:26Þ

we are led to line element (4.12). The potential is parametrized with respect to another function FðωÞ as

VðωÞ ¼ 1

12
e−FðωÞð1 − F0ðωÞÞ þ 2ke−ω=3 þ 1

2
ðγ − 1Þme−

1
2
ðγþ1Þω; ð5:27Þ

which, together with the aforementioned metric (4.12) and

ϕðωÞ ¼ �
Z �

1

6ϵ
ðF0ðωÞ þ 12ke−ω=3þFðωÞ−6ðγ þ 1ÞmeFðωÞ−1

2
ðγþ1ÞωÞ

�
1=2

dω; ð5:28Þ

solves the Einstein’s equations for a minimally coupled
scalar field in the presence of the perfect fluid that we
considered. As in all previous cases the function FðωÞ
remains free, since we have not chosen a particular scalar
field potential.
Of course, the relations regarding the energy density and

the pressure of the scalar field can also be derived as
functions of ω, namely,

ρϕ ¼ 1

12
e−FðωÞ þ 3ke−

ω
3 −me−

1
2
ðγþ1Þω; ð5:29aÞ

Pϕ ¼ 1

12
e−FðωÞð2F0ðωÞ − 1Þ − ke−ω=3 −mγe−

1
2
ðγþ1Þω;

ð5:29bÞ
respectively.

Again, the energy density and pressure of the fluid are
given by Eq. (5.18) and P ¼ γρ. As in the previous case
(and for the same reason), the total quantities ρtot and Ptot
can be retrieved by a simple addition,

ρtot ¼ ρϕ þ ρ ¼ 1

12
e−FðωÞ þ 3ke−

ω
3 ; ð5:30aÞ
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Ptot ¼ Pϕ þ P ¼ 1

12
e−FðωÞð2F0ðωÞ − 1Þ − ke−ω=3;

ð5:30bÞ

and they are identical to Eqs. (4.15a)–(4.15b) obtained in
the case k ≠ 0 of a single scalar field. The same is also
true for the total energy-momentum tensor Tμν þ T μν.
Henceforth, the statement that we made in the case
k ¼ 0 also applies here. A system that possesses both a
scalar field and a perfect fluid can be simulated by another
with just a single appropriate scalar field.
In addition, we can consider an arbitrary number (say,

ν ∈ N) of perfect fluids, each one satisfying an equation of
state of the form

Pi ¼ γiρi; i ¼ 1;…; ν: ð5:31Þ

The Einstein plus Klein-Gordon system of equations in
this case,

Rμν −
1

2
gμνR ¼ Tμν þ

Xν
i¼1

T ðiÞ
μν ; ð5:32aÞ

ϵ□ϕðωÞ þ 1

ϕ0ðωÞV
0ðωÞ ¼ 0; ð5:32bÞ

where T ðiÞ
μν is the energy-momentum tensor of the ith

labeled fluid, have a solution given by the line element
(4.12) with the scalar field being

ϕðωÞ ¼ �
Z �

1

6ϵ
ðF0ðωÞ þ 12ke−ω=3þFðωÞ

−6
Xν
i¼1

ðγi þ 1ÞmieFðωÞ−
1
2
ðγiþ1ÞωÞ

�
1=2

dω; ð5:33Þ

while the corresponding potential is

VðωÞ ¼ 1

12
e−FðωÞð1 − F0ðωÞÞ þ 2ke−ω=3

þ 1

2

Xν
i¼1

ðγi − 1Þmie−
1
2
ðγiþ1Þω: ð5:34Þ

The energy density of each fluid is of course given by

ρi ¼ mie−
1
2
ðγIþ1Þω; ð5:35Þ

with the mi’s being constants of integration. Finally, the
expressions for the energy density and pressure of the
effective fluid that simulates the behavior of the scalar
field are

ρϕ ¼ 1

12
e−FðωÞ þ 3ke−

ω
3 −

Xν
i¼1

mie−
1
2
ðγiþ1Þω; ð5:36aÞ

Pϕ¼
1

12
e−FðωÞð2F0ðωÞ−1Þ−ke−ω=3−

Xν
i¼1

miγie−
1
2
ðγiþ1Þω:

ð5:36bÞ
It is straightforward to check that the previous relations
identically satisfy the system of equations (5.32a)–(5.32b).
Thus, we have completed the solution of a general scalar
field in the presence of an arbitrary number of perfect
fluids.

