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Cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum
data of the cosmic microwave background (CMB) obtained from the Planck 2015 results are presented. We
consider the harmonic attractor model, in which the scalar field has a harmonic potential with curvature (β)
in the Einstein frame and the theory relaxes toward the Einstein gravity with time. Analyzing the TT, EE,
TE and lensing CMB data from Planck by the Markov chain Monte Carlo method, we find that the present-

day deviation from the Einstein gravity (α02) is constrained as α02 < 2.5 × 10−4−4.5β
2

(95.45% C.L.) and

α0
2 < 6.3 × 10−4−4.5β

2

(99.99% C.L.) for 0 < β < 0.4. The time variation of the effective gravitational
constant between the recombination and the present epochs is constrained as Grec=G0 < 1.0056
(95.45% C.L.) and Grec=G0 < 1.0115 (99.99% C.L.). We also find that the constraints are little affected
by extending to nonflat cosmological models because the diffusion damping effect revealed by Planck
breaks the degeneracy of the projection effect.
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I. INTRODUCTION

Unifying the elementary forces [1] is among the most
important goals of modern physics. One proposition
motivated by superstring theory, which is the most plau-
sible candidate of the unified theory including gravity, is
that the physical constants are affected by the vacuum
expectation values (VEVs) of scalar fields. Accordingly, it
is natural to consider time variation of these physical
constants as the VEVs of scalar fields (such as string
dilaton) vary (see [2] for the experimental constraints on the
time variation of physical constants). The dilaton gravity is
classified as one of the scalar-tensor theories of gravity. In
the scalar-tensor theories of gravity, a scalar field couples to
the Ricci scalar, which provides a natural framework for
realizing the time variation of the gravitational constant via
the dynamics of the scalar field. In the Jordan-Brans-Dicke
theory of gravity [3], which is the simplest example of
scalar-tensor theories, a constant coupling parameter ω is
introduced. In more general scalar-tensor theories [4], ω is
promoted to a function of the Brans-Dicke scalar field ϕ. In
the limit ω → ∞, the Einstein gravity is recovered and the
gravitational constant becomes a constant in time.
The coupling parameter ω has been constrained by

several solar system experiments. For instance, the
weak-field experiment conducted in the Solar System by
the Cassini mission has put strong constraints on the post-
Newtonian deviation from the Einstein gravity, where ω is
constrained as ω > 43000 at 2σ level [5,6].

For the cosmological scale experiments, the possibility
of constraining the Brans-Dicke theory by temperature and
polarization anisotropies of the cosmic microwave back-
ground (CMB) was suggested in [7], and Nagata et al. [8]
first placed constraints on a general scalar-tensor theory
called the harmonic attractor model including the Jordan-
Brans-Dicke theory [9]. In this model the scalar field has a
quadratic effective potential of positive curvature in the
Einstein frame, and the Einstein gravity is an attractor that
naturally suppresses any deviations from the Einstein
gravity in the present epoch. Nagata et al. reported that
the present-day value of ω is constrained as ω > 1000 at 2σ
level by analyzing the CMB data from the Wilkinson
Microwave Anisotropy Probe (WMAP). Moreover, the
gravitational constant at the recombination epoch Grec
relative to the present gravitational constant G0 is con-
strained as Grec=G0 < 1.05 (2σ). These constraints basi-
cally come from the fact that the size of the sound horizon
at the recombination epoch, which determines the charac-
teristic angular scale in the angular power spectrum of
CMB anisotropies, depends on the amounts of matter and
baryon contents and on the strength of the gravity at that
epoch. The time variation of the gravitational constant
indeed shifts the locations and the amplitudes of acoustic
peaks in the CMB angular power spectrum. In some
parameter regions of the harmonic attractor model, the
constraints become stronger than those found in the Solar
System analyses.
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In this paper, we further constrain the parameter ω and
the time variation of the gravitational constant in the
harmonic attractor model by analyzing the latest CMB
temperature and polarization anisotropy spectra from
Planck [10]. We also investigate how large the time
variation of the gravitational constant is allowed by
comparing its values at the recombination and present
epochs. Avilez and Skordis [11] placed a constraint on ω as
>890 at 99% confidence level (C.L.) by analyzing the
CMB data from Planck 2013. Ballardini et al. [12] studied
the constraints from Planck 2015 data on the induced
gravity dark energy model with a quartic potential which
can be cast into a Jordan-Brans-Dicke model with a
quadratic potential and reported the constraints on ω and
on the gravitational constant at the radiation epoch Grad as
ω > 147 and Grad=G0 < 1.039 at 95% C.L., respectively
(see also [13] for the Planck 2013 data).
The remainder of the paper is organized as follows:

