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We consider how QCD axions produced by the misalignment mechanism could form galactic dark
matter halos. We recall that stationary, gravitationally stable axion field configurations have the size of an
asteroid with masses of order 10−13M⊙ (because gradient pressure is insufficient to support a larger object).
We call such field configurations “drops.”We explore whether rotating drops could be larger, and find that
their mass could increase by a factor ∼10. This mass is comparable to the mass of miniclusters generated
from misalignment axions in the scenario where the axion is born after inflation. We speculate that
misalignment axions today are in the form of drops, contributing to dark matter like a distribution of
asteroids (and not as a coherent oscillating background field). We consider some observational signatures
of the drops, which seem consistent with a galactic halo made of axion dark matter.
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I. INTRODUCTION

The QCD axion [1,2] is a motivated, minimal and very
curious dark matter candidate. It originally appeared [3] in
Peccei and Quinn’s solution to the strong CP problem [4],
as the pseudo Goldstone boson of a global, anomalous
UPQð1Þ symmetry. In “invisible” axion models [5,6] which
agree with observations, heavy new scalars and/or fermions
are introduced, and the UPQð1Þ is spontaneously broken
at a high scale fPQ ∼ 109 → 1011 GeV, so that the only new
particle at accessible energies is the light, feebly coupled
axion. And even though the axion and neutrino have
comparable masses, the axion is a cold dark matter
candidate, due to its nonthermal production in cosmology.
There are two production mechanisms for axion cold

dark matter, in the case where the Peccei-Quinn phase
transition occurs after inflation. Both occur around the
QCD phase transition, when the axion mass turns on. The
“misalignment mechanism” [7,8] produces an oscillating
classical axion field, and the decay of the string network
produces a distribution of cold axion modes. The classical
field, produced by the misalignment mechanism, will be
called “the axion field” in the following. This may be what
some authors refer to as a Bose-Einstein condensate;
however, the literature is confusing because other authors
discuss whether the misalignment axions could “gravita-
tionally thermalize,” as a prerequisite to forming a Bose-
Einstein condensate.
In this paper, we focus on the axion field, even though

most axion dark matter may be produced by strings [9,10].
As pointed out by Sikivie [11], dark matter composed of
an axion field is different from weakly interacting massive
particles (WIMPs) Tij elements (pressures) of the

stress-energy tensor are different, and the axion field is
single valued, whereas WIMPs are described by a phase
space distribution. The difference is intuitive and clear
during late-time structure formation: particles (described
by phase space) fall into a gravitational well, rise up
the other side, fall back, and so on. Indeed the whole
population of particles does this simultaneously, interact-
ing only via gravity in the usual cold dark matter (CDM)
approximation. This can be modeled via N-body simu-
lations. The axion field, being single valued, is like a fluid,
so its velocity must remain single valued as it falls in,
possibly leading to shocks and turbulence.
The original aim of this project was to address the

question of how to make the halo of Andromeda (or any
other galaxy) with the QCD axion field. This is both a
dynamical question, about the evolution of axion dark
matter from the QCD phase transition until today, and a
“stationary” question, about the axion field configuration in
the galaxy over the past several billion years. Sections II
and III address the stationary part of the question. We give
approximate solutions of the equations of motion of the
axion and Newtonian gravity, and call these self-gravitating
solutions “drops.” Such solutions have been studied for a
wide range of parameters in the literature for “Bose stars”
[12–14] and galactic halos [15,16]. They are discussed
very completely by Rindler-Daller and Shapiro (RDS) [15]
and Chavanis and Delfini [16], where extensive references
can be found. As pointed out by Barranco and Bernal [17],
and noticed by several authors [15,16], the mass and size
of QCD axion drops is M ∼ 10−13M⊙ and R ∼ 100 km,
which is small compared to Andromeda (M ∼ 1012M⊙,
R ∼ 100 kpc).1 Chavanis [16] showed that the negative
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1Recall that M⊙ ¼ 1.1 × 1057 GeV ¼ 2.0 × 1030 kg, kpc ¼
3.086 × 1021 cm.
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self-interaction of QCD axions gives an upper bound of this
order on the size of a nonrotating drop. We allow our drops
to rotate, and find by analytic estimates (Sec. II) as well as
numerical solutions of the relevant equations (Sec. III) that
rotating drops can be about one order of magnitude more
massive.
Section IV reviews the history of the Universe in the

scenario where the Peccei-Quinn phase transition occurs
after inflation. Hogan and Rees [18] noticed that in this
scenario, there are Oð1Þ fluctuations in the energy density
of the axion field on the scale of the horizon at the QCD
phase transition. The mass of these fluctuations, referred to
as “miniclusters,” can be comparable to or larger than the
axion drop mass. So we use the virial theorem to hypoth-
esize that, when miniclusters gravitationally collapse, the
larger ones fragment into axion drops. (The collapse of
miniclusters should be addressed numerically, which we
hope to do shortly.) If this is the case, then the axion field
dark matter in the Universe today would be in the form of
axion drops, which would behave as WIMPs [17]. In
particular, this implies that in the neighborhood of the sun,
any coherently oscillating background axion field is small,
and is not determined by the dark matter density, with
implications for the expected signal in axion dark matter
searches [19].
Section V reviews the constraints on dark matter in the

form of axion drops, which are within the mass range of
“macro dark matter,” studied in [20]. We summarize in
Sec. VI. In the appendix we provide a derivation of the
nonrelativistic field equations coupled to Newtonian grav-
ity, starting from the general relativistic action of a real
scalar field.

II. THE AXION DROP: A STABLE
GRAVITATIONALLY BOUND

CONFIGURATION

The aim of this section is to identify stable configura-
tions of the QCD axion field, in the presence of self-
interactions and Newtonian gravity. We refer to these
configurations as “drops.”2 This question has been widely
studied [15–17,21,22]; our new contribution is to allow the
drops to rotate. We review analytic estimates for the mass
and radius of the drops, as a function of the various
microscopic and/or external parameters (m, fPQ,
mPl;…), which imply that the drops resemble asteroids.
The purpose of the analytic estimates is to understand how
the mass and radius of the drops scale, so the estimates only
need to be of the right order of magnitude.
The drops may rotate, but we neglect time variation of

the radial density profile. This means that our drop is not
allowed a “breathing mode,” which could be compatible

with long-term stability; we suppose that this would not
significantly change the parameters we are interested in.
The stress-energy tensor for the real QCD axion field a is

Tμ
ν ¼ a;μa;ν − ½1

2
a;αa;α − VðaÞ�δμν , where the potential after

the QCD phase transition, is3

VðaÞ ≈ f2PQm
2½1 − cosða=fPQÞ�

≃ 1

2
m2a2 −

1

4!

m2

f2PQ
a4 þ 1

6!

m2

f4PQ
a6 þ � � � ð1Þ

and the axion mass is

m≃mπfπ
fPQ

ffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

≃ 10−4 eV
6 × 1010 GeV

fPQ
: ð2Þ

In this paper, we takem≃ 10−4 eV, because in the scenario
where the Peccei-Quinn phase transition is after inflation,
the numerical simulations of Kawasaki, Saikawa, and
Sekiguchi (KSS) [10] suggest that this gives the correct
dark matter abundance. fPQ is the breaking scale of the
Peccei-Quinn symmetry, here taken to be fixed in terms of
the axion mass by Eq. (2). The potential (1) is therefore a
one-parameter potential determined by m.
In the nonrelativistic limit, the real axion field can be

written in terms of a complex field ϕ [24],

a ¼ 1ffiffiffiffiffiffiffi
2m

p ðϕe−imt þ ϕ�eimtÞ

¼ 1ffiffiffiffiffiffiffi
2m

p ðηe−iðSþmtÞ þ ηeiðSþmtÞÞ; ð3Þ

with η and S real. It is intuitive that a real field becomes
complex in the nonrelativistic limit, because particle
number is conserved. The potential for the nonrelativistic
field is

VðϕÞ ¼ m
2
ϕ�ϕ −

g
2
jϕj4 þ � � � ; g

2
¼ 1

16f2PQ
ð4Þ

(obtained by dropping the terms that oscillate as e�iNmt, on
the assumption that they average to zero), and the field ϕ
satisfies a Schrödinger-type equation

i _ϕ¼−
∇2

2m
ϕ− jgjðϕ†ϕÞϕþmVNϕ; GP equation ð5Þ

[obtained by neglecting ∂2
t and ð∂tÞ2 terms in the Klein-

Gordon equation for a; see the Appendix for a derivation].

