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Analysis of the correlation between the angular positions of distant radio galaxies on the sky and the
orientations of their polarization vectors with respect to their major axes indicates a dipolar anisotropy in
the large scale. We consider a single mode of large-scale scalar perturbation to the FRW metric. Using
Newman-Penrose formalism, we calculate the rotation of the galaxy major axis with respect to the
polarization vector as the elliptic image and the polarization vector are carried through the perturbed
spacetime. The dependence of the rotation on the polar angular coordinate of the galaxy is qualitatively
similar to the claimed dipole pattern.
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I. INTRODUCTION

Radiations coming from the cosmologically distant radio
galaxies are polarized [1]. It has been an interesting puzzle
whether the observed angle (Δη) between the polarization
vector and the characteristic axis of the galaxy has some
statistically significant correlation with the angular positions
ðθ;ϕÞ of the galaxy on the sky [2–8]. By observed angle
ðΔηÞ, we mean the angle remaining after extracting the
Faraday rotation. Analysis of the observed data indicates the
existence of a dipolar anisotropy in the distribution of Δη
over the sky [2–6]. One may consult Ref. [6] for a history of
puzzling observations. Surprisingly, the anisotropy axis
coincides with the dipoles determined independently from
the polarizations at optical frequencies, sky brightness at
radio frequencies and the axes associated with cosmic
microwave background radiation (CMBR) multipoles (see
[9] and references therein). It has been tried to explain this
preferred direction as a result of the peculiar motion of the
solar system [10,11]. But the peculiar velocities determined
from CMBR data and from radio data are not consistent
with each other [11–13]. This suggests the existence of an
intrinsic anisotropy in the large scale with the anisotropy axis
roughly aligned along the CMBR dipole [12]. In recent
years, single mode superhorizon perturbations have been
considered [14,15] to explain the observed dipolar
anisotropy as the wave vector corresponding to a single
mode can readily introduce a special direction in the
universe. We investigate whether a single mode of scalar
perturbation whose wave vector points along the direction of
anisotropy can lead to the observed anisotropy in the
distribution of polarization angles.
Since the wavelength of the radiation is much much

smaller than the scale of curvature, we can use the
geometrical optics approximation. A good review of
geometrical optics in curved spacetime is given in

Refs. [16–18]. In the limit of geometrical optics, the
propagation vectors form a congruence of affinely para-
metrized null geodesics and the polarization vector is
parallel transported along the null geodesics. The expan-
sion, rotation and shear of the image carried by the null
geodesics are quantified by the optical scalars introduced
by Sachs [19]. The Newman-Penrose formalism [20–22]
provides a systematic approach to calculate the optical
scalars from the spin coefficients without solving the
equations from geometrical optics approximations.
In this paper, we assume the galaxies to be elliptic and

provide a brief review (see [23–25] for detail) of the
rotation of the elliptic major axis with respect to the
polarization vector when the image propagates through a
curved spacetime. We argue that the shear and the rotation
are interrelated. When shear is nonzero, the rotation
depends on the initial orientation of both the major axis
and polarization vector on the plane perpendicular to the
propagation vector. Both rotation and shear are zero for
Friedmann-Robertson-Walker (FRW) metric, which
describes the homogeneous, isotropic and expanding uni-
verse. We add scalar perturbation to the FRW metric and
calculate the shear and rotation for a general scalar
perturbation, using linear perturbation theory. We show
(in Eqs. (37) and (39)) that the major axis undergoes a
rotation with respect to the polarization vector as the elliptic
image and the polarization vector are carried through the
perturbed spacetime. The rotation explicitly depends on the
form of scalar perturbation. We assume a single mode of
perturbation, whose wave vector is along the direction of
anisotropy, to find an expression of the net rotation as a
result of this mode. The rotation is independent of the
frequency of the electromagnetic wave concerned, hence is
not related to Faraday rotation. For perturbation with very
large wavelength compared to the distance of the galaxy
(kr ≪ 1), the rotation is negligibly small. But for modes
with wavelength of the order of the distance to the galaxy,*s.chakrabarty@ufl.edu
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the amount of rotation is appreciably large (see Figs. 2, 5,
and 6). Moreover, if we plot the theoretical result due to the
sine-perturbation as a function of the polar angle (θ), it
almost looks like a sinusoid (see Fig. 1) which is similar to
the claimed dipole pattern. We also show the results due to
the cosine perturbation in Figs. 3 and 4.
Here is the outline of the paper. In Sec. II, we discuss the

rotation and shear of an elliptic image as it propagates
through a curved spacetime. In Sec. III, we consider FRW
metric with scalar perturbation and calculate the rotation
and shear of the elliptic image. In Sec. IV, we determine the
rotation due to a single mode of scalar perturbation.
Section V provides the conclusion.

