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We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving
cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator
formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM)
and string network parameters, namely the string tensionGμ, the loop-chopping efficiency cr, and the string
wiggliness α. For cosmic superstrings, we obtain joint constraints on the fundamental string tension GμF,
the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w.
This constitutes the most comprehensive CMB analysis of ΛCDM cosmology þ strings to date. For
ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015
temperature and polarization data, is Gμ < 1.1 × 10−7 in relativistic units, while for cosmic superstrings
our constraint on the fundamental string tension after marginalizing over gs, cs, and w isGμF < 2.8 × 10−8.
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I. INTRODUCTION

Cosmic strings are linelike concentrations of energy that
can arise as topological defects in theories of the early
Universe [1–5]. In particular, they form naturally in models
of hybrid inflation [6–12] in which the inflationary phase
ends with a second-order phase transition [7,13–15].
Although they were originally considered as an alternative
candidate for providing the seeds for structure formation in
the Universe [16–19], it is now understood that they cannot
give rise to the observed acoustic peak structure in the
power spectrum [20–24], but can play a subdominant role.
There is a wide range of potential observational signatures
of cosmic strings, for example, linelike discontinuities in
the cosmic microwave background (CMB) temperature
anisotropy via the Kaiser-Stebbins effect [25,26]. Thus,
strings provide a powerful tool for testing theories of the
early Universe. Observations have strongly constrained the
contribution of cosmic strings to the total CMB anisotropy
[20,27–32]. Current data place a 2σ upper bound on the
string tension of Gμ < 1.3 × 10−7 for Nambu-Goto strings
[33] or Gμ < 2.7 × 10−7 for Abelian-Higgs strings [34],
which corresponds to ∼1% of the total temperature
anisotropy at l ¼ 10. G is the gravitational constant, μ
is the tension of the string, and c ¼ 1 in relativistic units.
Although this may seem insignificant, there is still con-
straining power left in the data since strings generate
specific signatures in the primordial B-mode polarization

spectrum [27,35–40], which can now be analyzed with the
Planck2015 polarization [41] and joint BICEP2 data [42].
Going beyond the simplest cosmic string models, com-

plex networks of multiple types of interacting superstrings,
each with a different tension, can also be considered.
Notably, interacting networks of fundamental F-strings,
one-dimensional D-branes (D-strings), and bound (FD)
states between F- and D-strings, collectively referred to as
cosmic superstrings, arise naturally in string theoretic
inflation [7,43,44]. These networks are notably different
to their simpler, single-type string counterparts since the
different string types have intercommutation probabilities
that are not necessarily unity [44–50]. The interactions
among different string types are also much more complex,
as colliding strings can zip together or unzip, producing
heavier or lighter FD-string states carrying different
charges. These features affect CMB signatures, allowing
us to obtain constraints on string theory parameters such as
the string coupling gs and the fundamental string tension
μF [51,52].
In this paper we use the Planck2015 public data [41] to

perform the first full Markov chain Monte Carlo (MCMC)
analysis of Λ cold dark matter (CDM) models with cosmic
string or superstring networks. For “ordinary” cosmic string
networks we work in the unconnected segment model
(USM) framework and utilize our analytic method [53]
for fast computation of the string unequal-time correlator
(UETC). This is used as a source to compute CMB
anisotropies and hence obtain joint constraints on ΛCDM
and the string network parameters, including the tensionGμ,
the loop chopping efficiency cr, and the wiggliness param-
eter α. In the case of cosmic superstring networks we extend
our method to deal with multiple network components. The
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UETC approach is efficient, meaning we can compute the
superstring spectrum in much less time than previous codes
and obtain joint constraints on the fundamental string
tension GμF, the string coupling constant gs, the self-
interaction coefficient cs, and the parameter w of [52],
quantifying the volume of compact extra dimensions.
In Sec. II we describe the UETC formalism applied to

evolving Nambu-Goto string networks. In Sec. III we
summarize our modeling of cosmic superstrings and the
adaptation of our UETC method to these multistring
component networks. In Sec. IV we present the results
of our MCMC analysis for cosmic string and superstring
networks using Planck2015 CMB data. Our constraints on
string network parameters and possible future directions are
discussed in Sec. V.

II. UNEQUAL-TIME CORRELATOR

Unlike passive inflationary perturbations which are set as
initial conditions, metric perturbations from cosmic string
networks are actively sourced at all times. To compute the
string spectra the components of the string network’s energy-
momentum tensor must be used as sources in the linearized
Einstein-Boltzmann equations. The relevant quantity to
calculate is the UETC, whose dominant eigenmodes, found
by diagonalizing, can be used as source functions, with each
individual mode being coherent [19]. The UETC

hΘμνðk; τÞΘ�
αβðk; τ0Þi≡ Cμν;αβðk; τ; τ0Þ ð2:1Þ

determines all the two-point correlation functions such as the
CMB temperature Cl and matter power spectra PðkÞ,
defined as in [54]. Θμνðk; τÞ is the string energy-momentum
tensor defined below.

A. String energy-momentum tensor

Nambu-Goto strings are one-dimensional defects in the
zero-width limit. They provide a good description for long
cosmic strings, whose correlation length is many orders
of magnitude larger than their width, at least away from
string intersections. A string moving in spacetime spans a
two-dimensional surface, the world sheet xμðσaÞ, where the
indices μ ¼ 0, 1, 2, 3 label spacetime coordinates and
a ¼ 0, 1 are the indices of coordinates on the world sheet
[55,56]. The world sheet action is reparametrization invari-
ant and a gauge can be chosen by imposing two conditions
on the spacetime coordinates xμ as functions of σa. In a
Friedmann-Robertson-Walker (FRW) background, a useful
choice of gauge is such that σ0 ¼ τ, the conformal time,
and x0 · _x ¼ 0, where _≡ ∂=∂τ and 0 ≡ ∂=∂σ, relabeling
σ1, which in this gauge is a spacelike world sheet
coordinate, as σ. In this gauge the Nambu-Goto string
energy-momentum tensor is

ΘμνðyÞ ¼ 1ffiffiffiffiffiffi−gp
Z

dτdσ

�
U

ffiffiffiffiffiffiffiffiffiffi
−
x02

_x2

r
_xμ _xν − T

ffiffiffiffiffiffiffiffiffiffi
−

_x2

x02

r
x0μx0ν

�

× δð4Þðy − xðτ; σÞÞ: ð2:2Þ

Here, U is the string energy per unit length and T is
the string tension. For Nambu-Goto strings on arbitrarily
small scales, Lorentz invariance requires that T ¼ U ¼ μ.
However, if we coarse grain the string, then the integrated
effect of small-scale structure is to make the effective
tension smaller than the energy density. We can then
include the effect of small-scale wiggles on the string
via a “string wiggliness” parameter α, such that

U ¼ αμ and T ¼ μ

α
; ð2:3Þ

satisfying UT ¼ μ2.
The Fourier transform of the 00 component of the

energy-momentum tensor of a representative string seg-
ment in a network is

Θ00ðτ;k; χÞ ¼
μαffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p sinðk · X̂ξτ=2Þ
k · X̂=2

× cos ðk · x0 þ k · _̂XvτÞ; ð2:4Þ
where v and ξ are the string network velocity and comoving
correlation length, defined in Sec. II B below, and x0 is
the position of the string end point. The string segment is
parametrized by

xðσ; τÞ ¼ x0 þ σX̂þ vτ _̂X; ð2:5Þ
with the string orientations and velocity orientations

X̂ ¼

0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA; ð2:6Þ

_̂X ¼

0
B@

cos θ cosϕ cosψ − sinϕ sinψ

cos θ sinϕ cosψ þ cosϕ sinψ

− sin θ cosψ

1
CA: ð2:7Þ

_̂X is transverse to X̂ such that X̂ · _̂X ¼ 0. Note that the
position of the string end point appears only through a
phase in the cosine factor in Eq. (2.4), which wewill denote
as χ ≡ k · x0. The other components of the string energy-
momentum tensor are given by

Θij ¼
�
v2 _̂Xi

_̂Xj −
1 − v2

α2
X̂iX̂j

�
Θ00; ð2:8Þ

with i, j ¼ 1, 2, 3. Choosing coordinates so that k lies
along the k̂3 axis, the scalar, vector, and tensor anisotropic
stresses are given by
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ΘS ¼ 1

