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One strategy for reducing the online computational cost of matched-filter searches for gravitational
waves is to introduce a compressed basis for the waveform template bank in a grid-based search. In this
paper, we propose and investigate several tunable compression schemes for a general template bank.
Through offline compression, such schemes are shown to yield faster detection and localization of signals,
along with moderately improved sensitivity and accuracy over coarsened banks at the same level of
computational cost. This is potentially useful for any search involving template banks, and especially in the
analysis of data from future space-based detectors such as eLISA, for which online grid searches are
difficult due to the long-duration waveforms and large parameter spaces.
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I. INTRODUCTION

Advanced LIGO [1] has recently made the first direct
detection of gravitational waves (GWs) from an astrophysi-
cal source [2]; more detections are now expected routinely
from the ground-based interferometer network comprising
Advanced LIGO and Advanced Virgo [3]. These should be
followed over the next two decades by detections of
nanohertz GW sources using pulsar timing arrays [4],
and of millihertz sources by the proposed space-based
detector eLISA [5] or more ambitious missions such as
DECIGO [6]. The search for GW signals in noisy data from
such detectors—and the follow-up estimation of their
source parameters—is contingent upon reliable statistical
analysis of the data.
GW signals from sources such as stellar-mass compact

binary coalescences or massive black-hole binary inspirals
are typically weak compared to the detector noise in which
they are embedded. The standard approach in GW data
analysis is to correlate the detector data with a bank of
waveform templates sampled from the parameter space of a
waveform model, which allows the signal-to-noise ratio
(SNR) to be built up over the detector bandwidth. This
correlation is essentially an inner product on the function
space of finite-length time series; it must be evaluated
numerically for each template, and carries the bulk of the
computational cost in online GW searches [7,8].
Various strategies exist to reduce the online cost of

evaluating inner products for GW detection and parameter
estimation purposes, typically by shifting the computa-
tional burden to the preparatory offline stage. Some

methods focus on making individual inner products com-
putationally cheaper: this may be achieved across regions
of parameter space through direct interpolation [9,10], or
more generally by using a reduced order quadrature
[11,12]. Other methods seek to reduce the number of
required inner products, either by accelerating the con-
vergence to correlation maxima in a stochastic search
[13–15], or through reduced-basis decomposition of the
template bank in a grid search [16–18].
In a recently proposed method for evaluating fewer inner

products in a grid search, binary labeling is used to define a
compressed nonorthogonal basis that maximizes compres-
sion losslessly (in the sense of perfect signal recovery
without noise) [19]. This idea is fully general and admits a
much higher compression rate than existing methods based
on the eigenvalue structure of the template bank, but comes
with significant penalties to detection sensitivity and
identification accuracy in the presence of detector noise.
The method as originally described also suffers from an
arbitrarily asymmetric treatment of templates, as well as a
restrictive level of compression that limits its practicality to
high-SNR signals. While the binary labeling method might
be useful in the context of eLISA (where source SNRs are
potentially higher than for ground-based detectors), its
practical applicability to GW data analysis remains unde-
veloped and hence unclear.
In this paper, we introduce and develop the related

method of conic compression (i.e. defining a compressed
basis through conic combinations of templates) by char-
acterizing its performance under various simplifying
assumptions, before investigating its viability for current
and future GW detectors with a more realistic example. We
propose several compression schemes, one of which sub-
sumes a symmetric-treatment version of the binary labeling
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method [19] as a particular case. These tunable schemes
feature discrete transitions between zero and maximal
compression, and offer fast detection and localization of
GW signals in the search space with a controlled loss (if at
all) in sensitivity/accuracy. Their generality and straightfor-
ward implementation also allow them to supplement
existing grid-search methods, or to rapidly identify seed
points for stochastic searches.
The general method of conic compression is set out in