VI. PARTICULAR SOLUTIONS

In this section, in order to demonstrate the power and
applicability of our results, we show how specific models
can be studied by using the equations of state (3.18)
and (4.16), depending on whether or not we are in the
spatially flat case. We do this for three special forms for the
equation of state parameter of the total fluid in which our
cosmological model is that of a quintessence scalar field
without matter source. The cases that we study are (a) a
constant equation of state parameter for vanishing and
nonvanishing spatial curvature, (b) an exponentially
dependent parametric dark energy model, and (c) the
logarithmic dark energy model.

A. A constant equation of state parameter

Let us first consider the k ¼ 0 case: thus, due to
Eqs. (3.17a)–(3.17b), we demand that

P
ρ
¼ 2F0ðωÞ − 1 ¼ γ; ð6:1Þ

with γ being a constant different from −1 (since in our
definition of F we needed it to be a nonconstant function).
Hence, we are led to the solution

FðωÞ ¼ 1

2
ðγ þ 1Þω; ð6:2Þ

where we have omitted the integration constant, because—
as can be seen from the induced line element (3.13)—it is
not essential and can be absorbed with an appropriate
coordinate transformation. The corresponding scalar field
and potential are given by [in what follows we choose to
work just with the plus solution of every ϕðωÞ]

ϕðωÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

3ϵ

r
ω; VðϕðωÞÞ ¼ −

1

24
ðγ − 1Þe−1

2
ðγþ1Þω;

ð6:3Þ
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which imply the exponential relation VðϕÞ ¼
− 1

24
ðγ − 1Þeϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
3ϵðγþ1Þ

p
ϕ. We can go over to the gauge where

the lapse function of the metric is one, i.e., we shall adopt
the cosmological time variable. The transformation we
need is

Z
eFðωÞ=2dω ¼ τ ⇒ ω ¼ 4

γ þ 1
ln

�
1

4
ðγ þ 1Þτ

�
ð6:4Þ

and in this gauge the corresponding solution becomes the
well-known power law for the scale factor and the
logarithm relation for the scalar field [31],

aðωÞ ¼ eω=6 ⇒ aðτÞ ∝ τ
2

3ðγþ1Þ; ϕðτÞ ¼ 2 ln ð1
4
ðγ þ 1ÞτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ϵðγ þ 1Þp :

ð6:5Þ

The situation is slightly more complicated in the k ≠ 0
case. The differential equation at hand is

P
ρ
¼ γ ⇒ ðγ þ 1Þeω=3 − 2eω=3F0ðωÞ

þ 12ð3γ þ 1ÞkeFðωÞ ¼ 0; ð6:6Þ

where now of course ρ and P are given by
Eqs. (4.15a)–(4.15b).
First of all, let us check the specific case when γ ¼ − 1

3
.

The solution of Eq. (6.6) is

FðωÞ ¼ ω

3
; ð6:7Þ

where once more the constant of integration has been
assumed to be zero, since it is not essential for the
geometry, as one can see from the line element (4.12).
This solution for γ ¼ − 1

3
is distinguished from all other

values of γ, for which the corresponding models depend on
two parameters, as we shall immediately see.
When γ ≠ − 1

3
, the general solution of Eq. (6.6) is

FðωÞ ¼ 1

3

�
ω − 3 log ðe1

6
ð3γþ1Þðμ−ωÞ − 36kÞ

�
; ð6:8Þ

where μ is the integration constant which, unlike the
previous case, is essential for the line element (4.12).
The scalar field and potential become (for simplicity, in
what follows we choose to express the results for the
standard scalar field, i.e., we set ϵ ¼ þ1)

