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We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a
spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic
model for an isotropic phase space distribution function that accounts for annihilation and reproduces the
“weak cusp” found by Vasiliev for DM deep within the spike and away from its boundaries. The DM
density in the cusp varies as r−1=2 for s-wave annihilation, where r is the distance from the central black
hole, and is not a flat “plateau” profile. We then extend this model by incorporating a loss cone that
accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition
that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial
spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its
density decreases with time. We treat two cases, one for s-wave and the other for p-wave DM annihilation,
adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The
cusp density profile for p-wave annihilation is weaker, varying like ∼r−0.34, but is still not a flat plateau.
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I. INTRODUCTION

A supermassive black hole (SMBH) will steepen the
density profile of dark matter (DM) within the hole’s sphere
of influence, rh ¼ GM=v20. Here,M is the mass of the hole
and v0 is the (1D) velocity dispersion in the innermost halo
just outside rh. The precise profile for this DM density
spike depends both on the properties of DM and the
formation history of the SMBH. If the DM is collisionless
with a cuspy, spherical, inner halo density obeying a
generalized Navarro-Frenk-White (NFW) [1] profile then
the density profile in the absence of the hole will follow a
power law, ρðrÞ ∼ r−γc . Simulations with DM alone yield
typical values of 0.9≲ γc ≲ 1.2 [2,3], but if baryons
undergo dissipative collapse into the disk they can induce
the adiabatic contraction of the central DM halo into a
steeper power law [4–6], with values as high as γc ∼ 1.6
allowed for the Milky Way [7].
If the SMBH grows adiabatically from a smaller seed [8]

the SMBH then modifies the profile inside rh, forming a
DM spike within which ρðrÞ ∼ r−γsp , where γsp ¼
ð9 − 2γcÞ=ð4 − γcÞ [9]. For 0 < γc ≤ 2 the power law γsp
varies at most between 2.25 and 2.50 for this case.
However, gravitational scattering off of a dense stellar
component inside rh could heat the DM, softening the spike
profile and ultimately driving it to a final equilibrium value
of γsp ¼ 1.5 [10–12], or even to disruption [13]. Other
spikes, characterized by other power laws, are obtained
from different formation histories for the BH within its host
halo, such as the sudden formation of a SMBH through
mergers or gradual growth from an inspiraling off-center

seed [14], or in the presence of DM self-interactions [15],
as reviewed in e.g. [16,17].
DM annihilations in the innermost region of the spike

weaken the density profile there. For standard WIMP
models, wherein the annihilation cross section hσvi is a
constant (i.e., s-wave annihilation) it was suggested [9] that
an “annihilation plateau” would form at the central region
of the spike, in which case the DM profile would be flat. Let
r ¼ rann be the radius at which the DM density in the spike
reaches ρann, the annihilation plateau density. At this radius
the annihilation time scale equals the Galaxy age T, so that

ρann ¼
mχ

hσviT : ð1Þ

Here mχ is the DM particle mass.
Vasiliev [18] subsequently showed that an annihilation

plateau arises only if all DM particles move in strictly
circular orbits about the central black hole. He demon-
strated that if the DM distribution function is isotropic,
which he noted was likely, the density continues to rise with
decreasing distance r from the black hole, forming a “weak
cusp” and not a plateau. Within the weak cusp the density
increases as r−1=2 for s-wave annihilation. The reason is
that particles in eccentric orbits with apocenters outside rann
continue to contribute to the density inside rann and thereby
maintain a weak inner cusp.
The distinction between an annihilation plateau and a

weak cusp may have important observational conse-
quences. Due to their extraordinarily high DM densities,
BH-induced density spikes can appear as very bright
gamma-ray point sources in models of annihilating DM
[9–11,17,19–22]. Many of these models are now becoming
detectable with the current and near-future high-energy
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gamma-ray experiments, and indeed the excess of
∼1 − 5 GeV gamma rays from the inner few degrees of
the Galactic Center (GC) observed by Fermi may prove to
be a first signal of annihilating DM [23–25], although
tension with limits from dwarf galaxies [26] and the
statistical properties of the photons in the GC excess
[27,28] may indicate an astrophysical explanation for the
GC excess such as a new population of pulsars (see, e.g.,
[29–31]). In any case, self-annihilating DM within a spike
can easily lead to gamma-ray point sources bright enough
to be seen potentially by existing gamma-ray telescopes
[17,22]. Now the dominant contribution to the annihilation
signal from the spike comes from the region near rann.
This holds whether it originates from DM s-wave or from
p-wave annihilations [17,22]. The magnitude of the signal
thus depends on the density and velocity profiles in the
region where the spike transitions to a weak cusp.
This result has not been fully appreciated, since it has

