
Disruption of cosmic string wakes by Gaussian fluctuations

Disrael Camargo Neves da Cunha* and Robert H. Brandenberger†

Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada

Oscar F. Hernández‡

Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
and Marianopolis College, 4873 Westmount Avenue, Westmount, Quebec H3Y 1X9, Canada

(Received 6 November 2015; published 1 June 2016)

We study the stability of cosmic string wakes against the disruption by the dominant Gaussian
fluctuations which are present in cosmological models. We find that for a string tension given by Gμ ¼
10−7 wakes remain locally stable until a redshift of z ¼ 6, and for a value of Gμ ¼ 10−14 they are stable
beyond a redshift of z ¼ 20. We study a global stability criterion which shows that wakes created by strings
at times after teq are identifiable up to the present time, independent of the value ofGμ. Taking into account
our criteria it is possible to develop strategies to search for the distinctive position space signals in
cosmological maps which are induced by wakes.
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I. INTRODUCTION

Cosmic strings exist as solutions of the field equations in
many particle physics models beyond the Standard Model.
A sufficient criterion is that the vacuum manifoldM of the
model (the space of field configurations which minimize
the potential energy density) has nonvanishing first homo-
topy group Π1ðMÞ ≠ 1. Roughly speaking the condition is
that the vacuum manifold has the topology of a circle.
A simple causality argument [1] leads to the important
conclusion that in models which admit cosmic string
solutions, a network of such strings inevitably forms during
the symmetry breaking phase transition in the early uni-
verse and survives to the present time (see [2] for reviews of
the role of cosmic strings in cosmology). Cosmic strings
carry energy and hence induce gravitational effects which
can lead to signatures in cosmological observations. The
strength of these effects is proportional to the string tension
μ which in turn is given (up to a numerical constant) by η2,
where η is the scale of symmetry breaking at which the
strings are formed. Hence, searching for cosmic strings in
cosmological observations is a way to probe particle
physics beyond the Standard Model which is complemen-
tary to accelerator searches (which can only probe new
physics at low energy scales) [3].
Based on analytical arguments [2] it is expected that the

distribution of cosmic strings will take on a “scaling
solution” according to which the statistical properties of
the distribution of strings are independent of time if all
lengths are scaled to the Hubble radiusH−1ðtÞ [where HðtÞ
is the cosmic expansion rate at time t]. The distribution of

strings consists of a network of infinite strings with mean
curvature radius and separation c1t (where c1 is a constant
of order 1 whose precise value needs to be determined in
numerical simulations) [5] and a set of string loops which
are the remnants of intersections of long string segments.
Numerical simulations [6] have confirmed that the distri-
bution of strings takes on a scaling solution.
String loops oscillate and gradually decay by emitting

gravitational radiation. Long string segments moving
through the plasma of the early universe will lead to
nonlinear overdensities in the plane behind the moving
string. These are called string wakes [7]. Wakes are formed
because the geometry of space perpendicular to a long
string segment is conical with deficit angle

α ¼ 8πGμ; ð1Þ
where G is Newton’s gravitational constant [8]. A string
moving through the plasma with a velocity v perpendicular
to the tangent vector of the string will lead to a velocity
perturbation

δv ¼ 4πGμvγðvÞ ð2Þ
from both sides towards the plane behind the moving string
[where γðvÞ is the relativistic gamma factor associated with
the velocity v]. In turn, this leads to a thin region behind
the string with twice the background density, the wake.
The dimensions of the wake behind a string at time ti are