ϕðωÞ ¼ −
2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1

p
ln ðe 1

12
ð3γþ1Þðμ−ωÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
1
6
ð3γþ1Þðμ−ωÞ − 36k

p
Þ

3γ þ 1
; ð6:9Þ

VðωÞ ¼ −
1

24
ðγ − 1Þe1

6
ðμð3γþ1Þ−3ðγþ1ÞωÞ; ð6:10Þ

while the line element can be written as

ds2 ¼ −
eω=3

e
1
6
ð3γþ1Þðμ−ωÞ − 36k

dω2 þ eω=3

1 − kr2
dr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð6:11Þ

It is clear by the form of the above metric that, had we tried to express the result in the cosmological time gauge, it would not
be possible to obtain the solution in terms of elementary functions, since

Z �
eω=3

e
1
6
ð3γþ1Þðμ−ωÞ − 36k

�
1=2

dω ¼ τ ⇒ τ ¼ eω=6ffiffiffiffiffiffi
−k

p 2F1

�
1

2
;

1

−3γ − 1
;

3γ

3γ þ 1
;
e
1
6
ð3γþ1Þðμ−ωÞ

36k

�
: ð6:12Þ

where 2F1ða; b; c; xÞ is the Gauss hypergeometric function.
Note that here the −k in the square root does not restrict k to
being −1 for this transformation to be valid, since there
exist values of the parameters μ, γ, and ω for which 2F1 can
be purely imaginary.
However, useful results can be extracted in the gauge

where time is ω, if the various cosmological parameters are
expressed in parametric form. It is true that the Hubble H,
deceleration q, and jerk j parameters can be given in an
arbitrary gauge NðtÞ by

HðtÞ ¼ 1

aN
da
dt

; ð6:13aÞ

qðtÞ ¼ −a
�
1

N
da
dt

�
−2 1

N
d
dt

�
1

N
da
dt

�
; ð6:13bÞ

jðtÞ ¼ 1

aHðtÞ3N
d
dt

�
1

N
d
dt

�
1

N
da
dt

��
: ð6:13cÞ

With the time variable being ω we can easily derive all the
previous parameters as functions of the scale factor
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a ¼ eω=6, by simply setting ω ¼ 6 ln a in the expressions.
Of course, the gauge function is given by NðωÞ ¼ eFðωÞ=2,
where ω ¼ 6 ln a, and FðωÞ is taken to be Eq. (6.8).
The corresponding relations are

HðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
1
6
ð3γþ1Þμ

36a3ðγþ1Þ −
k
a2

s
; ð6:14aÞ

qðaÞ ¼ ð3γ þ 1Þe1
6
ð3γþ1Þμ

2ðe1
6
ð3γþ1Þμ − 36ka3γþ1Þ ; ð6:14bÞ

jðaÞ ¼ ð9γ2 þ 9γ þ 2Þe1
6
ð3γþ1Þμ

2ðe1
6
ð3γþ1Þμ − 36ka3γþ1Þ ; ð6:14cÞ

and their behavior with respect to the scale factor a and
according to various values of the essential constants γ and
μ can be easily derived.
In the present epoch, in which by convention we take

a ¼ 1, we deduce from Eq. (6.14a) that the integration
constant μ is related to the Hubble constant; specifically, we
find that

μ ¼ 12

3γ þ 1
ln ½6ðH0 þ kÞ�; γ ≠ −

1

3
: ð6:15Þ

For γ ¼ − 1
3
, the function HðaÞ can be calculated from

Eqs. (6.49a)–(6.49c) with the use of the solution (6.7),
again with the substitution ω ¼ 6 ln a. In this particular
case one can see that HðaÞ ¼ 1

6a, while qðaÞ ¼ jðaÞ ¼ 0.

B. An exponential equation-of-state parameter

As a second example we consider that the equation-of-
state parameter for the total fluid has the form

γðaÞ ¼ −1þ λ

λþ aσ
e−μa þ 1

3
e−νa; ð6:16Þ

the reason being that, as the current experimental data
suggest, in the early universe we must have γða → 0Þ≃ 1