Sec. II explains the scalar-tensor cosmological model and
the changes in the angular power spectrum of the CMB
temperature anisotropy. Section III describes our method
for constraining the scalar-tensor coupling parameters. In
Sec. IV, we compare the model with the Planck data.
Finally, our conclusions are presented in Sec. V.
Unless stated otherwise, numerical calculations performed

for illustration purpose assume the standard values of the
cosmological parameters: h ¼ 0.67556, Ωbh2 ¼ 0.022032,
Ωch2 ¼ 0.12038, zre ¼ 11.357, As ¼ 2.215 × 10−9, ns ¼
0.9619, where h is the Hubble parameter, Ωbh2 and Ωch2

are the density parameters for baryon and cold dark matter
components, respectively, zre is the reionization redshift, and
As and ns are the amplitude and spectral index of primordial
curvature fluctuations, respectively.

II. MATHEMATICS AND EQUATIONS

We briefly review the cosmological background and
perturbation equations that are given in Nagata et al. [14].
The action describing a general massless scalar-tensor

theory in the Jordan frame is given by

S ¼ 1

16πG0

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

ð∇ϕÞ2
�
þ Sm½ψ ; gμν�;

ð1Þ

where G0 is the present-day Newtonian gravitational
constant, Sm½ψ ; gμν� is the matter action which is a function
of the matter variable ψ and the metric gμν. This “Jordan
frame metric” defines the lengths and times actually
measured by laboratory rods and clocks since, in the action
Eq. (1), matter is universally coupled to gμν [15,16]. The
function ωðϕÞ is the dimensionless coupling parameter
which depends on the scalar field ϕ. We set ωðϕÞ to the
following form,

2ωðϕÞ þ 3 ¼ fα02 − β lnðϕ=ϕ0Þg−1; ð2Þ

where ϕ0, α0 and β are the present values of the ϕ, potential
gradient and curvature, respectively.
The background equations for a Friedmann universe are

ρ0 ¼ −3
a0

a
ðρþ pÞ; ð3Þ

�
a0

a

�
2

þ K ¼ 8πG0ρa2

3ϕ
−
a0

a
ϕ0

ϕ
þ ω

6

�
ϕ0

ϕ

�
2

; ð4Þ

ϕ00 þ 2
a0

a
ϕ0 ¼ 1

2ωþ 3

�
8πG0a2ðρ − 3pÞ − ϕ02 dω

dϕ

�
; ð5Þ

where a is the cosmological scale factor and the prime
notation denotes a derivative with respect to the conformal
time, ρ and p are the total energy density and pressure,
respectively, and K denotes a constant spatial curvature.
The effective gravitational constant measured by

Cavendish-type experiments is given by [15]

GðϕÞ ¼ G0

ϕ

2ωðϕÞ þ 4

2ωðϕÞ þ 3
: ð6Þ

The present value of ϕ must yield the present-day
Newtonian gravitational constant and satisfy the expression
of Gðϕ0Þ ¼ G0. Thus, we have

ϕ0 ¼
2ω0 þ 4

2ω0 þ 3
¼ 1þ α0

2; ð7Þ

where ω0 is the present value of ωðϕÞ.
Typical evolutions of ϕ and GðϕÞ are shown in Figs. 1

and 2, respectively. In the radiation-dominated epoch, ϕ
stays constant because the pressure of the relativistic
component in Eq. (5) is p ¼ ρ=3. As the universe
evolves toward matter-radiation equality, ϕ begins growing
and finally converges at ϕ0, realizing the present-day

