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We study the degree to which the cosmic microwave background (CMB) can be used to constrain
primordial non-Gaussianity involving one tensor and two scalar fluctuations, focusing on the correlation of
one polarization Bmode with two temperature modes. In the simplest models of inflation, the tensor-scalar-
scalar primordial bispectrum is nonvanishing and is of the same order in slow-roll parameters as the scalar-
scalar-scalar bispectrum. We calculate the hBTTi correlation arising from a primordial tensor-scalar-scalar
bispectrum, and show that constraints from an experiment like CMB-Stage IV using this observable are
more than an order of magnitude better than those on the same primordial coupling obtained from
temperature measurements alone. We argue that B-mode non-Gaussianity opens up an as-yet-unexplored
window into the early Universe, demonstrating that significant information on primordial physics remains
to be harvested from CMB anisotropies.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) and large-scale structure have in recent years
greatly advanced our understanding of the contents and
history of the Universe. Current observational data fit well
with the concordance six-parameter ΛCDM model [1].
While the excellent agreement between the model and the
data is undoubtedly a triumph of modern cosmology, our
understanding of the Universe’s initial conditions remains
limited, and it is crucial to explore new observational
probes that can deepen our understanding of the underlying
physics.
Within the concordance model, the initial fluctuations

are fully accounted for by primordial density fluctuations,
which are purely Gaussian, adiabatic, and nearly scale
invariant, and can be described by just two parameters, the
amplitude As and the scalar spectral index ns. A very wide
class of early-Universe models are capable of accounting
for such primordial fluctuations, and therefore these two
parameters alone are not greatly informative. A great
deal of effort has therefore been devoted to searching
for signatures of deviations from this simple picture.
Even in the absence of a detected deviation from the
concordance model, upper limits on various observables
greatly help to discriminate among early-Universe mod-
els. Particularly interesting observables in this regard
include nonadiabaticity [2], running of the scalar spectral
index [3–6], primordial tensor fluctuations [7–10], and
non-Gaussianity [11–13].

The CMB contains cosmological information both in its
temperature and linear polarization. The polarization field
can be separated into E-modes and B-modes which have
opposite intrinsic parity. Primordial scalar fluctuations
source temperature fluctuations and E-mode polarization,
while primordial tensors source T, E, and B fluctuations
[7–10].
The CMB temperature power spectrum has recently been

measured to cosmic-variance limits up to multipole l ≈
2000 using data from the Planck satellite [2]. Due to the
diffusion damping of fluctuations on smaller scales, we do
not expect that lower-noise observations of the CMB will
provide significantly more cosmological information from
temperature fluctuations. There is some additional infor-
mation which can be gained from lower-noise measure-
ments of E-mode polarization of the CMB, though
temperature and E-mode fluctuations are sourced by nearly
the same cosmological modes, and therefore constraints on
observables like non-Gaussianity and the running of the
spectral index will not significantly improve on the current
status with CMB measurements alone [14]. Alternatively,
large-scale-structure observations can provide additional
cosmological information which could eventually lead to a
detection of non-Gaussianity or running [13]. This will
require, however, overcoming significant challenges in the
modeling of nonlinearities [13,15,16], biasing [17,18],
and complex astrophysical processes [19–23]. Another
potential avenue for measurements of primordial non-
Gaussianities is the tomographic mapping of neutral hydro-
gen at high redshift with the 21-cm line [24–26]. This will
require overcoming daunting observational challenges
[27–29], as well as a detailed modeling of the intrinsic
nonlinearities of 21-cm fluctuations [26]. Finally, spatial
fluctuations of CMB spectral distortions can also be used to
probe primordial non-Gaussianities [30–32].

*meerburg@cita.utoronto.ca
†jmeyers@cita.utoronto.ca
‡engelen@cita.utoronto.ca
§yacine@jhu.edu

PHYSICAL REVIEW D 93, 123511 (2016)

2470-0010=2016=93(12)=123511(13) 123511-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.123511
http://dx.doi.org/10.1103/PhysRevD.93.123511
http://dx.doi.org/10.1103/PhysRevD.93.123511
http://dx.doi.org/10.1103/PhysRevD.93.123511


Until recently, the best constraint on primordial tensor
fluctuations was derived from the measurement of the
CMB temperature power spectrum [33,34]. Unfortunately,
on large angular scales where the tensor contribution to the
temperature power spectrum is most significant, the scalar
contribution to the temperature power spectrum is much
larger, and constraints on tensor fluctuations from temper-
ature measurements alone are hindered by the relatively
large cosmic variance of the temperature fluctuations.
Ongoing and future observations of the CMB will

drastically improve the constraints on primordial tensor
fluctuations by searching for B-mode polarization on large
angular scales. Several such experiments are currently
under way, with the most recent constraints coming from
the BICEP/Keck experiment [35]. The biggest astrophysi-
cal obstacles in constraining the primordial signal are the
contributions from dust [36,37] and lensing of E-modes to
B-modes [38]. For the former, we will have to rely on
multifrequency information to separate the dust component
from the primordial signal. For the latter, delensing will
become crucial for removing lens-induced fluctuations and
requires a high-fidelity lensing map [39].
While the usual searches for non-Gaussianity focus on the

N-point statistics of scalar fluctuations, in this paper wewill
discuss the relatively unexplored observational signatures of
non-Gaussian correlations involving tensor fluctuations.
Since tensor fluctuations source T, E, and B fluctuations,
observational searches for bispectra constructed from T and
E fluctuations naturally place constraints on both scalar and
tensor non-Gaussianity. Just as in the case of the power
spectrum, the contributions to T and E fluctuations from
scalars are much larger than those of tensors, and so
constraints on tensor non-Gaussianity with these bispectra
are relatively weak. On the other hand, bispectra involving
primordial B-mode fluctuations are sourced by tensor non-
Gaussianity but not by scalar non-Gaussianity, and are
therefore capable of providing a much tighter constraint
on tensor non-Gaussianity. Since observations of B-modes
are not presently cosmic-variance limited, there is a great
deal of room for improvement with future observations of
the CMB polarization. This reasoning strongly motivates
searching for bispectra involving primordial B-modes as a
probe of primordial non-Gaussianity. In this paper, we
explore in detail how the hBTTi bispectrum can be used
to constrain tensor non-Gaussianity and thereby give us
insight into the physics of the early Universe.