3
,

while in the late universe γða → 1Þ≃ −1 for positive
values of σ, μ, ν. However, there will be an epoch in
which the equation-of-state parameter will have a linear
behavior around γ ¼ 0. For simplicity, in the following we
consider that σ ¼ 6, where the evolution of Eq. (6.16) is
given in Fig. 1(a).
Furthermore, from Eq. (3.18), when we assume that the

scalar field has the behavior (6.16) we find that

FðωÞ ¼ 1

2
λ

Z
exp ð−μeω=6Þ

λþ eω
dωþ Eið−νeω=6Þ; ð6:17Þ

with EiðxÞ ¼ −
Rþ∞
−x

e−s
s ds being the exponent integral

function. The integration constant in FðωÞ has been set
to zero.
In the case of a quintessence scalar field, from Eq. (3.15)

we have that

ϕðaÞ ¼ �
Z

1

a

�
3λe−μa

a6 þ λ
þ e−νa

�
1=2

da; ð6:18aÞ

while for the potential we have that

VðaÞ ¼ 1

72

�
−
3λe−aμ

a6 þ λ
− e−aν þ 6

�
exp

�
−Eið−νaÞ

− 3λ

Z
e−μa

aða6 þ λÞ da
�
; ð6:19Þ

where in Fig. 1(b) the evolution of VðaÞ is given. Here we
would like to remark that if we had considered extra fluid
terms, then the solutions for the scalar field, i.e., ϕðaÞ,
VðaÞ, would be different. But in any case the solution
(6.17) would be the same if we assume that Eq. (6.16)
describes the equation-of-state parameter for the total fluid.

FIG. 1. (a) The qualitative behavior of the equation-of-state (EoS) parameter γðaÞ and (b) the respective behavior of the potential VðaÞ.
The solid lines are for the constants ðλ; μ; νÞ ¼ ð1=10; 1=20; 200Þ; the dashed lines are for ðλ; μ; νÞ ¼ ð1=20; 1=15; 200Þ, and the dotted
lines are for the constants ðλ; μ; νÞ ¼ ð1=10; 1=5; 100Þ.
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Finally, the Hubble function and the jerk parameters are given as follows, while the qualitative evolution is given in
Fig. 2:

HðaÞ ¼ 1

6

�
exp

�
Eið−νaÞ þ 3λ

Z
e−aμ

aða6 þ λÞ da
��

−1=2
;

ð6:20Þ

jðaÞ ¼ e−2ðμþνÞa

2ða6 þ λÞ2 ½νa
13eð2μþνÞa þ a12e2μ að2e2ν a − 3eν a þ 1Þ þ λa7ð3μeðμþ2νÞa þ 2νeð2μþνÞaÞ

þ λa6ð4e2ðμþνÞa − 6eð2μþνÞa þ 9eðμþ2νÞa þ 2e2μaÞ þ 6λða6 þ λÞeðμþνÞa þ λ2að3μeðμþ2νÞa þ νeð2μþνÞaÞ
þ λ2ð2e2ðμþνÞa − 3eð2μþνÞa − 9eðμþ2νÞa þ e2μ a þ 9e2ν aÞ�: ð6:21Þ

C. Logarithmic parametric dark energy model

We consider the logarithmic parametric model [57]

γðaÞ ¼ γ0 − γ1 lnðaÞ; ð6:22Þ

which gives that the unknown function in the line element
should be

FðωÞ ¼ 1

24
ωð12γ0 − γ1ωþ 12Þ; ð6:23Þ

from which we have that the scalar field and cosmological
parameters of the model are as follows:

ϕðaÞ ¼∓ 2ð−γ1 ω
6
þ γ0 þ 1Þ3=2ffiffiffi
3

p
γ1

þ c1; ð6:24aÞ

VðaÞ ¼ 1

24
a

3
2
γ1 lnðaÞ−3ðγ0þ1Þðγ1 lnðaÞ − γ0 þ 1Þ; ð6:24bÞ

HðaÞ ¼ 1

6
ða−3

2
γ1 lnðaÞþ3ðγ0þ1ÞÞ−1=2; ð6:25aÞ

jðaÞ ¼ 1

2
½9γ1 lnðaÞðγ1 lnðaÞ − 2γ0 − 1Þ

þ 9γ0ðγ0 þ 1Þ þ 3γ1 þ 2�: ð6:25bÞ

Finally, for c1 ¼ 0 we have that the functional form of the
potential is

VðϕÞ ¼ 4 − 61=3γ2=31 ϕ2=3

48

× exp

�
3ð62=3γ4=31 ϕ4=3 − 4γ0ðγ0 þ 2Þ − 4Þ

8γ1

�
:

ð6:26Þ

The evolutions of the equation-of-state parameter, the
scalar field potential VðϕÞ, and the cosmological param-
eters HðaÞ, jðaÞ are given in Figs. 3(a)–3(c).