c1ti × vγðvÞti × 4πGμvγðvÞti; ð3Þ
where the dimensions are length along the string, depth of
the wake in direction of string motion, and mean thickness
of the wake, respectively. We will denote these dimensions
by ψ1, ψ2 and ψ3 respectively, when using comoving
coordinates.
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Cosmic string loops accrete matter in a roughly spherical
way and give rise to density fluctuations which are hard to
tell apart from fluctuations formed by other point sources.
String wakes, on the other hand, give rise to signals with a
clear geometrical signature, and have hence been the focus
of a lot of recent work (see e.g. [9]). Long cosmic string
segments produce line discontinuities in cosmic microwave
background (CMB) temperature maps [10]. The contribu-
tion to the power spectrum of cosmological perturbations is
scale invariant [11]. However, the fluctuations are active
and incoherent [12] and hence do not lead to acoustic
oscillations in the angular power spectrum of CMB
anisotropies. At the present time, the angular CMB power
spectrum in fact provides the most robust upper bounds on
the string tension [13] (see the introduction of [14] for a
more detailed discussion on string tension limits as well as
[15] for earlier studies)

Gμ < 1.3 × 10−7: ð4Þ

Hence, it follows that cosmic strings are only a subdomi-
nant component to the power spectrum of perturbations.
The dominant contribution must be due to almost Gaussian
and almost adiabatic fluctuations such as those produced by
inflation (or by alternatives to inflation such as string gas
cosmology [16] or the matter bounce [17]).
Whereas overall cosmic strings are a subdominant

component to structure formation, string wakes can never-
theless give rise to prominent signatures in position space
maps. They give rise to a network of edges in CMB
temperature maps across which the temperature jumps [10],
rectangles in the sky with a specific CMB polarization
signal (statistically equal E-mode and B-mode polarization
with a polarization angle which is uniform over the
rectangle and whose amplitude has a linear gradient
[18]), and thin wedges of extra absorption or emission
in 21 cm redshift maps [19] (see also [14,20]). These
features are most prominent at high redshifts when string
wakes are already nonlinear fluctuations but the Gaussian
fluctuations are still in their linear regime. The cosmic
string signals are also most easily visible in position space
maps (e.g. with edge detection algorithms [21]), whereas
the distinctive stringy features are washed out in power
spectra (see e.g. [22]).
At early times, cosmic strings dominate the nonlinear-

ities in the universe, the reason being that wakes are
nonlinear perturbations beginning at the time they are
formed, whereas Gaussian perturbations are linear at early
times. At late times, however, the Gaussian fluctuations
dominate the structure in the universe. Most of the non-
linearities at the present time are due to the Gaussian
fluctuations. The question we wish to address in this paper
is whether the string-induced inhomogeneities, which at
early times are clearly visible, are still observable as
coherent objects in position space maps at later times (in

particular times after reionization). Concretely, we wish to
study whether string wakes will remain coherent or whether
they are disrupted by the Gaussian fluctuations. This
analysis is a crucial preliminary step towards identifying
string signals at low redshifts, e.g. in 21 cm redshift maps at
redshifts comparable and smaller than the redshift or
reionization, or in large-scale structure redshift surveys.
In this paper we study various stability criteria for string

wakes. We study the stability of a wake to local disruption
and find the redshift above which a cosmic string wake
remains locally intact, as a function of Gμ. However,
even if Gaussian fluctuations cause the wake to be locally
disrupted, a global signal may remain. We study a specific
criterion which can be used to search for the signals of
primordial wakes. This analysis shows that signals of string
wakes remain from a global perspective to the present time.
Interestingly, the signals can be identified independently of
the value of Gμ, and do not depend on whether the wakes
are shock heated or diffuse (see [23] for a discussion of the
difference between these two cases). Our various stability
criteria will be relevant for developing robust observational
strategies to search for string wakes.
In the following section we give a brief review of cosmic

string wakes. In Sec. III we present a local stability
condition based on a displacement condition. In Sec. IV
we consider a local density contrast consideration. The
resulting stability condition shows that wakes are locally
disrupted by the Gaussian perturbations at a redshift lower
than some critical redshift which depends on Gμ. In Sec. V
we discuss a global stability condition which shows that
wakes are visible up to the present time independent of the
value of Gμ.

