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In this paper, we study a new class of inflation models which generalize the Dirac-Born-Infeld (DBI)
action with the addition of a nonminimal kinetic coupling (NKC) term. We dub this model as the new
DBI inflation model. The NKC term does not bring a new dynamical degree of freedom, so the
equations of motion remain of second order. However, with such coupling, the action is no longer linear
with respect to the Einstein curvature term (R or Gμν), which leads to a correction term of k4 in the
perturbations. The new DBI inflation model can be viewed as a theory beyond Horndeski. Without
violating approximate scale invariance, such correction may lead to new effects on the inflationary
spectra that can be tested by future observations.
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I. INTRODUCTION

Recently, there has been much effort in the study of
generalized scalar field theories. Examples of such non-
canonical theories include the Galileons [1,2] Horndeski
theories [3,4] or even beyond [5–8]. The Galileon/
Horndeski-type models generalized ordinary scalar field
theories by including higher derivative terms and/or non-
minimal couplings in specific forms such that the equation
of motion remains of second order; i.e., there are no
redundant dynamical degrees of freedom. This interesting
feature has been applied to many contexts in cosmology
where scalar fields play an important role, such as inflation
[9], dark energy [10], bouncing cosmology [11], etc.
In standard Galileon/Horndeski theories, the action

contains only higher derivative terms or nonminimal
coupling terms at the linear order. However, there are
many well-motivated cosmological models whose actions
have nonlinear forms. A prime example is the Dirac-Born-
Infeld (DBI) action. The DBI action describes the dynamics
of an extended object that breaks spontaneously the
Poincaré invariance of a higher-dimensional theory [12].
Indeed, DBI action arises in the context of D-branes in
string theory [13] (see, e.g., [14–16] for the derivation for
some D-brane systems). When applied to inflation as in
[17,18], the inflaton field denotes the position of a D3-
brane in a higher-dimensional space. Aside from its
fundamental origin, the square root feature of the DBI
action brings several observational novelties. The most
important of which is that the level of non-Gaussianities is
enhanced by the inverse sound speed [19]. The observa-
tional signatures and the leading non-Gaussianities (bis-
pectrum) of this generalized class of single field inflation
models have been thoroughly examined in [19] and
extended to the inflationary trispectra in [20,21]. The

strongest constraints on DBI inflation, especially on its
sound speed, from the recent Planck data [22], come from
the absence of such non-Gaussian features. Such non-
Gaussianity constraints also apply to other variants of DBI
inflation, such as the IR model [23], generalizations to
other warped throats [24,25], and DBI inflation with
multifields [26].
As the DBI action is only an effective theory, it is subject

to higher-order corrections from the full theory of gravity.
There have been many studies on the possible corrections
to DBI actions in string theory; see, e.g., [27–31].
Moreover, the cases of putting gravitational terms into a
square root have also been investigated for a long time in
modified gravity theories, from Eddington in 1924 [32] to
more recent literature [33,34]. Therefore, in this paper, we
discuss another kind of correction, that is to have the kinetic
term in the square root of the action coupled to the Einstein
tensor. This coupling term can be found in the Horndeski
theory and shares some of its nice properties as mentioned
above, but what is different, is that now this term will
appear as a nonlinear term in the action, which may bring
new interesting results.

II. OUR NEW DBI MODEL

A. Background

The action of our model is as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

fðϕÞ ð
ffiffiffiffi
D

p
− 1Þ − VðϕÞ

�
; ð1Þ

where D≡ 1 − 2αfðϕÞX þ 2βfðϕÞ ~X and
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X ≡ −
1

2
gμν∇μϕ∇νϕ;

~X ≡ −
1

2M2
Gμν∇μϕ∇νϕ; ð2Þ

where M is some energy scale; therefore, under the
Friedmann-Robertson-Walker (FRW) metric gμν ¼
diagf−1; a2ðtÞ; a2ðtÞ; a2ðtÞg where aðtÞ is the scale factor
of the Universe, it becomes D ¼ 1 − αfðϕÞ _ϕ2−
3H2βfðϕÞ _ϕ2=M2. The form of ~X has been proposed in
[35] and is widely studied in cosmology; see [36–41].
Since in the above action, the nonminimal kinetic coupling
(NKC) term [namely, 2βfðϕÞ ~X or the β term in the
following), which resides inside a square root is nonlinear,
the action cannot be transformed to that of the Galileon.
More general actions with this feature have also been
studied in [5], where the main focus is on the late-time
acceleration. From our action Eq. (1), one can straight-
forwardly obtain the equation of motion for ϕ:

0 ¼ fϕ
f2

ð
ffiffiffiffi
D

p
− 1Þ − fϕðD − 1Þ

2f2
ffiffiffiffi
D

p −
fϕ

2f2D3=2 ðD − 1Þ2

þ f

D3=2 ðαgμν − βGμνÞðα∇μX∇νϕ − β∇μ
~X∇νϕÞ

þ 1ffiffiffiffi
D

p ðαgμν − βGμνÞð∇μ∇νϕÞ − Vϕ ð3Þ

and the Einstein equation

Gμν ¼ κ2Tμν;