The primordial tensor-scalar-scalar bispectrum is
naturally nonvanishing, and in fact is of the same order
in slow-roll parameters as the primordial scalar-
scalar-scalar bispectrum in the simplest models of
single-field slow-roll inflation [40,41]. In more general
models, the shape and amplitude of the tensor-scalar-scalar
bispectrum can differ quite significantly from those pre-
dicted in the simplest models, so observational constraints
on this quantity give nontrivial insight into the physics of
the early Universe [42]. The primordial tensor-tensor-scalar
and tensor-tensor-tensor bispectra are also nonvanishing in
single-field slow-roll inflation, as well as in more general
models [40–43]. Primordial non-Gaussianity involving
tensors provides a set of observables which are distinct
from and complementary to scalar non-Gaussianity. Also,
just as in the case of scalars [14], there is in principle much
more information in tensor non-Gaussianity than in the
tensor power spectrum alone.
Despite the differing intrinsic parity of temperature

fluctuations and B-modes, the hBTTi bispectrum is non-
vanishing for particular combinations of multipoles. To be
more specific, under spatial inversion the multipole coef-
ficients for T, E, and B transform as [44]

aTlm → ð−1ÞlaTlm;
aElm → ð−1ÞlaElm;
aBlm → ð−1Þlþ1aBlm:

These properties along with statistical isotropy imply that
haBlmaTl0m0 i ¼ haBlmaEl0m0 i ¼ 0 in a parity-conserving uni-
verse since these quantities change sign under spatial
inversion. On the other hand, we find that under spatial
inversion, the bispectrum of interest transforms as

haTl1m1
aTl2m2

aBl3m3
i → ð−1Þl1þl2þl3þ1haTl1m1

aTl2m2
aBl3m3

i;

which therefore must vanish in a parity-conserving uni-
verse for

P
nln ¼ even but not for

P
nln ¼ odd (see

Table I).
The above remarks straightforwardly generalize to all

forms of non-Gaussianity. In a parity-conserving and
statistically isotropic universe, any connected N-point
function constructed from T, E, and B fluctuations con-
taining an odd number of B-mode fluctuations vanishes forP

nln ¼ even but not for
P

nln ¼ odd, while those

TABLE I. Properties of full-sky and flat-sky three-point functions in a parity-conserving universe. The first column contains three-
point functions studied in the standard analysis. The second column (and in particular hBTTi) is the focus of this work. There are
additional nonvanishing three-point functions when parity conservation is violated which are studied e.g. in Refs. [45,46].

Full-sky
P

nln ¼ even
P

nln ¼ odd

Flat-sky Left-handed ¼ right-handed Left-handed ¼ ð−Þright-handed
Nonvanishing hTTTi, hTEEi, hTTEi, hBTTi, hBEEi,
In parity-conserving universe hEEEi, hBBEi, hBBTi hBETi, hBBBi
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containing an even number of B-mode fluctuations vanish
for

P
nln ¼ odd but not for

P
nln ¼ even. The case of

N ¼ 2 is special since statistical isotropy always implies
that l1 þ l2 ¼ even for two-point statistics.
Let us briefly summarize our motivations. Non-Gaussian

CMB statistics involving B-mode fluctuations are non-
vanishing under standard assumptions about the properties
of our Universe. Existing data can be used to place new
constraints on these quantities. Present measurements of
B-modes are not cosmic-variance limited, so upcoming
lower-noise CMB polarization data will drastically improve
upon our current capabilities in this regard. Measurements
of these statistics can provide nontrivial constraints on
primordial non-Gaussianity involving tensor fluctuations.
Primordial tensor non-Gaussianity is in general indepen-
dent of primordial scalar non-Gaussianity and is therefore a
complementary probe of early-Universe physics.
The goal of this paper is to explore the potential of the

hBTTi bispectrum as a probe of the primordial Universe. In
Sec. II we discuss the geometric properties of the hBTTi
bispectrum. In Sec. III we review the predictions of single-
field slow-roll inflation for the primordial tensor-scalar-
scalar bispectrum and discuss its properties. We construct
the hBTTi bispectrum in the flat-sky limit in Sec. IV. We
then forecast constraints on this observable in Sec. V for
current and future experiments. We discuss the implications
and future extensions of our work in Sec. VI.

II. GEOMETRIC PROPERTIES OF
THE hBTTi BISPECTRUM

In this section we outline the general geometric proper-
ties of the hBTTi correlation function in the flat-sky
approximation. We start by considering properties of
correlation functions involving the polarization tensor Pab.

A. Correlation functions involving the
polarization tensor Pab

Let us first consider the correlation function
hTðx1ÞPabðx2Þi. Statistical homogeneity implies that this
can only be a function of x12 ≡ x1 − x2. Since Pab is a
symmetric, trace-free tensor, so must be this correlation
function, which must therefore take the form

hTðx1ÞPabðx2Þi ¼ Fðx12Þ½2x̂a12x̂b12 − δab�; ð1Þ

where F only depends on the magnitude of x12 by statistical
isotropy. Using this result, we can easily show that the
correlation function in multipole space is of the form

hTðlÞPabðl0Þi ¼ δð2Þðlþ l0ÞGðlÞ½2l̂al̂b − δab�: ð2Þ

Similarly, one can show that statistical homogeneity
and isotropy imply that the three-point function
hTðl1ÞTðl2ÞPabðl3Þi takes the form

hTðl1ÞTðl2ÞPabðl3Þi

¼ δð2Þðl1 þ l2 þ l3Þ
X3
i≤j¼1

Gijðl1;l2;l3Þ

× ½l̂a
i l̂

b
j þ l̂a

j l̂
b
i − ðl̂i · l̂jÞδab�; ð3Þ

where we also used the fact that Pab is symmetric and
trace-free. The symmetry of the three-point function
under interchange of l1 and l2 moreover imposes
G22ðl1;l2;l3Þ ¼ G11ðl2;l1;l3Þ and G23ðl1;l2;l3Þ ¼
G13ðl2;l1;l3Þ.
We emphasize that an implicit underlying assumption to

derive these general results is that the physics governing
temperature and polarization fluctuations is parity conserv-
ing, both at the level of initial conditions and for their
subsequent evolution. Explicitly, this implies that the
antisymmetric Levi-Cività tensor ϵ cannot appear in any
of the above correlation functions.