II. ROTATION AND SHEAR OF
AN ELLIPTIC IMAGE

Rotation and shear of a circular image with respect to the
polarization vector have been discussed in Ref. [22] and the
case of elliptic image has been considered in Refs. [23–25].
Here we are assuming that the major axis of the elliptic
image makes an angle η0 with the polarization vector, at the
initial point. As the image propagates along the ray, the
polarization vector is parallel transported but the major axis
of the image is not. As a consequence, the angle (η)
between them changes. Here we will outline the derivation
of the expression for the rotation of the major axis with
respect to the polarization vector. We will also show that, in
the presence of shear, the rotation depends on the initial
configuration of the polarization vector. As a byproduct of
this derivation, we will also see how the lengths of the
major and minor axes of an elliptic image change as the
image propagates along the ray.
In NP formalism, lμ defines the affinely parametrized

null geodesic and fmμ; m�μg span the two-dimensional
plane perpendicular to the null geodesic. The null geodesic
is parametrized by an affine parameter s. At s ¼ s1, we
consider an elliptic image with major axis a and minor axis
b. The points on the boundary of the ellipse with respect to
the center of the ellipse are given by

ζμðs1;ϕÞ ¼ a cosϕeμ1 þ b sinϕeμ2; ð1Þ
where eμ1 and e

μ
2 define the major and minor axes. As ϕ goes

from 0 to 2π, ζμðs1;ϕÞ describes the boundary of the ellipse
at s ¼ s1. For better physical understanding, we construct
two real orthonormal basis vectors from mμ and m�μ:

Eμ ¼ 1ffiffiffi
2

p ðmμ þm�μÞ

Fμ ¼ 1

i
ffiffiffi
2

p ðmμ −m�μÞ: ð2Þ

For a generalized description, we want the major axis
(eμ1) to make an angle η0 with Eμ which is equivalent to the
polarization vector, i.e., the real part of mμ:

eμ1 ¼ cos η0Eμ þ sin η0Fμ

eμ2 ¼ − sin η0Eμ þ cos η0Fμ: ð3Þ

Writing ζμðs1;ϕÞ in terms of mμ and m�μ, we get the
following,

ζμðs1;ϕÞ ¼ ζðϕÞm�μ þ ζ�ðϕÞmμ ð4Þ

where

ζðϕÞ ¼ 1ffiffiffi
2

p eiη0
�
aþ b
2

eiϕ þ a − b
2

e−iϕ
�
: ð5Þ

At the neighboring point, s2 ¼ s1 þ δs, the boundary of
the image is given by (see Ref. [25] for proof)

ζμðs2;ϕÞ ¼ ζ0ðϕÞm�μ þ ζ0�ðϕÞmμ; ð6Þ

where

ζ0ðϕÞ ¼ ζðϕÞ − δs½ρζðϕÞ þ σζ�ðϕÞ�; ð7Þ

and ρ and σ are the spin coefficients [see Eqs. (A8a)
and (A8b)]. Now we will study the change from ζðϕÞ to
ζ0ðϕÞ. We can write ζðϕÞ given by Eq. (5) as

ζðϕÞ ¼ 1ffiffiffi
2

p eiη0ðp1eiϕ þ p2e−iϕÞ; ð8Þ

where p1 ¼ ðaþbÞ
2

and p2 ¼ ða−bÞ
2

. We can get the lengths of
major and minor axes of the elliptic image at s ¼ s1 by
linear combination of p1 and p2. Similarly, at s ¼ s2, ζ0ðϕÞ
can be written as

ζ0ðϕÞ ¼ 1ffiffiffi
2

p eiη0ðP1eiϕ þ P2e−iϕÞ; ð9Þ

where P1 and P2 are given by

P1 ¼ p1 − δsðρp1 þ e−2iη0σp2Þ; ð10aÞ

P2 ¼ p2 − δsðρp2 þ e−2iη0σp1Þ: ð10bÞ

Here, P1 and P2 are complex, in general, due to the
presence of ρ and σ. We separate the magnitudes and
phases in P1 and P2 by writing P1 ¼ jP1jeiχ1 and
P2 ¼ jP2jeiχ2 . jP1;2j and χ1;2 are given by

jP1j ¼ p1

�
1− δs

�
Reρþp2

p1

ðcos2η0Reσþ sin2η0ImσÞ
��

;

ð11aÞ

χ1 ¼ −δs
�
Imρþ p2

p1

ðcos 2η0Imσ − sin 2η0ReσÞ
�
; ð11bÞ
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jP2j ¼ p2

�
1− δs

�
Reρþp1

p2

ðcos2η0Reσþ sin2η0ImσÞ
��

;