Tμν ¼ gμν

�
−

1

fðϕÞ ð
ffiffiffiffi
D

p
− 1Þ − VðϕÞ

�
þ α∂μϕ∂νϕffiffiffiffi

D
p

− 2
βRρμ∂ρϕ∂νϕffiffiffiffi

D
p þ β∂μϕ∂νϕ

2
ffiffiffiffi
D

p R −
βXffiffiffiffi
D

p Rμν

þ
�
β∂μϕ∂εϕffiffiffiffi

D
p

�
;ν;ε

þ
�
βXffiffiffiffi
D

p
�

;ν;μ

−□

�
β∂μϕ∂νϕ

2
ffiffiffiffi
D

p
�

− 2□

�
βX

2
ffiffiffiffi
D

p
�
gμν −

�
β∂λϕ∂εϕ

2
ffiffiffiffi
D

p
�

;ε;λ

gμν: ð4Þ

Under the FRW metric, Eqs. (3) become

0 ¼
3βH2

M2 þ α

D3=2 ðϕ̈þ 3HD _ϕÞ − fϕ
2f2

�
3D − 1

D3=2 − 2

�

þ 3β

M2
H _H

Dþ 1ffiffiffiffi
D

p _ϕþ Vϕ; ð5Þ

and the energy density and pressure of the model can also
be obtained by Eq. (4),

ρ ¼ ð ffiffiffiffi
D

p
− 1Þ

fðϕÞ þ VðϕÞ þ α _ϕ2ffiffiffiffi
D

p þ 6βH2 _ϕ2

M2
ffiffiffiffi
D

p ; ð6Þ

p ¼ −
ð ffiffiffiffi

D
p

− 1Þ
fðϕÞ − VðϕÞ − 3βH2 _ϕ2

M2
ffiffiffiffi
D

p −
�

βH _ϕ2

M2
ffiffiffiffi
D

p
�

·
; ð7Þ

where the “dot” denotes the time derivative with respect to
time in Eqs. (5)–(7). From the above, one can see that in
the limit of β → 0, which implies the absence of the β term,
the action reduces to that of the usual DBI inflation. For the
non-slow-roll case (αf _ϕ2 ≲ 1, or

ffiffiffiffi
D

p ≳ 0, where
ffiffiffiffi
D

p
is

identified with the sound speed), large non-Gaussianity can
be generated [19], a feature disfavored by the latest Planck
2015 data [22]. In the slow-roll limit (αf _ϕ2 ≪ 1,

ffiffiffiffi
D

p
∼ 1),

the action reduces to that of canonical scalar field inflation.
However, when the β term is important, there are

interesting modifications, even in the slow-roll regime.
One of which, as will be seen, is that the mass scale of the
inflaton can be altered. We are interested in the case where
the β term dominated over the α term. In a FRW back-
ground, we have X ≃ _ϕ2=2, ~X ≃ −ðH=MÞ2 _ϕ2=2, respec-
tively. The β term dominates under the condition H ≫ M.
Taking the potential to be VðϕÞ ¼ m2ϕ2=2 as an example
where m is the mass of the inflaton, the equation of motion
(5) can be reduced as

ϕ̈þ ð3 − ϵ − sÞH _ϕ −
�
mM
H

�
2

ϕ ¼ 0 ð8Þ

in the leading order. Here we have defined ϵ≡ − _H=H2 and

s≡ _ffiffiffiffiDp
=ðH ffiffiffiffi

D
p Þ. See, also, other slow-roll inflation mod-

els with a NKC term in, e.g., Ref. [36]. One can see that the
effective mass of ϕ is meff ¼ mM=H; i.e., it is suppressed
by a factorH=M. This means the constraints on the mass of
inflaton can be relaxed. Even a larger massive parameter m
can lead to the desired inflation scale meff .

B. Perturbations

In addition to the inflationary background, it is also
important to analyze its perturbations for the second-order
perturbation seed fluctuations in the cosmic microwave
background radiation, as well as the galaxy distribution and
gravitational waves. The perturbed line element can be
written as follows:

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð9Þ

where the lapse function N, the shift vector Ni, and the
induced 3-metric hij can be perturbed as

N ¼ 1þ A; Ni ¼ ∂iψ ; hij ¼ a2ðtÞe2ζþ2γij ;

ð10Þ

TAOTAO QIU PHYSICAL REVIEW D 93, 123515 (2016)

123515-2



respectively. According to the ADM formalism, one can
also decompose the elements in action (1) as [42] (also, see
the Appendix in the first paper of [41]):

R ¼ ð3ÞRþ KijKij − K2;

X ¼ _ϕ2=2N;