2We thank a seminar participant at Zurich University for this
name.

3We adopt in this paper the dilute-instanton approximation for
the potential, which suffices for our purposes. A recent discussion
of some modifications can be found in [23].
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Note that in “natural units” ϕ and g have mass dimension
3=2 and−2, respectively, while the Newtonian potential VN
is dimensionless.4 Equation (5) is referred to as the Gross-
Pitaevski (GP) equation, and is widely used, from describ-
ing Bose-Einstein condensation of cold atoms to galaxy
halos made ofm ∼ 10−20 eV bosons. A useful review about
this equation is [27].
The dynamics of the axion field coupled to gravity can

be obtained from Tμν
;ν ¼ 0, or from the Klein-Gordon

equation. The axion Tμν is parametrized by the axion
energy density ρ and fluid three-velocity ~v, which are more
intuitive variables for large-scale structure (LSS) than the
field. The transformation between these two parametriza-
tions is discussed in the works of Chavanis [16] and
Rindler-Daller and Shapiro [15]. The stress-energy tensor
for the nonrelativistic axion field, in Cartesian coordinates
for flat space-time (Newtonian gravity can be added later
by hand), is

T00 ¼ ρ ¼ mη2 þ � � �
T0i ¼ η2∂iSþ � � � ¼ −ρvi þ � � �

Tij ¼
1

2m
ð2∂iη∂jηþ 2η2∂iS∂jS

þ δij½−∇η∇ηþ 2mη2 _S − η2∇S∇Sþmjgjη4�Þ ð6Þ

¼ ∂iρ∂jρ

4m2ρ
þ ρvivj − δij

�∇2ρ

4m2
−

jgj
2m2

ρ2
�

ð7Þ

where the equations of motion were used to simplify the
brackets between Eqs. (6) and (7), and we defined
vj ¼ −∂jS=m.
Including now the Newtonian metric [see Eq. (A3)], two

equations are obtained from Tμν
;ν ¼ 0:

∂tρ ¼ −∇ · ρ~v continuity ð8Þ

ρ∂t~vþ ρ~v · ∇~v ¼ ρ∇
� ∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p þ jgj ρ

m2
− VN

�
Euler

ð9Þ

which can also be obtained from the real and imaginary
parts of the complex GP equation (5) by using ϕ ¼ ffiffiffiρ

m

p
e−iS

and vj ¼ −∂jS=m, and taking the divergence of the real
equation. The gravitational potential VN is obtained from
the Poisson equation

∇2
xVNðx − x0Þ ¼ 4πGNρðx0Þ; ð10Þ

which outside a spherical mass distribution has the familiar
solution VNðrÞ ¼ −GNMðrÞ=r with MðrÞ being the mass
inside the radius r.
From the Euler equation, one can already see that a

stationary solution (neglecting rotation, so setting the left
side of Euler to zero) should balance the outwards gradient
pressure represented by the first term against the inwards
gravitational and self-interaction pressures. The self-
interaction pressure is inwards because the density decreases
with r, so ∂rρ < 0. An estimate for the massM and radius R
of an axion drop can be obtained by replacing ∇ → 1=R,
ρ → M=R3 on the right-hand side of the Euler equation, and
solving the resulting quadratic equation for R:�

1

2m2R2
− jgj M

m2R3
− GN

M
R

�
≃ 0

⇒ R ∼
m2

Pl

4m2M
; M ≲mPlfPQ

m
: ð11Þ

This exhibits an upper bound on the drop mass, as found by
Chavanis, as well as the usual “virial” relation between the
radius and mass of an object supported against gravity by
pressure. Below we will use the virial theorem to obtain a
more reliable equation, but this already indicates the para-
metric dependence of the mass and radius of the drop. Notice
that the maximum drop mass ∝ 1=m2, so lighter axions
can form larger drops. Solving for R at the maximum mass
M ∼ 10−14M⊙ gives R ∼ 100 km.
More sophisticated estimates were obtained, for instance,

by Chavanis or RDS, by guessing a functional form for ρð~rÞ,
and minimizing the energy functional that gives the GP
equation. RDS considered bosons of variable mass and
positive self-interaction (which provide an outward pressure,
helpful in obtaining cores for galactic halos), and find rotating
field configurations which could be galactic halos for bosons
of massm ∼ 10−20 eV. Chavanis considered variable masses
and self-interactions of either sign, and looked for nonrotating
solutions. For a QCD axion (negative self-interaction) and a
nonrotating drop, Chavanis found a maximum mass of
10mPlfPQ=m by minimizing an energy functional with an
exponential ansatz for the radial profile of the density.
Estimates similar to Eq. (11) can be obtained using the

virial theorem. It says, for a stationary, spherically
symmetric space-time [28]

3

2

Z
Pr2drdΩ ¼

Z
GN

ρMðrÞ
r

r2drdΩ ð12Þ

where 3P ¼ P
iT

ii. This can be written in the form used by
Chavanis and RDS:

Egrav þ 2Ecin þ 3Esi ¼ 0; ð13Þ

where

4Recall that Eq. (5) is a classical field equation, so it contains
no ℏ, despite its formal similarity to the Schrödinger equation.
Setting c ¼ 1 (time in units of distance d), the dimensions are
½ϕ� ¼ ffiffiffiffi

E
p

=d, ½g� ¼ d=E and ½m� ¼ 1=d, where E is energy or
mass. In particular, the parameter m of the classical field is an
inverse length, and ℏ is required to relate it to the mass of quanta
of the field [25,26].
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Egrav ¼
Z

dV
ρ

2
VN; Esi ¼ g

Z
dV

ρ2

2m2
;

Ecin ¼
1

2

Z
dV

�ð∇ρÞ2
4ρm2

þ ρj~vj2
�
: ð14Þ

We assume in this paper, following RDS, that a rotating
axion drop should also satisfy the virial condition Eq. (13).
We consider rotating drops of axion field, and estimate
whether the rotation could allow them to be significantly
more massive than the estimate of Eq. (11).5 To obtain an
ansatz for the rotating drop, notice the resemblance
between the (nonlinear) GP equation and the (linear)
Schrödinger equation for the hydrogen atom, the latter
having well-known solutions in terms of spherical har-
monics. It is convenient to start from the axion field, rather
than ρ and ~v, because the phase of the field should be
continuous, and this condition is less simple to impose on ρ
and ~v. Following Tkachev [32], we suppose the rotating
axion drop has the functional form in radial coordinates

ϕðr; θ;φÞ ¼
ffiffiffiffiffi
ρc
m

r
FðrÞYl

lðθ;φÞ;

Yl
l ¼ clsinlθeilφ;

cl ¼
ð−1Þl
2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!