not been incorporated into many recent applications.
Consequently it seems worthwhile to revisit the issue. In
general, a weak cusp of this form is obtained whenever DM
initially following a power-law density profile attains
sufficiently high densities that its self-annihilation becomes
important. Thus in principle a weak cusp can form even in
the absence of a spike, e.g. for a standard NFW cusp,
γc ¼ 1. In practice, given typical Galactic parameters and a
thermal s-wave annihilation cross section, the DM density
would only reach ρann for radii very near the BH, rendering
the weak cusp observationally insignificant. For p-wave
annihilations, and for γc ≲ 1, the weak cusp would not exist
at all in this case.
We begin by providing a simple physical argument

leading to analytic expressions for an isotropic phase space
distribution function and resulting density and velocity
dispersion profiles in a DM spike with a weak cusp. Our
radial density profile for this case agrees with the result
found by Vasiliev [18], who provided a scaling argument
that also allows for an anisotropic initial spike. We next
refine our analytic model by incorporating a loss-cone
boundary condition that accounts for the direct capture of
DM particles by the black hole, making the distribution
anisotropic. Finally, we integrate the collisionless
Boltzmann equation numerically, allowing for an aniso-
tropic distribution function, and study how the weak cusp
forms in the spike and grows with time. We again confirm
the numerical results reported in [18] for s-wave
annihilation but now we extend the analysis to include
p-wave annihilation, with cross sections that vary as
hσvi ∝ v2ðrÞ=c2, where vðrÞ is the DM velocity dispersion
and c the speed of light. We find that the annihilation cusp
is even weaker (i.e. less steep) for p-wave than for s-wave
annihilations, but it still is not a flat plateau.
In Sec. II we present our simple, pedagogic, analytic

model for an isotropic DM spike with a weak cusp and in
Sec. III we improve the model by including a capture loss

cone, which induces an anisotropy. In Sec. IV we solve the
Boltzmann equation directly and determine the time-
dependent growth of the weak cusp, both for s-wave
and p-wave DM annihilations. We adopt units with
G ¼ 1 ¼ c unless otherwise noted.

II. ISOTROPIC MODEL: f = f ðEÞ
A. Density

An isotropic distribution function for a stationary dis-
tribution of collisionless matter of a single species is of the
form f ¼ fðEÞ, where E is the energy per unit mass of a
particle. We adopt Newtonian gravitation and consider the
energy of particles in orbit about the black hole:

E ¼ 1

2
v2 þ ΦðrÞ; ΦðrÞ ¼ −

M
r
: ð2Þ

The mass density in the spike is obtained from the
distribution function fðEÞ according to

ρðrÞ ¼ 4π

Z
v2fdv

¼ 4π

Z
0

−M=r

�
2

�
EþM

r

��
1=2

fðEÞdE: ð3Þ

We will adopt the following simplification: let there be
no surviving particles with orbits that reside entirely within
rann, while the particles whose orbits are either partly or
entirely outside rann are described by the unperturbed spike
distribution function. Thus we assume that all particles that
orbit entirely within rann have been annihilated in the age of
the Galaxy, while those which spent part or all of their time
outside this radius have avoided annihilation altogether.
Crudely, particles spend most of their time near apocenter,
not pericenter, so they are more likely to survive whenever
their orbits take them outside rann. Mathematically, this
assumption may be expressed as

f ¼ fðEÞ; 0 ≥ E ≥ −M=rann;

¼ 0; E < −M=rann: ð4Þ

Inserting Eq. (4) into Eq. (3) yields

ρðrÞ¼ 4π

Z
0

−M
r

�
2

�
EþM

r

��
1=2

fðEÞdE; r ≥ rann; ð5Þ

¼ 4π

Z
0

− M
rann

�
2

�
EþM

r

��
1=2

fðEÞdE; r < rann: ð6Þ

By construction Eq. (5) gives the unperturbed spike
profile for all r ≥ rann. Substituting the variable
y ¼ −Er=M and adopting a power-law spike distribution
function, fðEÞ ¼ KjEjp, where K is a (normalization)
constant, we obtain
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ρðrÞ ¼ 25=2πI1=2ðp; 1ÞK
�
M
r