ð11cÞ

χ2 ¼ −δs
�
Imρþ p1

p2

ðcos 2η0Imσ − sin 2η0ReσÞ
�
: ð11dÞ

From jP1j and jP2j, we can calculate the lengths of major
and minor axes of the elliptic image at s ¼ s2. The phase
factors associated with P1 and P2 can be used to extract the
information about the rotation of the major and minor axes
with respect to the polarization vector. If the changes in

lengths of the major and minor axes are δa and δb,
respectively, then

δa
a

¼ −ðReρþ cos 2η0Reσ þ sin 2η0ImσÞδs; ð12aÞ
δb
b

¼ −ðReρ − cos 2η0Reσ − sin 2η0ImσÞδs: ð12bÞ

One should note that δa
a and δb

b are not equal due to the
presence of σ which implies a nonzero shear. In the absence
of σ, it would have been a uniform expansion or contraction
of the image. To understand the rotation of the images, we
write ζ0ðϕÞ as

ζ0ðϕÞ ¼ 1ffiffiffi
2

p exp

�
i

�
η0 þ

χ1 þ χ2
2

��
:

�
jP1j exp

�
i

�
ϕþ χ1 − χ2

2

��
þ jP2j exp

�
−i
�
ϕþ χ1 − χ2

2

���
: ð13Þ

The modification from ϕ to fϕþ ðχ1 − χ2Þ=2g is not
measurable as it only changes the starting point of ϕ. But, if
we look at Eq. (6) for ζμðs2;ϕÞ, we see that the emergence
of the overall phase factor in ζ0ðϕÞ is equivalent to a
rotation of feμ1; eμ2g into fe0μ1 ; e0μ2 g:

e0μ1 ¼ cos

�
χ1 þ χ2

2

�
eμ1 þ sin

�
χ1 þ χ2

2

�
eμ2; ð14aÞ

e0μ2 ¼ − sin

�
χ1 þ χ2

2

�
eμ1 þ cos

�
χ1 þ χ2

2

�
eμ2: ð14bÞ

In terms of fe0μ1 ; e0μ2 g, ζμðs2;ϕÞ can be written as

ζμðs2;ϕÞ ¼ ðjP1j þ jP2jÞ cos
�
ϕþ χ1 − χ2

2

�
e0μ1

þ ðjP1j − jP2jÞ sin
�
ϕþ χ1 − χ2

2

�
e0μ2 : ð15Þ

Therefore, at s ¼ s2, fe0μ1 ; e0μ2 g define the major and
minor axes of the elliptic image and the major axis (e0μ1 )
makes an angle of (η0 þ χ1þχ2

2
) with the polarization vector

(Eμ). Since mμ is parallel transported along the null
geodesic, it does not rotate. The rotation, δη, of the
principal axes with respect to the polarization vector is
given by

δη ¼ 1

2
ðχ1 þ χ2Þ ¼ −δs

�
Imρþ a2 þ b2

a2 − b2
ðcos 2η0Imσ − sin 2η0ReσÞ

�
: ð16Þ

One should note that, due to the presence of the shear (σ),
the net rotation of major and minor axes depends on the
initial angle (η0) between the polarization vector and the
major axis. Before we conclude this section, we would like
to discuss the consequences of the transformation:
mμ → ~mμ ¼ e−iψmμ. Before this transformation, the major
axis (eμ1) makes angle η0 with respect to the polarization
vector (Eμ) in the anticlockwise direction. This trans-
formation implies an anticlockwise rotation of fEμ; Fμg
by an angle ψ . Since mμ ¼ eiψ ~mμ, writing ζμðs1;ϕÞ [in
Eq. (4)] in terms of f ~mμ; ~m�μg, one would get

ζμðs1;ϕÞ ¼ ~ζðϕÞ ~m�μ þ ~ζ�ðϕÞ ~mμ; ð17Þ

where

~ζðϕÞ ¼ 1ffiffiffi
2

p eiðη0−ψÞ
�
aþ b
2

eiϕ þ a − b
2

e−iϕ
�
: ð18Þ

This implies that the major axis makes an angle of
(η0 − ψ) with the transformed polarization vector ( ~Eμ).
After this transformation, δη of Eq. (16) will be modified,
as η0 will be replaced by (η0 − ψ).

III. NULL GEODESICS IN PERTURBED
FRW METRIC

In this section, we will consider large-scale scalar
perturbations to the FRW metric. Any scalar perturbation
can be written as a superposition of an infinite number of

Fourier modes, i.e., Ψðt; ~rÞ ¼ R
d3k
ð2πÞ3 e

i~k:~r ~Ψðt; ~kÞ. Our goal
is to study the effect of a single mode of scalar perturbation
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on the net rotation of the major axis of an elliptic image
with respect to the polarization vector. The coordinate

system is chosen such that the wave vector (~k) correspond-
ing to the specific mode of the perturbation is along the z

axis, i.e., ~k ¼ kẑ. Then the scalar perturbation (Ψ) will have
the following form,