2
ð2Θ33 − Θ11 − Θ22Þ; ð2:9Þ

ΘV ¼ Θ13; ð2:10Þ

ΘT ¼ Θ12: ð2:11Þ

B. Velocity dependent one-scale model

The velocity one-scale model (VOS) equations dictate
the values of the string network correlation length L, and
the average velocity v, of string segments in the network
[57]. The correlation length L is the average length of string
segments which, for scaling networks (that have a random
walk structure), is also equal to the average string sepa-
ration. The network velocity v is the root-mean-square
(rms) velocity of these correlation-length-sized string seg-
ments averaged over all (shorter) length scales. The macro-
scopic evolution equations for these network parameters
can be derived from the Nambu-Goto action by applying
a statistical averaging procedure over the string world
sheet [58–60]. Expressed in terms of the physical time t,
they read

_L ¼ ð1þ v2ÞL _a
a
þ crv

2
; ð2:12Þ

_v ¼ ð1 − v2Þ
�
~k
L
− 2v

_a
a

�
; ð2:13Þ

where aðtÞ is the scale factor, _aðtÞ=aðtÞ is the Hubble
function, and from now on ⋅ ≡ d=dt, unlike in Eq. (2.2).
The loop chopping efficiency parameter, cr, quantifies
the energy loss due to loop production and ~k provides a
phenomenological description of the small-scale structure
on the string, which, for relativistic strings, is given by

~k ¼ 2
ffiffiffi
2

p

π

�
1 − 8v6

1þ 8v6

�
: ð2:14Þ

The correlation length can be written in comoving units as
ξτ ¼ L=a. The VOS equations in comoving units are

ξ0 ¼ 1

τ

�
v2ξτ

a0

a
− ξþ crv

2

�
; ð2:15Þ

v0 ¼ ð1 − v2Þ
�

~k
ξτ

− 2v
a0

a

�
; ð2:16Þ

where now 0 ≡ d=dτ, unlike in Eq. (2.2). For a fixed
expansion rate the scaling solutions, found by the require-
ment ξ0 ¼ 0 and v0 ¼ 0, read

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kð~kþ crÞð1 − βÞ

4β

s
; ð2:17Þ

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kð1 − βÞ
βð~kþ crÞ

s
; ð2:18Þ

where β is the physical time FRW expansion exponent
aðtÞ ∝ tβ and is equal to 1=2 and 2=3 in the radiation and
matter eras respectively. Note in the scaling solutions of
(2.18) the implicit velocity dependence of ~k through
Eq. (2.14). Earlier implementations of the cosmic defect
CMB code CMBACT [61] used two sets of values for the
loop chopping efficiency and the parameter ~k in the scaling
solutions (2.18) for the radiation and matter eras. These
values were then interpolated for the transition between
the radiation and matter eras. However, in the latest
implementation of the VOS equations in CMBACT [62],
the velocity dependence of ~k is explicitly used and the
loop chopping efficiency is kept constant throughout both
epochs [60]. Here, we also adopt this approach: at any
particular τ, the values of ξ and v found using the VOS
equations [(2.15) and (2.16)] are used for calculating the
UETC, keeping cr constant throughout and explicitly
accounting for the velocity dependence (2.14) of ~k. In
earlier versions of CMBACT the wiggliness, α, was also an
evolving parameter, but it is now kept constant in CMBACT4,
which is the approach we take here. The evolution of the
network parameters can be seen for a range of cr ’s in Fig. 1
showing that a wide range of correlation lengths and
velocities is available. Detailed comparison of the VOS
model with Nambu-Goto simulations of ordinary string

FIG. 1. The evolution of the velocity v, and correlation length ξ,
for a range cr ¼ ½10−2; 1.0�. The black dot-dot-dash line indicates
the correlation lengths and velocities obtained when cr ¼ 0.23.
The greener area (lighter in black and white) of the plot indicates
larger values of cr while the more purple region (darker in black
and white) shows a smaller cr.
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networks (i.e. single string type with unit intercommuting
probability [63]) determine the loop chopping efficiency
to cr ¼ 0.23� 0.04 [60], corresponding to the black dot-
dot-dashed curves in Fig. 1. Models of cosmic superstrings
generally have suppressed intercommutation probabilities
[45–48], which effectively reduces cr, and so they corre-
spond to the purple region in the figure. Such networks
have relativistic rms velocities v ∼ 1=

ffiffiffi
2

p
and correlation

lengths much smaller than the horizon, corresponding to a
much higher string number density compared to ordinary
string networks. However, they also have smaller string
tension, so their overall effect on the CMB can be small,
consistent with the data.
It should be noted that the rms network velocity used in

the VOS model arises from a world sheet average and is
thus integrated over all (short) length scales. Therefore, it
provides an accurate measure of the energy stored in a
wiggly string segment, but does not explicitly correspond
to (and in fact is expected to be larger than) the coherent
velocity on correlation-length scales. Indeed, numerical
simulations of Nambu-Goto strings reveal a network
velocity distribution with larger velocities at short scales,
implying that the rms velocity is dominated by relativistic
speeds at short distances. On length scales of order of the
correlation length, coherent velocities as low as vcoh ≃ 0.2
have been reported [64–67]. Other network velocity
measures (again containing information from a range of
length scales) in both Nambu-Goto and Abelian-Higgs
string simulations also tend to be lower than the VOS rms
velocity, with velocities in the Abelian-Higgs model
vAH ≃ 0.5, significantly slower than in Nambu-Goto sim-
ulations [68–70]. For further discussion about the impact of
string velocities on the UETC and the string power
spectrum, see the end of Sec. II F.

C. Unconnected segment model

Simulations of evolving string networks are numerically
very expensive. Strings decay as 1=ðξτÞ3, eventually reach-
ing a scaling solution (ξ ¼ constant) with a number density
of tens to hundreds of strings per horizon volume. At early
times, the box contains a huge number of strings whose
dynamics and interactions have to be tracked at each
time step. The USM [21,61] dramatically reduces the
required computational resources by approximating the
string network as a collection of correlation-length-sized
segments, with the time evolution of the correlation length
and segment velocity described by the VOS equations.
Moreover, the model consolidates these string segments by
collecting all strings that decay between any two times, and
so fewer strings will need to be tracked. The number of
strings that decay between any two conformal times in a
volume V is

NdðτiÞ ¼ V½nðτi−1Þ − nðτiÞ�; ð2:19Þ

where nðτÞ is the number density of strings at conformal
time τ, given by nðτÞ ¼ CðτÞ=ðξτÞ3. In CMBACT, the factor
CðτÞ is chosen so as to keep the number of strings at any
time proportional to 1=ðξτÞ3. The energy-momentum
tensor for the string network is then given by the sum
over the total number of consolidated string segments K,
with a factor accounting for string decay

Θμν ¼
XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NdðτiÞ

p
Θi

μνToffðτ; τi; LfÞ: ð2:20Þ

The string decay factor Toffðτ; τi; LfÞ is a function inter-
polating between 1 and 0 and is responsible for turning off
the contribution of the ith consolidated segment after the
time it has decayed. Its steepness is controlled by a string
decay parameter, 0 < Lf ≤ 1, as follows:

Toffðτ; τi; LfÞ ¼
8<
:

1 τ < Lfτi

1=2þ 1=4ðy3 − 3yÞ Lfτi < τ < τi

0 τi < τ

;

ð2:21Þ

where

y ¼ 2 lnðLfτi=τÞ
lnðLfÞ

− 1: ð2:22Þ

Thus, in the limit Lf → 1 the string decay factor
Toffðτ; τi; LfÞ approaches a Heaviside function, sharply
switching off the contribution of the ith consolidated
segment to the network energy-momentum tensor for times
τ > τi.