�ðpþ3=2Þ

¼ ρann

�
rann
r

�ðpþ3=2Þ
; r ≥ rann; ð7Þ

where

I1=2ðp; qÞ≡
Z

q

0

ð1 − yÞ1=2ypdy; ð8Þ

and I1=2ðp; 1Þ ¼ Bðpþ 1; 3=2Þ, where Bðx; yÞ is the
familiar beta function. For a power-law spike profile
γsp ¼ pþ 3=2.
Consider now the density profile for r < rann given

by Eq. (6),

ρðrÞ ¼ 25=2πI1=2

�
p;

r
rann

�
K
�
M
r

�ðpþ3=2Þ

¼ ρann
I1=2ðp; r

rann
Þ

I1=2ðp; 1Þ
�
rann
r

�ðpþ3=2Þ
; r < rann: ð9Þ

Here I1=2ðp; r
rann

Þ=I1=2ðp; 1Þ ¼ Bðpþ 1; 3=2; r
rann

Þ, where
Bða; b; xÞ is the incomplete beta function. Evaluating the
density for r=rann ≪ 1, noting I1=2ðp; qÞ ≈ qpþ1=ðpþ 1Þ
for q ≪ 1, yields

ρðrÞ ≈ 25=2π

pþ 1
K

�
M
rann

�ðpþ1Þ�M
r

�
1=2

¼ ρann
ðpþ 1ÞI1=2ðp; 1Þ

�
rann
r

�
1=2

; r ≪ rann: ð10Þ

Equation (10) is exactly what we set out to prove: the
density well inside rann scales like r−1=2. Notice that this
scaling behavior is independent of the power p. A con-
tinuous match between the inner and outer spike profiles
can be obtained by numerically evaluating Eq. (9) and
joining it to Eq. (7), which we do in Fig. 1.
In the absence of annihilation, the adiabatic spike that

forms in a DM cluster initially characterized by a power-
law density profile ρðrÞ ∼ r−γ , 0 < γ < 2, gives rise to a
power-law profile with 2.25 < γsp < 2.50 [9]. The profiles
when annihilation is incorporated are plotted in Fig. 1 for
the limiting values of γsp. A DM cluster that has an
isothermal (and not a power-law) core initially forms an
adiabatic spike with γsp ¼ 1.5 [8]. The spike profile for this
value (which may also be reached if the DM spike is
subsequently heated by scattering off stars [10,11]) is also
shown in the figure, again allowing for annihilations.
It can be shown that the contribution of DM particles

unbound to the BH, with energies E ¼ 3v20=2 > 0, also
scales as r−1=2 everywhere inside the BH zone of influence,
i.e. r≲M=v20 [see [32], Eq. (14.2.22)]. However, their

contribution inside rann is much smaller in magnitude than
the contribution of (eccentric) bound particles, as the spike
density of these contributing bound particles is much larger
than unbound particles.
We also note that at first glance there is nothing in the

above argument that distinguishes s-wave from p-wave
annihilation. The key point is that the time scale for
annihilation decreases with decreasing r in a canonical
spike. It is this feature that is reflected in Eq. (4) for the
distribution function. This decrease is even more rapid as r
decreases for p-wave than for s-wave annihilation, given
the additional velocity dependence in the former case. So
we again expect a weak cusp to form in the innermost
region about the black hole. However, we note that in the
case of p-wave annihilation the annihilation density ρann
given by Eq. (1) is not a constant but decreases with
decreasing radius. For purely circular orbits we would then
expect that instead of a flat plateau density profile inside
rann we would have a density that decreases as r decreases.
As the orbits in the cusp are dominated by highly eccentric
and not circular orbits, the cusp will not exhibit this
decrease. However, we do anticipate that the cusp profile
for p-wave annihilations will be somewhat weaker (i.e.
flatter) than for s-wave annihilations due to the decreasing
value of ρann with decreasing distance. This expectation is
borne out by our solution to the Boltzmann equation
in Sec. IV.
The canonical profiles for an adiabatic spike differ con-

siderably from those arising in the case of self-interacting
DM (SIDM), as shown in [15]. Moreover, the effects of
annihilation are washed out for SIDM, as the distribution