FIG. 1. Time evolution of ϕ in the scalar-tensor ΛCDM model,
with the parameters as indicated in the figure. The other
cosmological parameters are fixed to the standard values.
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Newtonian gravitational constant. During the evolution to
the present epoch, gravity deviates slightly and smoothly
from the Einstein gravity.
The variation in the value of ϕ alters the Hubble

parameter in the early universe from its value under the
Einstein gravity through Eq. (4). As shown in Fig. 2, the
harmonic attractor model always predicts a larger gravita-
tional constant in the early universe as long as α20 is non-
negative and hence a smaller horizon length at a given
redshift. Because the locations of the acoustic peaks and the
damping scale depend differently on the horizon length at
recombination, we can constrain the ϕ-induced variations
in the horizon scale by analyzing the precisely measured
CMB anisotropies on small angular scales. The shift of the
acoustic peaks to smaller angular scales is proportional to
the horizon length (∝ H−1), while that of the damping scale
is less affected by it (∝

ffiffiffiffiffiffiffiffiffi
H−1

p
). Therefore, the first peak

and the diffusion tail in the angular power spectrum become
closer as the expansion rate becomes larger, suppressing the
small scale peaks, as shown in Fig. 3.

III. METHODS

To compute the temperature and polarization fluctua-
tions in the CMB and the lensing potential power spectra,
we numerically solve the equations in the model described
in the previous section modifying the publicly available
numerical code, CLASS [17]. The data are analyzed using
the Markov chain Monte Carlo (MCMC) method with
Monte Python [18] developed in the CLASS code. In our
calculations, we consider (α0, β) in Eq. (2), which char-
acterize the scalar-tensor theory, in addition to the param-
eters of the ΛCDM model.
We set the priors for the standard cosmological param-

eters as

H0 ∈ ð30; 100Þ; Ωbh2 ∈ ð0.005; 0.04Þ;
Ωch2 ∈ ð0.01; 0.5Þ; τreio ∈ ð0.005; 0.5Þ;

lnð1010AsÞ ∈ ð0.5; 10Þ; ns ∈ ð0.5; 1.5Þ; ð8Þ

and for α0 and β as

α0 ∈ ð0; 0.5Þ; ð9Þ

β ∈ ð0; 0.4Þ: ð10Þ

The CMB temperature and the effective number of neu-
trinos were set to TCMB ¼ 2.7255 K from COBE [19] and
Neff ¼ 3.046, respectively. The primordial helium fraction
YHe is inferred from the standard Big Bang nucleosynthe-
sis, as a function of the baryon density [20]. We compare
our results with the CMB angular power spectrum data
from the Planck 2015 mission [10], which include the auto
power spectra of temperature and polarization anisotropies
(TT and EE), their cross-power spectrum (TE), and the
lensing potential power spectrum.
Because the variation of the gravitational constant could

alter the distance to the last scattering surface of the CMB,
its effect on the angular power spectrum may degenerate
with the effect of spatial curvature in the Friedmann
universe. Therefore, we separately perform a MCMC
analysis for models with the spatial curvature (ΩK). We
set a prior for ΩK as

ΩK ∈ ð−0.5; 0.5Þ; ð11Þ

while the same priors are used for the other standard
cosmological parameters and (α0, β) as shown in Eqs. (8),
(9) and (10).

IV. RESULTS

In this section, we show the results of the parameter
constraints.

FIG. 2. Time evolution of GðϕÞ=G0 in the scalar-tensor models
with the same parameters as in Fig. 1. The effective gravitational
constant GðϕÞ is inversely proportional to the scalar field ϕ
through Eq. (6).

FIG. 3. CMB temperature anisotropy spectra in the scalar-
tensor models with the ΛCDM parameters. The data points with
error bars represent the Planck data.
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A. Flat universe case

In Fig. 4, we show the constraint contours in the α02 − β
plane, where the other parameters are marginalized. We
find that the scalar-tensor coupling parameters are con-
strained as

α0
2 < 2.5 × 10−4−4.5β ð95.45%Þ; ð12Þ

α0
2 < 6.3 × 10−4−4.5β ð99.99%Þ; ð13Þ

where the number in the parenthesis denotes the confidence
level. The change of the scalar field from the CMB epoch
to the present is larger for either a larger α20 model or a
larger βmodel (see Figs. 1 and 2 in [14]), which induces the
degeneracy. This result can be translated into the present-
day value of the coupling parameter ω at β ¼ 0 using
Eq. (2) as

ω > 2000 ð95.45%Þ; ð14Þ

ω > 790 ð99.99%Þ: ð15Þ

Previously, Nagata et al. [8] reported that α0
2 < 5 ×

10−4−7βð10−2−7βÞ at 2σ (4σ) level, which corresponds to
ω > 1000 (50) at 2σ (4σ) level. Our constraints are
significantly improved over this value. Our results are
complementary to those by Avilez and Skordis [11] who
reported ω > 890 at 99% C.L. for the constant ω model
(our result is ω > 1100 at 99% C.L.). Furthermore, in the
large β regime (β ≳ 0.3), our cosmological constraint is
stronger than that determined in the Solar System study
(ω > 43000, which corresponds to α0

2 < 1.15 × 10−5)
[5,6].