1. The Lf parameter

Since the number of consolidated segments also sets the
number of decay epochs, a finite number of consolidated
segments leads to discrete steps in the number density of
strings. The string decay parameter Lf was introduced to
allow a fraction of the consolidated strings to decay before
the end of their respective decay epoch, thus making
the number density evolution smoother. The function
CðτÞ was also introduced to ensure that the number of
strings at any conformal time τ is kept proportional to
ðξτÞ−3. However, one consequence of Lf < 1 is that it is
possible that Lfτiþ1 < τi, meaning strings can start to decay
earlier than their respective epoch and the number density is
systematically lower.
In the CMBACT4 implementation we have found that

changing the number of consolidated segments from 200 to
10,000 has very little impact on the string spectra, as shown
in Fig. 2. However, the amplitude of the Cl is dependent on
the value of Lf . The change is scale dependent, but can be
as much as 30%, for example, near the peak of the scalar
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temperature signal. Previous analyses which have used the
results from CMBACT have overlooked this dependence.
Although not entirely degenerate with the amplitude of Cl,
which scales proportional to ðGμÞ2, it will clearly have
some effect on the inferred values ofGμ from the USM. We
compare this to our approach in the following section.

2. Infinite consolidated string segments

We are able to accommodate a large number of segments
analytically. As discussed in [53], the scaling factor, which
weights the UETC taking into account string decay, has a
particularly simple form when the number of consolidated
string segments tends to infinity, Lf → 1 and CðτÞ → 1.
This is

fðτ1; τ2; ξðτ1Þ; ξðτ2ÞÞ ¼
XK
i¼1

NdðτiÞToffðτ1; τi; LfÞ

× Toffðτ2; τi; LfÞ;
¼ ðξðMax½τ1; τ2�ÞMax½τ1; τ2�Þ−3;
¼ fðτMax; ξðτMaxÞÞ: ð2:23Þ

An analytic expression for the scaling factor can also be
found for an arbitrary Lf using the form of Toff quoted in
Eq. (2.21). However, it seems natural to consider only
the case Lf ¼ 1 when the number of consolidated string
segments is very large. In the infinite limit the segments
will decay at an infinite number of epochs which are

infinitesimally separated, a continuous limit in which the
string number density is smooth. We have shown that the
number density scales according to ðξτÞ−3 with our
approach. While infinite consolidated segments may seem
unphysical, it is just a limit used to obtain the correct
scaling relation. We obtain very similar results to CMBACT4

when using between 200 to 10,000 segments with Lf ¼ 1.
The question of whether the observed resulting modifica-
tion of scaling from early string decay obtained when Lf <
1 is physical or not requires investigation. Since we take
CðτÞ ¼ 1 we avoid considering different scaling behavior.
Ultimately, the USM is a simplified model which aims to
match the UETC from simulations by adjusting the net-
work parameters. Overall it has been shown to match
Nambu-Goto simulations well [71]. However, due to the
correlation between the inferred values for Gμ for a given
Lf , this issue should be considered more closely.
Since the number density scales according to ðξτÞ−3

using our approach, we believe this to be reasonable and
will adopt this for the comparison to data.

D. Analytic calculation of the unequal-time correlator

The UETC can be computed analytically [53] by
integrating over all string configurations (orientations
and positions) in the network. For the two-point correlator
between Θðτ1;k1; χ1Þ and Θðτ2;k2; χ2Þ translational
invariance implies k1 ¼ −k2 ¼ k and so χ1 ¼ −χ2 ¼ χ.
Considering that, due to Eqs. (2.4) and (2.8), Θðτ;k; χÞ is a
symmetric function of k, the integral is

FIG. 2. Cl obtained from the string realization code CMBACT4 with 200 and 10,000 consolidated string segments for 2000 string
realizations between the red solid and dashed lines and blue dotted and dotted-segment lines respectively. The solid red and dotted blue
lines at the top of each band indicate a value of Lf ¼ 1 for 200 and 10,000 segments, while the red dotted and blue dotted-segment lines
show Lf ¼ 0.5. The top, middle, and bottom rows show the scalar, vector, and tensor Cl modes respectively. The first column contains
the temperature (TT) Cl, the second column has the EE-mode contribution, BB modes are in the third, and the TE cross-correlation is in
the final column. We also plot the corresponding spectra derived from our analytic USM method, shown in green dot-dot-dashed lines.
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hΘðτ1;kÞΘðτ2;kÞi

¼ 2fðτMax; ξðτMaxÞÞ
16π3

Z
2π

0

dϕ
Z

2π

0

dψ

×
Z

π

0

sin θdθ
Z

2π

0

dχΘðτ1;k; χÞΘðτ2;k; χÞ: ð2:24Þ

Without loss of generality k can be chosen to lie along the
k3 axis, such that k ¼ kk̂3. Θ here represents each of Θ00,
ΘS, ΘV, and ΘT of Eqs. (2.9)–(2.11). The ϕ, ψ , and χ
integrals can be done analytically in this case, leaving only
the θ integral in terms of Bessel functions. The UETC can
then be written as the sum over six integral identities,

hΘðτ1; kÞΘðτ2; kÞi ¼
fðτMax; ξðτMaxÞÞμ2

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vðτ1Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vðτ2Þ2

p
×
X6
i¼1

Ai½Iiðx−; ϱÞ − Iiðxþ; ϱÞ�;

ð2:25Þ

where ϱ¼kjvðτ1Þτ1−vðτ2Þτ2j and x� ¼ ðx1 � x2Þ=2 with
x1;2 ¼ kξðτ1;2Þτ1;2. Here x1;2 means x1 and x2 respectively.
This extends the corresponding result of [53] in that ξ and v
are now functions of τ instead of being kept constant. This
means that the expressions of the amplitudes Ai, presented
in Table II, are now time dependent. The integral identities
(shown in Table I) remain the same. It should be noted that
I1ðx; ϱÞ and I4ðx; ϱÞ diverge but the combination
I1;4ðx−; ϱÞ − I1;4ðxþ; ϱÞ is regular and, in the limit where
x1;2 ≫ x2;1, has an analytic approximation given by

I1ðx−; ϱÞ − I1ðxþ; ϱÞ ¼
πx1;2
2

J0ðϱÞ; ð2:26Þ

I4ðx−; ϱÞ − I4ðxþ; ϱÞ ¼
πx1;2
2ϱ

J1ðϱÞ: ð2:27Þ

In the small x1;2 limit, the UETC can be written as

hΘðτ1;kÞΘðτ2;kÞi¼
fðτMax;ξðτMaxÞÞμ2

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−vðτ1Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−vðτ2Þ2

p B; ð2:28Þ

and at equal times, when x1 ¼ x2 ¼ x and ϱ ¼ 0, the equal-
time correlator is given by

hΘðτ; kÞΘðτ; kÞi ¼ fðτ; ξðτÞÞμ2
k2ð1 − vðτÞ2ÞC: ð2:29Þ

The forms of B and C are similar to [53] but again depend
on the values of v and ξ at τ1 and τ2. These coefficients
have also been included in Table II. Thanks to these
analytic approximations, computational times can be
greatly reduced compared to the case where the integral
identities Ii are used for computation over the whole range
of kτ1, kτ2. The regions where these approximations are
valid are shown in Fig. 3, only the white region is
computationally intensive. It should be noted that, because
ξ is a function of time, the shape of the approximated
regions in Fig. 3 changes for different values of k and so we
must consider a large number of k modes when computing
the UETC. This is in contrast to [53], where the approxi-
mation of constant ξ and vmeant that the UETC was only a
function of the combinations kτ1 and kτ2.

1. Negative values of the UETC

It has been noted in [72] that there are negative regions in
the string UETC calculated analytically through our for-
malism, which do not appear in the Gaussian model for the
string UETC used in [72]. These can be seen in Fig. 4.
There are two distinct types of regions with negative

values of our UETC. First, regions with small kτ1 and large
kτ2 (and vice versa), corresponding to the top left and
bottom right corners of Fig. 3 or Fig. 4: in these regions the
UETC should be zero, but small negative (and positive)
values can arise from the finite order truncation of the
Bessel series expansions of I1ðx�; ρÞ and I4ðx�; ρÞ in
Eq. (2.25). These values are spurious and can be thought
of as noise arising from the truncation. The order of
truncation must then be chosen such that this noise is at
a tolerable level.
Second, in the regions off the diagonal with a large kτ1 ≈

kτ2 (corresponding to the top right corner of Fig. 3 or
Fig. 4) there is a ringing pattern with successive positive
and negative peaks that decay as we move away from the

TABLE I. Integral identities for the UETC.