B. Implications for E- and B-modes

We recall that in the flat-sky limit, the E- and B-mode
decomposition of the polarization tensor field Pab is
obtained as follows [47]:

∇2E≡ ∂a∂bPab; ð4Þ

∇2B≡ ϵac∂c∂bPab; ð5Þ

where repeated indices are summed. While E is a scalar
quantity, B is a pseudoscalar, or parity-odd observable: its
sign depends on the chosen handedness of the coordinate
system. In multipole space, we have

EðlÞ≡ l̂al̂bPabðlÞ; ð6Þ

BðlÞ≡ ϵacl̂
cl̂bPabðlÞ: ð7Þ

Using these equations in Eq. (2), we obtain

hTðlÞEðl0Þi ¼ δð2Þðlþ l0ÞGðlÞ; ð8Þ

hTðlÞBðl0Þi ¼ 0; ð9Þ

where the vanishing of the hBTi correlation results from the
antisymmetry of ϵ.
Substituting Eq. (6) into Eq. (3), we see that

hTðl1ÞTðl2ÞEðl3Þi only depends on the magnitudes li
and on the scalar products among the three multipoles. The
triangle condition l1 þ l2 þ l3 ¼ 0 implies that the scalar
product of any two multipoles can be rewritten as a function
of the magnitudes only. We therefore obtain

hTðl1ÞTðl2ÞEðl3Þi0 ¼ Gðl1;l2;l3Þ; ð10Þ
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where the prime indicates that we divided by δð2ÞðPliÞ
and G is some function of the magnitudes li, symmetric
under exchange of l1;l2.
Substituting Eq. (7) into Eq. (3), we see that some of the

terms vanish (e.g. the G33 term), but not all of them. The
final form of the hBTTi correlation function is

hTðl1ÞTðl2ÞBðl3Þi0 ¼ ðl̂1 × l̂3ÞHðl1;l2;l3Þ
þ ðl̂2 × l̂3ÞHðl2;l1;l3Þ; ð11Þ

where l̂1 × l̂3 ≡ ϵacl̂
a
1l̂

c
3.

Geometrically, this can be understood as follows.
Consider two triangles in multipole space that are mirror
images of each other in the way shown in Fig. 1. The
magnitudes of all wave numbers are identical (hence
the scalar products between any two of them). However,
the cross products l̂1 × l̂3 and l̂2 × l̂3 take on opposite
signs on the two triangles. This implies that the values of the
three-point function hETTi are identical in both triangles,
whereas hBTTi has the same absolute value but takes a
different sign in the two mirrored triangles. A violation of
these symmetry properties would be an indicator for parity-
violating physics [48].
Finally, we note an analogy with gravitational lensing

reconstruction. One could use a cross product of the CMB
temperature gradient with itself, ð∇TÞ × ð∇TÞ, to recon-
struct the “curl” portion of deflection of CMB photons that
would arise, e.g., from tensor fluctuations out to the
recombination surface [49]. This map would be an estimate
of a field with odd parity, and could be cross-correlated
with a map of B-mode polarization, which also has odd
parity, giving a nonzero result for a universe containing
primordial tensors.

III. PRIMORDIAL BISPECTRUM

In this section, we will discuss the properties of the
primordial tensor-scalar-scalar bispectrum predicted in
single-field slow-roll inflation, which were first obtained
in Ref. [40]. This model provides an example of tensor non-
Gaussianity in the simplest of inflationary models, which

we will use to motivate a template to compute the hBTTi
bispectrum. For more general models, the primordial
bispectrum will differ from the results presented here,
and modifications should be made to the template to
address these changes.
Following the work by Maldacena [40], for inflation

driven by a single slowly rolling scalar field, the primordial
bispectrum of two scalar fluctuations and one tensor
fluctuation is given by

hζðk1Þζðk2Þh�ðk3Þi ¼ ð2πÞ3F00�2ðk1; k2; k3Þ
× δð3Þðk1 þ k2 þ k3Þ; ð12Þ

where we have defined

F00�2ðk1; k2; k3Þ≡ H4�
4M4

plϵ�
Iðk1; k2; k3Þe∓abðk3Þka1kb2; ð13Þ

where H� and ϵ� are, respectively, the Hubble rate and first
slow-roll parameter during inflation, and

Iðk1;k2;k3Þ

≡ 1

k31k
3
2k

3
3

�
−ktþ

k1k2þk2k3þk1k3
kt

þk1k2k3
k2t

�
: ð14Þ

Let us now examine the transverse traceless polariza-
tion tensor e�ab more closely. It is defined such that
eλabðk̂Þeλ

0
abð−k̂Þ¼ 2δλλ0 , and when k̂ points in the z-direction,

it is given by

e�abðẑÞ ¼
1ffiffiffi
2

p

0
B@

1 �i 0

�i −1 0

0 0 0

1
CA: ð15Þ

We write k̂i ¼ ðsinΘi cosϕi; sinΘi sinϕi; cosΘiÞ for
i ¼ 1, 2, with 0 ≤ Θi ≤ π and 0 ≤ ϕi ≤ 2π. The triangle
constraint k1 þ k2 þ k3 ¼ 0 imposes ϕ1 ¼ ϕ2 ≡ ϕ, while
Θ1 and Θ2 are related through

sinΘ2 ¼ −
k1
k2

sinΘ1: ð16Þ

We then find

eð∓Þ
ab ðkÞk̂a1 k̂b2 ¼ −

sinΘ1 sinΘ2ffiffiffi
2

p e∓2iϕ

¼ −
k1
k2

ðsinΘ1Þ2ffiffiffi
2

p e∓2iϕ: ð17Þ

We show F00þ2ðk1; k2; k3Þk21k22k23 for ϕ ¼ 0 in Fig. 2. The
tensor-scalar-scalar bispectrum has two different squeezed
limits: one in which the wave number of the tensor is much
smaller than those of the scalars (kh ≪ kζ1 ∼ kζ2), and
another in which the wave number of one of the two scalars
is much smaller than those of the other scalar and of the