~X ¼ −
1

4M2

_ϕ2

N2
ðð3ÞR − KijKij þ K2Þ: ð11Þ

Here, ð3ÞR is the 3-curvature, and Kij is the extrinsic
curvature, with K ≡ TrðKi

jÞ. Therefore, the second-order
action for tensor perturbation reads

ST2 ¼ 1

8κ2

Z
d4xa3

�
F T _γ

2
ij − GT

ð∇γijÞ2
a2

�
: ð12Þ

From the action, one can get the sound speed squared for
the tensor perturbations:

F T ¼ 1 −
κ2β _ϕ2

2M2
ffiffiffiffi
D

p ;

GT ¼ 1þ κ2β _ϕ2

2M2
ffiffiffiffi
D

p ;

c2T ≡ GT

F T
: ð13Þ

In order to maintain stability under tensor perturbation,
the sound speed squared must be positive, i.e., c2T > 0.
From (13), this implies 2M2

ffiffiffiffi
D

p
> κ2jβj _ϕ2, which will

give us a constraint in the following analysis. Note that in
the “slow-roll” limit where κ2jβj _ϕ2 ≪ 2M2

ffiffiffiffi
D

p
, c2T is

approaching unity, recovering the standard case. From
the action, one gets the equation of motion for γ,

γ00ij − c2T∇2γij þ
ða2F TÞ0
a2F T

γ0ij ¼ 0; ð14Þ

which has the following solutions:

γij ¼ constant;
Z

dt
a3ðtÞF T

: ð15Þ

The power spectrum for tensor perturbations is, therefore,

PT ≡ k3

2π2
jγijj2 ¼

2H2

GTcTπ2
; ð16Þ

and the spectral index

nT ≡ d lnPT

d ln k
¼ κ2β _ϕ2

κ2β _ϕ2 − 2M2
ffiffiffiffi
D

p ð2ι − sÞ − 2ϵ − sT;

ð17Þ

where sT ≡ _cT=ðHcTÞ, ι≡ ϕ̈=ðH _ϕÞ. From those results,
we find that the power spectrum for gravitational waves
deviates from scale invariance only up to slow-roll correc-
tions. However, its difference from the standard minimal
coupling case is also of the order of the slow-roll param-
eters, so if the sensitivity of the future observations is
smaller than the slow-roll parameters, we can distinguish
our model from inflation models with minimal coupling.
What is more promising observationally is the feature in

scalar perturbations. Substituting Eqs. (10) and (11) into
action (1) and taking the scalar parts, one finds the scalar
perturbation action. First of all, considering the Hamilton
and momentum constraint equations (1) δS=δN ¼ 0,
(2) δS=δNi ¼ 0, we obtained the following two equations:

0 ¼ −
�
12H2 þ 2κ2

fðϕÞ ffiffiffiffi
D

p
�
1 −

9βH2

M2
fðϕÞ _ϕ2

�
−

2κ2

fðϕÞD3=2

�
1þ 3βH2

M2
fðϕÞ _ϕ2

�
2
�
A

þ 12H

�
1 −

κ2β _ϕ2

M2
ffiffiffiffi
D

p −
κ2β _ϕ2

2M2D3=2

�
1þ 3βH2

M2
fðϕÞ _ϕ2

��
_ζ − 4a−2

�
1 −

κ2β _ϕ2

2M2D3=2

�
1þ 3βH2

M2
fðϕÞ _ϕ2

��
∂2ζ

− 4a−2H

�
1 −

κ2β _ϕ2

M2
ffiffiffiffi
D

p −
κ2β _ϕ2

2M2D3=2

�
1þ 3βH2

M2
fðϕÞ _ϕ2

��
∂2ψ ; ð18Þ

0 ¼
�
2

�
1 −

κ2β _ϕ2

M2
ffiffiffiffi
D

p
�
H −

κ2βH _ϕ2

M2D3=2

�
1þ 3βH2

M2
fðϕÞ _ϕ2

��
A

−
�
2 −

κ2β _ϕ2

M2
ffiffiffiffi
D

p
�
_ζ þ κ2β2HfðϕÞ _ϕ4

M4D3=2 ð3H _ζ − a−2∂2ζ − a−2H∂2ψÞ: ð19Þ
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Interestingly, in the second (momentum) constraint
equation, there are not only terms involving A and _ζ but
also nontrivial terms in ∂2ζ and ∂2ψ , which originate from
the β term. In the usual minimal coupling case where these
terms are absent, one can easily find the simple relations
A ∼ _ζ, ∂2ðζ þHψÞ ∼ _ζ, which, upon substituting into the
action (1), result in a second-order perturbation action that
is homogeneous in the order of derivatives [19]. However,
that is not the case here. It is impossible to cancel those
extra terms, and combining (18) and (19) will give
solutions to A and ∂2ψ , which both inevitably contain
∂2ζ and _ζ, making the perturbed action nonquadratic in the
spatial derivatives. This is due to the fact that our action is
no longer linear in ~X [given in Eq. (2)], or, more essentially,
the extrinsic curvature KijKij − K2, which is related to ~X
through Eq. (11). In the standard case where the action is
linear in KijKij − K2, such as S ∼ϒðKijKij − K2Þ where
ϒ is a space-independent background parameter, variation
of the action with respect to δNi gives rise to
ϒ∇iðKijKij−K2Þ¼ϒðHA− _ζÞ¼0, leading to A ¼ _ζ=H.
However, for a nonlinear action, ϒ also contains space-
dependent terms. Therefore, the second constraint equation
becomes ∇i½ϒðKijKij − K2Þ� ¼ ϒ∇iðKijKij − K2Þþ
ðKijKij − K2Þ∇iϒ ¼ 0, and nontrivial terms from ∇iϒ
appear. That is why we get correction terms such as ∂2ζ
and ∂2ψ which, as will be shown below, will modify the
dispersion relations of the perturbation.
In principle, following the way above, one can construct