Table I shows 68.27% confidence limits of the standard
cosmological parameters in the scalar-tensor ΛCDM
model. These parameters are still consistent with those
of the Planck results [10] in the standard ΛCDM model.
Table II shows 95.45% confidence limits of the parameters
log10ðα02Þ and β.
Next, we consider the variation of the gravitational

constant in the recombination epoch. We define Grec ≡
GðϕrecÞ and put constraints onGrec=G0, after marginalizing
over the other parameters. Here, ϕrec is the value of ϕ at the
recombination epoch when the visibility function takes its
maximum value. We compute the marginalized posterior
distribution of Grec=G0 as shown in Fig. 5 (for flat models).
We find that Grec=G0 is constrained as

Grec=G0 < 1.0056 ð95.45%Þ; ð16Þ

Grec=G0 < 1.0115 ð99.99%Þ: ð17Þ

According to the scalar-tensor ΛCDM model, the gravi-
tational constant has deviated by less than 1.15% between
the recombination epoch and the present day at
99.99% C.L. In comparison, Nagata et al. [8] and Li et al.
[21] reported Grec=G0 < 1.23 at 4σ level and Grec=G0 <
1.029 at 1σ level, respectively. Our study places the
strongest constraint on the deviation of the gravitational
constant. The CMB temperature anisotropy spectra
obtained by Planck [10] and WMAP [22] are compared
in Fig. 6. Because the difference between the scalar-tensor
and the ΛCDM models mainly arises in the high-l region,
the observational data in the higher-l region provide
stronger constraints on the parameters. Therefore, the

0 0.1 0.2 0.3 0.4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

0
2

FIG. 4. 95.45% and 95.45% confidence contours in the α02 − β
plane for the scalar-tensor ΛCDM models with the other
parameters marginalized. The black dashed line shows the
function α0

2 ¼ 2.5 × 10−4−4.5β and the gray solid line shows
the bound from the Solar System experiment.

TABLE I. 68.27% confidence limits for the standard cosmo-
logical parameters in the scalar-tensor ΛCDM model.

68.27% limits

Parameter ΩK ¼ 0 ΩK ≠ 0

Ωbh2 0.02224� 0.00016 0.02225� 0.00015
Ωch2 0.1189� 0.0014 0.1188� 0.0014
H0 67.92� 0.76 66.31� 4.1
τreio 0.069� 0.013 0.065� 0.014
lnð1010AsÞ 3.068� 0.024 3.061� 0.028
ns 0.9668� 0.0051 0.9672� 0.0051
ΩK — −0.0046� 0.0096

TABLE II. 95.45% confidence limits for log10ðα02Þ and β.

95.45% limits

Parameter ΩK ¼ 0 ΩK ≠ 0

log10ðα02Þ < −3.72 < −3.68
β < 3.15 < 3.16
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constraints from the Planck data are much stronger than
those from the WMAP ones.
The strong constraint in this work is also attributed to the

precise polarization spectra in the Planck 2015 results. The
scalar-tensor model will affect the polarization spectra as
well as the temperature spectrum. The peak locations shift
to the smaller scales (higher l) and their amplitudes are
suppressed. Figures 7 and 8 show the typical EE and TE
CMB polarization spectra, respectively, in the scalar-tensor
ΛCDM models using the same parameters as in Fig. 3,
along with the Planck 2015 data. Clearly the current Planck
polarization data enable us to constrain the scalar-tensor
models with comparable statistical power to the temper-
ature data.