Ψ ¼ Ψ0ðt; kÞ sinðkr cos θÞ þΨ0
0ðt; kÞ cosðkr cos θÞ; ð19Þ

where θ is the angle between the position vector (~r) and the
z axis. Since the perturbation (Ψ) does not depend upon the
azimuthal angle (ϕ), the geometry will have azimuthal
symmetry. Motivated by this fact, we will consider the
scalar perturbations which depend on t, r, θ but not on ϕ.
In the Newtonian gauge [26], we introduce two large-

scale scalar perturbations,Ψ andΦ, to the FRWmetric. The
line element in the spherical polar coordinates takes the
following form,

ds2 ¼ ð1þ 2ΨÞdt2 − a2ðtÞð1 − 2ΦÞ
× ðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ; ð20Þ

where Ψ ¼ Ψðt; r; θÞ and Φ ¼ Φðt; r; θÞ. Our chosen null
vectors are the following,

lμ ≡
�
1

a
þ ϵt

�
t̂þ 1

a2
ð1þ aϵt þΨþ ΦÞr̂þ ϵθθ̂; ð21aÞ

nμ ≡ a2

2

�
1

a
− ϵt −

2Ψ
a

�
t̂ −

1

2
ð1 − aϵt −Ψþ ΦÞr̂ − a2

2
ϵθθ̂;

ð21bÞ

mμ≡−
iffiffiffi
2

p arϵθr̂þ
iffiffiffi
2

p
ar

ð1þΦÞθ̂þ 1ffiffiffi
2

p
arsinθ

ð1þΦÞϕ̂;

ð21cÞ
with ϵt and ϵθ defined in Eqs. (B3a)–(B3c). Here, mμ is
defined up to a constant phase factor. Now we calculate the
relevant spin coefficients:

κ ¼ 0; ð22aÞ

ϵ ¼ 0; ð22bÞ

π ¼ −iffiffiffi
2

p
ar

∂θΨ: ð22cÞ

Equations (22a)–(22b) imply that lμ forms a congruence of
null geodesics which are affinely parametrized. Since
π ≠ 0, mμ and m�μ are not parallel transported along the
null geodesics [see Eqs. (A5)–(A6)]. The other two spin
coefficients are the following:

ρ ¼ −H

�
1

a
þ ϵt

�
−

1

a2r
ð1þΨþ ΦÞ − ϵt

ar

−
1

2
cot θϵθ −

1

2
∂θϵθ þ

1

a
∂tΦþ 1

a2
∂rΦ; ð23aÞ

σ ¼ 1

2
ð∂θϵθ − cot θϵθÞ: ð23bÞ

A nonzero σ implies that the geometry is not free from
shear. To make π ¼ 0, we need to apply a rotation of class I
[see Eqs. (A11)–(A12)]. Under this rotation, the null
vectors and the spin coefficients change according to
Eqs. (A11)–(A12). Since before the transformation, κ
and ϵ were zero, they remain zero and the expressions
for ρ and σ do not change. But the expression for π changes
and z is chosen such that the new π becomes zero.

π →
−iffiffiffi
2

p
ar

∂θΨþ lμ∂μz� ¼ 0 ð24Þ

We do not need to solve for z as it does not appear in the
expressions of ρ and σ. The rotation δη is given by Eq. (16)
where ρ and σ are given by Eqs. (23a)–(23b) and η0 is the
angle between the polarization vector and the major axis at
the location of galaxy. As explained below, the polarization
vector is in the direction of ϕ̂, hence η0 is the angle between
the major axis and ϕ̂, at the location of galaxy.
The polarization vector is the real part of mμ. In three

dimensions, the propagation vector (~l) is the spatial part of
lμ and the polarization vector ( ~m) is the spatial part of
Remμ. The proper set of null vectors are the ones obtained
after applying a rotation of class I (see Eqs. (A11)–(A12))
to the null vectors of Eqs. (21a)–(21c). We did not solve the
complex parameter (z) of this rotation, because it does not
appear in the expression of the net rotation. If we determine
the polarization vector ( ~m), z does appear in ~m. But the
component of ~m which is perpendicular to the propagation

vector (~l), is independent of z, and that component turns out
to be the real part of Eq. (21c):

~m⊥ ¼ 1ffiffiffi
2

p
ar sin θ

ð1þ ΦÞϕ̂: ð25Þ

The light is propagating along the direction of ð−r̂Þ. In
three dimensions, the plane perpendicular to r̂ consists of
two perpendicular vectors, θ̂ and ϕ̂. The most general
orientation of ~m⊥ would be a combination of θ̂ and ϕ̂. After
the transformation, mμ → e−iψmμ, ~m⊥ takes the following
form in the θ̂-ϕ̂ plane:

~m⊥ ¼ ð1þ ΦÞffiffiffi
2

p
a

�
cosψ

ϕ̂

r sin θ
þ sinψ

θ̂

r

�
: ð26Þ

Therefore, ψ is the angle between the polarization vector
and ϕ̂ at the location of the galaxy and (η0 − ψ) is the angle
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between the major axis and the polarization vector. Hence,
δη is modified to the following expression,

δη ¼ δs
sinð2η0 − 2ψÞ

2
ð∂θϵθ − cot θϵθÞ; ð27Þ

where δs is the change in affine parameter. We have
assumed the size of the minor axis to be very small
compared to that of the major axis, i.e., b ≪ a in
Eq. (16). Writing ϵθ ¼ ~ϵ

a2, and assuming two scalar per-
turbations to be equal, Ψ ¼ Φ (which is the case when
anisotropic stress is zero [26]), we have the following
equation [see Eq. (B4c)]:

∂rðr2 ~ϵÞ ¼ −2∂θΨ: ð28Þ

Then the rotation becomes

δη ¼ δs
sinð2ηGÞ

2a2
ð∂θ ~ϵ − cot θ~ϵÞ; ð29Þ

where ηG ¼ η0 − ψ is the angle between the major axis and
the polarization vector at the location of the galaxy. So
when the scalar perturbation, Ψ, is given, we have to solve
for ~ϵ using Eq. (28) to determine δη.
To get the net rotation as the light travels from the source

to the observer, we have to integrate Eq. (29) for a radial
null geodesic. Since _r ¼ dr

ds was taken to be positive, r
increases with s. We are assuming that the affine parameter
decreases as the light propagates from the galaxy to the
observer. This allows us to assume the observer to be at
the origin (r ¼ 0) and the source to be at a distance r from
the observer. Since _r ¼ 1

a2 þ ϵt
a þ 2Ψ

a2 , we can write ds as the
following in the first order:

ds ¼ ds
dr

dr ¼ a2ð1 − aϵt − 2ΨÞdr: ð30Þ

So, in first order, dη becomes

dη ¼ dr
sinð2ηGÞ

2
ð∂θ ~ϵ − cot θ~ϵÞ: ð31Þ

Now we are integrating this equation assuming the
angle (η) to be ηG at the location of the galaxy (r) and
η ¼ ηG þ Δη at the location of the observer (r ¼ 0):

Δη ¼ −
sinð2ηGÞ

2

Z
r

0

dr

�
∂θ ~ϵ −

cos θ
sin θ

~ϵ

�
: ð32Þ

This is a generic result valid for any scalar perturbation.
To summarize, ~ϵ can be found by solving Eq. (28), and ηG
is the angle between the major axis and the polarization
vector at the location of the galaxy.

IV. NET ROTATION OF POLARIZATION VECTOR
DUE TO A SINGLE MODE OF SCALAR

PERTURBATION

In this section, we consider a single mode of scalar
perturbation. The wave vector (~k) corresponding to the

mode is assumed to point toward the z axis, i.e., ~k ¼ kẑ.
First, we consider the effect of the sine perturbation:

Ψ ¼ Ψ0ðt; kÞ sinð~k:~rÞ ¼ Ψ0 sinðkr cos θÞ: ð33Þ

Now we solve Eq. (28) to solve for ~ϵ. The most general
solution of ~ϵ is

~ϵ ¼ 2Ψ0

sin θ
cos θ

1

r

�
sinðkr cos θÞ þ cosðkr cos θÞ

kr cos θ

�
þ fðθÞ

r2
;

ð34Þ

where fðθÞ appears as a constant of integration. We fix fðθÞ
such that ~ϵ does not diverge at r → 0:

fðθÞ ¼ −2Ψ0

sin θ
kcos2θ

: ð35Þ

Then ~ϵ has the following form:

~ϵ ¼ 2Ψ0

sin θ
cos θ

1

r

�
sinðkr cos θÞ − 2

kr cos θ
sin2

�
kr
2
cos θ

��
:

ð36Þ

Now the calculation of Δη from Eq. (32) is straightforward:

Δη ¼ − sinð2ηGÞΨ0

sin2θ
cos2θ

�
4

kr cos θ
sin2

�
kr
2
cos θ

�

− sinðkr cos θÞ
�
: ð37Þ

We emphasize that there is no singularity in Δη. For a
given value of kr, if we plot Δη vs θ, it looks almost like a
sinusoid (see Fig. 1) which qualitatively agrees with the
previous claim of dipole signature [3,4,6]. The magnitude
of the maximum of Δη increases with kr (see Fig. 2). If the
wavelength (λ ¼ 2π

k ) of the mode of perturbation is very
large compared to the distance (r) of the galaxy (kr ≪ 1),
Δη tends to be zero. But for the modes with wavelength
comparable to the distance of the galaxy, Δη is appreciably
large, e.g., with kr ¼ 6, ηG ¼ 45°, Ψ0 ¼ 0.05, and
Δηmax ¼ 11.72° and with kr ¼ 12, ηG ¼ 45°, Ψ0 ¼ 0.05,
and Δηmax ¼ 53.19°.
Another component of the Fourier mode is