even more variants of the DBI action such that the
constraint equations get modified by adding nonlinear
gravitational terms such as Rn, RμνGμν, or R:::

:::R::
:::., etc.

However, as is well known, most of these terms will
introduce higher derivatives in the background equations of
motion (5). As a result, new dynamical degrees of freedom
need to be introduced. In many cases, these higher
derivative terms will lead to ghost instability; however,
in our model, the background equations of motion remain
second order as in the Galileon theories, so there would be
no ghost, which will be shown below (the same argument
has also been presented in [5]).
The constraint perturbation variables A and ∂2ψ can, in

principle, be solved; however, the expressions are compli-
cated and, thus, not useful for our analysis. For illustrative
purposes, we will be content with some limits and consider
only the leading-order terms. First of all, it is quite useful to
define several dimensionless variables, which will bring
convenience to our calculations:

xβ ≡ κ2β _ϕ2

2M2
ffiffiffiffi
D

p ; xα ≡ α _ϕ2

2
ffiffiffiffi
D

p ; y≡ fðϕÞM2
pH2ffiffiffiffi

D
p :

ð20Þ
The positivity of the sound speed for the tensor perturbation
requires 2M2

ffiffiffiffi
D

p
> κ2jβj _ϕ2, which leads to the condition

jxβj < 1. Therefore, we will consider the limit of jxβj ≪ 1
for illustrative purposes. Moreover, jxαj ≪ 1 is also
required by the slow-roll condition. With the help of these
variables, Eqs. (18) and (19) can be approximated as

0≃
�
6H2 −

κ2ð1 −DÞ
fðϕÞD3=2

�
A − 6H _ζ þ 2

a2
∂2ζ þ 2H

a2
∂2ψ ;

ð21Þ

0≃HA − _ζ −
2x2βy

a2H
∂2ζ −

2x2βy

a2
∂2ψ ; ð22Þ

which have the solution

A ≈
_ζ

H
−

4x3βy

a2H2
∂2ζ;

∂2ψ ≈
a2ð1 −DÞ
2D2y

_ζ −
1

H
∂2ζ: ð23Þ

Substituting into the second-order perturbed action, one
finds

Sc2 ≈
1

2κ2

Z
d4xa3

�
6
xβ
D

_ζ2 −
2ϵ

a2
ð∂ζÞ2 þ 16x4βy

a4H2
ð∂2ζÞ2

�
;

ð24Þ

where we have made use of the assumption of H ≫ M and
that the β term dominates over the α term. Note that in order
to get rid of the ghost problem, only xβ > 0 is allowed. This
means that we need a positive coupling constant β in this
new DBI inflation model. Moreover, the action (24) makes
clear that in addition to the normal quadratic terms, there is
also a quartic term ð∂2ζÞ2. This means that in the large k
limit, the dispersion relation will get modified. We will
further discuss this novelty below.
From the action in Eq. (24), one gets the equation of

motion for the curvature perturbation ζ in a canonical form

u00 þ ω2u −
z00

z
u ¼ 0; ð25Þ

where u≡ zζ, z≡ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xβ=D

p
, the prime denotes derivative

with respect to conformal time η≡ R
a−1ðtÞdt, and

ω2 ¼ ϵD
3xβ

k2
�
1þ 24

x5βjyj
ϵ2D2

�
csk
aH

�
2
�
; ð26Þ

with c2s ¼ ϵD=3xβ. We also made use of ∂ → ik to transfer
this equation into the Fourier space.
From Eq. (26), one can see that the fluctuation

modes can be divided into large-scale ones ðk < kcÞ and
small-scale ones ðk > kcÞ by a critical k value

kc ≡ aH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵD=ð8x4βyÞ

q
, where the approximate dispersion

TAOTAO QIU PHYSICAL REVIEW D 93, 123515 (2016)