Sec. II. Three families of conic compression schemes are
then proposed in Secs. II A–II C: a lossy scheme based on
partitions of the template bank, and two lossless schemes
whose conic combinations are determined permutatively or
by base representations of template labels. We calculate the
optimal detection statistics for these schemes, and find that
the standard maximum-overlap statistic is significantly
suboptimal for detection in the lossless case. Section II
D compares the three schemes under simplified conditions,
i.e. assuming the GW signal is proportional to a single
template in an orthogonal template bank. The lossy
partition scheme is shown to have slightly better detection
sensitivity than its lossless counterparts at the same level of
compression. Furthermore, while the lossless schemes
provide automatic identification (i.e. localization to a single
template) of the signal upon detection, the identification
accuracy falls off more rapidly with compression in the
presence of noise.
We focus exclusively on the partition scheme in Sec. III,

where the orthogonality and single-template assumptions
are lifted separately. As shown in Sec. III A, the overall
performance of the scheme is partition dependent in the
case of a correlated (nonorthogonal) template bank, and
must be preoptimized by grouping highly correlated
templates together. The optimized partition scheme retains
the benefits of a correlated template bank up to high levels
of compression, and is superior to a simple “coarsening” of
the template bank (obtained by increasing the maximal
mismatch between neighboring templates). Section III B
discusses the case of a GW signal lying in a low-
dimensional subspace of an orthogonal template bank,
for which the detection sensitivity of the scheme is not
significantly reduced.
In Sec. IV, we implement the optimized partition scheme

for a highly correlated (maximal mismatch ≈0.01) template
bank of ∼104 post-Newtonian (PN) waveforms, which
describe the gravitational radiation emitted during the
inspiral phase of a comparable-mass binary merger. The
scheme is shown to be viable for practical applications, as it
performs well on this example up to high levels of
compression and at all considered values of SNR. Its
detection rate for a signal injected centrally is superior
to that of the coarsening approach (especially at compres-
sion rates of over 80%), and this improvement is even more
marked for a signal injected at the boundary of the bank. In
addition, the accuracy rate for localization of the injection

to a<0.1% region of the search space is undiminished up to
a compression level of 90%, and is again higher than that of
the coarsening approach.
The considerable speed-up and enhanced accuracy in

localizing the GW signal with conic compression is
particularly promising for eLISA data analysis, where
the online use of template banks is made challenging by
the large parameter spaces of typical sources [20]. While
the long duration of eLISA signals is computationally
prohibitive to fully coherent searches even with compres-
sion, our method is suitable for the shorter semicoherent
searches that are required for rapid electromagnetic
follow-up.
Conic compression might also provide a viable alter-

native to the singular-value-decomposition (SVD) method
used in LIGO detection pipelines for compact binary
coalescences [17]: it scales well with parameter-space
dimensionality and easily matches or surpasses the
order-of-magnitude computational savings of the SVD
method, with any loss of SNR coming mainly from
the maximal mismatch of the original template bank
(rather than an SVD reconstruction). Furthermore, our
method may in principle be used to further compress the
reduced bases obtained through the various orthogonal-
decomposition methods [16–18]. Whether any computa-
tional benefits might be gained from such a combination of
the two approaches is left for future investigation.

II. COMPRESSION SCHEMES

In the standard GW data analysis framework, data from a
detector may be written as the time series

XðtÞ ¼ SðtÞ þN ðtÞ; ð1Þ

where the GW signal SðtÞ is a deterministic function of
time (and some unknown source parameters), and the
additive detector noise N ðtÞ is a Gaussian and stationary
stochastic process.
Matched filtering involves passing the data through some

GW template filter F ðtÞ via convolution, which defines an
inner product on the function space of finite-length time
series [21]. This inner product is given by

hX jF i ¼
Z

∞

−∞

~XðfÞ ~F �ðfÞ
SN ðfÞ df; ð2Þ

where SN ðfÞ is the two-sided spectral density of the
detector noise. Since N ðtÞ is stationary, SN ðfÞ is simply
the Fourier transform of the autocorrelation function
RN ðτÞ ¼ EðN ðtÞN ðt − τÞÞ, and we have the identity

EðhN jF ihN jF 0iÞ ¼ hF jF 0i: ð3Þ

The SNR ρF of the filtered data is then related to the true
SNR ρ by
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ρ2F ¼ hSjF i2
hF jF i ≤ hSjSi ¼ ρ2: ð4Þ

We now consider a generic bank of N GW templates
hnðtÞ, where the template labels n are drawn from the
collection N ≔ fn ∈ Zþjn ≤ Ng, and the templates have
been normalized such that hhnjhni ¼ 1 for all n ∈ N. The
inner products of the data (1) and the templates define N
associated statistics

xn ≔ hX jhni; ð5Þ
which may be used for detection and localization in a
simple grid search.
Our general method of compression is to reduce the

number of statistic evaluations from N toM by considering
conic (i.e. positive-coefficient) combinations of the
original templates. The template labels are grouped into
M sets Um, where the set labels m are drawn from the
collection M ≔ fm ∈ Zþjm ≤ Mg, and the sets satisfy
⋃m∈MUm ¼ N. These sets define M conic templates