I1ðx; ϱÞ ¼ 1
2

R
0
πdθ sin θsec2θ cosðx cos θÞJ0ðϱ sin θÞ

¼ P
c¼0

∞ 1
c!

ϱ
ð2c−1Þ ð− x2

2ϱÞ2jc−1ðϱÞ
I4ðx; ϱÞ ¼ 1

2

R
0
πdθ sin θsec2θ cosðx cos θÞ J1ðϱ sin θÞϱ sin θ

¼ cos x
ϱ2

−
P

c¼0
∞ 1

c!
1

ð2c−1Þ ð− x2
2ϱÞ2jc−2ðϱÞ

I2ðx; ϱÞ ¼ 1
2

R
0
πdθ sin θ cosðx cos θÞJ0ðϱ sin θÞ

¼
�
sin

ffiffiffiffiffiffiffiffiffi
ϱ2þx2

pffiffiffiffiffiffiffiffiffi
ϱ2þx2

p
� I5ðx; ϱÞ ¼ 1

2

R
0
πdθ sin θ cosðx cos θÞ J1ðϱ sin θÞϱ sin θ

¼ 1
ϱ2
ðcos x − cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2 þ x2

p
Þ

I3ðx; ϱÞ ¼ 1
2

R
0
πdθsin3θ cosðx cos θÞJ0ðϱ sin θÞ

¼ ½1þ ∂2

∂x2�ð
sin

ffiffiffiffiffiffiffiffiffi
ϱ2þx2

pffiffiffiffiffiffiffiffiffi
ϱ2þx2

p Þ
I6ðx; ϱÞ ¼ 1

2

R
0
πdθsin3θ cosðx cos θÞ J1ðϱ sin θÞϱ sin θ

¼ − 1
ϱ2þx2 ½1þ 1

x
∂
∂x�ðcos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2 þ x2

p
Þ
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diagonal. These oscillatory patterns are a consequence of
causality [21,73,74], built into the USM: as the correlator
must vanish at superhorizon scales (in fact in the USM it
vanishes at scales larger than the correlation length, which
is smaller than the horizon), this introduces a sharp edge in
physical space that becomes oscillatory in Fourier space.
This oscillatory pattern therefore has a clear physical
origin, but in the USM it is somewhat artificially enhanced
due to the fact that the model assumes all string segments
have the same length. If segments are instead given a length
distribution peaking at the network correlation length, the
sharp edge is smoothed and the oscillatory pattern gets
suppressed. Furthermore, considering a segment velocity

distribution peaking near the network rms velocity again
suppresses these oscillations. The Gaussian model assumes
a wide Gaussian distribution of string lengths (but also
assigns nonzero values to the correlator at superhorizon
scales), so this causal oscillatory feature is absent from the
UETC in that model.
The suppression of oscillations in the UETC can be seen

in Fig. 5 where the blue solid line shows the profile of the
UETC across the diagonal as calculated using the velocity
and correlation lengths from the VOS. The red dot-dot-dash
line is the same profile when a Gaussian distributed
sample of velocities and correlation lengths, peaking on
the VOS values, is chosen. The oscillatory features are

TABLE II. Coefficients for the amplitude equations given by Ai ¼ ai þ biðvðτ1Þ2 þ vðτ2Þ2Þ þ civðτ1Þ2vðτ2Þ2. The small x
approximation and the ETC are expressed in terms of the functions X¼ ½1− ðvðτ1Þ2þvðτ2Þ2Þð1− α2

2
Þþvðτ1Þ2vðτ2Þ2ð1−α2þα4Þ�,

Y ¼ ½1 − vðτÞ2ð2 − α2Þ þ vðτÞ4ð1 − α2Þ�, and Zj ¼ zj1 þ zj2 cos xþ zj3 sin xþ zj4xSi½x�.
hΘ00ðτ1; kÞΘ00ðτ2; kÞi hΘSðτ1; kÞΘSðτ2; kÞi hΘVðτ1; kÞΘVðτ2; kÞi hΘTðτ1; kÞΘTðτ2; kÞi hΘS

00ðτ1; kÞΘS
00ðτ2; kÞi

a1 2α2 1
2α2

0 1
4α2

1

b1 0 1 − 1
2α2

0 − 1
4α2

− 1
2
þ α2

c1 0 1
2α2

− 2þ 2α2 − 27α2

2ϱ2
3α2

ϱ2
1
4α2

− 3α2

4ϱ2
0

a2 0 3
2α2

0 − 1
4α2

−3
b2 0 − 3

2α2
0 1

4α2
3
2
− 3α2

2

c2 0 3
2α2

− 3α2

2
þ 27α2

2ϱ2
− 3α2

ϱ2
− 1

4α2
þ 3α2

4ϱ2
þ α2

4
0

a3 0 − 9
2α2

1
α2

− 1
4α2

0

b3 0 9
2α2

− 9
2

1 − 1
α2

1
4α2

− 1
4

0

c3 0 − 9
2α2

þ 9 − 9α2

2
1
α2
− 2þ α2 − 1

4α2
þ 1

2
− α2

4
0

a4 0 0 0 0 0
b4 0 − 3

2
0 1

4 − 3α2

2

c4 0 3 − 6α2 þ 27α2

ϱ2
α2 − 6α2

ϱ2
− 1

2
þ 3α2

2ϱ2
0

a5 0 0 0 0 0
b5 0 3

2
0 − 1

4
3α2

2

c5 0 −3þ 6α2 − 27α2

ϱ2
−α2 þ 6α2

ϱ2
1
2
− 3α2

2ϱ2
0

a6 0 0 0 0 0
b6 0 9

2
−1 1

4
0

c6 0 −9þ 9α2 2 − 2α2 − 1
2
þ α2

2
0

B α2x1x2
x1x2
5α2

X x1x2
15α2

X x1x2
15α2

X 0

C Za YZa þ α2vðτÞ4Zb YZa þ α2vðτÞ4Zb YZa þ α2vðτÞ4Zb ½Y − vðτÞ4ð1 − α2Þ�Za

za1 −2α2 − 2
α2

2
3α2

−2
3α2

−4
za2 2α2 1

2α2
− 9

α2x2
2

α2x2
1
4α2

− 1
2α2x2

1

za3 0 − 3
2α2x þ 9

α2x3 − 2
α2x3

1
4α2x þ 1

2α2x2
3
x

za4 2α2 1
2

0 1
4α2

1

zb1 0 −2 0 0 0

zb2 0 11
16
− 27

8x2
1
8
þ 3

4x2
3
32
− 3

16x2
0

zb3 0 3
16x þ 27

8x3
1
8x −

3
4x3 − 5

32x þ 3
16x3

0

zb4 0 11
16

1
8

3
32

0
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mostly washed out but the first trough remains a prominent
feature. The off-diagonal dip in the correlation functions
that we find after considering a range of segment lengths
and velocities has also been observed in Abelian-Higgs
simulations [69]. It may also be related to the velocity
anticorrelation observed in Nambu-Goto simulations on
correlation-length scales and can be attributed to string
intercommutations [66].

E. Eigenmode decomposition

The UETC is generally rescaled by a factor of
ffiffiffiffiffiffiffiffi
τ1τ2

p
,

which, for ξ and v constant, makes it a function of kτ1 and
kτ2 only. This is not true in the present case because now
we are tracking the time dependence of ξ and v, so the
UETC depends separately on k, τ1, and τ2. However, it is
still useful to introduce this rescaling in order to facilitate
direct comparison of the UETC with previous results. This
rescaled UETC can then be discretized onto a logarithmic
grid in kτ1 and kτ2 with n × n grid points and then
diagonalized, giving the eigenvectors and eigenvalues [19]

ðk2τ1τ2Þγ ffiffiffiffiffiffiffiffi
τ1τ2

p hΘðτ1; kÞΘðτ2; kÞi

¼
XN
i¼1

λiuiðkτ1Þ ⊗ uiðkτ2Þ: ð2:30Þ

Due to the explicit dependence on k, this diagonalization
procedure has to be repeated for a large number of kmodes,
and the eigenvalues are k dependent. This significantly
increases the computation time compared to [53]. The
extra factor ðk2τ1τ2Þγ is used for more efficient
reconstruction of the UETC when the eigenmodes are
truncated below n. The choice γ ¼ 0.25 gives the best

FIG. 4. The UETC calculated at k ¼ 0.05h=Mpc. The plots
show the 00 component followed by the scalar, vector, and tensor
anisotropic stresses. (Bottom panel) The cross-correlation be-
tween the energy density and the scalar anisotropic stress.