123515-4



relation approaches ω ∼ k2η and ω ∼ k, respectively. Here
we further made use of the relation aH ∼ −1=η. Since a is
growing with time while the other parameters are nearly
constant, kc is also time growing. Therefore, the wave
number k of those large-scale modes, which is less than kc
at the initial time of inflation, will never exceed kc, and the
k4 term will never enter into the solution. Conversely, for
the small-scale modes with k initially larger than kc, the k4

term can have significant effects at the beginning of
inflation.
Solving Eq. (25), we get

u ¼
ffiffiffiffiffiffiffiffi
πjηjp
2

½Hð1Þ
ν ðωηÞ þHð1Þ

−ν ðωηÞ�; ð27Þ

where Hð1Þ is the type I Hankel function, and we approx-
imately have ν≃ 3

R
ωdη=ð2ωηÞ. For large-scale modes,

we have ν≃ 3=2, while for small-scale modes, one has
ν≃ 3=4. Therefore, for the large-scale modes where the k4

term can be neglected, making use of u ¼ zζ, one gets the
standard solution

ζ ≃ 1ffiffiffiffiffi
2k

p eikη ðsubhorizonÞ ∼ constant;

1

3

Z
Ddt

a3ðtÞxβ
ðsuperhorizonÞ; ð28Þ

where the subhorizon solution is the standard Bunch-
Davies vacuum solution, while in the superhorizon sol-
ution, the first branch is the dominant one. The power
spectrum and spectral index are then

PðlÞ
S ≡ k3

2π2
jζj2 ≃ H2

8π2

ffiffiffiffiffiffiffiffi
3xβ
ϵ3D

r
; ð29Þ

nðlÞS ≡ 1þ d lnPðlÞ
S

d ln k
≃ 1þ 2ϵ −

3

2
ηe þ ι −

3

4
s; ð30Þ

where ηe ≡ _ϵ=Hϵ. The index “ðlÞ” denotes “large scales.”
Together with the tensor spectrum (16), one can also get the
tensor-to-scalar ratio

rðlÞ ≡ PT

PðlÞ
S

≃ 16ϵ

ffiffiffiffiffiffiffi
ϵD
3xβ

s
ð31Þ

in its leading order for large-scale modes.
For the small-scale modes where the k4 term has to be

taken into account, the approximate solution of ζ in the
outside-horizon region is

ζ ≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðk; ηÞp exp

�
i
Z

η
ωðk; η0Þdη0

�

ðsubhorizonÞ ∼H

ffiffiffiffiffiffiffiffiffiffiffiffi
D

6xβω3

s
;

H

ffiffiffiffiffiffiffiffiffi
ω3D
6xβ

s
jηj3 ðsuperhorizonÞ; ð32Þ

where the subhorizon solution reduces to WKB solutions,
which is consistent with Refs. [43,44] (see, also, [45]),
while in the superhorizon solution, the first branch is the
dominant one.
The power spectrum is

PðsÞ
S ≃ H2

8π2

ffiffiffiffiffiffiffiffi
3xβ
ϵ3D

r �
1 − 36

x5βjyj
ϵ2D2

�
csk
aH

�
2
�
; ð33Þ

and the index “ðsÞ” means “small scales.” At the crossing
time when csk≃ aH, the term inside the round brackets
reduces to 1. This shows that due to the k4 term, there is a
deficit at small scales in the power spectrum, which can
cause an additional red tilt of the spectrum, aside from the
one due to the running of the parameters. This is a new
effect of our model.
The spectral index is

nðsÞS ≃ 1þ d lnPðsÞ
S

d ln k
¼ 1þ 2ϵ −

3

2
ηe þ ι −

3

4
sþ Δn; ð34Þ

Δn ¼ −
36x5βjyj=ϵ2D2

1 − 36x5βjyj=ϵ2D2
ð5ϵx þ ϵy − 2η − 2sÞ; ð35Þ

where ϵx ≡ _xβ=Hxβ, ϵy ≡ _y=Hy. One can see that the k4

term only gives rise to a correction of the order of the
slow-roll parameters (or even smaller) to the spectral index,
so approximate scale invariance will not be spoiled. The
reason for this is that the k4 term also depends on a and H
and, furthermore, take the form of k2ðk=aHÞn where n is an
arbitrary integer. Corrections of this form will not alter the
scale invariance of the power spectrum, as has been proven
in the general form in Refs. [43,44].
Finally, the tensor-to-scalar ratio reads

rðsÞ ≡ PT

PðsÞ
S

≃ 16ϵ

ffiffiffiffiffiffiffi
ϵD
3xβ

s �
1þ 36

x5βjyj
ϵ2D2

�
csk
aH

�
2
�

ð36Þ

for small-scale modes.

C. Constraints on parameters

From the results above, it is possible to constrain the
parameters of our model with observational data. In our
model, there are two critical parameters, xβ and y. The first
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one corresponds to the strength of the NKC, while both of
them determine the largeness of the k4 correction.
From the result for the tensor-to-scalar ratio, it is

straightforward to express xβ as

xβ ≃ 8.53 × 10−3 ×

�
ϵ

0.01

�
3
�
0.1
r

�
2

; ð37Þ

which means if future observations confirm that r is of
Oð0.1Þ and the slow-roll parameter ϵ≃ 0.01, then xβ will
be of order 10−2 to 10−3, namely, the same order with ϵ,
which is consistent with our analysis above. Furthermore,
from the small-scale power spectrum, one finds

y≃ ΔPS

PS

�
ϵ

xβ

�
5
�
0.01
ϵ

�
3

× 106; ð38Þ

where ΔPS=PS is the relative difference of the power
spectra due to the corrections. If the future observations can
distinguish different sources for this difference, our model
can be tested. An observation of a steplike variation of the
spectra tends to support our model, where the parameter y
[which is related to the function fðϕÞ in action (1)] can be
determined.