HmðtÞ ≔
X
n∈Um

hnðtÞ; ð6Þ

which are prepared at the offline stage (like the template
bank itself), along with M associated statistics

Xm ≔ hX jHmi ¼
X
n∈Um

xn; ð7Þ

which are evaluated at the online stage.
Without any prior assumptions on the template bank,

each template must be treated equally. This is done by
ensuring that:
(a) each combination is weighted equally;
(b) each combination includes the same number of tem-

plates;
(c) each template is included in the same number of

combinations.
Definition (6) has been chosen to satisfy condition (a),
while condition (b) is imposed by further requiring
cardðUmÞ ¼ cardðUm0 Þ for all m;m0 ∈ M [where the set
cardinality cardðSÞ is the number of elements in the set S].
Condition (c) must be enforced separately in the construc-
tion of the sets. The second equality in Definition (7) relates
the conic statistic evaluations to the original statistics (5),
which are no longer evaluated at the online stage.
To simplify analysis, we first assume the template bank

is an orthogonal set such that

hhnjhn0 i ¼ δnn0 ; ð8Þ
where δij is the Kronecker delta. We further assume the
GW signal (if present) lies in the one-dimensional subspace
spanned by a single template in Hilbert space, i.e.

SðtÞ ¼ Ah1ðtÞ; ð9Þ

where A > 0 and the templates have been relabeled without
loss of generality. It follows from Eqs. (4) and (9) that
A ¼ ρ. These orthogonal and one-dimensional (1D) restric-
tions are neither realistic nor optimal, but facilitate the
analytic assessment and comparison of various compres-
sion schemes in this section. The overall performance of
conic compression is generally improved by the lifting of
these assumptions, which we consider in Secs. III and IV.
In the presence of a GW signal, the expectation values

and covariances of the normally distributed original sta-
tistics (5) are now given by

EðxnÞ ¼ Ahh1jhni ¼ Aδ1n; ð10Þ

covðxn; xn0 Þ ¼ hhnjhn0 i ¼ δnn0 : ð11Þ

As the labeling of templates is itself a probabilistic
process with discrete uniform distribution, the original
statistic vector x has the multivariate Gaussian distribution

GðμðiÞ;ΣÞ [with μðiÞn ¼ EðxnÞ and Σnn0 ¼ covðxn; xn0 Þ], but
summed over the N possible assignments i of 1 ∈ N and
renormalized accordingly. If the signal is absent, the
distribution of x is simply Gð0;ΣÞ. Hence we have

p1ðxÞ∝
1

N

XN
i¼1

exp

�
−
1

2
xTΣ−1xþμTðiÞΣ

−1x−
1

2
μTðiÞΣ

−1μðiÞ
�
;

ð12Þ

p0ðxÞ ∝ exp

�
−
1

2
xTΣ−1x

�
; ð13Þ

where p1 and p0 are the probability density functions of x
in the respective presence or absence of a GW signal.
An optimal detection region R in Hilbert space max-

imizes the detection rate PD ¼ R
R p1 subject to a given

false alarm rate PF ¼ R
R p0; hence p1 ¼ λp0 on its

boundary ∂R for some Lagrange multiplier λ. Using
Eqs. (10)–(13), we define the optimal detection statistic

xopt ≔
p1ðxÞ
p0ðxÞ

¼ 1

N
exp

�
−
A2

2

�X
n∈N

exp ðAxnÞ; ð14Þ

such that the optimal detection surfaces ∂R are precisely
the level sets of xopt parametrized by λ, and a detection is
claimed if xopt exceeds the threshold λT corresponding to
some fixed value of PF.
In deriving Eq. (14), we have implicitly assumed a

population of GW sources with equal likelihood and known
signal amplitude. Equation (14) therefore defines the
optimal statistic for detecting events drawn from such a
population. For a population of sources that are not equally
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likely, we need to replace the sum in Eq. (14) with a
suitably weighted sum. Similarly, for a population with a
distribution of amplitudes, we need to marginalize Eq. (14)
over A; in the case of an (improper) uniform prior over the
interval ð−∞;∞Þ, this would give a detection statistic
proportional to

P
n∈N expðx2n=2Þ.