FIG. 1. Two triangles in multipole space that are mirrored
images of one another. The three-point function hETTi takes the
same value on both configurations, whereas hBTTi changes sign.
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tensor (kζ2 ≪ kh ∼ kζ1). In the former case, if the scalar
wave numbers are perpendicular to the tensor wave number
the bispectrum is enhanced. Conversely, with the enfolded
limit, when both scalar wave numbers are roughly aligned
with the tensor wave number, the bispectrum is suppressed
by the polarization sum.
We propose a reference definition of the primordial

tensor-scalar-scalar bispectrum of the form

hζðk1Þζðk2Þh�ðk3Þi ¼ ð2πÞ316π4A2
s

ffiffiffi
r

p
fhζζNL δ

ð3Þ
�X3

n¼1

kn

�

× Iðk1; k2; k3Þe∓abðk3Þka1kb2; ð18Þ

with Iðk; k; kÞ ∝ k−8 in a scale-invariant universe. For
single-field slow-roll inflation, Iðk1;k2;k3Þ¼ Iðk1;k2;k3Þ
and fhζζNL ¼ ffiffiffi

r
p

=16, but these quantities will differ in more
general models.
In the squeezed limit where the tensor wave number is

much smaller than the wave numbers of the scalars, the
properties of the bispectrum in single-field slow-roll infla-
tion are entirely determined by the fact that the long-
wavelength tensor fluctuation is locally equivalent to an
anisotropic rescaling of coordinates [40,50]. Similar to
the case of scalar non-Gaussianity, this implies that there
exists no locally observable mode coupling between long-
wavelength tensors and short-wavelength scalar fluctuations
in single-field inflation [51,52]. This tensor consistency
condition applies more broadly than themore familiar scalar
consistency condition, since the same logic will apply to any
scalar field minimally coupled to gravity, whether or not its
energy density drives inflation [41,42]. For this reason, if
single-field slow-roll inflation or something similar is
responsible for the primordial fluctuations we observe,
we are unlikely to gain much insight into the physics from
the squeezed limit of the tensor-scalar-scalar bispectrum, but

it remains interesting to search for deviations from the
predictions of the simplest models. Despite these subtleties
regarding the squeezed limit, in what follows we will take
Eq. (14) as our primordial template.

A. On the normalization of f hζζNL

In the above we define fhζζNL ∼ hhζζi=hζζi3=2hhhi1=2.
Other choices can be found in the literature, but can all
be related to one another via a simple calculation. Our
reasoning for the definition above is twofold. First, from a
primordial perspective, naively we would expect the
amplitude of the non-Gaussian signal to be proportional
to

ffiffiffi
r

p
given the presence of a single h. Secondly, in this

way the measured bispectrum and it amplitude will behave
similar to the amplitude of the tensor power spectrum when
measured in the cosmic-variance limit. Using hBTTi as our
measure, the variance σBTT ∝

ffiffiffi
r

p
in this limit. Therefore

σðfhζζNL Þ will be constant in the cosmic-variance limit and
only change as a function of lmax, the maximum number of
observed modes on the sky.

IV. hBTTi IN THE FLAT-SKY LIMIT

The full-sky CMBhBTTi bispectrum has been worked
out before in Refs. [53–55] and using total angular
momentum spherical harmonics in Ref. [56]. However,
both results lead to expressions that are not very transparent
regarding the symmetries of this correlation function. Here
instead, we derive the spectrum in the flat-sky approxima-
tion where these symmetries, which we derived in Sec. II,
are immediately apparent. The results presented here are
accurate as long as we restrict ourselves to scales l≳ 10.
For the computation of the signal-to-noise ratio in the next
section, we will use this approximate form, which should
provide reasonably accurate results since our forecasts
focus on experiments that will most likely not be able to

FIG. 2. Two unique slices showing the primordial tensor-scalar-scalar bispectrum from single-field slow-roll inflation with k3
representing the wave vector of the tensor. Left: The bispectrum is enhanced when k3 ≪ k1 ∼ k2 (top left corner). The enfolded limit, i.e.
k1 þ k2 ¼ k3 (bottom left edge), is suppressed, since then all momenta are aligned. Right: When one or both scalar momenta k1 and k2
are aligned with the tensor momentum k3 (bottom left edge) the spectrum is suppressed as compared to the equilateral
configuration (top right).
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map out the lowest multipoles. The flat-sky definition of
the bispectrum takes the form [57]

haTðl1ÞaTðl2ÞaBðl3Þi ¼ ð2πÞ2δð2Þ
�X

li

�
BTTB
l1l2l3

:

ð19Þ
In the flat-sky approximation the temperature fluctuation

arising from primordial scalar perturbations is given by
[53–55]

aζTðlÞ ¼
Z

τ0

0

dτ
Z

d3k
ð2πÞ3 ζðkÞe

−ikzD

× SζTðk; τÞð2πÞ2δð2Þðk∥D − lÞ; ð20Þ
where τ is the conformal time, τ0 is its value today,
D≡ τ0 − τ, k∥ is the component of k parallel to the plane
of the sky, kz its projection along the line of sight,
and SζTðk; τÞ is the scalar temperature source function.
The B-mode fluctuation arising from primordial tensor
perturbations is given by [53–55]

ahBðlÞ ¼
Z

τ0

0

dτ
Z

d3k
ð2πÞ3

X
�

� h�ðkÞe−ikzD

× 2i
kz

k
ShPðk; τÞð2πÞ2δð2Þðk∥D − lÞ; ð21Þ

where ShPðk; τÞ is the tensor polarization source function.
After some algebra, using Eqs. (19), (20) and (21) and

using the primordial input spectrum Eq. (18) and applying
the thin-shell approximation [57] we obtain (see the
Appendix)