Ψ0
0ðt; kÞ cosð~k:~rÞ. From Eq. (28), we get the most general

solution of ~ϵ:
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~ϵ ¼ 2Ψ0

sin θ
cos θ

1

r

�
cosðkr cos θÞ − sinðkr cos θÞ

kr cos θ

�
: ð38Þ

Here the constant of integration has been fixed to zero so
that ~ϵ remains finite as r → 0. Now one can calculateΔη for
the cosine perturbation from Eq. (32),

Δη0 ¼ − sinð2ηGÞΨ0
0

sin2θ
cos2θ

�
2

cos θ
sin2

�
kr
2
cos θ

�

þ 2 sinðkr cos θÞ
kr cos θ

− 2

�
; ð39Þ

where Δη0 diverges as θ → π
2
. We plot Δη0 vs θ for two

regions: θ < π
2
(see Fig. 3) and θ > π

2
(see Fig. 4). With

kr ¼ 12, ηG ¼ 45°, Ψ0 ¼ 0.05; jΔη0j has a local maximum
of 18.13° at θ ¼ 1.07 (for θ < π

2
) and 12.54° at θ ¼ 2.27

(for θ > π
2
). Δη0 vs kr has been plotted for θ ¼ 1.07 (see

Fig. 5) and θ ¼ 2.27 (see Fig. 6). Unlike Δηmax, Δη0max is a
periodic function of kr. For θ ¼ 1.07, Δη0max ≈ 20° and for
θ ¼ 2.27, Δη0max ≈ 21° and Δη0min ≈ 8° (excluding Δη0 ¼ 0

for kr ¼ 0). Since we are doing linear perturbation theory,

Δη due to the perturbation,Ψ ¼ Ψ0 sinð~k:~rÞ þΨ0
0 cosð~k:~rÞ,

can simply be written as the sum of two Δη’s:
Δηtotal ¼ Δηþ Δη0.
Equations (37) and (39) are the main results of the paper.

As we can see, the net rotation does depend upon the
angular position (θ) of the galaxy and the distance (r) of the
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FIG. 2. Plot of the maximum of Δη (due to sin ~k:~r) vs kr with
ηG ¼ 45°, Ψ0 ¼ 0.05, θ ¼ 1.36 in Eq. (37).
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FIG. 3. Plot of Δη0 (due to cos ~k:~r) vs θ for θ < π
2
, with

ηG ¼ 45°, Ψ0 ¼ 0.05, kr ¼ 12 in Eq. (39). The maximum occurs
at θ ¼ 1.07 and Δη0max ¼ 18.13°.
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FIG. 4. Plot of Δη0 (due to cos ~k:~r) vs θ for θ > π
2
, with

ηG ¼ 45°, Ψ0 ¼ 0.05, kr ¼ 12 in Eq. (39). The maximum occurs
at θ ¼ 2.27 and Δη0max ¼ 12.54°.
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FIG. 1. Plot of Δη (due to sin ~k:~r) vs θ with ηG ¼ 45°,
Ψ0 ¼ 0.05, kr ¼ 12 in Eq. (37). The maximum occurs at θ ¼
1.36 and Δηmax ¼ 53.19°.
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galaxy as well as the orientation of the major axis and the
polarization vector. This rotation is independent of the
frequency of the light emitted from the galaxy unlike
Faraday rotation. This rotation is a result of the large-scale
anisotropic scalar perturbation to the homogeneous, iso-
tropic universe. Equations (32) and (28) provide the net
rotation (Δη) due to a scalar perturbation (Ψ). Then we
consider a single Fourier mode of the scalar perturbation

which consists of sinð~k:~rÞ and cosð~k:~rÞ. We have described
the effects of sine and cosine perturbations. Since the
expression of the rotation is linear in scalar perturbation and
a scalar perturbation is nothing but linear combination of
various Fourier modes, it is easy to calculate the effect of
any perturbation using Eqs. (37) and (39).

