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We show that a tiny correction to the inflaton potential can make critical changes in the inflationary
observables for some types of inflation models.
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I. INTRODUCTION

Inflation [1,2] is a key concept of modern cosmology,
which provides a simple and compelling solution to the main
problems of old big bang cosmology. Also, the quantum
fluctuations of the inflaton (typically a dynamically rolling
scalar field controlling the duration of inflation) are regarded
as the most plausible seeds of the structures we observe at
the present universe [3,4]. Generically, a realization of an
observationally consistent inflation requires slow-roll, i.e. an
inflaton whose effective mass-square parameter is small as
compared to the square of the expansion rate during
inflation, and the duration of inflation responsible for our
visible universe should be around 50–60 e-folds, depending
on the thermal history after inflation [5]. In addition, thanks
to various precise observations, the inflationary observables
are being constrained more and more tightly such that many
models have been being ruled out or disfavored (see for
example Ref. [6]).
Inflaton can be a nontrivial trajectory in a multidimen-

sional field space, but a majority of models are contained
into the single-field scenario. Conventionally, in a single-
field scenario, there is a simple form of the effective
inflaton potential. However, it should be noted that the
inflaton couples to other fields, an imprescindible step in
order to reheat the universe to recover the standard hot
universe necessary for a successful big bang nucleosyn-
thesis and later cosmology. Such a coupling(s) is indeed
effective subleading contribution(s) to the inflaton poten-
tial. These contributions might be smaller than the leading
potential by several (or many) orders of magnitude, and one
may naively expect that such tiny corrections can be
ignored. This may be true in some cases, but may not
be always the case.
As one example of critical corrections to the inflaton

potential, one may recall the so called η-problem [7,8]
associated with the mass of inflaton. The point of the
problem is that generically the inflaton can have a gravi-
tational (Planck-suppressed) quadratic interaction to the
potential energy of the universe with an order one

numerical coupling constant, and such an interaction as
a correction to the inflaton potential results in a Hubble
scale mass for the inflaton, invalidating the usual slow-roll
approximation which seems necessary for a nearly scale
invariant power spectrum of the density perturbation in the
present universe. This η-problem may be circumvented or
removed for example by using a specific type of potential
[9,10], introducing a symmetry [11–14], realizing inflation
in a multidimensional field space [15–24], or introducing
extra-dimensions [25]. However, irrespective of the η-
problem, there can be other type of critical corrections
which may be from higher order loop corrections, non-
perturbative effects, or their combinations induced by
interactions of the inflaton to other field-contents in a full
theory. Generically, it is difficult to see how those correc-
tions would look like and if a solution to η-problem can
remove them too, unless an explicit calculation in a full
theory is done but that is likely to be highly nontrivial. So,
it may be better to take a phenomenological approach to
the issue.
In this paper, we show that, a tiny correction which might

arise from higher order loop (and/or nonperturbative)
effects can make a critical impact on the dynamics of
inflaton, even if it is several orders of magnitude smaller
than the leading order inflaton potential, altering critically
the predictions obtained by analyzing only the leading
order inflaton potential.

II. MODELS

For a potential V of a single-field slow-roll inflation
scenario, the spectral behavior of the density power
spectrum originated from the quantum fluctuations of
the inflaton is determined by the first two slow-roll
parameters defined as
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where “0” denotes derivative with respect to the inflaton
field ϕ, which is treated as a real scalar field. They also
determine the duration of inflation, i.e., the number of
e-foldings which is defined as
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where the subscripts “ �” and “ e” represent the time or field
value at the horizon exit of a given cosmological scale and
at the end of inflation, respectively. In order to be consistent
with observations, any inflation model should have ϵ
and jηj less than about Oð10−2Þ for the scales probed by
CMB observations (e.g., WMAP [26] or Planck [27]) with
e-foldings upper-bounded as Ne ≲ 60 [5]. It is easy to
see that, if jηj varies slowly aroundOð10−2Þ for most of the
e-foldings of inflation, it is necessary to have ϵ ∼
Oð10−3–10−2Þ in order not to have too many e-foldings.
In other words, only if jηj varies rapidly, ϵ can be smaller
than jηj by several (or many) orders of magnitude.
Although some large field scenarios share such a feature
(see for example [28,29]), this is mostly the case of small-
field inflation scenarios where the excursion of the inflaton
is limited to be at most Planckian.
When ϵ ≪ jηj, the spectral index given by ns ¼ 1 −

6ϵþ 2η is determined nearly only by η. However, although
it might be tiny, ϵ affects critically the dynamics of the
inflaton via the equation of motion. In this circumstance, if
there is a correction to the inflaton potential, which is tiny
in terms of its magnitude but has sizable derivatives, its
impact on the predictions of V could be critical.
Keeping this possibility in mind, we assume that the

inflaton potential is given by

V ¼ VB þ VM ð3Þ

where VB and VM are the leading order base potential and a
subleading correction, respectively. As the examples of VB,
we consider a Coleman-Weinberg potential [30]

Vcw ¼ V0
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and a Hilltop potential of the form [31]

Vht ¼ V0ð1 − xnÞ2 ð5Þ

(modulo a completion term) with x≡ ϕ=ϕ0 and ϕ0 ≤
MP ¼ 2.4 × 1018 GeV for both potentials, and where only
n > 2 is considered. For VM, we consider

VM ¼ Λ

�
cosðνxÞ
1þ x

�
ð6Þ

with Λ ⋘ V0 and ν > 1. The specific form of VM was
chosen for a clear and clean illustration of our argument.
Although it might arise from some heavy physics or
nonperturbative effect, the origin of VM is out of the scope
of this paper.