BTTB
l1l2l3

¼ 16π2A2
s

ffiffiffi
r

p
fhζζNL ðl1 × l3Þ

×
ZZ

dkz1dk
z
2IðkR1 ; kR2 ; kR3 Þ

× Δζ
Tðkz1;l1ÞΔζ

Tðkz2;l1ÞΔh
Pðkz3;l3Þ

×

ffiffiffi
2

p
kz3

kR3l
2
3

½kz1ðl2 · l3Þ − kz2ðl1 · l3Þ�; ð22Þ

where the integrals over kz1; k
z
2 run from −∞ to þ∞,

kz3 ≡ −ðkz1 þ kz2Þ, and kRi ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkzi Þ2 þ ðli=DRÞ2

p
, with

DR ¼ τ0 − τR, where τR is the conformal time at the peak
of the CMB visibility function, and, for X ¼ T, P and
s ¼ ζ, h,

Δs
Xðkzi ;liÞ≡

Z
τ0

0

dτ
D2

SsXðkRi Þe−ikiz ~D; ð23Þ

with ~D ¼ τ − τR. Equation (22) clearly takes the general
form of Eq. (11), and as a consequence has the symmetry
properties discussed in Sec. II.
We show BTTB

l1l2l3
for several slices in Fig. 3. While we

have chosen a particular template for the presentation here,
we emphasize that in principle forecasted bounds on fhζζNL
can be obtained for any model that predicts the coupling
of two scalars and a tensor by using the appropriate
k-dependent shape Iðk1; k2; k3Þ. In this paper we will use
the shape of Eq. (14) as an example, but will not assume a
specific amplitude for fhζζNL unless stated otherwise.

V. CMB FORECASTS

In this section, we forecast the CMB constraints on
primordial tensor-scalar-scalar non-Gaussianity which can
be obtained from the hBTTi bispectrum. Our analysis
does not include possible contributions to the observed
hBTTi bispectrum from lensing, foregrounds, or systematic
effects. We also neglect late-time effects, analogous to
those that are known to produce hTTTi correlations at the
level of fNL ∼ 1 even for purely Gaussian initial conditions
[51,52,58,59]. We leave the computation of these contri-
butions to future work.

A. Qualitative considerations

Before we compute the signal-to-noise ratio, let us make
some qualitative estimates. The temperature fluctuation is
mostly sourced by primordial scalar fluctuations, while
the B-mode polarization is sourced by primordial tensor
fluctuations:

FIG. 3. The hBTTi bispectrum in the fly-sky limit computed from Eq. (22) normalized using the analytical form of the local hTTTi
bispectrum. We see explicitly that the hBTTi bispectrum changes sign under the interchange of the two T multipoles l1 and l2 and
vanishes when l1 ¼ l2. The overall amplitude of hBTTi for our chosen template is almost three orders of magnitude smaller than the
local template hTTTi bispectrum from scalars.
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T ∼ STζ; ð24Þ

B ∼ SBh: ð25Þ

The hBTTi and hTTTi three-point functions therefore have
the following ratio:

hBTTi
hTTTi ∼

SB
ST

hhζζi
hζζζi : ð26Þ

We assume that the temperature fluctuation is measured up
to cosmic variance, implying σ2T ¼ σ2T;cv ∼ S2Thζ2i. In con-
trast, accounting for instrumental noise, the variance of the
B-mode fluctuation is

σ2B ∼ S2Bhh2i
�
1þ σ2B;inst

σ2B;cv

�
; ð27Þ

where σ2B;cv ∼ S2Bhh2i is the cosmic variance of the pri-
mordial B-modes and σ2B;inst is the instrumental noise (and
in practice also contains residual B-modes from lensing and
foregrounds). As a consequence, the ratio of the variance of
the hBTTi estimator to that of the hTTTi estimator is

σ2BTT
σ2TTT

∼
σ2Bðσ2TÞ2
ðσ2TÞ3

∼
σ2B
σ2T

∼
�
1þ σ2B;inst

σ2B;cv

�
S2B
S2T

× r; ð28Þ

where r≡ hh2i=hζ2i is the tensor-to-scalar ratio. The ratio
of the signal-to-noise ratio for the hBTTi estimator to that
of the hTTTi estimator is therefore

ðS=NÞ2BTT
ðS=NÞ2TTT

∼
1

r

σ2B;cv
σ2B;cv þ σ2B;inst

�hhζζi
hζζζi

�
2

: ð29Þ

Now, while hh2i=hζ2i ¼ r ≪ 1, the ratio of the three-point
functions hhζζi=hζζζi is of order Oðε0Þ in single-field
slow-roll inflation (and not of order

ffiffiffi
ε

p
as one might

naively expect). We therefore see that in the limit that
the instrumental noise for B is subdominant to cosmic
variance (σ2B;inst ≪ σ2B;cv), the expected signal-to-noise ratio
of hBTTi is larger than that of hTTTi by a factor
1=

ffiffiffi
r

p
≫ 1. In the other limit σ2B;inst ≫ σ2B;cv, this ratio

saturates to a value independent of r (since σ2B;cv ∝ r).
Similarly, the advantage of using hBTTi over hTTTi to

constrain hhζζi is immediately apparent from Eq. (29) by
replacing hhζζi=hζζζi → 1, showing that for sufficiently
low values of r, hBTTi will always provide a better
constraint than hTTTi on hhζζi independent of the model.
Therefore, we see that while lower noise measurements

of temperature fluctuations will not lead to significant
further improvement of the measurement of primordial

non-Gaussianity from hTTTi, there is a great deal of room
for improvement with hBTTi as a probe of primordial
physics.