V. CONCLUSION

We have shown how a large-scale scalar perturbation (Ψ)
to the FRW metric can lead to the residual rotation (Δη) of
an image with respect to the polarization vector as the
radiation traverses large distance through the perturbed
spacetime. We have derived an expression for the rotation
of the major axis of an elliptic image as the result of a single
mode of scalar perturbation. For each galaxy at an angular
position ðθ;ϕÞ, ηG is the angle between the polarization
vector and the major axis at the location of the galaxy. In
general, this would vary from galaxy to galaxy. So ηG is an
unknown function of ðθ;ϕÞ. To get a rough idea of how the
rotation depends on the angular coordinates, we have fixed
ηG ¼ 45° and plotted the rotation (Δη) with θ for a fixed
value of kr. Coincidentally, the result roughly demonstrates
a dipole signature under a fixed value of ηG. The dipole
signature might go away if ηG varies rapidly for different
galaxies. But the rotation as a result of scalar perturbation
will always retain some correlation with the angular
positions. We have also shown that, for modes with
wavelength much larger than the distance to the galaxy,
the rotation is negligibly small; but for wavelength of the
order of the distance to the galaxy, the magnitude of the
rotation is appreciably large.
In summary, we provide a physical explanation behind

the angular dependence of residual angle between the
polarization and the major axis of galactic image after
subtracting Faraday rotation, for the case of cosmologically
distant radio galaxies. In the future, it can be checked
whether the observed data are consistent with the theoreti-
cal prediction.
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APPENDIX A: NEWMAN-PENROSE FORMALISM
IN THE CONTEXT OF GEOMETRICAL OPTICS

1. Geometrical optics in curved spacetime

Let us assume that an electromagnetic wave follows a
curve xμðsÞ, where s is the affine parameter. The vector
potential is written as Aμ, which is a complex and spacelike
vector. Propagation vector, kμ, is defined as the tangent
to the curve followed by the electromagnetic wave.
Polarization vector, fμ, is defined [16] as the normalized
vector potential:

kμ ¼ dxμ

ds
; ðA1Þ
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FIG. 6. Plot of the maximum of Δη0 (due to cos ~k:~r) vs kr with
ηG ¼ 45°, Ψ0 ¼ 0.05, θ ¼ 2.27 in Eq. (39).
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ηG ¼ 45°, Ψ0 ¼ 0.05, θ ¼ 1.07 in Eq. (39).
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fμ ¼ Aμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−AμA�

μ

p : ðA2Þ

The negative sign is there within the square root because
we are working with ðþ;−;−;−Þ signature. Under the
geometrical optics approximation, propagation and polari-
zation vectors satisfy the following set of equations [16,18]:

kμkμ ¼ 0; ðA3aÞ

fμf�μ ¼ −1; ðA3bÞ

kμfμ ¼ 0; ðA3cÞ

kν∇νkμ ¼ 0; ðA3dÞ

kν∇νfμ ¼ 0: ðA3eÞ

Here ∇μ implies a covariant derivative with respect to xμ.
From Eq. (A3b), we see that the polarization vector (fμ) is
normalized by definition. Equation (A3a) implies that the
propagation vector (kμ) is a null vector. Equation (A3c)
implies that the polarization vector is perpendicular to the
propagation vector. Equation (A3d) implies that the electro-
magnetic wave follows a null geodesic which is affinely
parametrized. Finally, Eq. (A3e) implies that the polariza-
tion vector is parallel transported along the null geodesic.

2. Newman-Penrose formalism

Here we will give a brief outline (see Refs. [20–22] for
detail) of Newman-Penrose (NP) formalism and its rel-
evance in the context of our problem. We are following the
conventions and notations of Ref. [22]. For a given metric,
one needs to find out a set of four null vectors (lμ, nμ, mμ,
m�μ) where lμ, nμ are real null vectors and mμ, m�μ are a
pair of complex conjugate null vectors. They need to be
constructed in a way that they satisfy the following
conditions:

lμlμ ¼ nμnμ ¼ mμmμ ¼ m�μm�
μ ¼ 0; ðA4aÞ

lμmμ ¼ lμm�
μ ¼ nμmμ ¼ nμm�

μ ¼ 0; ðA4bÞ

lμnμ ¼ 1; mμm�
μ ¼ −1: ðA4cÞ

If we compare lμ with the propagation vector (kμ) and mμ

with the polarization vector (fμ), we see that, by con-
struction, lμ and mμ satisfy Eqs. (A3a)–(A3c). Now we
will state the conditions for lμ and mμ to satisfy
Eqs. (A3d)–(A3e).
(1) lμ forms a congruence of null geodesics if

κ ¼ mμlν∇νlμ ¼ 0: ðA5Þ

(2) Provided κ ¼ 0, the geodesics will be affinely para-
metrized if

ϵ ¼ nμlν∇νlμ þmμlν∇νm�
μ ¼ 0: ðA6Þ

(3) Given κ ¼ ϵ ¼ 0, mμ and m�μ will be parallel
transported along lμ if

π ¼ nμlν∇νm�
μ ¼ 0: ðA7Þ

Once we find the proper set of four null vectors with
κ ¼ ϵ ¼ π ¼ 0, we can consider lμ to be the propa-
gation vector and mμ to be the polarization vector.
Along with κ, ϵ, and π, two other spin coefficients
are relevant in the context of rotation and shear of an
image. These spin coefficients are given by the
following expressions:

ρ ¼ mμm�ν∇νlμ; ðA8aÞ

σ ¼ mμmν∇νlμ: ðA8bÞ

The NP formalism also provides a systematic approach
for achieving the condition κ ¼ ϵ ¼ π ¼ 0. Initially, we
have to find a set of null vectors with κ ¼ 0 which can be
done by solving the geodesic equations and exploiting
Eqs. (A4c)–(A4c). Provided κ ¼ 0, we can always make
ϵ ¼ 0 by the rotation of class III. Under this rotation, the
null vectors change in the following way,

lμ → A−1lμ; nμ → Anμ;

mμ → eiθmμ; m�μ → e−iθm�μ; ðA9Þ

where A and θ are two real functions. Under this rotation,
the relevant spin coefficients change as follows:

κ → A−2eiθκ; π → e−iθπ;

ϵ →
1

A
ϵ −

1

2A2
lμ∂μAþ i

2A
lμ∂μθ;

ρ →
1

A
ρ; σ →

1

A
e2iθσ: ðA10Þ

So the rotation of class III does not affect the direction of
lμ and the vanishing of κ, but helps to find A and θ such that
the new ϵ vanishes. Once we have κ ¼ ϵ ¼ 0, we can make
π ¼ 0 by rotation of class I. Under this rotation, the null
vectors change as follows,

lμ → lμ; mμ → mμ þ zlμ; m�μ → m�μ þ z�lμ;

nμ → nμ þ z�mμ þ zm�μ þ zz�lμ; ðA11Þ

where z is a complex function. The relevant spin coef-
ficients change as follows:
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κ → κ; ϵ → ϵþ z�κ;

π → π þ 2z�ϵþ ðz�Þ2κ þ lμ∂μz�;

ρ → ρþ z�κ; σ → σ þ zκ: ðA12Þ

The rotation of class I does not affect lμ and the
vanishing of κ and ϵ, but it helps to find z such that the
new π vanishes. One should also note that, if κ ¼ 0, this
rotation does not alter the values of ρ and σ. At this stage,
the construction of the proper set of null vectors is
complete.

APPENDIX B: EULER-LAGRANGE EQUATIONS
FOR PERTURBED FRW METRIC

The Lagrangian of a free particle in the perturbed FRW
metric is given by the following,

L¼ 1

2
ð1þ2ΨÞ_t2−1

2
a2ðtÞð1−2ΦÞð_r2þ r2 _θ2þ r2sin2θ _ϕ2Þ;

ðB1Þ

where the dot implies a derivative with respect to the affine
parameter (λ). In the zeroth order (Ψ ¼ Φ ¼ 0), we had the
following solutions:

_t ¼ 1

a
; _r ¼ 1

a2
; _θ ¼ 0: ðB2Þ

With these solutions, Im ρ ¼ 0, σ ¼ 0. Hence, the
unperturbed FRW metric is free from both shear and
rotation, as expected. Now we assume perturbations to
these zeroth-order solutions,

_t ¼ 1

a
þ ϵtðt; r; θÞ; ðB3aÞ

_r ¼ 1

a2
þ ϵrðt; r; θÞ; ðB3bÞ

_θ ¼ ϵθðt; r; θÞ; ðB3cÞ

where ϵt, ϵr, ϵθ are small quantities and we will keep the
terms that are linear in ϵ’s. Now we will write down Euler-
Lagrange equations for t, r, θ, and ϕ. For radial null
geodesics, we set _ϕ ¼ 0. Then the three equations corre-
sponding to t, r, θ take the following forms:

_ϵt−
H
a
ϵt−

2H
a2

ðΨþΦÞþ 1

a2
∂tðΨ−ΦÞþ 2

a3
∂rΨþ2Hϵr¼0;

ðB4aÞ

a2 _ϵr þ 2aHϵr þ
1

a2
∂rðΨ − ΦÞ − 2

a
∂tΦ ¼ 0; ðB4bÞ

a2r2 _ϵθ þ 2rð1þ aHrÞϵθ þ
1

a2
∂θðΨþ ΦÞ ¼ 0: ðB4cÞ

At this point, we should note that θ̈ ¼ _ϵθ is nonzero even
if _θ ¼ ϵθ ¼ 0. Therefore, _θ changes to some nonzero value
even if it is set to be zero initially. For null geodesics, the
Lagrangian is zero which implies the following:

ϵr ¼
ϵt
a
þ ðΨþ ΦÞ

a2
: ðB5Þ

If we replace this expression of ϵr in Eq. (B4b), we get
Eq. (B4a) which is expected. Writing ϵr in terms of ϵt in
Eq. (B4a), we get

_ϵt þ
H
a
ϵt þ

1

a2
∂tðΨ − ΦÞ þ 2

a3
∂rΨ ¼ 0: ðB6Þ
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