FIG. 1. DM density profile in an adiabatic spike around a black
hole, allowing for annihilation. For r ≥ rann the density varies as
r−γsp , where γsp ¼ 2.5 (black solid line), 2.25 (blue dotted line)
and 1.5 (red dashed line). For r < rann annihilations soften the
spike to a weak cusp with ρðrÞ ∼ r−1=2. Here ρ and r are
normalized to their values at rann.
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function is constantly replenished inside rann by DM elastic
scatterings. Hence there is no transition to a “weak cusp”
inside the spike for SIDM.
Finally, we emphasize that Eq. (4) for the distribution

function is only approximate. The true distribution func-
tion, though spherical, is not strictly isotropic and is better
described by a function of the form fðE; JÞ, where J is the
angular momentum per unit mass of a DM particle. To
obtain the correct function an integration of the time-
dependent Boltzmann equation with an annihilation sink
term is required to determine fðE; J; tÞ. Vasiliev performed
such an integration for s-wave annihilation. We will repeat
the calculation in Sec. IV, incorporating a capture loss cone,
and also do the calculation for p-wave annihilation.

B. Velocity dispersion

Now consider the (3D) velocity dispersion everywhere in
the spike. It is obtained from

v2ðrÞ ¼ 4π

ρðrÞ
Z

v4fdv

¼ 4π

ρðrÞ
Z

0

−M=r

�
2

�
EþM

r

��
3=2

fðEÞdE; ð11Þ

which, when Eq. (4) is inserted, yields

v2ðrÞ ¼ 27=2π

ρðrÞ KI3=2ðp; 1Þ
�
M
r

�
pþ5=2

; r ≥ rann; ð12Þ

¼ 27=2π

ρðrÞ KI3=2

�
p;

r
rann

��
M
r

�
pþ5=2

; r < rann: ð13Þ

Here

I3=2ðp; qÞ≡
Z

q

0

ð1 − yÞ3=2ypdy; ð14Þ

where I3=2ðp;1Þ¼Bðpþ1;5=2Þ and where I3=2ðp;r=rannÞ=
I3=2ðp;1Þ¼Bðpþ1;5=2;r=rannÞ. Evaluating Eqs. (12)
and (13), using Eqs. (7), (9) and (10) for nðrÞ, yields

v2ðrÞ ¼ 3

pþ 5=2
M
r
; r ≥ rann; ð15Þ

¼ 2
I3=2ðp; r=rannÞ
I1=2ðp; r=rannÞ

�
M
r

�
; r < rann; ð16Þ

and

v2ðrÞ ≈ 2
M
r
; r ≪ rann: ð17Þ

The corresponding values for the 1D velocity dispersion
v2
î
ðrÞ ¼ v2ðrÞ=3; î ¼ fr̂; θ̂; ϕ̂g, are

v2
î
ðrÞ ¼ 1

pþ 5=2
M
r
; r ≥ rann; ð18Þ

¼ 2

3

I3=2ðp; r=rannÞ
I1=2ðp; r=rannÞ

�
M
r

�
; r < rann; ð19Þ

and

v2
î
ðrÞ ≈ 2

3

M
r
; r ≪ rann: ð20Þ

Hence in both power-law regimes, with ρðrÞ ∼ r−β, where
β ¼ pþ 3=2 for r ≥ rann and β ¼ 1=2 for r ≪ rann, we
find v2

î
ðrÞ ¼ v2ðrÞ=3 ¼ M

r
1

1þβ, as assumed in [17]. A
continuous transition between the inner and outer spike
is obtained by evaluating Eq. (13) numerically for
0 < r=rann < 1. We do this in Fig. 2 for the profiles shown
in Fig. 1.
Finally, we note that the above results should apply well

to p-wave as well as s-wave annihilations, allowing for the
smaller value of rann and the slight decrease in β in the weak
cusp for p-wave annihilations (from β ¼ 0.5 to β ≈ 0.34;
see Sec. IV).

III. LOSS CONE: f = f ðE; JÞ
We now incorporate a realistic inner boundary condition

that all particles that ever reach inside rbh ¼ 4M are
captured by the black hole within a single orbital period.
As a result, since DM is assumed collisionless (except for
annihilations), those capture orbits are never replenished
and the distribution function vanishes for these trajectories.
Here we take rbh to be the radius of marginally bound
circular orbits and the minimum periastron of all parabolic
orbits about a Schwarzschild black hole [15,32,33]. This
capture constraint induces a loss cone in phase space: for
any particle of energy E, there are no particle orbits with
angular momentum per unit mass satisfying J ≤ JlossðEÞ,
where JlossðEÞ is the angular momentum at which
rpðE; JlossÞ ¼ rbh. Here rpðE; JÞ is the pericenter radius
of bound particles of energy E and angular momentum J in
(elliptical) orbit about the black hole. Accordingly, we have