Any choice of population makes assumptions about the
astrophysical distribution of GW sources that might not be
justified. In this paper, the focus is on the investigation and
comparison of template bank compression schemes, and
so we only consider the equal-likelihood and known-
amplitude population assumed in the derivation of
Eq. (14). While the treatment of amplitude in particular is
artificial, a search that is optimized for sensitivity to signal
amplitudes around the detection thresholdwill likely be near
optimal for any given astrophysical population (and closer to
optimality than a search tuned for the wrong astrophysical
population). Finally, we note that althoughEq. (14) has been
derived as a frequentist optimal statistic, the same equation
also arises as the Bayes factor for the presence (versus
absence) of a signal, assuming flat model priors and the
source population assumptions outlined above.
For sufficiently high SNR (large A), the optimal surfaces

xopt ¼ λ defined by Eq. (14) are well approximated by
semi-infinite hypercubes in Hilbert space (see Fig. 1), i.e.
the level sets of the standard grid-search detection statistic
[22–24]

xmax ¼ max
n∈N

fxng: ð15Þ

Since the original statistics (5) are uncorrelated, the
probability density functions of xmax in the presence or
absence of a GW signal are obtainable explicitly. These are
given respectively by

q1ðxmaxÞ ¼ F0ðxmaxÞN−1f1ðxmaxÞ
þ ðN − 1ÞF0ðxmaxÞN−2F1ðxmaxÞf0ðxmaxÞ;

ð16Þ

q0ðxmaxÞ ¼ NF0ðxmaxÞN−1f0ðxmaxÞ; ð17Þ

where fsðxmaxÞ is the probability density function for the
Gaussian distribution GðsA; 1Þ, and FsðxmaxÞ is the cumu-
lative distribution function

FsðxmaxÞ ¼
Z

xmax

−∞
fsðuÞdu: ð18Þ

For our analysis of conic compression schemes, we also
require the expectation values and covariances of the
normally distributed conic statistics (7). From Eqs. (7),
(10) and (11), it follows in the presence of a GW signal that

EðXmÞ ¼
X
n∈Um

EðxnÞ ¼ A cardðf1g ∩ UmÞ; ð19Þ

covðXm; Xm0 Þ ¼
X
n∈Um

X
n0∈Um0

covðxn; xn0 Þ

¼ cardðUm ∩ Um0 Þ; ð20Þ

where the cardinalities are determined by the choice of
compression scheme. As before, the conic statistic vector X
has the multivariate Gaussian distribution GðμðiÞ;ΣÞ [now
with μðiÞm ¼ EðXmÞ and Σmm0 ¼ covðXm; Xm0 Þ], but summed
over theN possible assignments of 1 ∈ N and renormalized
accordingly. If the signal is absent, the distribution of X is
again Gð0;ΣÞ. The probability density functions of X in the
presence or absence of a GW signal are then given
respectively by Eqs. (12) and (13) with x≡ X.
We now propose and investigate three general conic

compression schemes in Secs. II A–II C, before comparing
their performance and potential applicability in Sec. II D.
The orthogonal and 1D restrictions (8) and (9) are assumed
throughout Sec. II.

A. Partition scheme

The simplest method of grouping the template labels n is
to take the family of sets Um as a partition of N, i.e. Um ∩
Um0 ¼ ∅ for all distinct m;m0 ∈ M. Condition (c) is then
automatically satisfied, while condition (b) defines the set
cardinality P ¼ cardðUmÞ for all m ∈ M. It follows
that M ¼ N=P.
For the comparison of schemes in Sec. II D, it is useful to

introduce a compression parameter K ∈ Zþ for each
scheme, which determines the compression rate

FIG. 1. Three-dimensional projection of the optimal detection
surface for uncorrelated statistics xn, at a true SNR of 2.
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κ ≔ 1 −
Neval

N
; ð21Þ

where Neval ¼ M is the required number of statistic
evaluations (for detection or localization purposes). This
generates a sliding scale of groupings that ranges from no
compression at K ¼ 1 to maximal compression at some
scheme-dependent value of K. We may clearly choose
K ¼ P for the partition scheme, such that maximal com-
pression is given by K ¼ N. The minimal nontrivial
compression is 50% at K ¼ 2, while there are diminishing
returns at large K since κðKÞ is concave down.
From Eqs. (19) and (20), we now have