4π

r
ð15Þ

where cl is taken such that
R jYl

lj2dΩ ¼ 1, which ensures
that the total mass of the drop is independent of l and
remains ∼ρcr3c. For simplicity, the radial function FðrÞ is
taken to give a density of top-hat form:

ρðr; θÞ ¼ jclj2ρcθðrc − rÞsin2lθ; ð16Þ
in which case the total mass of the drop is M ¼ ρcr3c=3.
Various comments can be made.
(1) The radial density profiles FðrÞ contain two param-

eters: a central density ρc (integrated over angles) and
rc, which is some measure of the size of the drop. In
addition to the top hat,we tried an “isothermal-sphere-
squared” profile, FðrÞ ¼ r2c=ðr2 þ r2cÞ, because it
approaches being a solution of the static Euler
equation and has a finite volume integral. These
results are not given, because they only differ from
the top-hat profile in irrelevant numerical factors
(even though the integration is more involved).

(2) A solution of the Schrödinger equation is usually
expanded on the set of fYl

ng. We select one Yl
l

for simplicity; the equations of motion are nonlinear,
so this allows us to avoid products Yl

nY�l0
n0 . In

addition, the parametrization ϕ ¼ ffiffiffiρ
m

p
e−iS ∝ Yl

l,
~v ¼ −∇S=m, relates l to the fluid velocity vr ¼ 0,

vθ ¼ 0, vφ ¼ l=ðmr sin θÞ. Note that in the case of a
single Yl

n the choice Yl
l with n ¼ l corresponds to

choosing the z-axis of the coordinate system along
the angular momentum vector.

(3) Asteroids in our solar system can have masses and
radii comparable to the nonrotating axion drops, and
tend to have rotation periods ∼6 hours. However,
their formation history differs from that of axion
drops, so it is unclear whether this is a relevant
analogy. The equatorial rotation frequency of a drop
described by Eq. (15), evaluated at the radius rc,
would be ω≃ l=ðr2cmÞ≃ 6l=day, which suggests
that low l values are realistic.

(4) With the ansatz of Eq. (15), the parameter l describes
two distinct physical aspects of the drop: its rotation,
and also its flattening into a disk. However, we allow
this degeneracy, because we only consider l values
of order a few, due to the previous point.

To obtain the gravitational energy which enters the
virial condition (13), the potential VNðr; θÞ is required.
Expanding the density on spherical harmonics, ρðr; θÞ ¼
ρðrÞPk≤2l ηkY

k
0ðθÞ with ηk ¼

R
dΩ sin2l θYk

0, the potential
is [33]

VNðr; θÞ ¼ −4πGN

X
k

ηkYk
0ðθÞ

2kþ 1

×
�

1

rkþ1

Z
r

0

daakþ2ρðaÞ þ rk
Z

∞

r

da
ak−1

ρðaÞ
�

≡ −4πGN

X
k

VkðrÞYk
0ðθÞ ð17Þ

which illustrates the interest of the top-hat density profile.
This gives

Egrav ¼ −2πGN

X
k

Z
∞

0

r2ηkρðrÞVkðrÞdr

¼ −
4πGN

15
ρ2cr5cjclj4

×

�
jη0j2 þ

3jη2j2
5

þ
X

4≤k≤2l

3jηkj2
ðkþ 3Þð2kþ 1Þ

�

≳ −
4πGN

15
ρ2cr5c

jclj4
jc2lj2

→ −
3GNM2

5rc

ffiffiffiffiffiffiffiffiffiffi
1þ l

p ð18Þ

where, in the last approximation, the curly brackets were
taken ≤

P
kjηkj2 ¼ 1=jc2lj2, and after the arrow approx-

imates6 jclj4
jc2lj2 ≃

ffiffiffiffiffiffiffiffiffiffi
lþ 1

p
=4π. The kinetic and self-interaction

energies are

5Rotating Bose stars have been considered in [29,30]; rotating
galactic halos made of an ultralight scalar field are discussed in
[15,31].

6For l ¼ f0; 1; 2; 3;…g, jclj4
jc2lj2 ¼ f1; 5

6
; 5
7
; 1.63;…g × 1

4π. For
large l, the Stirling approximation for large-n factorials,

n!≃ ffiffiffiffiffiffiffiffi
2πn

p ðneÞn, gives jclj4
jc2lj2 ¼

ffiffiffi
2l
π

q
1
4π.
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3Esi ¼ −
M2

r3c

9

16f2PQm
2

jclj4
jc2lj2

→ −
M2

r3c

9

64πf2PQm
2

ffiffiffiffiffiffiffiffiffiffi
1þ l

p

ð19Þ

2Ecin ¼
3M

8m2r2c
½1þ 4lðlþ 1Þ�; ð20Þ

using ð∂ρ=∂rÞ2 ≃ ρ2cjclj4 sin4l θδðr − rcÞ=r.
We see that the gravitational and self-interaction energies

grow as
ffiffiffiffiffiffiffiffiffiffi
lþ 1

p
. This is because the drop flattens into a disk

for large l [as a result of our ansatz (16)], so the density is
larger to stay at constant mass. The kinetic energy grows
quadratically with l, both because the drop has angular
momentum, and because of the gradient in θ. Solving the
virial equation for rc gives

Mrc ≃ 5m2
Pl

8m2

1þ 4lðlþ 1Þffiffiffiffiffiffiffiffiffiffi
lþ 1

p

×

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3ðlþ 1Þm2M2

5π½1þ 4lðlþ 1Þ�2f2PQm2
Pl

s #

⇒ M ≲
ffiffiffiffiffiffi
5π

3

r
mPlfPQ

m
1þ 4lðlþ 1Þffiffiffiffiffiffiffiffiffiffi

lþ 1
p ð21Þ

which, for l ¼ 0, reproduces the parametric dependence of
the estimates obtained from the Euler equation in Eq. (11).
However, the constants are unreliable, because Chavanis
obtained a maximum mass of ∼10−13M⊙ with an expo-
nential ansatz for the radial density profile of a spherically
symmetric solution. So we suppose the upper bound is

M ≲ 1þ 4lðlþ 1Þffiffiffiffiffiffiffiffiffiffi
lþ 1

p × 10−13M⊙: ð22Þ

For l ∼ few, which corresponds to the rotation rates of
asteroids, the maximum mass of the drop can grow by an
order of magnitude or so. This behavior is confirmed by the
numerical calculations presented in the next section.
The upper bound on the size of the drop arises because

the self-interaction energy of the QCD axion is negative
(equivalently, it exerts an inwards force, like gravity): if the
mass M inside a volume ∼R3 is too high, the gradients
cannot compensate the self-interaction energy. However,
the QCD axion has a cosine potential [see Eq. (1)] and not
the unbounded-below −jgjjϕj4 potential used to compute
Esi. So one can wonder whether the maximum mass is an
artifact of expanding the potential. It seems not: a more
correct version of the potential, in the nonrelativistic
approximation where the mass term does not appear, would
be m2f2PQ½1 − cosða=fPQÞ� −m2a2=2. This is also always
negative, and well approximated by −m2a4=ð4!f4PQÞ at the
maximal drop mass (which corresponds to a=fPQ ∼
fPQ=mPl ≪ 1). So drops beyond the maximal mass would

collapse7 or fragment. Reference [17] shows by numerical
calculation that the sixth order term in the potential has a
small impact on the density profile.