JlossðEÞ ¼ rbh

�
2

�
Eþ M

rbh

��
: ð21Þ

Following [18], we change phase-space variables from
fE; Jg to fE;Rg, defining R≡ J2=J2c, where Jc ¼
M=ð−2EÞ1=2 is the angular momentum of a circular orbit
of energy E. Hence 0 ≤ R ≤ 1. Equation (21) then gives

RlossðEÞ ¼ 4
rbh
M

�
jEjð1− jEj rbh

M

�
; 0 ≥ E ≥ −

M
ð2rbhÞ

:

ð22Þ
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Orbits with E < −M=ð2rbhÞ cannot avoid penetrating the
inner boundary at rbh and hence do not survive capture.
Annihilations thus are relevant only when rann > 2rbh.
Incorporating the loss-cone boundary condition in our
simple distribution function that accounts for annihilations
when rann > 2rbh yields a two-dimensional distribution
function,

flossðE;RÞ ¼ fðEÞ; 0 ≥ E ≥ −
M
rann

and R ≥ RlossðEÞ;

¼ 0; E < −
M
rann

or R < RlossðEÞ: ð23Þ

The above form guarantees that flossðE;RÞ ¼ 0 for all
E < −M=ð2rbhÞ. Strictly a function of the integrals of
motion E and J (or E and R), flossðE;RÞ is a steady-state
solution of the collisionless Boltzmann equation, according
to the Jeans theorem.
Obtaining the density and velocity dispersion profiles

generated by this distribution function requires a two-
dimensional integration over velocity space inside the
spike. Using the expression

d3v ¼ 2πJ2cdRdE
r2jvr̂j

; ð24Þ

where vr̂ is the radial velocity, we determine these moments
according to

ρðrÞ ¼ 2−1=2π

�
M
r

�
3=2

×
Z

1

0

dε
ε

Z
4εð1−εÞ

0

dRfloss

�
−
ε

r
; R

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ε − R
4ε

q ;

ð25Þ

ρv2ðrÞ¼21=2π

�
M
r

�
5=2

×
Z

1

0

dεð1−εÞ
ε

Z
4εð1−εÞ

0

dRfloss

�
−
ε

r
;R

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ε− R
4ε

q ;

ð26Þ
where ε≡ −Er=M.
The results of the integrations are shown in Fig. 3 for

density profiles and Fig. 4 for the velocity profiles. Shown
are curves for the same power-law spikes fðEÞ ¼ KjEjp
plotted in Figs. 1 and 2, but now clipped in R in accord with
Eq. (23). Here we normalize radii to a fiducial outer spike
radius r0, where the density is assumed to be ρ0. We fix the
annihilation radius at rann=r0 ¼ 2.2 × 10−3 and the capture
radius at rbh=r0 ¼ 5 × 10−8. As we will see in the next

section, if we assign r0 to reside near the outer radius of the
DM spike, where the particles bound to the black hole join
on to the ambient nuclear core, then these dimensionless
ratios are within an order of magnitude of those inferred for
the DM spike in the Milky Way. In this case r0 ≈M=v20,
where v0 is the velocity dispersion characterizing the
nuclear core and M is the mass of Sgr A*. We postpone
making a more careful match to realistic Milky Way
parameters to the next section.

FIG. 2. DM velocity dispersion (3D) in an adiabatic spike
around a black hole, allowing for annihilation. Curves are labeled
as in Fig. 1. Here v is normalized to ðM=rÞ1=2, where M is the
mass of the black hole.

FIG. 3. DM density profile in an adiabatic DM spike around a
black hole, allowing for annihilation and black hole capture.
Curves are labeled as in Fig. 1. The densities and radii are
normalized to their values at fiducial radius r0 in the outer spike.
The annihilation radius is fixed at rann=r0 ¼ 2.2 × 10−3 and the
capture radius at rbh=r0 ¼ 5 × 10−8.

WEAK ANNIHILATION CUSP INSIDE THE DARK MATTER … PHYSICAL REVIEW D 93, 123510 (2016)

123510-5



As is intuitive, the above density profiles differ little from
those found in the absence of a loss-cone boundary
condition, except at radii approaching rbh, where the loss
cone grows to occupy an appreciable fraction of phase
space. For rbh ≲ r ≪ rann we again find nðrÞ ∼ r−1=2. The
magnitude of the 3D velocity dispersion remains fairly
insensitive to the presence of the loss cone, but the eccentric
orbits, which dominate the weak cusp, are also destroyed
as r → rbh.