FIG. 3. The regions of x ¼ kτξ covered by analytic approx-
imations. In green is the region where x1 ≪ 1 and x2 ≪ 1, red
where j log x1 − log x2j < ϵ, and blue where jx1 − x2j ≫ 1. In the
code the x1;2 ≪ 1 region is set for x1;2 < 0.2, ϵ ¼ 0.001 for
x1 ≈ x2, and jx1 − x2j > 10 for x1;2 ≫ x2;1.
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reconstruction on scales that give the dominant contri-
bution to the CMB anisotropies.
There is no correlation between the scalar, vector, and

tensor modes, so the vector and tensor UETC can be
diagonalized independently. However, the density Θ00 and
the scalar anisotropic stress ΘS are correlated. The diag-
onalization is done over a 2n × 2n grid constructed from

hΘ00ðτ1; kÞΘ00ðτ2; kÞi hΘS
00ðτ1; kÞΘS

00ðτ2; kÞi
hΘS

00ðτ1; kÞΘS
00ðτ2; kÞi hΘSðτ1; kÞΘSðτ2; kÞi

; ð2:31Þ

where hΘS
00ðτ1; kÞΘS

00ðτ2; kÞi is the symmetric combination
of the cross-correlation between Θ00 and ΘS. After diago-
nalization, the first half of the eigenvectors refer to the density
and the second to the anisotropic stress. The diagonalization
creates orthogonal eigenvectors which are then used as
source terms in the CAMB [75] linear Einstein-Boltzmann
code. The Cl’s are calculated using each individual eigen-
vector as a source function Ci

l ¼ uiðkτÞ=ð
ffiffiffi
τ

p ðkτÞγÞ, which
can be summed to give the total power spectra

Cl ¼
Xn
i¼1

λiCi
l: ð2:32Þ

By ordering the λi’s from largest to smallest, the required
accuracy in the Cl can be achieved by including relatively
few eigenmodes. This can be seen in the middle row of
Fig. 6, where there is only about a 10% difference between
using all 512 eigenmodes of a 512 × 512 grid compared to
only using 32 eigenmodes when fixing the value of Gμ.
Also, it can be seen in the top row of Fig. 6 that reducing the
grid resolution reduces the amplitude of the Cl. A grid
resolution of 128 × 128 is about 5% lower, on average,
than using the 512 × 512 grid but convergence times
decrease drastically. It should be noted that there is
negligible difference between using a 512 × 512 and a
1024 × 1024 grid meaning that the former is reliably giving
the full Cl contribution. The bottom row shows what
happens when using more k values in the calculation.
Wiggly features arise from using too few k values and can
be removed at the expense of a much longer calculation.
Using these findings we can choose the optimal UETC
parameters to give a good quality Cl in a reasonable

FIG. 5. Profile of the UETC across the diagonal in the
oscillatory region with a large kτ1 ≈ kτ2. The solid blue line
shows the amplitude of the UETC using the value of the velocity
and the correlation length from the VOS equations while the red
dot-dot-dash line has Gaussian distributed velocities and corre-
lation lengths about the VOS values.

FIG. 6. The ratio of the Cl calculated using a UETC with a 512 × 512 grid with all the eigenmodes and (top row) other grid
resolutions, the lightest shaded region with an 8 × 8 grid and the darkest a 256 × 256 grid; (middle row) when fewer eigenmodes are
included, eight eigenmodes for the lightest shaded region and 256 for the darkest; (bottom row) when the accuracy_boost setting of
CAMB is decreased, reducing the number of k values.
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amount of time. The resulting spectra obtained from our
analytical method are shown in Fig. 2 in green dot-dot-
dashed curves and agree well with USM string realizations,
especially in the limit of large numbers of simulated
segments.

F. Comparison of the string power spectrum

In Fig. 7 we compare our temperature power spectrum
(scaled by Gμ in the upper subplot and normalized at
l ¼ 10) to that of CMBACT4 [61], Nambu-Goto simulations
[71], and Abelian-Higgs simulations [69]. Both CMBACT4

and our method use the same velocity dependent one-scale
model parameters, but CMBACT4 uses Lf ¼ 0.5. The
Nambu-Goto simulations are performed in an expanding
background from recombination to today, including Λ
domination. Large loops are kept in the simulation and
contribute to the total energy-momentum tensor of the
network, but these simulations cannot resolve small-scale
physics near the string width and do not include the effects
of radiation backreaction. In contrast, the Abelian-Higgs
simulations can resolve small-scale structure and radiative
effects [76]. These, however, have a smaller dynamical

range and cannot easily evolve through the radiation-matter
transition (so the UETC is instead interpolated), but see
recent progress in [76] where the authors simulate through
the transition.
Overall, when normalized at l ¼ 10, the four spectra

agree reasonably well. The USM variants (CMBACT4 and
our approach) both predict slightly more power at the peak
than either of the simulations. The Nambu-Goto simula-
tions predict more power on very small scales, around twice
as much as the Abelian-Higgs model. It is well known that
Nambu-Goto calculations yield higher string densities
than field theoretic ones, which will increase their overall
normalization. The resulting constraints on Gμ are there-
fore around a factor of 50% lower [33] as can be inferred
from the upper subplot in Fig. 7. The USM variants are
closer to the Nambu-Goto simulations in this respect [71].
In this paper wewill not consider using the analytic USM to
mimic the Abelian-Higgs spectra. As we have shown, there
is some additional uncertainty in the USM, as the nor-
malization depends somewhat on the choice of Lf .
In summary, given the large differences in modeling

between the various approaches, we find this comparison
encouraging, although more work is needed to further
delineate the differences. In particular, as discussed at the
end of Sec. II B, the VOS rms velocity is defined through a
world sheet integral over all scales and receives a large
contribution from relativistic wiggles on the string. On the
other hand, the USM assumes straight segments moving at
a given speed and the small-scale structure on the segments
is captured via a “renormalization” of their tension. This
implies that the speed to be associated with the USM
segments must be lower than the VOS rms velocity, and
should correspond to the network velocity at correlation-
length scales. Numerical simulations show this to be
significantly lower than the rms speed. This issue has
not been examined before, partly because the calculated
string spectra from different approaches can differ by up to
a factor of 2, and partly because it can be offset by choosing
a lower value for the USM parameter Lf (see below). As
quantitative agreement between the different approaches is
now being established, it is important to fully understand
this issue. To this end it will be important to extract the
network velocity distribution as a function of length scale
in both Nambu-Goto and Abelian-Higgs simulations.
Plotted in Fig. 7 in purple dot-dot-dash is the Cl obtained

when v ¼ 0.4. As can be seen, the peak of the velocity fixed
Cl has a very similar amplitude to the Nambu-Goto simu-
lation Cl in dotted red, although the simulations still have
larger power at both lower and higher l’s. This supports the
idea that the discrepancy in the amplitude of string spectra
could be related to different predictions/assumptions on string
velocity in the different approaches (cf. the discussion at the
end of Sec. II B). Note that the parameter Lf in the USM is
somewhat degeneratewith the string velocity—for a fixed v a
lowerLf reduces the density of strings by increasing the string

FIG. 7. Comparison of approaches to string modeling, scaled
by Gμ in the upper subplot and normalizing the temperature
power spectrum at l ¼ 10 in the lower subplot. We compare our
approach (in solid blue) to CMBACT4 [61], Nambu-Goto simu-
lations [71], and Abelian-Higgs simulations [69] (in dashed
green, dotted red, dot-dashed orange, and, for the analytic
USM with the velocity fixed at v ¼ 0.4, in dot-dot-dashed purple
respectively).
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decay rate, thus reducing the Cl amplitude and matching
simulations better than usingLf ¼ 1. In the absence of amore
complete quantitative understanding of the string velocity
distribution—input required from string evolution simula-
tions—our string spectra obtained from the USM have a
larger amplitude (see the solid blue line in the upper subplot of
Fig. 7). This leads to slightly tighter constraints on cosmic
strings than in numerical simulations. Marginalizing over the
network parameters cr and α, partly takes care of the
differences between Lf ¼ 0.5 and Lf ¼ 1 in the USM since
a high cr reduces the velocity [as seen from Eq. (2.16) and
pictorially in Fig. 1].