B. Quantitative calculation

In the flat-sky approximation the signal-to-noise ratio is
given by the following integral over multipoles (rather than
a discrete sum in the full-sky case) [60]:

�
S
N

�
2

¼ fsky
4π3

Z
d2l2

Z
d2l3

ðBTTB
ð−l2−l3Þ;l2;l3

Þ2
CTTl1 C

TT
l2
CBBl3

; ð30Þ

where Cl ¼ Cl þ Nl with Cl is the angular power spec-
trum, Nl the noise, and we integrated out the l1 direction.
To compute the signal-to-noise ratio, we modified CAMB

[61,62] and CLASS [63] to extract the scalar and polarization
source functions. We then computed the bispectrum using
Eq. (22) and the signal-to-noise ratio using Eq. (30). For
consistency we also used the flat-sky Cl for our variance
estimate. We compared our Cl to the full-sky results and
found good agreement for l≳ 10 as can be seen in the top
panel of Fig. 4. We also show the diagonal of the hTTTi flat
sky bispectrum versus the full-sky version in the bottom
panel of Fig. 4. Unlike Ref. [64], we find good agreement
all the way down to l ∼ 10–20. For purposes of computing
the signal-to-noise ratio of the hBTTi bispectrum, the small
amplitude differences are not a concern. That being said,
there is potentially a significant contribution to the signal-
to-noise ratio in the lowest-l B-modes, given the presence
of the reionization bump at low l which is not included
due to the approximations we have made here. We will
leave the full-sky computation including these modes for a
future study.
All results are obtained using a Planck fiducial

cosmology, kmax ¼ 0.64 Mpc−1 for scalars and kmax ¼
0.17 Mpc−1 for tensors. We performed calculations to
maximal multipoles of lT;max ¼ 4500 for the T modes
and to lB;max ¼ 500 for the Bmodes. On small scales in the
temperature, foreground fluctuations such as the emission
from dusty, star-forming galaxies and the thermal Sunyaev-
Zel’dovich effect will reduce the effective maximal temper-
ature multipole for primordial studies to about 3000–4000.
Given multifrequency data, these could in principle be
removed, leaving the kinetic Sunyaev-Zel’dovich effect as
the dominant foreground on small scales. Depending on the
amplitude of this signal, this could make the maximal
multipole as large as lT;max ∼ 4500 [66].
The bispectra are computed on a grid with Δl ¼ 1 for

l ≤ 100, Δl ¼ 10 for 100 ≤ l ≤ 500 and Δl ¼ 20 for all
values above l ¼ 500. We use linear interpolation to obtain
the curves shown in Figs. 5 and 6.
We assume that the noise power spectra in the T and B

measurements are given by
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FIG. 4. Top: The B-mode power spectrum computed on the full sky and in the flat-sky, thin-shell approximation. The flat-sky
approximation holds all the way down to l≃ 10. Bottom: The local-type temperature bispectrum in the full sky and flat sky (thin shell)
for l1 ¼ l2 ¼ l3. There are some differences on large scales, but for computing the signal-to-noise ratio we do not expect these to lead
to significant deviations. Note that for purposes of presentation, the total spectrum is divided by the large-scale analytical limit of the
local bispectrum [64,65].

FIG. 5. Density plot showing the CMB modes to be measured
in order to obtain a detection of the hBTTi bispectrum, showing
the contributions to the inverse noise or Fisher matrix element.
The color map on the bottom left, which uses a linear scale,
shows the contribution as a function of the Bmultipole and one of
the two T multipoles for the CMB-Stage IV case. The other
panels show the collapsed one-dimensional distributions for
CMB-Stage IV as well as three other cases. The signal is
concentrated in slices with small lB and a wide range of values
of lT . We show constraints from several experiments, assuming
no sample variance in the B modes, as well as with the cosmic-
variance limit for r ¼ 0.01.

FIG. 6. Forecasts for σð ffiffiffi
r

p
fhζζNL Þ for various CMB experiments

as a function of lmax. The colored lines present constraints when
cosmic variance is negligible. The figure shows that cosmic
variance would be subdominant for current and near future
experiments if r ¼ 0.01. For an experiment like CMB-Stage
IV the total variance would be dominated by cosmic variance and
not by instrumental noise unless r ≲ 0.001 (with lT

max ¼ 4500).
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NYY
l ¼ ðwY

0 Þ2 expðl2σ2bÞ; ð31Þ

for Y ∈ fT; Bg, and where the noise levels w0 and beam
sizes σb are given in Table II.
In order to better understand which modes contribute to

the signal, in Fig. 5 we show the inverse-variance density,
defined using the free parameters in our parametrization, as
d2½σ−2ð ffiffiffi

r
p

fhζζNL Þ�=dlTdlB. This is equivalent to the signal-
to-noise ratio, Eq. (30), for a model with

ffiffiffi
r

p
fhζζNL ¼ 1. As

expected, the signal is concentrated on slices with
lB ≪ lT , and T modes contribute down to very small
scales (lT ≃ several thousand). For comparison, we show a
similar plot for the hTTTi bispectrum resulting from local-
type primordial non-Gaussianity in Fig. 8.

In Figs. 6 and 7we show the forecasts for an analysis with
publicly available data, BðPlanckÞ × TTðPlanckÞ; currently
taken data, BðBICEP=KeckÞ × TTðSPTpolÞ; and futuristic
data, BðCMB-S4Þ × TTðCMB-S4Þ. Although not shown, a
measurement from BðSPIDERÞ × TTðSPTÞ [67] would be
similar to that from BICEP/Keck and SPTpol: the noise
levels are lower, but that is offset by the relatively small sky
coverage of BICEP/Keck-SPTpol. We consider two distinct
scenarios, represented by the limiting cases of Eq. (29): first,
the case that there is no signal from primordial tensors where
we set CBB

l ¼ NBB
l ; second, the B-mode cosmic-variance

limit for various values of the tensor-to-scalar ratio r. All
bounds are shown as functions of lTmax; Fig. 5 shows that
multipoles with lB ≳ 100 hardly contribute to the final
bounds.
In single-field slow-roll inflation, it is predicted that

fhζζNL ¼ ffiffiffi
r

p
=16, and so in the event that cosmological

B-modes are detected, this will provide a consistency check
on the model. As can be seen from Fig. 7, sample variance
prevents us from detecting fhζζNL from hBTTi if single-field
slow-roll inflation is the source of the fluctuations we
observe. A detection of fhζζNL would therefore imply that

TABLE II. Assumed experimental parameters for forecasts. Beam sizes in arcmin are quoted as FWHM, related to σb in Eq. (31) by a
factor of 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
. For reference we also show lb ≡ 1=σb.

B experiment B noise (μK-’) B beam (’) lb T experiment T noise (μK−’) T beam (’) lb Area (sq. deg.)