EðXmÞ ¼ Aδ1m; ð22Þ

covðXm; Xm0 Þ ¼ Pδmm0 ; ð23Þ

where the sets have been relabeled such that 1 ∈ U1

without loss of generality. Again considering the N
possible assignments of 1 ∈ N, the optimal detection
statistic Xopt ≔ p1ðXÞ=p0ðXÞ follows from Eqs. (12) and
(13) (with x≡ X) as

Xopt ¼
1

M
exp

�
−
A2

2P

�X
m∈M

exp

�
A
P
Xm

�
: ð24Þ

Since the conic statistics for the partition scheme remain
uncorrelated, the optimal surfaces Xopt ¼ λ resemble that in
Fig. 1, and in lieu of Eq. (24) it is valid to consider the
maximum-overlap detection statistic

Xmax ¼ max
m∈M

fXmg: ð25Þ

Receiver operating characteristic (ROC) curves of detection
rate PD against false alarm rate PF for both the optimal and
maximum-overlap statistics are compared in Fig. 2.1 With
increased compression, the performance of the maximum-
overlap statistic falls away slightly from that of the optimal
statistic, due to the lowering of the effective SNR A=

ffiffiffiffi
P

p
in

Eq. (24); nevertheless, Eq. (25) is a sound approximation as
both sets of ROC curves show good overall agreement.
For the partition scheme to admit a useful (i.e. populated)

sliding scale of compression rates, the template bank might
need to be trimmed or padded such that N has as many
divisors as possible. Fixing the false alarm rate and
choosing either a desired detection rate or a compression
rate then allows advance determination of the conic
templates (6) and the threshold λT , which is the value of
λ corresponding to the fixed false alarm rate. The algorithm

for GW detection follows as: (i) evaluate the conic statistics
(7); (ii) claim a detection if Xmax > λT . Threshold and
detection SNRs for the maximum-overlap statistic are
defined respectively as

ρT ≔
λTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXmaxÞ
p ; ð26Þ

ρD ≔
Xmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXmaxÞ
p : ð27Þ

An extension of the detection algorithm is required for
identification purposes (i.e. localization to a single tem-
plate), since the simple coarse-graining of partition com-
pression does not distinguish between template labels in the
same set. The signal is most likely to be associated with the
largest conic statistic evaluation Xð1Þ, so the best candidate
template may be obtained by further evaluating all the
original statistics xn contributing to Xð1Þ and identifying the
largest. This finer level of evaluations increases the com-
putational cost by P to Neval ¼ M þ P.
For better identification accuracy at lower SNRs, we may

widen our search to the i largest Xm instead, at an added
computational cost of iP. The standard algorithms Ii for
GW identification follow (after detection) as: (iii) evaluate
the original statistics (5) for all n ∈ Vi, where

FIG. 2. ROC curves for the partition scheme’s optimal and
maximum-overlap detection statistics, at different values of set
cardinality P (with compression rate κ in parentheses) for a 256-
template bank and a true SNR of 10. The dashed diagonal line
indicates the worst possible performance, i.e. a random search for
which the detection and false alarm rates are equal.

1The curves for Eq. (24) were obtained via 105-trial
Monte Carlo simulations, while numerical integration of Eqs. (16)
and (17) was used to generate quicker and more precise curves for
Eq. (25).

TUNABLE COMPRESSION OF TEMPLATE BANKS FOR … PHYSICAL REVIEW D 93, 122001 (2016)

122001-5



Vi ¼ ⋃
i

j¼1

UðjÞ; ð28Þ

with UðjÞ corresponding to the jth largest conic statistic
evaluation; (iv) identify maxn∈Vi

fxng.
Other identification algorithms may also be considered.

One such alternative is obtained by defining a further
partition of Vi into two sets and evaluating the associated
conic statistics, then identifying the set V0

i corresponding to
the larger statistic evaluation and repeating the process with
Vi ≡ V0

i until cardðV0
iÞ ¼ 1. This method might be useful

for large values of P; it yields a smaller added computa-
tional cost of 2 log2 iP, but incurs a penalty to identification
accuracy since the early iterations still involve coarse-
grained searches.