III. NUMERICAL SOLUTION OF
THE GPP SYSTEM

In this section we are solving the coupled Gross-
Pitaevski [Eq. (5)] and Poisson [Eq. (10)] equations
numerically. We proceed in analogy to the standard treat-
ment of the hydrogen atom. We make an ansatz for the field
in terms of a radial wave function RðrÞ and spherical
harmonics:

ϕ ¼ RðrÞYl
mðϑ;φÞe−iEt;

M ¼ m
Z

∞

0

drr2R2ðrÞ; ð23Þ

[so RðrÞ ¼ ffiffiffiffiρc
m

p
FðrÞ in Eq. (15)]. In general ϕ may consist

of a superposition of various Yl
m. As before, we assume

here for simplicity that the field consists just of a single Yl
m

with given lm. As usual, thanks to the factor e−iEt we obtain
a time-independent Schrödinger equation:

ER ¼
�
−

1

2m

�
Δr −

lðlþ 1Þ
r2

�
þmVN − jgjR2jYl

mj2
�
R;

ð24Þ

where Δr is the radial part of the Laplace operator in polar
coordinates. Note that this equation still depends on ϑ
and φ via the potential VN and the self-interaction term.
Therefore, we take the angular average of Eq. (24). We
define the angular averaged gravitational potential and use
the normalization of the spherical harmonics:

VNðrÞ≡ 1

4π

Z
dΩVNðr;ϑ;φÞ;

Z
dΩjYl

mj2¼1: ð25Þ

Then we obtain for the angular averaged GP and Poisson
equations:

ΔrR ¼
�
2mðmVN − EÞ þ lðlþ 1Þ

r2
− jgj m

2π
R2

�
R ð26Þ

ΔrVN ¼ GNmR2; ð27Þ

which now are just two coupled second order differential
equations for the two functions RðrÞ and VNðrÞ.

7One could wonder if there are smaller, heavier drops, whose
radius could be estimated by balancing the inward self-interaction
pressure from m2f2PQ½1 − cosða=fPQÞ� −m2a2=2, against the
outwards gradients. However, the radius where this self-
interaction energy balances the gradient energy can be estimated
to be ∼1=m.
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We can make this system dimensionless and absorb the
coupling constants g and GN , the axion mass m, and the
constant E by appropriate rescaling:

Δ~r
~R ¼

�
~VN þ lðlþ 1Þ

~r2
− ~R2

�
~R ð28Þ

Δ~r
~VN ¼ ~R2; ð29Þ

with

r ¼ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffi
jgj

4πGN

s
~r;

R ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GNm

p
jgj

~R;

VN −
E
m

¼ 2πGN

jgj
~VN; ð30Þ

where the tilde quantities are dimensionless. Using mPl ¼
1=

ffiffiffiffiffiffiffi
GN

p
≈ 1.2 × 1019 GeV and the QCD expression for g

given in Eq. (4) we can write those relations as

r ¼ 1

4
ffiffiffiffiffiffi
2π

p mPl

mfPQ
~r ≈ 4 × 104 m~r;

R ¼ 16
ffiffiffi
2

p
π
m1=2f2PQ
mPl

~R;

VN −
E
m

¼ 16π
f2PQ
m2

Pl

~VN: ð31Þ

The total mass of the axion drop is given as

M ¼ 2
ffiffiffiffiffiffi
2π

p mPlfPQ
m

~M ∼ 10−13M⊙
�

fPQ
1011 GeV

�
2
~M

with ~M ¼
Z

∞

0

d~r~r2 ~R2: ð32Þ

Assuming that tilde quantities are of order one, Eqs. (31)
and (32) set the scales for the typical dimensions of the
axion drop, in agreement with the estimates of the previous
section. This confirms that one obtains the same physics by
studying either the equations of motion for the field, or
Einstein’s equations for the stress-energy tensor. We can
also estimate the typical density of the drop as

ρðrÞ ¼ mR2ðrÞ ≈ 3 g cm−3
�

fPQ
1011 GeV

�
2
~R2ðrÞ; ð33Þ

which is comparable to the average density of the Earth for
this choice of fPQ.
Now the task is to numerically solve the GPP system

(28), (29). These are two second order differential equa-
tions for the functions ~Rð~rÞ and ~VNð~rÞ. We need to specify

four initial conditions: ~Rð0Þ, ~R0ð0Þ, ~VNð0Þ, ~V 0
Nð0Þ, with

primes denoting derivative with respect to ~r.
For a given RðrÞ we can integrate the Poisson

equation (29) and obtain a solution for the potential:

~VNð~rÞ ¼ −
1

~r

Z
~r

0

dxx2 ~R2ðxÞ −
Z

∞

~r
dxx ~R2ðxÞ þ ~E: ð34Þ

Here ~E is an integration constant. Another integration
constant has been chosen such that we obtain the following
limiting expressions:

~VNð0Þ ¼ −
Z

∞

0

dxx ~R2ðxÞ þ ~E;

~VNð~r → ∞Þ ¼ −
~M
~r
þ ~E → ~E: ð35Þ

This choice of integration constants implies that ~VNð~rÞ is
finite at ~r ¼ 0 and ~V 0

Nð0Þ ¼ 0. At distances far away from
the mass distribution we obtain the Newtonian result for the
potential in physical units, VNðrÞ ¼ −GNM=r, when we
identify

~E ¼ −
jgj

2πGN

E
m

¼ −
1

16π

m2
Pl

f2PQ

E
m
: ð36Þ

Considering the GP equation at large radii and requiring
RðrÞ to decrease exponentially we find that ~E should be
positive, i.e., E < 0. In the familiar Schrödinger equation
for the hydrogen atom, E would be the binding energy of
the electron. We find this analogy useful, even though, in
our classical field theory, the energy is a volume integral
and E has units of frequency. As shown below, for the
solutions we have ~E≲ 1. Hence it follows that

−
E
m
≲ 16π

f2PQ
m2

Pl

≈ 3.5 × 10−15
�

fPQ
1011 GeV

�
2

ð37Þ

and jEj ≪ m, which justifies the nonrelativistic treatment.
Our procedure is now as follows: we set ~V 0

Nð0Þ ¼ 0 and
pick some values for ~Rð0Þ and ~VNð0Þ. Then we search for
~R0ð0Þ by a shooting method, such that for the solution ~R, ~R0

and ~V 0
N go to zero at large ~r. If a solution is found we can

then calculate the corresponding total mass ~M, the radius
containing 99% of the mass, ~r99, and ~E. In Fig. 1 we show
the behavior of the total mass of the drop, ~M, for the cases
l ¼ 0, 1, 2, 3. Beyond the point where the curves stop we
could not find any solution with physical boundary con-
ditions, indicating the existence of a maximal possible
mass. When we try to extend the curves beyond the
maximal mass, the solutions diverge at large radii. In
Fig. 2 (left panel) we show the radial profiles for the
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maximal mass for each l value. For those solutions we
required zero nodes of ~RðrÞ.
For l > 0 physically interesting solutions have vanishing

wave function at the center, since the angular momentum
term in the GP equation diverges as r → 0 for finite Rð0Þ.
For the numerics, we fix ~R at 0.01 for l ¼ 1 and at 10−4 for
l ¼ 2, 3 at radius ~r ¼ 0.05 and then we scan different
values of ~VNð0Þ. For each value we search for the derivative
~R0ð0Þ in order to obtain a physically interesting solution,
converging at large radii. For l ¼ 0, ~Rð0Þ is nonzero and we
have to scan also over this parameter, in addition to ~VNð0Þ
and ~R0ð0Þ.
Our results for the l ¼ 0 case are in qualitative agreement

with Figs. 4 and 5 from [22]. However, so far we could not
find solutions with smaller ~r99 as the one corresponding to
the maximal mass (cf. Fig. 4 of [22]) or equivalently larger
~Rð0Þ (cf. Fig. 1 of [34]). Note that to search for l ¼ 0