II. STRING WAKE REVIEW

Consider a string segment at time ti moving with
velocity v in the direction perpendicular to the string.
This segment will produce an overdense region with twice
the background density behind it whose dimensions are
given by (3). Once formed, this wake will be stretched in
the planar directions by the expansion of space, and it will
grow in thickness by accreting matter from above and
below. This accretion can be studied using the Zel’dovich
approximation [24]. We will consider wakes produced at
times ti > teq, where teq is the time of equal matter and
radiation. Those produced earlier cannot grow until teq and
they will hence be smaller.
The thickness of the wake at time t > ti is determined by

computing the comoving distance qnlðtÞ of a shell of matter
which is starting to collapse (“turning around”) onto the
wake, i.e. for which

_hðqnlðtÞ; tÞ ¼ 0; ð5Þ

where the physical height is given by
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hðq; tÞ ¼ aðtÞ½q − ψðq; tÞ�; ð6Þ

where aðtÞ is the cosmological scale factor and ψðq; tÞ is
the comoving displacement induced by the gravity of the
wake. A standard calculation (see e.g. [18,25]) yields

qnlðt; tiÞ ¼ ðzðtÞ þ 1Þ−1 24π
5

vγðvÞGμðzðtiÞ þ 1Þ1=2t0; ð7Þ

where zðtÞ is the cosmological redshift at time t and t0 is the
present time. At the turnaround ψðqnl; tÞ ¼ 1

2
qnl. After

turnaround, the shell of baryonic matter virializes at a
distance which is half of the turnaround radius, whereas the
dark matter remains extended [26]. Hence, the physical
height of the dark matter wake at time t is

hðt; tiÞ ¼ ðzðtÞ þ 1Þ−1qnlðt; tiÞ: ð8Þ

This is also the displacement which a particle experiences
due to the wake if this particle ends up at the edge of the
wake. We also denote the wake thickness in comoving
coordinates by

ψ3ðzÞ ¼
24π

5
10−7ðGμÞ7vγðvÞt0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ zi

p
ð1þ zÞ ; ð9Þ

where ðGμÞ7 is the value of Gμ in units of 10−7.
The result (8) shows that the thickest wakes are those

produced at the earliest times, namely ti ¼ teq. The thick-
ness of a wake is obviously proportional to Gμ, and its
comoving size grows linearly in the cosmological scale
factor aðtÞ, as expected from linear cosmological pertur-
bation theory.

III. DISPLACEMENT CONDITION

In this section we will obtain a stability condition which
is based on displacements induced by primordial Gaussian
fluctuations. For simplicity we will restrict the analysis of
this section to the matter dominated period. In the next
section we will extend the validity range to include dark
energy in the evolution of the growth factor. The wake
plane (formed by the ψ1 and ψ2 lengths) can be subdivided
into pieces of area ðψ3Þ2, where ψ3 is the thickness of
the wake in comoving coordinates. We will compute the
displacement (in a direction perpendicular to the wake
plane) which is coherent on this scale. In order to do this we
will integrate in time the fluctuation of the peculiar velocity
field on the scale ψ3.
If Sψ3

is the induced physical displacement, then

Sψ3
ðtÞ < hðt; tiÞ ð10Þ

is a local displacement condition for the stability of the
wake. To compute Sψ3

consider the continuity equation

_δþ 1

a
~∇ ~v ¼ 0; ð11Þ

where δ is the relative matter density contrast and ~v is the
physical peculiar velocity field. Choosing a Fourier mode
parallel to ~v and taking the modulus of the Fourier
transform of the above equation we obtain a relation
between the amplitudes of the velocity and density contrast
fields in momentum space:

jvkðzÞj ¼
faH
k

jδkðzÞj; ð12Þ

where we used δðzÞ ¼ gðzÞδð0Þ, gðzÞ ¼ DðzÞ=Dð0Þ and
DðzÞ is the growth factor [27]. For the matter dominated

period, gðzÞ ¼ 1.29=ð1þ zÞ and the function fðzÞ ¼
a

DðzÞ
dDðzÞ
da is approximately one.