B. Symmetric base scheme

Without an additional fine-grained search, partition com-
pression is lossy in the sense that the GW signal is not
automatically identified in the limit of zero noise. A recently
proposed conic compression scheme introduces a lossless
method of compression, by representing each template label
n in binary and assigning it to the set Um if its mth digit is 1
[19]. This binary scheme features the largest possible
lossless compression (M ¼ log2N) and an automatic iden-
tification of the GW signal; however, it suffers from an
unequal treatment of templates [i.e. it violates conditions (b)
and (c)] and hence it yields an arbitrary level of performance
that depends on the initial assignment of template labels.
Furthermore, the restriction to maximum compression limits
its usefulness in practical applications.
We propose a compression scheme modeled on the

binary labeling method, but symmetrized (for equal treat-
ment of templates) and generalized to a sliding scale of base
representations (for tunable compression). The template
labels n are represented modulo N in base B, and each set
Um ≡ Uk;b is constructed by collecting all the labels whose
kth digit is b (this includes b ¼ 0, and gives a symmetric
version of the binary scheme [19] when B ¼ 2). For
conditions (b) and (c) to be satisfied, we require
logB N ∈ Zþ; it follows that M ¼ B logB N.
The compression parameter is chosen as K ¼ logB N,

such that maximal compression is given by K ¼ log3N ≈
lnN (base-2 compression is slightly suboptimal with
symmetrization). In contrast to the partition scheme,
compression for the symmetric base scheme is dependent
on the size of the template bank; the minimal nontrivial
compression for N ¼ 102 is nearly 80% at K ¼ 2 (base-ffiffiffiffi
N

p
compression), and over 95% for N ¼ 104.

From Eqs. (19) and (20), we have

EðXmÞ ¼ Aδ0b; ð29Þ

covðXm; Xm0 Þ ¼ BK−2ðBδkk0δbb0 − δkk0 þ 1Þ; ð30Þ

where m ¼ Bðk − 1Þ þ bþ 1, and the templates have
been relabeled such that SðtÞ ¼ AhNðtÞ without loss of
generality.2 Considering the N possible assignments of
N ∈ N, the optimal detection statistic follows from
Eqs. (12) and (13) as

Xopt ¼
1

N
exp

�
−
βKA2

2
þ ðβ − αÞAtrðXÞ

�

×
YK
k¼1

XB−1
b¼0

exp ðαAXk;bÞ; ð31Þ

α ¼ B
N
; β ¼ M − K þ 1

NK
; ð32Þ

where trðXÞ ≔ P
m∈M Xm.

The higher compression rates provided by the symmetric
base scheme result from the nonempty intersections among
the sets Uk;b with different values of k. As seen in Eq. (30),
these also lead to correlations among the conic statistics
Xk;b. The optimal detection surfaces given by Xopt ¼ λ
differ significantly from that depicted in Fig. 1; their
projections onto the correlated subspaces are now compact
hyperboloids, and no longer approach the semi-infinite
hypercubes of the maximum-overlap detection statistic at
high SNR (see Fig. 3).
Without a simple approximation for the optimal detec-

tion statistic, the most feasible option is to use Eq. (31)
itself with an estimate A of the true SNR. ROC curves for
the estimated statistic XA¼ϵρ

opt with ϵ ∈ f1=2; 2g are com-
pared against those for the optimal and maximum-overlap
statistics in Fig. 4. Not much detection sensitivity (for a
fixed false alarm rate) is lost if the true SNR can be
estimated to within a factor of 2, while usage of the
maximum-overlap statistic now incurs a more noticeable
drop in performance as expected.
The restriction of N, B and K to integer values also

results in more sparsely populated sliding scales than those
admitted by the partition scheme. There are two possible
compression rates for N ¼ 256 (base-2 compression is
suboptimal compared to B ¼ 4), and three for
N ¼ 6561 ¼ 812 ¼ 94 ¼ 38; most other values of N will
admit only one or none. Notwithstanding the lack of
tunability, a feasible strategy is to trim or pad the template
bank such that N is a perfect square or cube, since the
smallest values of K already yield high compression rates.
The GW detection algorithm then follows as given in
Sec. II A, with some estimated detection statistic XA¼ϵρ

opt in
place of Xmax.