III. COSMIC SUPERSTRINGS

A cosmic superstring network can be modeled as a
collection of string segments of different types, each string
type having its own tension and self-intercommuting prob-
ability [44–50,52,77–79]. Strings of different types interact
with each other via “zipping” or “unzipping,” leading to
heavier or lighter strings respectively that are connected to
the original strings at trilinear Y-shaped junctions [80]. The
fundamental building blocks for these networks are light
(fundamental) F-strings and heavier (Dirichlet) D-strings,
with a tension hierarchy controlled by the fundamental string
coupling [80–82]. Heavier strings arise as bound states
between p F-strings and qD-strings, where p,q are coprime.
Given the fundamental string tension, the corresponding
tensions of these heavier ðp; qÞ-strings are controlled mainly
by p,q and the value of the string coupling. These networks
generally behave very differently than their ordinary cosmic
string counterparts. They are typically characterized by small
intercommutation probabilities, thus leading to higher string
number densities [44,45,49,52]. The complex interactions
present imply that several string types with different tensions
and correlation lengths can simultaneously contribute to the
string network CMB spectra.
In scaling superstring networks, the string number

density is dominated by the lightest F-strings, followed
by D-strings and the first bound state, i.e. (1,1)-strings.
Heavier bound states are suppressed, so the number of
string types considered in the model can be truncated at a
finite number. Following [52] we shall describe the network
by keeping seven distinct types of strings:

1 F ð1; 0Þ;
2 D ð0; 1Þ;
3 FD ð1; 1Þ;
4 FFD ð2; 1Þ;
5 FDD ð1; 2Þ;
6 FFFD ð3; 1Þ;
7 FDDD ð1; 3Þ;
..
. ..

. ..
.

ð3:1Þ

where the last column describes the ðp; qÞ charges of the
corresponding string type.
The large-scale dynamics is then modeled by seven

copies of the VOS equations, appropriately extended to
account for transfer of energy among the different string
types through zipping and unzipping interactions [44,50].
In each copy of the VOS equations describing a single
string, say, of type i, the self interaction coefficient cr in
Eq. (2.15) is replaced by the corresponding self-interaction
coefficient ci, and new cross-interaction terms with coef-
ficients dkij are added to describe zipping and unzipping.
The coefficients ci, dkij are controlled by the corresponding
microphysical intercommuting probabilities Pij [52],
which can be estimated [46,48] from the corresponding
string theoretic amplitudes (and field theory approxima-
tions in the case of nonperturbative interactions between
heavy strings [47]). They can be expressed as a product of
two pieces: one that is dependent on the volume of the
compact extra dimensions Vijðw; gsÞ, and a quantum
interaction piece F ijðv; θ; gsÞ. Physically, one can think
of Vij as arising from string position fluctuations around the
minimum of a localizing potential well, giving rise to an
effective volume seen by each type of string. The heavier
the string the smaller the fluctuations are and thus the
smaller the value of Vij [46]. The parameter w corresponds
to the effective volume in the compact extra dimensions
seen by F-strings. gs is the fundamental string coupling and
v and θ are the relative velocity and angle of the incoming
strings. For a pair of strings colliding at an angle θ and
relative speed v, the intercommuting probability is

Pijðv; θ; w; gsÞ ¼ F ijðv; θ; gsÞVijðw; gsÞ: ð3:2Þ

Details of how F ij and Vij are calculated can be found in
[52]. Since the network contains a large number of
individual strings with a range of velocities and orienta-
tions, the coefficients ci and dkij are determined by the
integral of Pij over a Gaussian velocity distribution centred
on the scaling network velocities of each string type and
over all angles. This gives the average intercommuting
probabilities Pijðw; gsÞ≡ Pij. Numerical simulations of
single-type Nambu-Goto strings with a small intercommut-
ing probability [49] suggest that the self-interaction coef-
ficients ci scale as

ci ¼ cs × P1=3
ii ; ð3:3Þ

where cs is the standard self-interaction coefficient in three
dimensions corresponding to the value cr in Sec. II B. This
choice of cs implies a convenient normalization of the
coefficients ci so that one recovers the ordinary cosmic
string value cr when Pii ¼ 1. This facilitates direct com-
parison with ordinary cosmic strings.
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For cross interactions between two strings of types i and
j (i ≠ j), producing a segment of type k, there is an
additional factor arising from the kinematic constraints of
Y-junction formation [83,84] that we denote as Skij (i ≠ j).
This also arises as an integral over relative velocities and
string orientations [52,85]:

Skij ¼
1

S

Z
1

0

v2dv
Z

π=2

0

sin θdθ

× Θð−f~μðv; θÞÞ exp½ðv − v̄ijÞ2=σ2v�; ð3:4Þ

where S is a normalization factor [52], Θð−f~μðv; θÞÞ
imposes the kinematic constraints [84], and σ2v is the variance
of the velocity distribution peaked on the relative scaling
velocities v̄ij ¼ ðv2i þ v2jÞ1=2 between strings of type i and j.
The cross-interaction coefficients are then given by

dkij ¼ dij × Skij; ð3:5Þ

where dij ¼ κ × P1=3
ij . The overall normalization κ is the

analogue of cs, but for cross interactions. There is no
obvious choice for this phenomenological parameter, but it
may be expected to be of the order unity by analogy to the
ordinary self-interacting string result for cr, obtained by
numerical simulations. Strictly speaking it should be treated
as an extra parameter for the model but, given the large
computational resources required in our MCMC analysis,
we will set it to unity in this work. Our analysis will still
indirectly capture the effects of changing this parameter, as
it is somewhat degenerate with w. To see this, note that dij
is also proportional to P1=3

ij , which depends weakly on w
through the volume factor Vijðw; gsÞ. The leading effect
of w is to change the relative amplitude between self-
interactions (FF interactions having the strongest w
dependence) and cross interactions of heavy strings, thus
mimicking somewhat the effect of varying κ relative to cs.
As computational power improves and our methodology is
refined, κ should be reintroduced as an additional MCMC
parameter.
The modified VOS equations [50,52], in comoving units,

are

ξi
0 ¼ 1

2τ

�
2v2i ξiτ

a0

a
− 2ξi þ civi

þ
X
a;b

�
dbiav̄iaξil

b
ia

ξ2a
−
diabv̄abξ

3
il

i
ab

2ξ2aξ
2
b

��
; ð3:6Þ

v0 ¼ v2 − 1

τ

�
2viτ

a0

a
−
ki
ξi

−
X
a;b

biab
v̄ab
2vi

ðμa þ μb − μiÞ
μi

ξ2i l
i
ab

ξ2aξ
2
b

�
; ð3:7Þ

where li
ab is the average length of segments of type i

formed by the zipping/unzipping of string types a and b at
conformal time τ, and μi is the tension of the ith string
type. All string tensions can be expressed in terms of
the fundamental string tension μF, and in flat spacetime
[80–82] are given by

μi ¼
μF
gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i g

2
s þ q2i

q
; ð3:8Þ

where pi and qi are the charges of string type i as listed
in (3.1). The coefficients biab appearing in the velocity
evolution equations (3.7) are related to energy conservation
and allow for the energy saved from zipping interactions to
be redistributed as kinetic energy of the new segment
(biab ¼ diab) [50] or radiated away (biab ¼ 0) as in [44]. A
more realistic model should have a specific radiation
mechanism so that 0 < biab < diab, such that some of the
energy is redistributed while the rest is radiated away.
However, for cosmic superstring networks (for which dij
are much smaller than unity) this term has a negligible
impact on the string scaling densities and velocities [52,85],
so here we take biab ¼ 0.
Once the velocities and correlation lengths of all string

types in the network are obtained by solving (3.6) and (3.7),
their unequal-time correlators can be calculated independ-
ently as laid out in Sec. II. Although N > 3 string types are
needed in order to accurately construct the abundances of
the dominant three lighter strings [in this case seven string
types are used (3.1)], the resulting scaling densities of the
higher charged states with N > 3 are strongly suppressed
compared to the lighter F-, D-, and FD-strings [44,50,85].
This allows us to only consider these first three states in the
computation of CMB signatures through our UETC ana-
lytic method. The evolution of the network parameters for
the three lightest strings can be seen in Fig. 8 for cs ¼ 0.23,
w ¼ 1, and gs ¼ 0.3.