As recently studied again in Ref. [32], in a small field
regime, in a Coleman-Weinberg potential the e-foldings
associated with the right value of the spectral index are too
large to be consistent with observations, and ϵcwðxcw� Þ is
smaller than jηcwðxcw� Þj by many orders of magnitude. In the
case of the Hilltop potential defined in Eq. (5) with n > 2,
one finds

xht� ≃
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where

Ne;ht ≃ 2ðn − 1Þ
ð1 − nsÞðn − 2Þ ð8Þ

for xht� ≪ 1. From Eq. (8), one finds that Hilltop potential
can accommodate Ne ≲ 60 only if n ¼ 4 with ns ≲ 0.95 or
n > 4 for a larger ns [33]. Note that for 2 < n ≲ 4, xht� is
smaller than unity at least by several orders of magnitude.
Again, this means that ϵhtðxht� Þ is smaller than jηhtðxht� Þj
by several orders of magnitude. In these cases, those
tensions (or the plain inconsistency) with observations
may be alleviated (or solved) in the presence of VM, since,
even if VM ⋘ VB, VM may provide a sizable (or large)
contribution to V 0 (equivalently to ϵ), reducing the number
of e-foldings so as for those models to be viable.
Concretely, when ϕ� ⋘ ϕ0 which would be the case for
our examples of VB, if νx� ≪ 1, one finds
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Hence, if
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a sizable additional force acts on the inflaton, terminating
inflation earlier. Note that ν is constrained not to be too
large in order to avoid a too large contribution to η. Note
also that, as x becomes larger, ϵB and jηBj defined in the
way of Eq. (1) with VB increase rapidly, dominating over
the contributions coming from VM. Hence, even if VM is a
oscillatory function, the oscillatory behavior would be
negligible as inflaton evolves toward the endpoint of
inflation, depending on ν.
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III. NUMERICAL ANALYSIS

In this section, we present the results of our numerical
analysis showing the impact of VM in Eq. (6) on the
predictions of VB ¼ Vcw and Vht.
In Fig. 1, the case of Coleman-Weinberg base potential is

shown for various combinations of (Λ=V0; ν). As shown in
the top left panel of the figure, even if Λ is extremely small
as compared to V0, it can make a significant change in the
dynamics of ϕ, terminating inflation much earlier. The
evolution of the inflaton is shown in the top middle panel
where we plot several combinations of (Λ=V0; ν) repre-
sented as colored lines to show the dependence of the
inflaton dynamics on the parameters Λ and ν. It can be seen
there that the change of ϵ is more critical than that of η.
The time dependence of ϵ is shown in the top right panel
of the figure, and our choice of Λ increases ϵ by a factor
about 192 while η increases by a factor of 2.2 at t�
corresponding to Ne ¼ 60, but ϵðt�Þ=ϵcwðtcw� Þ≃ 2.68 and
ηðt�Þ=ηcwðtcw� Þ≃ 0.54. The early termination of inflation
requires the inflaton to be pushed back toward the origin for
a given amount of e-foldings, resulting in a smaller η.
Hence, it becomes possible to obtain the observed amount
of ns for the right amount of e-foldings, as shown in the
bottom left panel of the figure. As shown in the bottom
middle and right panels, there are not significant changes in
the running and the running of the running of the spectral
index, although the running is pushed slightly to a more
negative value. These weak impacts on the spectral run-
nings are because the contributions of VM to higher

derivatives of V are, at most, comparable to those of the
VB we are considering.
In Fig. 2, one can find a similar impact of VM on