The contribution to the standard deviation of the peculiar
velocity field on a scale L ¼ 2π

k at redshift z is denoted by
Δvðk; zÞ and from the above equation we obtain

Δvðk; zÞ ¼ aH

�
L
2π

�
Δðk; zÞ; ð13Þ

where

Δðk; zÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3

2π2
Pðk; zÞ

s
ð14Þ

is the dimensionless contribution to the standard deviation
of the matter density fluctuations δ on a length scale
corresponding to k, given the dimensional power spectrum
Pðk; zÞ at redshift z. The induced physical displacement Sψ3

is given by

SLðzÞ ¼ a
Z

z

zi

a−1ðt0ÞΔvðk; zðt0ÞÞdt0 ð15Þ

evaluated at k ¼ k3 where k3 ¼ 2π=ψ3 is the wave number
associated with the comoving thickness ψ3ðzÞ of the wake.
The integral will be dominated by the upper limit of
integration, therefore

Sψ3
¼ a

ψ3

2π
Δðψ3ðzÞ; zÞ; ð16Þ

and the displacement condition (10) becomes

Δðk3ðzÞ; zÞ < 2π: ð17Þ

When the above equation holds, the coherent displace-
ment in a region perpendicular to the wake plane will be
smaller than the wake thickness ψ3. This displacement
condition agrees to within 1 order of magnitude with the
“Local Delta Condition” of the next section and gives a
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physical interpretation to it. The above condition is valid
during the matter dominated period, but in the next section
this restriction will be extended to include the dark energy
period.

IV. LOCAL DELTA CONDITION

Another criterium for the stability of a wake can be
obtained by demanding that the rms Gaussian mass
fluctuation Δ on the scale k3ðzÞ of the wake thickness
be smaller than unity, i.e.

Δðk3ðzÞ; zÞ < 1: ð18Þ

We call (18) the Local Delta Condition, which is stronger
than (17). If this condition is satisfied then the wake is
locally stable. This condition can be justified by noticing
that the matter density contrast δ in a volume within the
wake fluctuates around 1 inside the wake and around zero
outside, so if the standard deviation σ of δ is of order 1 the
wake matter signal will be lost.
The late time power spectrum is obtained by multiplying

the primordial power spectrum by the square of a transfer
function T which comes from the nontrivial evolution of
fluctuations on sub-Hubble scales. Specifically, for scales
which enter the Hubble radius before the redshift zeq of
equal matter and radiation the fluctuations in matter on
sub-Hubble scales grow only logarithmically since the
universe is dominated by a smooth radiation fluid at these
times and on these scales.
The late time power spectrum for a model with Gaussian

fluctuations with fixed spectral index is obtained from
([28], page 184)

Pðk; zÞ ¼ 2π2δH
2

kn

H0
nþ3

T2ðkÞg2ðzÞ; ð19Þ

where we use the expression given by [27] in the growth
factor, which now includes dark energy, TðkÞ is the transfer
function, n is the scalar spectral index, and δH is the
amplitude of Δ evaluated for a Fourier mode that corre-
sponds to the Hubble scale. We choose a normalization that
gives σ8 ¼ 0.83, where σ8 is the rms fluctuation smoothed
on a scale 8 Mpc=h using a top-hat window function. We
use n ¼ 0.97 and ΩΛ ¼ 0.7. At this point, we will switch
from natural units to units used conventionally in cosmol-
ogy, namely Mpc for lengths and seconds for time. In these
units c ¼ 9.6 × 10−15 Mpc=s, and the expression on the
right-hand side of (19) has to be multiplied by cnþ3. Wewill
also use vγðvÞ ¼ c=

ffiffiffi
3

p
, zi ¼ 1000 and t0 ¼ 4.35 × 1017 s.