FIG. 8. The radiation and matter era evolution of the velocity v,
and correlation length ξ, for the F-string in solid black, the D-
string in dot-dashed blue, and the FD-string in dotted red. These
results are obtained when gs ¼ 0.3, w ¼ 1, and cs ¼ 0.23.
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Once the UETC of each of the three lighter strings are
calculated they can simply be summed to give the total
string UETC, since the individual segments are uncorre-
lated in the USM. This can then be diagonalized and the
eigenvectors and eigenmodes used as sources for finding
the contribution from cosmic superstrings to the CMB
anisotropy. We have checked that our analytic UETC
method reproduces the results of Fig. 4 in [52], including
the shift in the location of the peak as we vary gs. We have
found a slightly lower amplitude in the B-mode spectrum
that can be attributed to the extra factor of 2 in the vector
modes that was present in CMBACT3 (which [52] was based
on) and has been corrected in CMBACT4 [62].

IV. STRING CONSTRAINTS

We obtain joint constraints on the cosmic string network
and ΛCDM parameters using a modified version of
COSMOMC. To reduce computational time in our analysis
we have tested two methods for deriving string network
constraints. In the first method, the string Cl’s are pre-
calculated for ranges cr ¼ ½0.1; 1� and α ¼ ½1; 10� at the
Planck best fit values for the cosmological parameters, i.e.
Ωbh2, Ωch2, and H0. These Cl’s are read into COSMOMC,
interpolated at the MCMC cr and α values and then scaled
by ðGμÞ2. This is an extremely efficient way for obtaining
network constraints since only the ΛCDM Cl’s need to be
calculated, while the interpolation takes very little time. We
have checked to see that the difference in the resulting
string Cl’s when calculated at the upper and lower 3σ
bounds inΩbh2,Ωch2, andH0 is ∼0.5% in the temperature,
E, and B modes and no more than ∼10% in the TE cross-
correlation. This uncertainty in the stringCl is≪ 1% of the
total Cl. The Cl’s for different cr and α are plotted in
Fig. 9. The different bands of color indicate the value of cr,
solid red being the lowest (cr ¼ 0.1), then progressing
through long-dashed yellow, short-dashed green, dot-
dashed blue, and dot-dash-dotted purple in steps of 0.2,
up to cr ¼ 0.9. The upper (patterned) and lower (dot-
patterned) edges of the bands indicate α ¼ 10 and α ¼ 1
respectively. From this it can be seen that the effect of α is
to change the amplitude of the Cl, with a lower α also

flattening the small l features (as best seen in the second
column and to a lesser extent in the third column of Fig. 9).
Increasing cr reduces the amplitude of the Cl and, as best
seen in the third column of Fig. 9, shifts the main peak
towards slightly smaller l’s. In the second method, which is
computationally expensive, we simply calculate the string
and ΛCDM Cl for each (network) parameter value and
compare it to the CMB data.
The same process of precalculating string spectra can

be done for cosmic superstring networks in the parameter
ranges cs ¼ ½0.1; 1�, gs ¼ ½0.01; 0.9�, and w ¼ ½0.001; 1�.
The superstring Cl can be seen in Fig. 10, where same
colors and patterns are used for the steps in cs as in Fig. 9.
The bands indicate values of w, with w ¼ 10−3 correspond-
ing to the solid-patterned lines and w ¼ 1 to the dotted
version of the same pattern. The rows indicate varying
values of gs, with gs ¼ 0.01, gs ¼ 0.1, and gs ¼ 0.9 for the
top, middle, and bottom rows respectively. The first point to
notice is that the Cl amplitudes at low gs are much greater
than those at large gs. For large cs values there is less
difference between the greatest and smallest values of w,
especially at low gs, i.e. the purple dot-dash-dotted lines
in the top row of Fig. 10 overlap, but are well separated in
the bottom row. This is because for large cs the cross-
interaction terms dkij (which are less dependent on w than
the self-interaction terms ci) play a more important role
in setting the scaling string number densities. For small
values of cs, the ci coefficients become smaller (while dkij
are unaffected) leading to small correlation lengths and so
large string number densities. The Cl amplitudes are then
affected more strongly by ci, giving rise to a stronger
dependence on w.
The data sets used in the MCMC analysis come from the

Planck2015 mission [41], particularly the following.

A. Planck2015 TTþ lowP

This contains the 100-, 143-, and 217-GHz binned half-
mission TT cross spectra for l ¼ 30–2508 with CMB-
cleaned 353-GHz map, CO emission maps, and Planck
catalogs for the masks and 545-GHz maps for the dust
residual contamination template. It also uses the joint

FIG. 9. The total Cl (scalar þ vector þ tensor modes) for different values of cr and α. The red solid lines show cr ¼ 0.1 and through
yellow (long-dashed), green (short-dashed), blue (dot-dashed), and purple (dot-dash-dotted) for cr ¼ 0.3, cr ¼ 0.5, cr ¼ 0.7, and
cr ¼ 0.9. The upper (solid-patterned) lines indicate α ¼ 10 while the lower (dotted versions of the pattern) lines are for α ¼ 1. This is
shown for CTT

l , CEE
l , CBB

l , and CTE
l in columns 1–4.
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temperature and the E and B cross spectra for l ¼ 2–29
with E and B maps from the 70-GHz Low Frequency
Instrument (LFI) full mission data and foreground con-
tamination determined by 30-GHz LFI and 353-GHz High
Frequency Instrument maps.

B. Planck2015 TTþ Polþ lowP

This contains the same data as Planck2015 TTþ lowP
but also uses the TE and EE cross spectra for l ¼ 30–1996.

C. Planck2015 TTþ Polþ lowPþ BKPlanck

This again contains all of the data used in Planck2015
TTþ Polþ lowP but includes also the cross-frequency
spectra between BICEP2/Keck maps at 150 GHz and
Planck maps at 353 GHz including the B-mode spectra
at multipoles l ∼ 50–250.
We first consider our interpolation method, where the

Cl’s are precalculated on a grid in cr and α (or in the case
of cosmic superstring networks cs, gs, and w), and then a
spline interpolation used between grid values. The results
obtained from this method are very quick and accurate due
to our ability to use all 512 eigenmodes of the 512 × 512
grid for the UETC. The constraints on network parameters
derived from this method are shown in Fig. 11. Gμ is
implemented into the MCMC analysis through a logarith-
mic prior of ½−10;−5� such that Gμ ¼ 10½−10;−5�.

There is no significant difference in our constraints when
using Planck2015 TTþ lowP, or including EE and TE or
both EE and TE and BB results. The upper 2σ value for the
tension is Gμ < 1.1 × 10−7 for Planck2015 TT and is
similarly Gμ < 9.6 × 10−8 and Gμ < 8.9 × 10−8 for
Planck2015 TTþ Polþ lowP and Planck2015 TTþ
Polþ lowPþ BKPlanck. These agree well with the Gμ <
1.8 × 10−7 and Gμ < 1.3 × 10−7 from the Planck cosmo-
logical parameters analysis [33]. The slightly tighter con-
straints obtained here are due to the amplitude of the Cl not
scaling with the value of Lf , i.e. the Cl’s are larger when
Lf ¼ 1 as assumed here, while previous results were
obtained from CMBACT with Lf ¼ 0.5. There is little
difference between using the Planck temperature data alone
and including polarization data as expected from [33]. As
can be seen in the other two columns of Fig. 11, cr and α are
not constrained. There is a slight preference for higher
values of cr and lower values of α since both of these lead to
a smaller Cl. Features, such as the position of the main
peak or the pronounced lower l peak make very little
difference to the overall constraints. There is a very slight
correlation between Gμ and cr and anticorrelation between
Gμ and α, as expected from the Cl’s seen in Fig. 9. A
combination of high α and low cr is mildly disfavored.
Further, by comparing the constraints on Gμ and cr to their
effect on the Cl’s in Fig. 9 there is a larger difference
between changes at small cr than changes at large cr. For