solutions we have restricted the derivative ~R0ð0Þ to be small
[the condition we impose is j ~R0ð0Þj < ~Rð0Þ]. If we allow
for large derivatives at small radii solutions are found for
different combinations of ~Rð0Þ and ~VNð0Þ. Those allow

also for slightly larger total masses, although qualitatively
the behavior is similar to the shown solutions.
We find that the solutions for l > 0 are more massive

than in the l ¼ 0 case by about a factor of 3 for l ¼ 1, a
factor of 5 for l ¼ 2, and a factor of 8 for l ¼ 3, but the size
increases only slightly, from ~r99 ≈ 5 to 7. Restricting to
solutions with zero nodes we did not find any solution
for l ≥ 4.
In Fig. 3 we show solutions with 1 to 6 nodes for the case

with l ¼ 1. We observe that significantly larger masses can
be obtained for multinode solutions. Figure 2 (right panel)
shows three examples for the wave function with l ¼ 1 and
3, 4, and 5 nodes. For all three examples the total mass is
approximately ~M ≈ 40. We have also searched for multi-
node solutions with higher values of l. As in the zero-node
case, we have not found physical solutions for l ≥ 4.
The results of our numerical study of the GPP system can

be summarized as follows.
(1) We recover the well-known result from the literature

that for the “ground state” with zero nodes and l ¼ 0
there is a maximal possible mass. Let us call this
maximal mass of the ground state ~Mmax

0 .
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FIG. 1. A set of solutions of the GPP system for l ¼ 0, 1, 2, 3. The three panels show the total mass as a function of the initial values for
~VN (left), as a function of the radius containing 99% of the mass (middle), and ~E (right). The initial value ~Rð0Þ has been fixed at 10−2 for
l ¼ 1 and at 10−4 for l ¼ 2, 3, while for l ¼ 0 it has a finite value. The relation of the dimensionless quantities shown in the plots to
physical quantities is given in Eqs. (31), (32), (36).
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FIG. 2. Left: The radial wave function ~Rð~rÞ for the solutions for l ¼ 0, 1, 2, 3 corresponding in each case to the maximum mass shown
in Fig. 1. Right: Radial wave function for solutions for l ¼ 1 with 3, 4, and 5 nodes, where all three examples correspond to a total mass
~M ≈ 40.
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(2) For a given mass, solutions with lower angular
momentum l and fewer nodes have larger ~E and
hence are favored. However, for masses ~M > ~Mmax

0 ,
there seems to be a minimal l and (for given l) a
minimal number of nodes, for which solutions exist.
Hence, if we look for a solution for a fixed mass with
~M > ~Mmax

0 , the solution with the maximum ~E is
obtained at l > 0 and/or with a nonzero number
of nodes.

(3) We have not found solutions with l ≥ 4; this may be
an artifact of our single Yl

m approximation, or may
indicate an upper bound on the angular momentum
of the drop. It deserves further study.

In this paper we have not considered the question
of stability of solutions against small perturbations.
Reference [35] has found that for the noninteracting and
nonrotating case, only the ground state with zero nodes is
stable, whereas solutions with nodes are unstable with
respect to oscillations; see also [13,36–38]. We leave the
stability analysis of multi-l and multinode solutions for the
QCD axion case for future investigations. This question
needs to be addressed as well within the dynamical
framework of the formation of the axion drops.

IV. FROM THE QCD PHASE TRANSITION
TILL TODAY

A. Estimating the minicluster mass

We suppose that the Peccei-Quinn phase transition
occurs after inflation, leaving a massless axion field which
is random from one horizon volume to the next, a network
of cosmic strings, and no domain walls. Shortly before the
QCD phase transition, the axion mass is expected to turn
on, generating the potential (1). This leads to two axion
contributions to dark matter:
(1) It causes the network of cosmic strings to decay.

This process is simulated numerically [9,39,40]; the
recent results of KSS [10] give two comparable
contributions to axion dark matter. From the Peccei-
Quinn phase transition until the axion mass turns on,

the string network radiates axions with p ∼H. Then
domain walls form between the strings, separating
regions of �a, and subsequently this wall-string
network decays away to axions with p ∼mðTÞ ∼H.
We assume that these axions are incoherent,

because they are produced on subhorizon scales
over several Hubble times. So they are described by
the two-point function (or more intuitively, a phase
space distribution), rather than contributing to the
classical axion field. It appears unnecessary to
distinguish whether these axions are particles or
classical waves, because distributions of classical
waves evolve in a similar way to distributions of
particles [41]. So for convenience, we refer to these
modes as “particles,” to distinguish them from the
classical misalignment field.

(2) The axion field, random in each horizon volume, is
likely to be misaligned with respect to the minimum
of the potential, so will roll down and oscillate. The
initial magnitude of the field, averaged over many
horizons, is πfPQ=

ffiffiffi
3

p
. The oscillations redshift like

cold dark matter [7,8,42].
Combining these contributions to axion dark matter,

KSS [10] obtained an appropriate relic density for
m ∼ 10−4 eV. Only ∼25% of this CDM is due to the
misalignment field; the remainder is in the incoherent
distribution of axion modes produced by strings.
In this paper, we are interested in the misalignment axion

field, which can have two types of density fluctuations. It
inherits the large-scale adiabatic density fluctuations
present in radiation, which will later grow into the observed
large-scale structure. More interesting for us are the short-
distance, isocurvature miniclusters, originally discussed by
Hogan and Rees [18], and extensively studied by Kolb and
Tkachev [43]. These arise because the axion field is
random, from one horizon to the next, as the axion mass
turns on before the QCD PT. This gives Oð1Þ density
fluctuations on the QCD horizon scale, which are frozen in
the expanding radiation until matter-radiation equality, then
decouple from the Hubble expansion and collapse.
We want to estimate the mass of a minicluster. This will

depend on the coherence length and energy density of the
axion field, evaluated as the axion mass turns on. The
temperature dependence of the axion mass is equivalent to
the topological susceptibility χðTÞ of the QCD plasma,
which has been widely studied. Here we consider three
possible behaviors for m2ðTÞ prior to the QCD phase
transition. In the interacting instanton liquid of [44], the
temperature-dependent axion mass can be written

mðTÞ ¼ c
Λ2
QCD

fPQ

�
ΛQCD

T

�
n=2

; ð38Þ

with ΛQCD ¼ 400 MeV, and where c ¼ 4 × 10−4,
n ¼ 6.68. (The zero-temperature mass is obtained for