IV. EVOLUTION: f ðE; R; tÞ
We now consider the evolution with time of the DM

profile in the spike by integrating the Boltzmann equation
directly, allowing for annihilation. We adopt the approach
in [18], but now we incorporate a loss-cone boundary
condition in fðE; R; tÞ and treat two cases: one for s-wave
and the other for p-wave annihilation. We again assume
that the black hole grew to its present massM adiabatically
at the center of the inner, spherical, DM Galactic halo,
where the density profile was ρðrÞ ∼ r−γc , and that this
growth occurred over a time t ≪ T ¼ 1010 yr. The result is
the formation of a DM spike about the black hole that
obeys a new power-law density profile ρðrÞ ∼ r−γsp , with
γsp ¼ ð9 − 2γcÞ=ð4 − γcÞ [9], corresponding to a power-
law phase-space distribution function fðEÞ ∝ jEjp with
p ¼ γsp − 3=2.
We specialize to parameters appropriate to the

Milky Way nucleus and typical WIMP particle models,
which is the basis of the “canonical” adiabatic spike in
[17,22]. We recall that γc ¼ 1 is the standard NFW value
for the central DM halo. Following [17] we take instead

γc ¼ 1.26, the best-fit value reported in [23], which
provides a recent analysis of the Fermi data of the
∼1 − 3 GeV gamma-ray excess from the Galactic center
and the possibility that it might be a signal of DM
annihilations. This value then yields γsp ¼ 2.36 and
p ¼ 0.86 for an adiabatic spike.
The outer boundary of the spike is taken to be at

rb¼ 0.2rh¼ 0.34 pc, where rh ¼M=v20, M¼ 4×106 M⊙
[34,35] and v0 ¼ 105 kms−1 [36]. The inner boundary is at
rbh ¼ 6 × 106 km. From the DM density in the solar
neighborhood, ρD ¼ 0.008 M⊙ pc−3 [37] at a distanceD ¼
8.5 kpc from the Galactic center [23], we infer the DM
density at rb to be ρb ¼ ρDðD=rbÞγc ¼ 2.8 × 103 M⊙ pc−3.
The DM annihilation cross sections are given by

hσvi ¼ hσvican
�
v2

v2fo

�
s

ð27Þ

where s ¼ 0 for s-wave annihilation and s ¼ 1 for p-wave
annihilation. Here we follow [17,23] and take
hσvican ¼ 1.7 × 10−26 cm3 s−1, close to the value expected
for a thermal relic origin of DM, with the freeze-out
parameter vfo ¼ c=4 for s ¼ 1. For the DM mass we
choose mχ ¼ 35 GeV.
Given the above particle models we calculate that at

t ¼ T ¼ 1010 yr the annihilation plateau densities defined
by Eq. (1) in the DM spike are ρannðs-waveÞ ¼ 1.7 ×
108 M⊙ pc−3 and ρannðp-waveÞ ¼ 6.6 × 1010 M⊙ pc−3.
These densities are reached at radii rannðs-waveÞ ¼ 3.1 ×
10−3 pc and rannðp-waveÞ ¼ 2.5 × 10−4 pc in the spike,
within which we expect the density spike to transition to a
weak cusp. The cusp is smaller for p-wave than for s-wave
annihilation since the annihilation cross section is reduced
by ∼v2=c2, so the time scale for p-wave annihilation to
destroy matter in the innermost spike is correspondingly
longer.
The Boltzmann equation may be written as

∂fðr; v; tÞ
∂t ¼ −

ρðrÞ
mχ

hσvifðr; v; tÞ; ð28Þ

which can be transformed to yield

∂fðE; R; tÞ
∂t ¼ −

ρhσvi
mχ

fðE; R; tÞ; ð29Þ

or

∂fðE;R; τÞ
∂τ ¼ −

ρv2s

ρav2sfo
fðE;R; τÞ: ð30Þ

Here τ ¼ t=T, ρa is given by Eq. (1) for s ¼ 0, and is thus a
constant, and the overbar denotes a radial average over
orbital period PðEÞ,

FIG. 4. DM velocity dispersion (3D) in an adiabatic DM spike
around a black hole, allowing for annihilation and black hole
capture. Curves are labeled and parameters assigned as in Fig. 3.
Here v is normalized to ðM=rÞ1=2.
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ρv2s ¼ 1