Planck 60 5 1600 Planck 30 5 1600 33,000
BICEP/Keck 3 60 130 SPTpol 5 1 8100 625
CMB-Stage IV

ffiffiffi
2

p
1 8100 CMB-Stage IV 1 1 8100 33,000

FIG. 7. Forecasts for σð ffiffiffi
r

p
fhζζNL Þ for various CMB experiments.

This figure illustrates that current experiments are all noise
dominated for allowed values of r. CMB-Stage IV is cosmic-
variance dominated unless r ≲ 0.005 (with lT

max ¼ 3400). The
cosmic-variance limit can only be reduced if we consider more
modes, i.e. by increasing lT

max).

FIG. 8. Same as Fig. 5, but for the local-type TTT bispectrum,
sourced by scalars. The signal is concentrated at very low lT and
along the diagonal, where both lT’s are equal.
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single-field slow-roll inflation is not solely responsible for
the observed fluctuations.
With an experiment like CMB-Stage IV [68] we antici-

pate that we can constrain
ffiffiffi
r

p
fhζζNL ∼Oð0.1Þf−1=2sky . It is

remarkable that the potential constraint on primordial non-
Gaussianity using hBTTi, which, given a similar shape and
normalization of the tensor-scalar-scalar bispectrum and
the scalar-scalar-scalar bispectrum, lies an order of magni-
tude below the optimal CMB constraint on the local-type
scalar non-Gaussianity fζζζNL. Furthermore, it was shown in
Ref. [53] that the hTTTi bispectrum could provide con-
straints on

ffiffiffi
r

p
fhζζNL ∼Oð10Þf−1=2sky . The forecasts presented

in this paper show that using hBTTi has the potential to
improve that constraint by nearly two orders of magnitude.
In order to fully exploit the power of hBTTi one should
consider more general models of the early Universe that
could potentially violate this bound. We will leave this to
future work.

VI. DISCUSSION AND CONCLUSION

We have explored the potential of the hBTTi bispectrum
as a probe of the early Universe. The odd intrinsic parity of
B-modes gives this bispectrum some properties which
differ from those of the hTTTi bispectrum, but both are
generically nonvanishing in a parity-conserving universe,
and are sourced by primordial bispectra which are predicted
to be of the same order in slow-roll parameters in single-
field slow-roll inflation.
One advantage of the hBTTi bispectrum is that the signal

suffers less from cosmic variance than its hTTTi counter-
part for constraining the tensor-scalar-scalar bispectrum.
Our analysis shows that with this observable it should be
possible to constrain the level of non-Gaussianity to
σð ffiffiffi

r
p

fhζζNL Þ ∼Oð0.1Þf−1=2sky . For comparison, the CMB can
only measure the local-type scalar bispectrum down to
σðfζζζNL Þ ∼Oð1Þ [12,69] and with upcoming large-scale-
structure surveys aimed at constraining non-Gaussianity
using galaxies, σðfζζζNL Þ ∼ 0.2 [13].
Our analysis was done in the flat-sky limit, valid for

multipoles l≳ 10, which suffices for ground-based detec-
tors. It will be important to extend this analysis to the full
sky since there is a potentially significant signal in the
lowest lmodes, given the presence of the relatively large B
fluctuation from scattering at reionization. This signal can
most likely only be mapped out by a dedicated satellite,
such as the proposed LiteBIRD [70], PIXIE [71] or COrE
[72] experiments.
We focused in this work on a template for the hBTTi

bispectrum motivated by single-field slow-roll inflation,
which maximizes when large-scale B modes are correlated
with small-scale T modes. This shape has some exper-
imental advantages, since a search for such a bispectrum
could be performed, for instance, by cross-correlating a

map of B-modes on large scales from a current or upcoming
ground-based CMB experiment with small-scale T fluctu-
ations, such as those measured with the Planck satellite. On
the other hand, it would be useful to consider other shapes
for the hBTTi bispectrum, perhaps motivated by specific
early-Universe models.
In this work we have not considered contamination from

dust, systematics, or lensing. Dust is a well-known con-
taminant in estimates of the hBBi power spectrum on large
scales at the frequencies probed with ground-based experi-
ments. Estimates of the hBTTi bispectrum will in principle
be sensitive to correlations between large-scale dust polari-
zation and small-scale dust intensity; while this may be less
of an issue than in the power spectrum measure, this needs
to be investigated in future work. Similarly, instrumental
systematics which affect the measure of B on large scales
should be decoupled from those that affect T on small
scales, making this analysis less sensitive to systematics
than the hBBi power spectrum. Finally, lensing converts
E-mode polarization to B-mode polarization. As with
measurements of the hBBi power spectrum, delensing to
reduce effective noise from lensing needs to be performed
when measuring the hBTTi bispectrum. In a universe with
primordial gravitational waves, the hBTTi bispectrum will
also contain a nonprimordial signal on very large scales
arising from correlations between B-modes from Thomson
scattering after reionization and the curl mode of CMB
lensing, which affects pairs of temperature modes [49].
This is analogous to the scattered E-mode-lensing corre-
lation induced by scalars in estimates of the hETTi
bispectrum [73].
We have focused on the hBTTi correlation function.

However, other combinations sensitive to the coupling
between scalars and tensors will add to the total signal-
to-noise ratio. In particular, hBEEi and hBTEi are expected
to have similar constraining power. In addition, similar to
the use of E-modes for the scalar bispectrum [69], the B and
Emodes are projected through functions that have different
nulls, which improves the mapping from the primordial
space. In summary, the hBTTi bispectrum and other non-
Gaussian correlations involving B-modes open up a new
window into the early Universe. Ongoing and future CMB
experiments will naturally make observations which allow
us to carry out searches for and place nontrivial constraints
on primordial tensor non-Gaussianity. While more theo-
retical work remains to discover the full value of B-mode
non-Gaussianity, this new set of observables has the
potential to be a very rich set of tools for probing primordial
physics.
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APPENDIX: THE FLAT-SKY hBTTi BISPECTRUM
In this appendix, we work out the form of the three-point

function hBTTi in the flat-sky approximation. Our
derivation follows closely that of the Appendix of Ref. [57].
We start by rewritingD ¼ DR þ ~D, whereDR ≡ τ0 − τR