0 20 40 60
r

99

0

20

40

60

80

100

M

0

20

40

60

80

100

0 5 10 15 20
E

l = 1
1 to 6 nodes

~~

~

1 1

2

3

4

5

6

6

FIG. 3. Solutions for l ¼ 1 with 1 to 6 nodes of the radial wave
function (curves from bottom up have increasing numbers of
nodes). We show the total mass ~M as a function of ~r99 (left) and
~E (right).
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n ¼ 0, c ¼ 4 × 10−2, and mðTÞ should stop growing when
it reaches the zero-temperature mass.) The instanton liquid
gives a less steep turn-on than early dilute instanton gas
estimates [42,45], and is the parametrization used by KSS
[10] to estimate that m ∼ 10−4 eV gives the correct relic
density of axion CDM today. A recent quenched lattice
simulation [46], combined with the dilute instanton gas
approximation, gives a comparable power law. The lattice-
based estimate of [23] suggests that the axion mass could
turn on more slowly, with c≃ 3 × 10−3, n≃ 2, whereas the
lattice-based analysis of Kitano and Yamada [47] explored
the possibility that the axion mass turns on exponentially at
the critical temperature Tc ≃ 150 MeV.
Once the axion mass reaches its zero temperature value

m, the minicluster mass can be estimated as

Mmini ∼ VoscmðT ¼ 0ÞnoscE; ð39Þ
where Tosc is the temperature when mðToscÞ ¼ 3HðToscÞ,
Vosc and nosc are the volume of the horizon and the comoving
axion number density at that moment, and E is an enhance-
ment factor which takes into account that the axion field is
inhomogeneous and so starts to oscillate at different times
in different horizons. We take Vosc ∼ 1=½8H3ðToscÞ� and
nosc ∼mðToscÞf2PQhθ2i i ≈mðToscÞf2PQπ2=3. It is reasonable
to take the minicluster volume to be Vosc, because recall that
the field was initially random on much smaller scales, and is
smoothed to the horizon scale by the dynamics of a massless
scalar field. The enhancement factor E arises because, in
horizonswherea ∼ πfPQ, the axion potential does not have a
m2a2 form, and the beginning of oscillations (with the
associated 1=R3 redshifting of the energy density) is delayed.
Several studies [42,45,48] have estimated E ∼ 2 → 8 by
numerically solving the equations of motion.8 However it is
unclear in these analyses whether the field gradients are
included in the equations of motion. The gradients are
explicitly included in the analysis [43], who find that the
axion field could remain trapped at a ∼ πfPQ while
the temperature drops by an order of magnitude. However,
the a ∼ πfPQ configurations of this analysis may correspond
to the domainwalls that form between strings after the axions
get a mass. The decay of those domain walls is studied by
KSS [10]. We take E ¼ 8. (This may be large, but other
authors take the horizon volume to be V ¼ 1=H3. We have
EV ¼ 1=H3.) This leads to

Mmini ∼
π2mf2PQ
H2ðToscÞ

: ð40Þ

With the parameters corresponding to the interacting
instanton liquid of [44], and fPQ ≃ 6 × 1010 GeV as found

by KSS, we find that the axion starts to oscillate around
T ∼ 1 → 2 GeV, giving

Mmini ∼ 3 × 10−13M⊙: ð41Þ

This is similar to the value found in [49], but smaller
than the original estimate of Hogan and Rees [18], whose
miniclusters formed at T ¼ 100 MeV in a CDM-
dominated Universe. In the case of the more gradual
turn-on of the axion mass advocated in [23], the axion
starts to oscillate sooner (Tosc∼ few GeV), so the mini-
clusters could be an order of magnitude smaller. If the axion
mass turns on exponentially at the QCD phase transition, as
discussed in [47], then the axion could start to oscillate at
T ∼ ΛQCD. If we then adjust m such that the observed dark
matter density is due to axions we would obtain mini-
clusters that are an order of magnitude or so larger.
Interestingly,Mmini of Eq. (41) is not so different from the

maximum mass of a stable drop estimated in Eq. (22). This
appears to be an accident: the maximum mass of a drop is
determined by balancing the kinetic pressure against the
gravitational and self-interaction forces—whereas the mass
of a minicluster is determined by the volume of the horizon
when the axion starts to oscillate. To see why these are
similar, recall that the axion starts to oscillate when
3HðToscÞ ∼mðToscÞ. Replacing 25mfPQ ∼ Λ2

QCD in Eq. (38)
gives

Mmini ∼
π3mf2PQ
HðToscÞ

1

mðToscÞ

∼ π3mf2PQ
mPl

15T2

4T2

m2fPQ

�
T

25mfPQ

�n−4
4

∼
fPQmPl

m
8T1.34

Λ1.34
QCD

where the last estimate used n=2 ¼ 3.34, for which the last
fraction is ∼50. The estimates of the minicluster and drop
masses, given in Eqs. (41) and (22), are both very uncertain.
In both cases, formation is a dynamical processwhich should
generate a spectrum of masses. Sowe take these estimates to
have an uncertainty of at least an order of magnitude, and
conclude that the average minicluster mass could be of order
the maximum drop mass, or a hundred times larger.

B. Speculations on how to make Andromeda

We can now speculate on how axion dark matter could
make the Andromeda galaxy, in the case where the Peccei-
Quinn phase transition occurs after inflation.
After the QCD phase transition, there are two contribu-

tions to axion dark matter: the misalignment field, and the
incoherent distribution of modes produced by strings,
which we refer to as particles. It is convenient to refer
to this phase space distribution of modes as “particles,” to

8Notice that E is the enhancement in the density of overdense
regions, whereas often the enhancement in the average density is
given.
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distinguish it from the misalignment field (distributions of
classical waves evolve in a way very similar to distributions
of particles [41]). Once the axion mass has settled to its
zero-temperature value, the particles are nonrelativistic,
with velocity ∼HðΛQCDÞ=m ∼ 10−5c (for m ¼ 10−4 eV).
Despite their small mass, these particles should be suffi-
ciently “cold” at late times to virialize and form a galactic
halo of particles with v ∼ 0.001c.
There are two types of density perturbations that can

arise in the field and in the particles. On large scales, they
both inherited from the surrounding radiation the scale-
free, adiabatic density fluctuations produced during infla-
tion. Then, due to the dynamics at the QCD phase
transition, the field has Oð1Þ density fluctuations on the
QCD horizon scale (∼0.03 pc today), which give a white
noise spectrum (δM=M ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mmini=M

p
) of density fluctua-

tions on small scales. These are the miniclusters. The
particles might also have a similar small-scale spectrum.
These density fluctuations are frozen into the radiation
plasma until they dominate the radiation density (see e.g.
[50]). At matter-radiation equality, the large-scale fluc-
tuation which will eventually become Andromeda, which
has an initial amplitude δρ=ρ≲ 10−4, can start to grow.
Meanwhile, the short-distance Oð1Þ inhomogeneities, such
as miniclusters, decouple from the Hubble flow and
collapse.
We now focus on the smale-scale inhomogeneities in the

field. A realistic and accurate calculation of minicluster
formation would give a spectrum: the number density of
miniclusters as a function of their mass. Those with mass
less than the maximum allowed for drops should initially
collapse to axion drops. Hogan and Rees [18] speculate that
miniclusters undergo hierarchical clustering; however it is
unclear to us how this would occur: do small drops
amalgamate to form larger drops, or do the drops cluster
like dark matter particles?
In the case that a minicluster exceeds the maximum drop

mass, the virial theorem suggests that the miniclusters
fragment into stable drops. The point is that the virial
condition implies that the (negative) gravitational energy
gained in collapse should be compensated by kinetic
energy, so one can anticipate that the minicluster fragments
into smaller field configurations, in the presence of steep
field gradients. This would of course require numerical
verification. The dynamics of formation and cooling of
individual drops (or similar bosonic systems) has been
studied for instance in Refs. [36,43,51,52]. The alternative
is that the minicluster collapses to a black hole. However, it
is often argued that Oð1Þ density fluctuations should be of
horizon scale in order to collapse to black holes [53], which
is not the case for miniclusters.
In this paper, we do not consider small-scale inhomo-

geneities in the density of axions produced by strings.
The string network is very inhomogeneous, but decays
to relativistic axion particles [10], which become