PðEÞ
I

ρðrÞv2sðrÞ dr
vr̂

¼
Z

1þ ffiffiffiffiffiffiffi
1−R

p

1−
ffiffiffiffiffiffiffi
1−R

p ρðxrcÞv2sðxrcÞ
dx

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=x − 1 − R=x2

p :

ð31Þ

In writing Eq. (31) we set r ¼ xrc, where rc ¼
M=ð−2EÞ is the radius of a circular orbit with energy E.
The profiles for ρ and v appearing in the integrands in
Eq. (31) are obtained at time τ from Eq. (25), with
flossðE;RÞ replaced by the current value of fðE;R; τÞ.
Loss-cone boundary conditions are imposed throughout the
evolution. We take as initial data an adiabatic distribution
function specified by Eq. (23), with fðEÞ ¼ KjEjp;
p ¼ 0.86 and rann ¼ 0 (i.e., no annihilation imprint
at τ ¼ 0).
We integrate the evolution Eq. (30) by finite differencing

in E and R and evolving in time τ by a first-order semi-
implicit method. All time integrations and phase-space
quadratures are repeated with finer resolution to check
reliability. Results for the density and velocity profiles are
summarized in Figs. (5) and (6), respectively.
The s-wave profile in Fig. (5) exhibits a weak cusp inside

the annihilation region at each time, within which the
density varies as r−1=2. This result is in accord with our
simplified models constructed in Secs. II and III. As ρann
decreases with time, the weak cusp grows, eating its way
outward into the steeper spike. The p-wave profile behaves
qualitatively similarly, with two notable differences. The
first is that for the same evolution time the p-wave cusp is
smaller, as described above. The second is that the p-wave
cusp is somewhat shallower, varying as r−0.34 rather than
r−1=2. This may be understood by noting that the annihi-
lation plateau density ρann given by Eq. (1) decreases with
decreasing distance from the black hole, since the velocity
dispersion and annihilation cross section increase. Hence
while the cusp is still filled with high eccentricity particles
from outside the cusp that plunge inside at the pericenter,
the lower eccentricity particles in the cusp are driven to
lower (“plateau”) densities the closer they are to the black
hole. This effect causes the overall slope of the density
profile in the cusp to fall slightly below 1=2 to ∼0.34
by t ¼ 1010 yr.
The velocity profiles plotted in Fig. 6 also show that the

cusps grow in size with time and at any one time are larger
for s-wave annihilation than for p-wave annihilation.
Otherwise the profiles are identical in the unperturbed
spike regions and very close in the cusp regions, conform-
ing to those found for the simplified models in Secs. II
and III.
Next we consider the luminosity profiles arising from

DM annihilation within the spike. The photon luminosity
emerging from radius r is given by

LðrÞ ¼
Z

r

rbh

1

2

ρðrÞ2
m2

χ
ð2ϵγmχÞhσvi4πr2dr; ð32Þ

where ϵγ is the fraction of the annihilation energy that goes
into photons. The region between r and 2r that contributes
most of the luminosity is centered near the peak of the
function dLðrÞ=dlnðrÞ, where according to Eqs. (27)
and (32),

FIG. 5. Evolution of the density profile in a DM spike around
Sgr A*, allowing for s-wave (top) and p-wave (bottom) anni-
hilation and black hole capture. The dotted curve shows the
initial adiabatic profile at t ¼ 0. Moving downward, successive
solid curves show the profiles at t=T ¼ 1.6 × 10−7; 4.8 ×
10−6; 8.2 × 10−4; 2.4 × 10−2 and 1.0 (top) and at t=T ¼ 4.9 ×
10−8; 7.6 × 10−7; 2.0 × 10−5; 5.1 × 10−3 and 1.0 (bottom), where
T ¼ 1010 yr. The densities and radii are normalized to their
values near the spike outer boundary at rb ¼ 0.34 pc, where
ρb ¼ 2.8 × 103 M⊙ pc−3.
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dLðrÞ
dlnðrÞ ∝ r3ρ2