B. Nonflat universe case

We also perform a MCMC analysis including spatial
curvature parameter ΩK. This is motivated by the fact that
the attractor model used in this paper would predict larger
gravitational constant in the past, pushing the acoustic
peaks toward smaller angular scales. This effect could be
compensated with the positive curvature which brings back
the peaks toward larger angles (Nagata et al. [8]). This
degeneracy, however, should be broken using the CMB
data on diffusion damping scales, because the curvature
does not affect the diffusion damping whereas the variation
of the gravitational constant does as discussed above.
The constraints on the parameters α02 and β in nonflat

models are shown in Fig. 9, where the other parameters
including ΩK are marginalized. We find that the constraints
on the scalar-tensor coupling parameters are hardly affected
by the inclusion of the spatial curvature. This is because the
angular power spectrum on small angular scales obtained
from Planck is so precise as to break the degeneracy
between the effects of varying gravitational constant and
the spatial curvature. We find that α20 is constrained as

α0
2 < 2.5 × 10−4−4.5β ð95.45%Þ; ð18Þ

1 1.005 1.01

Grec G0

10 −3

10 −2

10 −1

1

FIG. 5. Posterior distribution of Grec=G0.

FIG. 6. Comparison of the CMB temperature anisotropy
spectra between Planck and WMAP. CMB temperature
anisotropy spectra in the scalar-tensor models are also shown,
which are same as in Fig. 3. Planck observational data in higher l
region (l ≳ 1000) provide stronger results of the parameter
constraints.

FIG. 7. Typical CMB polarization spectra (EE) in the scalar-
tensor models with the ΛCDM parameters fixed to the standard
values. The data points with error bars show the Planck data.

FIG. 8. Same as Fig. 7, but for the temperature polarization
cross spectrum.
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α0
2 < 6.3 × 10−4−4.5β ð99.99%Þ; ð19Þ

and the coupling parameter ω as

ω > 2000 ð95.45%Þ; ð20Þ

ω > 790 ð99.99%Þ: ð21Þ

Also we find that Grec=G0 in the nonflat universe is
constrained as

Grec=G0 < 1.0062 ð95.45%Þ; ð22Þ

Grec=G0 < 1.0125 ð99.99%Þ: ð23Þ

The posterior distribution of Grec=G0 is shown in Fig. 10.
Although there are a few changes in the constraints of

Grec=G0, comparing with those of the flat case, this is in the
standard deviation. Table I shows 68.27% confidence limits
of the cosmological parameters in the scalar-tensor nonflat
ΛCDM model. These parameters are also still consistent
with the those of the Planck results [10]. The limits on the
log10ðα02Þ and β are summarized in Table II.
These strong constraints in the nonflat universe

are attributed to the lensing potential power spectrum in
the Planck 2015 results. Using the lensing potential
reconstruction data leads to a strong constraint on ΩK
[23] and it breaks the degeneracy between the effects of
varying gravitational constant and the spatial curvature

mentioned above further. If we do not include the CMB
lensing data in the scalar-tensor nonflat ΛCDM model, we
find that the variation of the gravitational constant is
constrained as Grec=G0 < 1.0148 (99.99% C.L.), which
is much weaker than the result shown above.

V. SUMMARY

We have constrained the scalar-tensor ΛCDM model
from the Planck data by using the MCMCmethod. We have
found that the present-day deviation from the Einstein
gravity (α02) is smaller than 2.5 × 10−4−4.5β (95.45% C.L.)
and 6.3 × 10−4−4.5β (99.99% C.L.) for 0 < β < 0.4. The
variation of the gravitational constant is also constrained as
Grec=G0 < 1.0056 (95.45% C.L.) and Grec=G0 < 1.0115
(99.99% C.L.). The significant improvement of these
constraints over the previous works is attributed to the
precise measurements of the diffusion damping effect in
the temperature and the new polarization power spectra
obtained by Planck. The deviation of the gravitational
constant between the recombination and the present epochs
is found to be less than 1.15% at 99.99%. We have also
found that these constraints are fairly robust against the
inclusion of the spatial curvature.
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FIG. 10. Posterior distribution of Grec=G0 for the nonflat
models (red dashed) compared with the flat model (black).

FIG. 9. 95.45% and 99.99% confidence contours in the α02 − β
plane for the scalar-tensor nonflat ΛCDM models with the other
parameters marginalized (red), comparing with those of the flat
universe case (blue). The black dashed line and the gray solid line
show the function α0

2 ¼ 2.5 × 10−4−4.5β and the bound from the
Solar System experiment, respectively.
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