nonrelativistic as the temperature-dependent axion mass
increases towards its zero-temperature value. The degree
to which the particle density becomes smooth by free-
streaming, prior to the axions becoming nonrelativistic,
is unclear (to us). Kolb and Tkachev explored this
question [49], using a dilute instanton gas approximation
for mðTÞ, and argue that the axions from strings also have
Oð1Þ density fluctuations on the QCD horizon scale. This
corresponds to the original analysis of Hogan and Rees
[18], where the miniclusters were assumed to be com-
posed of axion particles. Hogan and Rees estimate that the
cores of miniclusters could survive the hierarchical
merging of miniclusters and the galaxy formation process,
but that a significant fraction of axion particles would be
thrown off, and would today contribute a smooth halo
density of axion particles. Following Hogan and Rees, we
anticipate that this cold distribution of axions could also
be detected by axion dark matter search experiments such
as ADMX [19].
On the other hand, if a significant fraction of axion dark

matter is in the form of drops, this would reduce the signal
in direct detection. Denoting the mass fraction of axion
drops to the smooth halo component by fdrop, we expect a
number density of drops with mass 10−13M⊙ of order
fdrop × 10−44 cm−3, which implies about fdrop × 10−5

drops in a volume of ð1 AUÞ3 and a drop flux on Earth
of fdrop × 10−37 cm−2 s−1, or about a 5 fdrop% probability
of a drop hitting the Earth within the age of the Universe.
(We have assumed a local dark matter density of
0.4 GeVcm−3 and a drop velocity in the galactic halo of
10−3c.) Hence, ADMX would see only the smooth com-
ponent of the halo, which will be reduced by a factor
ð1 − fdropÞ.

V. OBSERVATIONAL BOUNDS

The observational signatures of “macroscopic” dark
matter objects, with masses from grams to several solar
masses, were recently compiled in [20]. The case of
primordial black holes is reviewed in [54]; while black
holes created with M ≲ 10−18M⊙ would evaporate in the
lifetime of the Universe, there is a window [55] 10−13M⊙ ≲
MPBH ≲ 10−9M⊙ where they could constitute the dark
matter (the lower bound is from femtolensing, the upper
bound from microlensing). This window is interesting,
because in the case that large miniclusters collapsed to
black holes, they would be in this allowed range. Kolb
and Tkachev [49] discussed the sensitivity of femto- and
picolensing experiments’ axion miniclusters. Zurek et al.
[56] consider astrophysical effects of miniclusters in the
wide range of 10−12 → 104M⊙. Here we suppose that
axion field dark matter is in the form of drops, with
M ≲ 10−13 → 10−12M⊙, and review the femtolensing
bound. Other possible constraints are listed.
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A. Femtolensing

Microlensing is the familiar idea of watching nearby
stars (e.g. in the LMC), in the hope of observing an increase
in their light due to a compact halo object crossing the line
of sight. Femtolensing [57] uses gamma ray bursters
(GRBs) as sources, which are at cosmological distances,
and most of which only last for a few seconds. The lensing
objects are therefore distributed in intervening galaxies and
intergalactic space. And rather than looking for an ampli-
fication in the light signal, one looks for the interference
between light that took two different paths around the
lensing object: the time delay between the two paths is the
same for photons of different energies, so one looks for
oscillations in the energy spectrum of GRBs.
Femtolensing is an idea ofGould [57], that lensing by dark

objects with 10−16M⊙ ≲M ≲ 10−13M⊙ could give interfer-
ence patterns in the energy spectrum of GRBs. A bound
based on BATSE data [58] could exclude Ω ∼ 0.2 for the
mass range 10−16 → 10−13M⊙. These authors also estimated
picolensing bounds, and found a 1σ sensitivity to Ω ∼ 1 of
compact objects in the mass range 10−12.5M⊙ → 10−9M⊙.
In a careful and dedicated analysis of FERMI data, Barnacka
et al. [59] focused on GRBs at measured redshift, and were
able to exclude Ω > 0.03 in compact objects of mass
5 × 10−17 → 5 × 10−15M⊙, which is somewhat below the
maximum drop mass estimated in Eq. (22).
The exclusion of [59] assumes that the GRB can be

treated as a point source. Otherwise, various photons
emitted by the GRB could have different time delays in
their paths around the lens (because they come from
different locations on the source), and the oscillations in
the intensity summed over photons could be washed out
[57]. The GRB can be treated as a point source provided
that its “size,” projected onto the lens plane, is smaller than
the Einstein radius rE ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNMðDOLDLS=DOSÞ

p
, where

the distances D are between observer, source and lens. It is
unclear, from the estimates in [59], that this condition is
satisfied (such doubts were expressed in [60]).
Furthermore, the GRB size estimates in [61] are one or
two orders of magnitude larger than those in [59]. It would
be helpful if the status of these constraints were confirmed
by expert authors.

B. Other constraints?

Axion drops as dark matter could have many other
observable consequences, due to their interactions with the
cosmic microwave background, magnetic fields, or other
astrophysical objects; due to their passage in our local area;
and so on. Some possibilities are listed here. Questions
which arise, for some of these constraints, are whether the
drop accretes baryons (see e.g. [56]) and how it interacts
with photons (discussed in [62]).
(1) Carr and Sakellariadou [63] considered dynamical

constraints on compact objects, which could

disrupt the structures we see. They expect that
compact objects in the mass range 10−18 →
10−11M⊙ could resemble comets. From the non-
observation of interstellar comets in the past
300 years, they impose that no compact objects
(CO) passed through a disk of radius one Earth-Sun
distance (astronomica unit ¼ AU) in 300 years,
which implies, following [64],

M >
ΩCO

ΩDM
10−13M⊙: ð42Þ

So for drop masses ≳few × 10−14M⊙, this obser-
vation does not pose a constraint. Whether there is a
bound on smaller drops would require study, to
determine whether they shine like baryonic comets.

(2) There are constraints on DM-photon interactions
from cosmic microwave background observations,
for instance as given in [65]. It would be interesting
to understand if these apply to axion drops. In [20],
it was argued that macroscopic compact objects
have a geometric cross section with photons, and can
be subject to the same “collisional damping” (Silk
damping) constraints as particle dark matter.
Whether this is the case for drops might depend
on whether they accumulate baryons.

(3) Do the drops evaporate due to self-interactions?
The rate at which four axions from the condensate

(field) could evaporate into two particles with
energy ∼2m is estimated9 in [8] as ∼m3a6=f4PQ.
For a=fPQ ∼ fPQ=mPl, as obtained in the axion drop,
this evaporation time scale is much longer than the
age of the Universe.
The decay of axion drops due to emission of real

axions because of the self-interaction term via a
3a → a process has been hypothesized in [66],
under the assumption that this process becomes
kinematically allowed when the whole axion drop
balances momentum.
Axion particles in the galactic halo (originally

produced by string decay), could scatter axions out
of the drops. The rate for this process was estimated
in [67] to be ∼nam2=f4PQ × fBE, where fBE is a Bose
enhancement factor that accounts for the high
occupation number of the axion particles, which
can locally be estimated as fBE ∼ 0.3 GeV=
ðm4v3 cm3Þ ∼ 1020 (for v ∼ 0.001c the local virial
velocity). The fraction of axions scattered out of
drops in the age of the Universe τU is there-
fore ∼ðmfBE=mPlÞ ≪ 1.

(4) One can ask what happens if a drop meets an
ordinary star, a white dwarf, a neutron star, or a

9This can be simply obtained as the 2 → 2 scattering rate with
an effective four-point coupling m2a2=f6PQ.
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black hole. Collisions of axion drops with white
dwarfs and neutron stars [68] have been proposed as
a source for GRBs, as well as to explain other
anomalies. However the energy released in the
collision of a drop with a neutron star is controver-
sial [34] (as is also the case for the interactions
of primordial black holes with neutron stars
[60,69,70]).