VB ¼ Vht with n ¼ 3. In this case, our choice of Λ
increased ϵ by a factor about 5 × 106 and η by a factor
about 13 at t� associated with Ne ¼ 50, but ϵðt�Þ=ϵhtðtht� Þ≃
3.16 and ηðt�Þ=ηhtðtht� Þ≃ 0.38. As expected, the impact on
the running of the spectral index is stronger than the case of
Vcw, but still the change is of a factor less than 2. Although
we do not present the case here, we found that, Λ=V0 in
n ¼ 4 case had to be slightly increased relative to the case
of n ¼ 3 in order to obtain a similar value of ns for the same
amount of e-foldings. This behavior is due to the fact that,
as n increases, Vht becomes flatter toward the origin and
allows more e-foldings for a given value of ϕ.
It should be noted that in order to get consistency with

observations, the contribution of VM to ϵ should fall within
a certain range. This means that from Eq. (9) mostly Λ is
constrained as long as νx� ≪ 1 for cosmological scales of
interest. However, as can be seen from the chosen param-
eter sets in the bottom-left panel of Fig. 1, once it falls into
the required ballpark, Λ can vary by a factor of Oð0.1–10Þ
within the uncertainty of observational data. Also, it should
be noted that, even if the slope of the inflaton potential is
significantly affected by the presence of VM, ϵ is still much
smaller thanOð10−2Þ by several orders of magnitude as can
be seen from the top-right and bottom-left panels of Fig. 1
and 2. Hence, the tensor-to-scalar ratio is still too small to
be measured in near future experiments.

FIG. 1. The impact of VM for VB ¼ Vcw with ϕ0 ¼ MGUT. The cosmic time was normalized by H0 ≡ V1=2
0 =

ffiffiffi
3

p
MP. Colors indicate

different combinations of (Λ=V0; ν). Top: Evolution of the Hubble paramere (left), inflaton (middle), and the first slow-roll
parameter (right) as functions of time. Bottom: Solid lines are spectral index (left), the running of the spectral index in unit of 10−3

(middle), and the running of the running in unit of 10−5 (right) as functions of time. Dashed lines correspond to t� associated with
Ne ¼ 60with the same color scheme as solid lines. Shaded regions in the left one of bottom panels are 1-, 2-, and 3-σ uncertainties of
ns as by Planck data [27].
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In all of these cases including the case of Coleman-
Weinberg potential, the magnitude of the running is of
Oð1 − 4Þ × 10−3 for Ne ∼ 40–60. Such largish spectral
running seems to be a characteristic of small-field inflation
models which have rapidly varying potentials. A fact that
implies large higher derivatives of the potential, and make
them distinguishable from their large field competi-
tors [34,35].
There could be a Hubble-induced mass term in both Vcw

and Vht in the sense of supergravity. However, we found
that, as long as the effective mass-square of the quadratic
term is less than the square of the expansion rate by about
Oð10−2Þ (modulo the negative sign assumed) in order to
match observations, it makes only minor changes leading to
a slightly smaller ns but does not modify our findings, since
the contribution of the mass term to the slope of potential at
the relevant flat region is subleading relative to the
contribution of Λ. However, note that, when Λ ¼ 0, the
term can become the main contribution to the derivative of
the inflaton potential and can reduce the e-foldings by a
large amount, although changes in the observables do not
seem significant (or go to wrong direction).
From these examples, it is clear that, even if it might be

extremely small, a correction to the base potential can make
critical changes in the inflationary observables predicted
from the base potential only. This can be a generic situation
for base potentials which have rapidly varying ϵ and η.
The specific choice VM might be questioned, but its form
was designed for a clear illustration of our argument. The
main point we want to deliver is that, irrespective of its
magnitude relative to the base potential, if a correction
can give a sizable contribution at least to the first slow-
roll parameter, it can produce significant change in the

dynamics of the inflaton such that the predictions of
inflationary observables can be critically altered.

IV. CONCLUSIONS

In this paper, we showed that a miserably tiny correction
to the inflaton potential can make a significant change in
the predictions of inflationary observables. If the inflaton
potential is such that its slope and curvature vary rapidly in
a monotonic way, a tiny correction to the potential can
give a sizable contribution to the slope and curvature in the
very flat region of the potential. Precisely the region that
determines the inflationary observables. In this case, mostly
because of the extra force acting on it, the inflaton evolves
more rapidly, terminating inflation earlier. Hence, the
inflaton should be pushed to a flatter region (where the
curvature is also smaller) in order to have a given amount of
e-foldings. These effects make significant changes in the
inflationary observables, especially the spectral index of
the density power spectrum. Therefore the status of some
models, e.g. the Coleman Weinberg model, should be
revised under this new light.
Typically, only the leading order term of the inflaton

potential is considered for the analysis of inflationary
observables. However, our findings imply that in order
to predict the observables correctly it is necessary to take
into account the possible corrections to the potential
(probably to a level at least several orders of magnitude
smaller than the leading order potential), although its
impact depends on the specific forms of the base potential
and that of the corrections.
All in all, subleading contributions to the potential do

exist and their impact in inflation scenarios (in particular

FIG. 2. The impact of VM for VB ¼ Vht with n ¼ 3 and ϕ0 ¼ MP, presented in the same way as Fig. 1. The color scheme of the
bottom-left panel is the same as the top-middle panel. In the bottom panels, dashed lines correspond to t� associated with Ne ¼ 50 with
the same color scheme as solid lines. The small plot inside the bottom panels are the magnification for a clearer view of the red lines.
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small field inflation models) cannot be underestimated
(unless previously studied in depth).
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