III. CONCLUSION

In this paper, we studied a new DBI inflation model, with
a NKC term under the square root. Being nonlinear in the
action, this term may give us interesting phenomena. On
the background level, this term will contribute to the

effective mass of the inflaton so that the constraint on
the inflaton mass can be relaxed.
On the perturbation level, our results are twofold. On the

one hand, even though the higher-order correction is
presented in the perturbative equation (which is due to
the nonlinearity of the NKC term), the result is not altered
significantly that a nearly scale-invariant power spectrum
could still be obtained. This is because the correction term
is in a special form in which the dependences on k can be
self-canceled. On the other hand, the spectrum shows a
deficit in the spectrum at small scales and gives rise to a red
tilt as a result of the corrections in the equation of motion.
If future observations can distinguish this effect from the
one caused by running of the slow-roll parameters, it may
provide a test of our model. It would also be interesting to
see if our action (1) can be derived from breaking spacetime
symmetries of some higher-dimensional theory [46] in a
similar spirit to how the DBI action arises.

ACKNOWLEDGMENTS

T. Q. thanks Yun-Song Piao and Gary Shiu for useful
discussions. The work of T. Q. is supported in part by
NSFC under Grant No. 11405069, in part by the Open
Project Program of State Key Laboratory of Theoretical
Physics, Institute of Theoretical Physics, Chinese Academy
of Sciences, China (Grant No. Y4KF131CJ1), and in part
by the Open Innovation Fund of Key Laboratory of Quark
and Lepton Physics (MOE), Central China Normal
University (Grant No. QLPL2014P01).

[1] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D 79,
064036 (2009); C. Deffayet, G. Esposito-Farese, and
A. Vikman, Phys. Rev. D 79, 084003 (2009); A. Nicolis,
R. Rattazzi, and E. Trincherini, J. High Energy Phys. 05
(2010) 095; , 11 (2011) 128(E).

[2] C. Deffayet, S. Deser, and G. Esposito-Farese, Phys. Rev. D
80, 064015 (2009); C. Deffayet, X. Gao, D. A. Steer, and G.
Zahariade, Phys. Rev. D 84, 064039 (2011).

[3] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[4] C. Charmousis, E. J. Copeland, A. Padilla, and P. M. Saffin,

Phys. Rev. Lett. 108, 051101 (2012).
[5] S. A. Appleby, A. De Felice, and E. V. Linder, J. Cosmol.

Astropart. Phys. 10 (2012) 060.
[6] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys.

Rev. Lett. 114, 211101 (2015); X. Gao, Phys. Rev. D 90,
081501 (2014).

[7] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, J. Cosmol.
Astropart. Phys. 07 (2015) 017.

[8] S. Ohashi, N. Tanahashi, T. Kobayashi, and M. Yamaguchi,
J. High Energy Phys. 07 (2015) 008.

[9] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Phys. Rev.
Lett. 105, 231302 (2010); T. Kobayashi, M. Yamaguchi, and
J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011).

[10] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman,
J. Cosmol. Astropart. Phys. 10 (2010) 026; O. Pujolas,
I. Sawicki, and A. Vikman, J. High Energy Phys. 11 (2011)
156.

[11] T. Qiu, J. Evslin, Y. F. Cai, M. Li, and X. Zhang, J. Cosmol.
Astropart. Phys. 10 (2011) 036; D. A. Easson, I. Sawicki,
and A. Vikman, J. Cosmol. Astropart. Phys. 11 (2011) 021.

[12] F. Gliozzi, Phys. Rev. D 84, 027702 (2011).
[13] J. Polchinski, String Theory, An Introduction to the Bosonic

String Vol. 1 (Cambridge University Press, Cambridge,
England, 2005).

[14] A. A. Gerasimov and S. L. Shatashvili, J. High Energy Phys.
10 (2000) 034.

[15] D. Kutasov, M. Marino, and G.W. Moore, J. High Energy
Phys. 10 (2000) 045.

[16] D. Kutasov, M. Marino, and G.W. Moore, arXiv:hep-th/
0010108.