The transfer function T from [29] (page 60) is used to
obtain an analytic expression for Δðk3Þ, which together
with the approximation ðk3ðzÞÞ−0.0145 ≈ 1 gives

Δðk3ðzÞ; zÞ ¼ 0.607 lnð1þ 22.7k3ðzÞÞgðzÞ: ð20Þ

This computation of Delta can now be applied to either
condition (17) or (18). For example, using the Local Delta
Condition (18), we find that the disruption redshift, the
redshift when Δðk3ðzÞ; zÞ ¼ 1 depends only logarithmi-
cally on the wake thickness and hence on the value of Gμ.
We see that wakes are stable to fairly late times.
In Fig. 1 we plot the value of Δðk3ðzÞ; zÞ (vertical axis)

as a function of redshift (horizontal axis) for the values
ðGμÞ7 ¼ 1 (black line) and ðGμÞ7 ¼ 10−4 (gray line). The
dashed horizontal line is Δ ¼ 1. We see that the wake is
locally stable for z above approximately 6 in the case of
Gμ ¼ 10−7 and for z above approximately 11 in the case
of Gμ ¼ 10−11.

FIG. 1. Plot of Δðk3ðzÞ; zÞ (vertical axis) as a function of
redshift z (horizontal axis) for Gμ ¼ 10−7 (black line) and
Gμ ¼ 10−11 (gray line).

FIG. 2. The value of Gμ (vertical axis in units of 10−7) above
which the local Delta wake stability condition is satisfied as a
function of redshift z (horizontal axis).
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In Fig. 2 we plot (the solid black line) the value of ðGμÞ7
(vertical axis) for which the stability condition of a wake
ceases to be satisfied at redshift zd (horizontal axis). From
this plot it follows that at zd ¼ 20 all wakes ðGμÞ ≥ 10−14

are stable. The dashed horizontal line is ðGμÞ7 ¼ 1, and we
see that it intersects the solid black line (which gives the
value of Gμ below which the wake is disrupted) at z ≈ 6,
confirming the result of Fig. 1. To obtain the value of
ðGμÞ7ðzdÞ such that the wakewill be disrupted at redshift zd
[when the equality of (18) is satisfied] we use

k3ðzdÞ ¼ 113ð1þ zdÞ=ðGμÞ7 ð21Þ
in (20) to obtain

ðGμÞ7ðzdÞ ¼
2565ð1þ zdÞ
e1=0.607gðzÞ − 1

: ð22Þ

V. GLOBAL SIGMA CONDITION

The local Delta stability condition studied in the previous
section is a very strict condition. It is demanding that no
section of the wake gets moved on a scale of the wake
thickness. A less restrictive condition is to demand that the
wake remains visible if we probe space with a filter which
has the shape of the three-dimensional extended wake, i.e.
which has two large dimensions given by the length and
depth of the wake, respectively, and one small dimension
given by the wake thickness. We call the resulting condition
the “Global Sigma Condition.”
The variance of δw for a nonisotropic window function

~Ww is given by

σ2w ¼ g2ðzÞ
ð2πÞ3

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
dk1dk2dk3Pð∥~k∥Þ ~W2

wð~k; zÞ;

ð23Þ
where gðzÞ is the growth factor and P is the power spectrum
at the present time. Note that we are working in terms of
comoving momenta. The Global Sigma Condition then is

σw < 1 ð24Þ
when we consider a window function whose two large
dimensions are given by the planar size of the wake which
is fixed in comoving coordinates.
The first guess would be to choose the small dimension

to be given by the wake thickness which is increasing in
comoving coordinates. Before making this choice, how-
ever, let us choose the thickness of the window to be fixed
in comoving coordinates, and present a rough analytical
analysis. The integral (23) is essentially cut off by the radial
planar size that corresponds to the comoving momentum
kr, and the orthogonal size that correspond to k3, with
k3 ≫ kr. We then obtain