FIG. 10. The total Cl obtained from cosmic superstrings for different values of gs, cs, and w. As with previous figures, the first column
shows the temperature autocorrelation Cl, the second the EE, the third the BB, and the last column shows the temperature, E-mode
correlation Cl. The three rows show gs values of 10−2, 10−1, and 0.9 from top to bottom. The coloring and patterning system is the same
as in Fig. 9 with red (solid), yellow (long-dashed), green (short-dashed), blue (dot-dashed), and purple (dot-dash-dotted) lines indicating
the values of cs from cs ¼ 0.1 to 0.9 in steps of 0.2. The width of the band of similar color and pattern indicates the upper and lower w
values with the dotted-patterned lines defined by w ¼ 10−3 and the solid-patterned lines by w ¼ 1.
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this reason we expect to see a greater correlation between
Gμ and cr on a logarithmic scale from values cr ≪ 1 to
cr ≈ 0.1 than implied over our prior range.
Considering our direct calculation method, where the

string spectra are calculated every time along with the Cl
from ΛCDM, the constraints are slightly weaker. This is
because there is a payoff between the resolution of the
UETC and the number of eigenmodes used in the
reconstruction and the time spent computing the spectra.
To efficiently calculate the constraints a grid resolution of
128 × 128 with 64 eigenmodes has been used. As can be
seen in Fig. 6 we expect a reduction in power of about
10%–20%, which means the value of Gμ is allowed to be
higher than when the high resolution, full reconstruction
interpolation method is used. For Planck2015 TTþ lowP
this is Gμ < 4.3 × 10−7. The constraints on cr and α also
show a slight preference for lower cr and larger α, as in our
interpolation method.
For cosmic superstrings,GμF, gs, and w are marginalized

over logarithmic priors, and cs over a flat prior. Again all
512 eigenmodes of the 512 × 512 grid for the UETC are
used. The likelihood contours obtained from our interpo-
lation method can be found in Fig. 12. It can be seen that w
and cs are almost flat (columns 3 and 4), again with larger

values of cs favored as this leads to a smaller amplitude Cl.
As the string density grows with decreasing gs, the
constraints on gs favor larger values, as seen in the second
column. Note, however, that the model is not reliable for
large values of gs as the perturbative expansion starts to
break down and the string interaction amplitudes used in ci
and dkij have large uncertainties. Finally, the first column
shows our constraints on the fundamental string tension
GμF, which is much smaller than for ordinary cosmic
strings. We find GμF < 2.8 × 10−8 for Planck2015
TTþ lowP when marginalizing over gs, cs, and w, and
the same constraint for Planck2015 TTþ Polþ lowP and
Planck2015 TTþ Polþ lowPþ BKPlanck.
Also in Fig. 12 we show the constraints when using the

direct calculation method, where the string spectra are
calculated at every step in the Markov chain. This is a much
more intensive computation and so a lower resolution
grid and fewer eigenmodes in the reconstruction had to
be used. As for cosmic strings, the optimal balance between
computing time and accuracy suggested using a 128 × 128
grid with 64 eigenmodes. The constraints are thus slightly
weaker, with the main result GμF < 4.2 × 10−8. The results
from our two methods are in good agreement, justifying the
use of our interpolation method, and showing that varying

FIG. 11. 2σ likelihood contours for Gμ, cr and α from the string Cl interpolation and direct calculation methods. The orange line
shows the constraints from Planck2015 TTþ lowP, purple and blue lines are used for Planck2015 TTþ Polþ lowP and Planck2015
TTþ Polþ lowPþ BKPlanck respectively. The black dashed line shows the direct calculation constraints for Planck2015 TTþ lowP.
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ΛCDM parameters within Planck priors has little effect on
the string constraints.

V. CONCLUSIONS

Currently, there are two main approaches to the detection
of cosmic strings. First, since they actively generate scalar,
vector, and tensor perturbations, they lead to signatures in
the temperature, polarization, and non-Gaussian spectra of
the CMB. Second, a cosmic string network will emit
gravitational waves, primarily from loop decay. This leads
to a stochastic background which can be constrained using
pulsar timing, laser interferometry experiments such as
LIGO and eLISA, and also the CMB [86]. A transient
gravitational wave signal is also expected from cusps and

kinks in the network [87]. The latter class of tests has
the potential to provide even stronger constraints on the
string tension Gμ, but there are large uncertainties in the
loop size, which is fixed by gravitational backreaction.
Model dependence on gravitational waves from cosmic
strings further makes it difficult to determine signatures,
for example, while Nambu-Goto strings decay into loops,
Abelian-Higgs strings primarily decay into particles
[87–89]. It is therefore important to use a variety of
complementary observational probes.
The first class of tests also suffer from uncertainties, but

these are less significant. The string UETC can be obtained
from simulations and used as source functions in CMB
codes, but simulations are numerically expensive and suffer
from issues in dynamical range. An alternative approach is

FIG. 12. 2σ likelihood obtained for GμF, gs, w, and cs. The black dashed line (and black shading) shows the constraints from the
Planck2015 TTþ lowP direct calculation method and orange, purple, and blue lines are the Planck2015 TTþ lowP, Planck2015
TTþ Polþ lowP, and Planck2015 TTþ Polþ lowPþ BKPlanck constraints using the interpolation method.
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to model the string network as an ensemble of segments
using the USM. Crucially, although the USM provides a
simplified picture of the network, it is able to match
simulations by adjusting the free parameters of the model,
namely the correlation length, the rms velocity, and string
wiggliness.
In this paper we have significantly improved and

extended our previous work on string power spectra from
the USM:
(1) We have analytically solved the UETC for an

evolving string network, whereas our previous work
was restricted to constant network parameters. The
UETC itself can be computed in under a minute. For
the CMB power spectrum, although the time taken is
increased due to tracking a larger number of Fourier
modes, on a 3.1-GHz Intel Xeon CPU with eight
threads, our code runs in ∼60 min. For comparison,
around 2000 network realizations are required for
CMBACT4 to achieve the same accuracy and
since this code is serial, the computation time
is ∼30 h.

(2) We have extended the formalism to cosmic super-
string networks with multiple string types and
different network parameters. Here the UETC can
be computed for each string type and added, since
the segments are assumed to be uncorrelated. The
UETC calculation is much quicker than the CMB
line-of-sight integration, so the total computation
time is not significantly increased over the single
string case.

(3) For the first time we have been able to marginalize
over the string network parameters when fitting to
Planck2015 and joint Planck-BICEP2 data. The data
is consistent with no strings for either the single or
the multistring case. Since other network parameters
are unconstrained when the tension is very small, it
is only possible to present joint constraints on these
with Gμ. In the superstring case, for example, the
constraint on the string coupling gs is degenerate
with GμF.

There are several possibilities to explore in future work.
First, there are various ways in which the USM could be
improved. Superstring networks contain Y-type junctions,
but in the present formulation these only impact the
evolution of the network parameters. Since junctions are
relatively rare in the limit of large and small coupling, the
USM is expected to provide a sufficient description.
However, in some regimes the energy density of the

network may not be dominated by a single string type,
and junctions may become important. In this case the USM
could be modified to include a correlation between seg-
ments. A further improvement is the inclusion of loops. The
decay of string segments in the USM should mimic the
energy loss in loops, but it is possible these may lead to
additional interesting signatures.
Given that Planck has largely exhausted the available

signal in the temperature data, future string constraints
from the CMB will be driven by polarization and non-
Gaussianity. The non-Gaussian signal from postrecombi-
nation simulations has been used to obtain constraints on
Gμ [32], and attempts have been made to compute the
bispectrum analytically using a Gaussian model for the
string correlators [90]. It is also possible to compute
the non-Gaussian signal using the USM, which will, by
design, include physics from recombination and along the
line of sight. This has already been demonstrated for the
CMB bispectrum [91] by performing many realizations of
the network. It is possible to employ a similar analytic
method used in this work to compute the string bi- and
trispectrum, which we would expect to be significantly
faster [92].
The detection of gravitational waves by LIGO is par-

ticularly exciting for strings, and the next generation of
ground and space based experiments can potentially
provide much stronger limits than those from the CMB.
However, these limits strongly depend on modeling, for
example, the loop, kink, and cusp distribution. Further
work is needed to understand these and until then the CMB
will continue to be an important tool in the search for
strings.
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