�
v2ðrÞ
v2fo

�
s

: ð33Þ

This function is plotted in Fig. 7 for the two cases, along
with the corresponding density profiles. Results are shown
for both the initial spike and the spike at t ¼ T ¼ 1010 yr.
Several features are evident from the plot. The first is that
for both s-wave and p-wave annihilation the dominant
emission originates from the innermost region of the spike
near r≳ rbh initially, but moves out to the outer edge of the

weak cusp r ∼ rann at later times. As annihilations eat their
way further into the spike and rann moves outward with
time, the magnitude of the luminosity falls. Apart from the
initial time, when the luminosities are comparable, the
luminosity is greater for s-wave annihilation than for
p-wave annihilation. This difference results from the fact
that the main radiating region around rann has a much
smaller volume and the cross section has an additional
factor of v2=c2 for p-wave versus s-wave annihilation.
We note that for a flat plateau instead of a weak cusp the

luminosity profile plotted in Fig. 7 would plummet faster
for all r < rann and thereby reduce the overall annihilation
flux. For the Galactic parameters adopted here it is a ∼10%
reduction for s-wave annihilation and less for p-wave
annihilation, but can be larger for different parameters or
DM halos.
Figure 7 shows that most of the luminosity from the

spike originates from the region around rann and that rann ≫
M at t ¼ 1010 yr. As a result, our Newtonian analysis of the
bulk profiles in this region and, hence, the annihilation
luminosity, are little modified by relativistic corrections.
However, it has been suggested that a high-energy tail in
the (gamma-ray) spectrum might arise from the Penrose
process in the vicinity of a rapidly spinning Kerr black hole
[38]. Here a fully relativistic treatment is necessary, but the

FIG. 6. Evolution of the velocity dispersion (3D) in a DM spike
around Sgr A*, allowing for s-wave (top) and p-wave (bottom)
annihilation and black hole capture. The dotted curve shows
the initial adiabatic profile at t ¼ 0. Moving upward, successive
solid curves show the profiles at t=T ¼ 1.6 × 10−7; 4.8 ×
10−6; 8.2 × 10−4; 2.4 × 10−2 and 1.0 (top), and at t=T ¼ 4.9 ×
10−8; 7.6 × 10−7; 2.0 × 10−5; 5.1 × 10−3 and 1.0 (bottom), where
T ¼ 1010 yr. Radii are normalized to the value near the spike
outer boundary at rb ¼ 0.34 pc, and velocities are normalized to
ðM=rÞ1=2.

FIG. 7. The luminosity profile from annihilation in a DM spike
around Sgr A*. The heavy solid (black) curves show the
luminosity for s-wave annihilation at t ¼ 0 (upper) and at t ¼
1010 yr (lower). The heavy dotted (blue) curves show the
luminosity for p-wave annihilation at t ¼ 0 (upper) and at
t ¼ 1010 yr (lower). For comparison, the dashed (red) curve
shows the DM adiabatic density profile at t ¼ 0, while the density
profile at t ¼ 1010 yr is shown for s-wave annihilation by the thin
solid (black) curve and for p-wave annihilations by the thin
dotted (blue) curve. All luminosities are normalized by the initial
s-wave luminosity at the spike outer boundary at rb ¼ 0.34 pc.
All radii are normalized by rb.
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ambient spike and weak cusp should be close to the profiles
obtained here for all r ≫ M.

V. SUMMARY

We have reinvestigated the effect of DM self-annihilations
on the distribution of collisionless DM in a spherical density
spike around a BH. These spikes can reach the so-called
“annihilationplateau”densityρann ¼ mχ=ðhσviTÞ at a radius
r ¼ rann, where the time scale for DM annihilation becomes
equal to the age of the Galaxy. Interior to this radius, DM
annihilations are important for determining the radial density
and velocity dispersion profiles of DM, with potentially
observable consequences for indirect detection. We revisit
and extend the results of [18] for s-wave annihilation cross
sections, and provide the first results for nonconstant
annihilation cross sections, with the very well-motivated
case of p-wave annihilations.
We first give a simple physical argument for the case of

an isotropic phase space distribution function that yields
analytic expressions for the DM density and velocity
dispersion profiles within a DM spike with a weak cusp.
This argument reproduces the result of [18] for the DM

density profile in the case of a velocity-independent s-wave
annihilation cross section, where the density follows a
power law ρðrÞ ∝ r−1=2 for radii below rann. We then extend
this analytic model to incorporate the direct capture of DM
particles by the BH via a loss-cone boundary condition,
making the resulting distribution anisotropic. Finally, to
provide a full description of the (spherically symmetric)
system, we integrate the collisionless Boltzmann equation
numerically and study the formation of the weak cusp and
its subsequent evolution with time. We find that the
increasing annihilation cross section at decreasing radii
in the case of p-wave annihilations flattens the annihilation
cusp relative to that obtained with s-wave annihilations,
yielding ρðrÞ ∝ r−0.34 for the Galactic parameters adopted
here, but still yields a cusp.
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