σ2w ∼
g2ðzÞ
2π2

Z
k3

0

dk3

Z
kr

0

krP
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2r þ k23

q �

∼
g2ðzÞ
4π2

k2r

Z
k3

0

dk3Pðk3Þ: ð25Þ

For a roughly scale-invariant power spectrum of Gaussian
fluctuations, the final integral is dominated by scales which
enter the Hubble radius at around teq where the power
spectrum turns over (i.e. changes from scaling as k−3 for
large values of k to scaling as k for small values). Let us
denote this value of k as kto. Then (25) yields

σ2w ∼
g2ðzÞ
4π2

�
kr
kto

�
2

ΔðktoÞ2; ð26Þ

where ΔðkÞ2 is given by (14). Note that the result is
independent of kz as long as kz ≫ kto.
Our result (26) lets us draw important conclusions. Most

importantly, the global delta criterium (24) is independent
of the thickness of the wake, and hence independent of the
string tension Gμ. The equation (26) also shows that wakes
with larger planar extent, i.e. those laid down later, are
easier to identify than smaller wakes. The dependence on kr
is linear. This prediction can be used as a consistency check
on the numerical analysis.
Another nice feature about our result is that it tells us that

we can choose a window function with a width greater than
what we expect the local displacements of the wake to be.
We now turn to the quantitative evaluation of the

condition. First, the comoving planar dimensions of the
wake can be read off from (3). They are

ψ1 ¼
c1t0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ zi

p ; ð27Þ

ψ2 ¼
vγt0ffiffiffiffiffiffiffiffiffiffiffiffi
1þ zi

p : ð28Þ

The wake thickness in comoving coordinates depends on z
and is given by Eq. (9).
Considering a wake region V centered at the origin of

coordinate space in the form of a parallelepiped of volume
Vw ¼ ψ1 × ψ2 × ψ3 the wake window function in real
space becomes

WwðX; Y; ZÞ ¼
� 1

Vw
if ðX; Y; ZÞ ∈ V

0 if ðX; Y; ZÞ∉V ð29Þ

and the Fourier transform of the above quantity is

~Wwðk1; k2; k3; zÞ ¼
1

VwðzÞ
�
2 sinðk1ψ1=2Þ

k1

	�
2 sinðk2ψ2=2Þ

k2

	

×

�
2 sinðk3ψ3ðzÞ=2Þ

k3

	
: ð30Þ
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The variance of δw is given by (23). Replacing (30) into
(23) results in

σ2wðzÞ ¼
1

ð2πÞ3
�

gðzÞ
VwðzÞ

�
2
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞
dk1dk2dk3Pð∥~k∥Þ

×

��
2 sinðk1ψ1=2Þ

k1

	�
2 sinðk2ψ2=2Þ

k2

	

×

�
2 sinðk3ψ3ðzÞ=2Þ

k3

	�
2

ð31Þ

Note that in the integrand above the 2 sinðk3ψ3ðzÞ=2Þ=k3
term together with the ψ3 term of Vw approaches 1 as
Gμ → 0. Since for large k3 the power spectrum also goes to
zero, we can take this last term as 1 and hence for small
Gμσw is independent of Gμ. This confirms our expectation
from Eq. (26). But this does not mean string wakes are
visible at arbitrarily low string tension. A wake should not
be disrupted in order for it to be seen. In this sense the
global delta condition is a necessary but not a sufficient
reason for detection. Though very low Gμ wakes may not
be disrupted, they are not necessarily detectable, since
cosmic string wake signals are proportional to the string
tension (see introduction of Ref. [14] for a more detailed
discussion of this point). We explicitly verified the inde-
pendence of σw on Gμ by evaluating the above integral
numerically for several values from Gμ ¼ 0 to 10−7. It was
assumed that vγðvÞ ¼ c=

ffiffiffi
3

p
and zi ¼ 1000. We find that

σwð0Þ ¼ 0.32. Note that the entire z dependence for σwðzÞ
is given by the gðzÞ factor in front of the integral. Until the
time when dark energy becomes important we have gðzÞ ∝
1=ðzþ 1Þ and

σwðzÞ ¼ 0.32gðzÞ: ð32Þ
The plot of σwðzÞ is shown in Fig. 3. We conclude that even
if the wake is locally disrupted, the overall density pattern
remains manifest. Good strategies for cosmic string
searches need to take this result into account.
Note that the σ < 1 conditions (both the global and local

ones) are good provided the fraction of additional matter
(due to the wake) that is within a region of the window
function is of order 1. In this case δ will fluctuate around 1
inside the wake and around 0 outside, so σ < 1 will be a
good conditional to distinguish between the presence and
absence of a wake in a given region of space.