and ~D≡ τR − τ, in the exponential factors of Eqs. (20) and
(21). The Dirac delta function in the primordial three-point
function ensures that theDR dependence of the exponential
factors drops. Using Eqs. (20) and (21), we then get the
following three-point function:

haζTðl1ÞaζTðl2ÞahBðl3Þi

¼
Y3
n¼1

�Z
τ0

0

dτn

Z
d3kn
ð2πÞ3 e

−ikzn ~Dnð2πÞ2δð2ÞðDnk
∥
n þ lnÞ

�

× SζTðk1; τ1ÞSζTðk2; τ2Þ
2ikz3
k3

ShPðk3; τ3Þ

×
X
�

� hζðk1Þζðk2Þh�ðk3Þi: ðA1Þ

We now define

2ikz3
k3

X
�

� hζðk1Þζðk2Þh�ðk3Þi

≡ ð2πÞ3Fðk1; k2; k3Þδð3Þ
�X

n

kn

�
: ðA2Þ

Assuming the kernel F does not vary significantly across
the width of the last-scattering surface (i.e. specifically,
that it does not change much as ki varies by a fractional
amount ΔτR=τR ∼ 10−2 [57]), we can take it out of the time
integrals, by setting k∥n≈ln=DR inside F. Using k∥n ¼
ln=Dn, the Dirac function in Eq. (A2) simplifies to

δð3Þ
�X

n

kn

�
¼ δð1Þ

�X
n

kzn

�
D2

Rδ
ð2Þ
�X

n

ln þ
X
n

~Dn

DR
ln

�

≈D2
Rδ

ð1Þ
�X

n

kzn

�
δð2Þ

�X
n

ln

�
: ðA3Þ

Because the last equality is only approximate, the bispec-
trum does not exactly vanish for modes that do not form a
closed triangle; however, it is exponentially suppressed on
these configurations [74].
These approximations allow us to factorize the expres-

sion for the bispectrum. Defining Δs
Xðkzi ;liÞ as in Eq. (23),

we arrive at

haζTðl1ÞaζTðl2ÞahBðl3Þi

≈ δð2Þðl1 þ l2 þ l3Þ
ZZ

dkz1dk
z
2Δ

ζ
Tðkz1;l1Þ

× Δζ
Tðkz2;l2ÞΔh

Pðkz3;l3ÞFðk1; k2; k3Þ; ðA4Þ

where the integrand is to be evaluated at kz3 ¼ −ðkz1 þ kz2Þ
and k∥n ¼ ln=DR inside F.
The last step is to derive an explicit expression for F.

Using Eq. (18) and our definition (A2) we get

Fðk1;k2;k3Þ¼ 16π4A2
sf

hζζ
NL Iðk1;k2;k3Þ23=2

kz3
k3
Gðk1;k2;k3Þ;

ðA5Þ

where we have defined

Gðk1; k2; k3Þ≡D2
R

iffiffiffi
2

p
X
�

� e∓abðk3Þka1kb2: ðA6Þ

Using Eq. (15), we have, in a basis whose third axis is
along k3,

X
�

� e∓abðk3Þ ¼ −i
ffiffiffi
2

p
0
B@

0 1 0

1 0 0

0 0 0

1
CA: ðA7Þ

We can find the polarization tensor for an arbitrary direction
by performing a standard rotation on each axis of the
polarization tensor. For n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ,
the standard rotation matrix Sðn̂Þ is given by [44]

Sabðn̂Þ≡
0
@

cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

1
A: ðA8Þ

The polarization sum for k3 ¼ k3ðsinθcosϕ;sinθ sinϕ;
cosθÞ in an arbitrary direction is such that

1

D2
R
Gðk1; k2; k3Þ ¼ sin θ½−ðkz1ky2 þ ky1k

z
2Þ cosϕ

þ ðkz1kx2 þ kx1k
z
2Þ sinϕ�

þ cos θ½ðky1kx2 þ kx1k
y
2Þ cosð2ϕÞ

þ ð−kx1kx2 þ ky1k
y
2Þ sinð2ϕÞ�: ðA9Þ

Due to rotational invariance, we can, without loss of
generality, choose k3 to have a vanishing y-component.
Once we compute the bispectrum for this choice of k3, all
bispectra with general k3 can be obtained by rotation about
the z-axis. For k3 in the xz-plane, the polarization sum gives
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1

D2
R
Gðk1; k2; k3Þ ¼ ðky1kx2 þ kx1k

y
2Þ
kz3
k3

− ðky1kz2 þ kz1k
y
2Þ
kx3
k3

¼ ky1
k3

ðkx2kz3 − kz2k
x
3Þ þ ð1 ↔ 2Þ: ðA10Þ

Using the triangle condition, and substituting k∥i ¼ ðkxi ; kyi Þ
by li=DR, we rewrite this expression as

Gðk1; k2; k3Þ ¼
ly
1

k3
ðkz2lx

1 − kz1l
x
2Þ þ ð1 ↔ 2Þ

¼ 2
ly
1

k3
ðkz2lx

1 − kz1l
x
2Þ; ðA11Þ

where the last equality arises from the fact thatwe chosek3 in
the xz-plane, implying that ly

3 ¼ 0 ¼ ly
1 þ ly

2.

Finally, we may rewrite ly
1 ¼ l̂3 × l1 and lx

1 ¼ l̂3 · l1,
arriving at

Gðk1; k2; k3Þ ¼
2

k3l2
3

ðl1 × l3Þ½kz1ðl2 · l3Þ − kz2ðl1 · l3Þ�;

ðA12Þ
an expression which is symmetric under exchange of
ð1↔2Þ since l2×l3¼−l1×l3. The scalar products can
be expressed in terms of magnitudes through 2l1 · l3 ¼
l2
2 − l2

1 − l2
3.

Inserting this expression into Eq. (A5) and then into
Eq. (A4) gives the final expression for the flat-sky bispec-
trum, Eq. (22). Using the propertyΔs

Xð−kzi Þ ¼ Δs
Xðkzi Þ�, and

the fact that Fðk1; k2; k3Þ ∝ kz3k
z
1; k

z
3k

z
2, one can easily show

that the three-point function (A4) is real, as it should be.
Finally, we also see that it has the same form as that derived
in Eq. (11) from symmetry considerations.
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