TAOTAO QIU PHYSICAL REVIEW D 93, 123515 (2016)

123515-6

http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1007/JHEP05(2010)095
http://dx.doi.org/10.1007/JHEP05(2010)095
http://dx.doi.org/10.1007/JHEP11(2011)128
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.84.064039
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1103/PhysRevLett.108.051101
http://dx.doi.org/10.1088/1475-7516/2012/10/060
http://dx.doi.org/10.1088/1475-7516/2012/10/060
http://dx.doi.org/10.1103/PhysRevLett.114.211101
http://dx.doi.org/10.1103/PhysRevLett.114.211101
http://dx.doi.org/10.1103/PhysRevD.90.081501
http://dx.doi.org/10.1103/PhysRevD.90.081501
http://dx.doi.org/10.1088/1475-7516/2015/07/017
http://dx.doi.org/10.1088/1475-7516/2015/07/017
http://dx.doi.org/10.1007/JHEP07(2015)008
http://dx.doi.org/10.1103/PhysRevLett.105.231302
http://dx.doi.org/10.1103/PhysRevLett.105.231302
http://dx.doi.org/10.1143/PTP.126.511
http://dx.doi.org/10.1088/1475-7516/2010/10/026
http://dx.doi.org/10.1007/JHEP11(2011)156
http://dx.doi.org/10.1007/JHEP11(2011)156
http://dx.doi.org/10.1088/1475-7516/2011/10/036
http://dx.doi.org/10.1088/1475-7516/2011/10/036
http://dx.doi.org/10.1088/1475-7516/2011/11/021
http://dx.doi.org/10.1103/PhysRevD.84.027702
http://dx.doi.org/10.1088/1126-6708/2000/10/034
http://dx.doi.org/10.1088/1126-6708/2000/10/034
http://dx.doi.org/10.1088/1126-6708/2000/10/045
http://dx.doi.org/10.1088/1126-6708/2000/10/045
http://arXiv.org/abs/hep-th/0010108
http://arXiv.org/abs/hep-th/0010108


[17] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505
(2004).

[18] M. Alishahiha, E. Silverstein, and D. Tong, Phys. Rev. D 70,
123505 (2004).

[19] X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, J. Cosmol.
Astropart. Phys. 01 (2007) 002.

[20] X. Chen, M. x. Huang, and G. Shiu, Phys. Rev. D 74,
121301 (2006).

[21] X. Chen, B. Hu, M. x. Huang, G. Shiu, and Y. Wang,
J. Cosmol. Astropart. Phys. 08 (2009) 008.

[22] P. A. R. Ade et al. (Planck Collaboration), arXiv:1502.02114;
arXiv:1502.01592.

[23] X. Chen, Phys. Rev. D 71, 063506 (2005); J. High Energy
Phys. 08 (2005) 045.

[24] S. Kecskemeti, J. Maiden, G. Shiu, and B. Underwood,
J. High Energy Phys. 09 (2006) 076.

[25] G. Shiu and B. Underwood, Phys. Rev. Lett. 98, 051301
(2007).

[26] M. x. Huang, G. Shiu, and B. Underwood, Phys. Rev. D 77,
023511 (2008); Y. F. Cai andW. Xue, Phys. Lett. B 680, 395
(2009).

[27] C. P. Bachas, P. Bain, and M. B. Green, J. High Energy
Phys. 05 (1999) 011.

[28] N. Wyllard, Nucl. Phys. B598, 247 (2001).
[29] A. Fotopoulos, J. High Energy Phys. 09 (2001) 005.
[30] N. Wyllard, J. High Energy Phys. 08 (2001) 027.
[31] D. Junghans and G. Shiu, J. High Energy Phys. 03 (2015)

107.
[32] A. S. Eddington, The Mathematical Theory of Relativity

(Cambridge University Press, Cambridge, England, 1924).
[33] S. Deser and G.W. Gibbons, Classical Quantum Gravity 15,

L35 (1998).

[34] M. Banados and P. G. Ferreira, Phys. Rev. Lett. 105, 011101
(2010); 113, 119901 (2014).

[35] L. Amendola, Phys. Lett. B 301, 175 (1993).
[36] S. Capozziello, G. Lambiase, and H. J. Schmidt, Ann. Phys.

(Berlin) 9, 39 (2000); C. Germani and A. Kehagias, Phys.
Rev. Lett. 105, 011302 (2010); 106, 161302 (2011); C.
Germani and Y. Watanabe, J. Cosmol. Astropart. Phys. 07
(2011) 031; 07 (2011) A01; N. Yang, Q. Gao, and Y. Gong,
arXiv:1504.05839.

[37] S. Capozziello and G. Lambiase, Gen. Relativ. Gravit. 31,
1005 (1999).

[38] S. Chen and J. Jing, Phys. Lett. B 691, 254 (2010); K. Lin,
J. Li, and N. Yang, Gen. Relativ. Gravit. 43, 1889 (2011);
J. Li and Y. Zhong, Int. J. Theor. Phys. 51, 2585 (2012).

[39] C. de Rham and L. Heisenberg, Phys. Rev. D 84, 043503
(2011); L. Heisenberg, R. Kimura, and K. Yamamoto, Phys.
Rev. D 89, 103008 (2014).

[40] A. Banijamali and B. Fazlpour, J. Cosmol. Astropart. Phys.
01 (2012) 039.

[41] K. Feng, T. Qiu, and Y.-S. Piao, Phys. Lett. B 729, 99
(2014); K. Feng and T. Qiu, Phys. Rev. D 90, 123508
(2014).

[42] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984), p. 491.