FIG. 2. (a) The qualitative behavior of the cosmological parameter HðaÞ and (b) the respective for jðaÞ. The solid lines are for the
constants ðλ; μ; νÞ ¼ ð1=10; 1=20; 200Þ, the dashed lines are for ðλ; μ; νÞ ¼ ð1=20; 1=15; 200Þ, and the dotted lines are for the constants
ðλ; μ; νÞ ¼ ð1=10; 1=5; 100Þ.
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VII. CONCLUSIONS

In this paper, in the context of a FLRW geometry, we
were able to derive the general solution for a scalar field,
with an arbitrary potential, minimally coupled to Einstein’s
gravity with or without including perfect fluids. This was
made possible mainly by exploiting the reparametrization
invariance inherent in constrained systems characterized
by Eq. (2.1).
The prescription we used was the following. A minis-

uperspace Lagrangian was constructed in each case we
considered. The existence of the Hamiltonian constraint
allowed us to define nonlocal integrals of motion corre-
sponding to the conformal symmetries of the minisuper-
space. One of these infinite (for a two-dimensional
configuration space) conserved quantities, together with
the quadratic constraint provided us with enough equations
to solve the system. In order to turn the nonlocal expression
into a first-order differential equation, we adopted an
appropriate gauge and performed specific reparametriza-
tions so as to succeed in integrating both the first integral
and the quadratic constraint. As a result, we can now state
that the solution we presented encompasses all possible

cosmological configurations regarding a minimally
coupled scalar field (apart from the specific case ϕ ¼ const
that we had to exclude from the analysis, although of course
it can be treated in a similar manner).
It could be argued that a general solution of this form,

obtained in an arbitrary gauge, might not be of major
physical importance; this is mainly due to the fact that the
inversion of the function FðωÞ, which is essential for
expressing the potential as a function of the scalar field,
may be transcendental and thus not of particular use.
However, as we demonstrated in the examples, it is a
relatively easy task to derive the general expressions
regarding the effective perfect fluid related to the scalar
field. From this point, the association of a physical behavior
for a given equation of state, written in parametric form, is
just a matter of solving a first-order ordinary differential
equation (or simply an integration with respect to ω in the
spatially flat case without fluids). Additionally, from a
mathematical perspective, it is an interesting fact that this
two-dimensional minisuperspace under consideration is
integrable for every well-behaved function VðϕÞ and an
analytic solution can be derived without the need to impose
any restrictions on the potential.

FIG. 3. The qualitative evolution of (a) the potential function VðaÞ, (b) the potential and (c) the jerk parameter for the logarithmic dark
energy model. The solid lines are for the parameters ðγ0; γ1Þ ¼ ð−0.99; 0.1Þ, the dashed lines are for ðγ0; γ1Þ ¼ ð−0.9; 0.1Þ, and the
dotted lines are for the constants ðγ0; γ1Þ ¼ ð−0.99; 0.05Þ.
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Moreover, the solutions we obtained in this work can
also prove to be a useful tool for other gravitational
configurations. There are several types of theories whose
action, under specific transformations, can be mapped to
the minimally coupled scalar field of general relativity. For
instance, we can mention fðRÞ or several scalar-tensor
theories of gravitation (like Brans-Dicke cosmology). The
transformations that one uses to go from the Jordan to the
Einstein frame are well known in the literature and we
refrain from presenting them here. This link between these
theories can be used at any point to transform results from
one frame to the other. Nevertheless, we have to note that in
the presence of fluids, one should be careful when making
this transition. While we have considered that the fluid
terms are not interacting with the scalar field, this property

is lost under a conformal transformation and interactions
among the former and the scalar field shall arise.
For the completeness of the method that we presented

here, we plan (in a forthcoming work) to extend it via
applications to cosmological models in scalar-tensor theory
with perfect fluids which are not interacting with the scalar
field. The possible derivation of analytic solutions, among
the two different theories/frames, is important in order to
better understand the differences between them.
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