VI. DISCUSSION AND CONCLUSIONS

We have studied the disruption of a cosmic string wake
by the gravitational effects of the Gaussian fluctuations
which dominate the current spectrum of cosmological
perturbations. At large redshifts the wakes are stable
whereas at smaller redshifts they are locally disrupted.
The crossover redshift depends on the string tension Gμ.
For Gμ ¼ 10−9 the crossover redshift is z≃ 11. At red-
shifts greater than z ¼ 20, wakes are stable down to
tensions of Gμ ¼ 10−14. To arrive at this result we inves-
tigated both a local density contrast criterion and a
displacement criterion.
As an example, let us evaluate the possibility of seeing a

Gμ ¼ 10−9 cosmic string wake in a particular slice of the
21 cm maps from the square kilometre array (SKA). Just
above its local disruption of z≃ 11, such a generically
oriented wake has a projected wake thickness Δzwake, 2
orders of magnitude smaller than the SKA redshift reso-
lution of ΔzSKA ¼ 10−4. The planar size of the wake is
N ¼ 105 times greater than the SKA angular resolution of
10−7 radians. Since the wake is not disrupted there is a
slight overdensity over the entire 0.01 rad × 0.01 rad
region in redshift space. Consider those N2 pixels that
contain the wake as N2 measurements in a no-wake
theory. Knowing that the wake is undisrupted allows us
to calculate the χ2 between a no-wake theory and a
theory with a wake for these pixels [30]. We find that
χ2 ¼ N2 × ðΔzwake=ΔzSKAÞ2 ¼ 106. Such a large χ2 results
because we have assumed that all our pixels contain the
wake. Obviously we have not addressed how to choose
such candidate pixels, however here we wish only to show
that a wake is visible in the scenario where our pixels do
contain a wake.
The physical difference between the Local Delta

Condition and the Global Sigma Condition is due to the
fact that in the local criteria, the relevant scale of the
problem is the wake thickness, and this scale is proportional
to the string tension. On the other hand, as discussed above,
the relevant scale for the global criteria is the planar
dimension of the wake which is independent of the string
tension.

FIG. 3. The rms value of the density contrast of the Gaussian
perturbations in an anisotropic region which corresponds to the
size of a wake produced at teq (vertical axis) as a function of
redshift (horizontal axis). Note that the density fluctuations
remain smaller than one.
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Even if a string wake is locally disrupted by Gaussian
fluctuations, it could possibly be identified using a
Global Sigma Condition. We have computed the rms
density contrast due to the Gaussian fluctuations for an
anisotropic window function whose planar dimensions
correspond to those of a wake, and whose thickness is
much smaller than the scale where the density power
spectrum turns over, and shown that the result is smaller
than 1 for all redshifts. Hence, if we smooth the density
field with such a window function, then the wake will be
visible even if it is locally disrupted. This global
condition is independent of the value of Gμ. We are
looking for the dark matter component, so we do not
have to consider (baryonic) diffuse wake corrections to
the wake thickness.
Our work has implications for search strategies to find

string signals. Local features of wakes (e.g. discontinuity
lines in CMB polarization maps or sharp edges in three
dimensional 21 cm redshift surveys) will only be visible for

redshifts higher than the crossover redshift determined by
our local criteria. In contrast, searches for string signals
using global signals (e.g. statistical analyses of maps
obtained by smearing the original maps by an anisotropic
window function of the shape of the expected wake signal)
will be promising even at very low redshifts. We are
currently studying this question.
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