[43] Y. F. Cai and X. Zhang, Phys. Rev. D 80, 043520 (2009).
[44] Y. Lu and Y. S. Piao, Int. J. Mod. Phys. D 19, 1905 (2010).
[45] A. De Felice and S. Tsujikawa, Phys. Rev. D 91, 103506

(2015); T. Fujita, X. Gao, and J. Yokoyama, J. Cosmol.
Astropart. Phys. 02 (2016) 014; Y. Akita and T. Kobayashi,
Phys. Rev. D 93, 043519 (2016).

[46] Y. Hidaka, T. Noumi, and G. Shiu, Phys. Rev. D 92, 045020
(2015).

DIRAC-BORN-INFELD INFLATION MODEL WITH … PHYSICAL REVIEW D 93, 123515 (2016)

123515-7

http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.70.103505
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://dx.doi.org/10.1088/1475-7516/2007/01/002
http://dx.doi.org/10.1088/1475-7516/2007/01/002
http://dx.doi.org/10.1103/PhysRevD.74.121301
http://dx.doi.org/10.1103/PhysRevD.74.121301
http://dx.doi.org/10.1088/1475-7516/2009/08/008
http://arXiv.org/abs/1502.02114
http://arXiv.org/abs/1502.01592
http://dx.doi.org/10.1103/PhysRevD.71.063506
http://dx.doi.org/10.1088/1126-6708/2005/08/045
http://dx.doi.org/10.1088/1126-6708/2005/08/045
http://dx.doi.org/10.1088/1126-6708/2006/09/076
http://dx.doi.org/10.1103/PhysRevLett.98.051301
http://dx.doi.org/10.1103/PhysRevLett.98.051301
http://dx.doi.org/10.1103/PhysRevD.77.023511
http://dx.doi.org/10.1103/PhysRevD.77.023511
http://dx.doi.org/10.1016/j.physletb.2009.09.043
http://dx.doi.org/10.1016/j.physletb.2009.09.043
http://dx.doi.org/10.1088/1126-6708/1999/05/011
http://dx.doi.org/10.1088/1126-6708/1999/05/011
http://dx.doi.org/10.1016/S0550-3213(00)00780-X
http://dx.doi.org/10.1088/1126-6708/2001/09/005
http://dx.doi.org/10.1088/1126-6708/2001/08/027
http://dx.doi.org/10.1007/JHEP03(2015)107
http://dx.doi.org/10.1007/JHEP03(2015)107
http://dx.doi.org/10.1088/0264-9381/15/5/001
http://dx.doi.org/10.1088/0264-9381/15/5/001
http://dx.doi.org/10.1103/PhysRevLett.105.011101
http://dx.doi.org/10.1103/PhysRevLett.105.011101
http://dx.doi.org/10.1103/PhysRevLett.113.119901
http://dx.doi.org/10.1016/0370-2693(93)90685-B
http://dx.doi.org/10.1002/(SICI)1521-3889(200001)9:1%3C39::AID-ANDP39%3E3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1521-3889(200001)9:1%3C39::AID-ANDP39%3E3.0.CO;2-4
http://dx.doi.org/10.1103/PhysRevLett.105.011302
http://dx.doi.org/10.1103/PhysRevLett.105.011302
http://dx.doi.org/10.1103/PhysRevLett.106.161302
http://dx.doi.org/10.1088/1475-7516/2011/07/031
http://dx.doi.org/10.1088/1475-7516/2011/07/031
http://dx.doi.org/
http://arXiv.org/abs/1504.05839
http://dx.doi.org/10.1023/A:1026631531309
http://dx.doi.org/10.1023/A:1026631531309
http://dx.doi.org/10.1016/j.physletb.2010.06.041
http://dx.doi.org/10.1007/s10714-011-1162-1
http://dx.doi.org/10.1007/s10773-012-1138-2
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1103/PhysRevD.84.043503
http://dx.doi.org/10.1103/PhysRevD.89.103008
http://dx.doi.org/10.1103/PhysRevD.89.103008
http://dx.doi.org/10.1088/1475-7516/2012/01/039
http://dx.doi.org/10.1088/1475-7516/2012/01/039
http://dx.doi.org/10.1016/j.physletb.2014.01.008
http://dx.doi.org/10.1016/j.physletb.2014.01.008
http://dx.doi.org/10.1103/PhysRevD.90.123508
http://dx.doi.org/10.1103/PhysRevD.90.123508
http://dx.doi.org/10.1103/PhysRevD.80.043520
http://dx.doi.org/10.1142/S0218271810018074
http://dx.doi.org/10.1103/PhysRevD.91.103506
http://dx.doi.org/10.1103/PhysRevD.91.103506
http://dx.doi.org/10.1088/1475-7516/2016/02/014
http://dx.doi.org/10.1088/1475-7516/2016/02/014
http://dx.doi.org/10.1103/PhysRevD.93.043519
http://dx.doi.org/10.1103/PhysRevD.92.045020
http://dx.doi.org/10.1103/PhysRevD.92.045020