(5) The “explosion” of axion drops was recently pro-
posed as a possible source of fast radio bursts [71].

VI. SUMMARY

Dark matter composed of the QCD axion can be
produced either by the misalignment mechanism, giving
rise to an axion field, or by the decay of strings, which
produces a distribution of axion modes/particles. We
considered stable axion field configurations, held together
by gravity and self-interactions, and confirmed that they
have typical dimensions of 100 km and a mass scale
M ∼ 10−13M⊙ ∼ 10−7M⊕ ∼ 1017 kg. The maximum mass
of the drop arises from balancing the inward gravity and
self-interaction pressures against kinetic gradient pressure.
We allowed the axion drops to rotate, and found that the

maximum mass can increase by about an order of magni-
tude. This result was estimated analytically in Sec. II using
the virial theorem, and obtained in Sec. III from numerical
solutions of the classical field equations. In both cases we
have assumed that the axion field in the drop is proportional
to a single spherical harmonic Yl

mðϑ;φÞ. In realistic
situations one may expect that the field is a general linear
combination of several Yl

m. Nevertheless, our simplified
ansatz indicates that modestly rotating drops (l≲ few) may
be somewhat heavier than nonrotating configurations.
In this work, we looked for stable solutions, but did not

study the dynamical process of drop formation (which
would depend on the earlier cosmological evolution).
Nonetheless, in Sec. IV, we speculated on how axion drops
could arise if the Peccei-Quinn phase transition occurs after
inflation. In this scenario, the misalignment axions are only
a component of the dark matter, and have Oð1Þ inhomo-
geneities on the horizon scale of the QCD phase transition
which are referred to as miniclusters. The estimated mass of
miniclusters is slightly larger than the maximum mass of
stable axion drops, so we envisage that the miniclusters
could fragment into drops. On the other hand, if the Peccei-
Quinn phase transition occurs before inflation, then the
misalignment axions compose all the axion dark matter, but
there are no miniclusters, and it is an open question whether
large-scale density fluctuations would fragment on small
scales into drops.
In Sec. V, we reviewed observational constraints on dark

matter in the form of asteroid-sized objects, and it appears
that dark matter halos made of axion drops could be
consistent with observations. Interesting constraints close
to the relevant mass range are obtained by femtolensing.

Several other potential constraints depend on whether axion
drops accrete baryons, which we did not study.
It is interesting to speculate on the implications of axion

drops for direct detection experiments, such as ADMX
[19]. Recall that in the cosmological scenario where the
Peccei-Quinn phase transition occurs after inflation,
current numerical simulations [10] suggest that ∼75%
of axion dark matter is composed of particles produced by
strings. As reviewed at the end of Sec. IV B, these axion
particles could provide a smooth halo component, as
searched for by ADMX. However, the dark matter fraction
stored in drops would be hidden from axion direct
detection experiments.
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APPENDIX: NONRELATIVISTIC
APPROXIMATION

In general a scalar field coupled to gravity is described
by the following action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
þ L

�
; ðA1Þ

where g≡ detðgμνÞ is the determinant of the metric and R
is the Ricci scalar. We consider here the Lagrange density
of the relativistic real axion field a of the form

L ¼ −
1

2
gμνð∂μaÞð∂νaÞ − VðaÞ;

VðaÞ ¼ 1

2
m2a2 −

1

4!
λa4; ðA2Þ

with the dimensionless quartic coupling λ ¼ m2=f2PQ.
When the action is extremized with respect to the metric
gμν and the field a one obtains the coupled Klein-Gordon
and Einstein equations. Here we are going to derive the
nonrelativistic limit, where all velocities are small com-
pared to c and energies small compared to m. We follow
closely Ref. [24].
For the metric we take the Newtonian ansatz with

g00 ¼ −ð1þ 2VNÞ; gi0 ¼ 0; gij ¼ ð1 − 2VNÞδij;
ðA3Þ

with the Newtonian potential VNð~xÞ ≪ 1 and we neglect
the explicit time dependence of VN . Hence, we haveffiffiffiffiffiffi−gp ≈ 1 − 2VN . To leading order in VN the Ricci scalar
is given by R ¼ −2ð∂iVNÞ2 [see for instance [72],
Eq. (5.17) with metric definition (4.9)], and we obtain
for the action
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S ¼
Z

d4x

�
−
ð∂iVNÞ2
8πGN

þ 1 − 4VN

2
_a2 −

1

2
ð∂iaÞ2

− ð1 − 2VNÞVðaÞ
�
; ðA4Þ

with the dot denoting time derivative. In order to take the
nonrelativistic limit for the axion we write the real
relativistic field a in terms of a complex nonrelativistic
field ϕ as in Eq. (3). The nonrelativistic approximation
assumes that ϕ varies only slowly on time scales 1=m:

_ϕ ≪ mϕ; ϕ̈ ≪ m _ϕ; ðA5Þ

and all factors containing exponentials e�imt average to
zero when integrated over t in the action. Note that with the
ansatz for ϕ from Eq. (23) the above approximation just
means E ≪ m, which has been confirmed to hold for our
solutions; see Eq. (37). Under these assumptions we find

_a2 → ið _ϕϕ� − _ϕ�ϕÞ þmϕϕ�;

ð∂iaÞ2 →
1

m
ð∂iϕÞð∂iϕ

�Þ;

a2 →
1

m
ϕϕ�;

a4 →
3

2m2
ðϕϕ�Þ2: ðA6Þ

In the expression for _a2 we have neglected a term _ϕ� _ϕ=m
but kept the ones with only one derivative. Then we obtain
the action in terms of the fields VN;ϕ;ϕ�:

S ¼
Z

d4x

�
−
ð∂iVNÞ2
8πGN

þ i
2
ð _ϕϕ� − _ϕ�ϕÞ −mVNϕϕ

�

−
1

2m
ð∂iϕÞð∂iϕ

�Þ þ ð1 − 2VNÞλ
16m2

ðϕϕ�Þ2
�
: ðA7Þ

We have neglected terms of order VN
_ϕϕ� compared to

mVNϕϕ
� according to Eq. (A5). Note that the large terms

of order mϕϕ� cancel, as a consequence of factoring out
the fast oscillations with frequency m, which basically
reduces the Klein-Gordon equation to the Schrödinger
equation. Applying Euler-Lagrange equations for ϕ� to
the action (A7) we find the GP equation, Eq. (5), with
g ¼ λ=ð8m2Þ ¼ 1=ð8f2PQÞ [see Eq. (4)], and we neglect
the gravitational potential VN ≪ 1 in the term propor-
tional to λ.
The Euler-Lagrange equations for VN lead to the

following equation:

ΔVN ¼ 4πGN

�
mþ λ

8m2
ϕϕ�

�
ϕϕ�: ðA8Þ

Apart from the second term in the bracket this is the
Poisson equation (10). Let us use the results of Sec. III
to estimate the relative size of the two terms in the
bracket:

λ

8m3
ϕϕ� ¼ 1

8

R2

mf2PQ
¼ 64π2

f2PQ
M2

Pl

~R2 ∼ 10−11; ðA9Þ

where we have used λ ¼ m2=f2PQ and Eq. (31) to estimate
R2. Hence, the term proportional to λ can be safely
neglected and we recover the Poisson equation.
Let us consider the Schwarzschild radius rs ¼ 2GNM.

Using Eqs. (31) and (32) we obtain

r
rs

¼ 1

32π

m2
Pl

f2PQ

~r
~M
≈ 1014

~r
~M

�
fPQ

1011 GeV

�
−2
: ðA10Þ

Hence, general relativistic effects are small and the
Newtonian treatment of gravity is justified.
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