2The covariance matrix defined by Eq. (30) is rank deficient,
but we may take the Moore-Penrose pseudoinverse Σþ as a
suitable (perturbative) approximation to Σ−1 in Eqs. (12) and
(13).
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One key feature of the symmetric base scheme and other
lossless methods of compression is automatic identification
of the GW signal (upon detection). In this case, the label of
the identified template in base-B representation is given
digit-wise by the largest conic statistic evaluation Xk;ð1Þ ≔
maxbfXk;bg for each value of k. However, as each digit k is
identified individually, the overall identification accuracy

falls off severely with increasing K (i.e. the total number of
digits).
A possible modification for better accuracy is to consider

the iþ 1 largest Xk;b for each k and perform an additional
fine-grained search over the ðiþ 1ÞK templates, which
increases the computational cost accordingly. The standard
GW identification algorithms Ii follow (after detection) as:
(iii) evaluate the original statistics (5) for all n ∈ Vi, where

Vi ¼ ⋂
K

k¼1

⋃
iþ1

j¼1

Uk;ðjÞ; ð33Þ

with Uk;ðjÞ corresponding to the jth largest conic statistic
evaluation for each k; (iv) identify maxn∈Vi

fxng. Automatic
identification is recovered for i ¼ 0, where steps (iii) and
(iv) become unnecessary as cardðV0Þ ¼ 1.
For large values of K (small values of B), the standard

identification algorithms might still suffer from poor
accuracy. One alternative algorithm is obtained by defining
some threshold XT and considering all conic statistic
evaluations Xk;b ≥ XT , then performing the additional
fine-grained search over all the corresponding templates.
Such a threshold may be set prior to data taking; if Xk;ð1Þ <
XT for some value of k, the kth digit of the number is
unconstrained and templates corresponding to all possible
choices of that digit are considered. Alternatively, XT may
be based on the data by setting XT ¼ fminkfXk;ð1Þg for
some fixed fraction f, which ensures that at least one
possible value is identified for each digit. Both approaches
will in general yield increased accuracy, but they offer less
control over the number of conic statistic evaluations
considered and hence the overall computational cost.

FIG. 3. Three-dimensional projection of the optimal detection surface for correlated statistics Xk;b of the symmetric base scheme with
N ¼ 256 and B ¼ 4, at true SNRs of (a) 10 and (b) 100.

FIG. 4. ROC curves for the symmetric base scheme’s optimal,
maximum-overlap and estimated detection statistics, at different
values of base B (with compression rate κ in parentheses) for a
256-template bank and a true SNR of 10.
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C. Binomial coefficient scheme

The symmetric base labeling method is not the only
construction of the sets Um that preserves both lossless
compression (automatic identification) and equal treatment
of templates [conditions (b) and (c)]. In general, we may
represent any assignment of N templates to M sets with a
collection of N M-digit binary labels, where the mth digit
of each label is 1 if it appears in Um and 0 otherwise.
Condition (c) implies that each label must appear in exactly
R sets, and hence contain exactly R 1’s. In addition,
condition (b) defines the set cardinality C ¼ cardðUmÞ
for all m ∈ M, which yields the constraint NR ¼ MC
(each of theN labels appears exactly R times across all sets,
while each of the M sets contains exactly C labels). For
some given integers N ≥ M ≥ R, this constraint is equiv-
alent to the existence of

C ¼ NR
M

∈ Zþ; ð34Þ

which is both a necessary and sufficient condition for such
a set construction to be possible [25].
We now require that the conic statistics (7) are correlated

symmetrically, as seen in the partition scheme (but not the
symmetric base scheme). This additional condition implies
that the intersection of each pair of sets has fixed cardinality
I, i.e. cardðUm ∩ Um0 Þ ¼ I for all distinct m;m0 ∈ M.
Considering the family of all such intersections then yields
the constraint NRðR − 1Þ ¼ MðM − 1ÞI (each of the N
labels appears exactly RC2 times across all intersections,
while each of the MC2 intersections contains exactly I
labels). For some given integers N ≥ M ≥ R and C
satisfying Eq. (34), this constraint is equivalent to the
existence of

I ¼ NRðR − 1Þ
MðM − 1Þ ¼ CðR − 1Þ

M − 1
∈ Zþ; ð35Þ

which is a necessary (but not in general sufficient) con-
dition for such a set construction to be possible.
The general construction of a family of sets under the

constraints (34) and (35) is an open problem in combina-
torial design theory (see Appendix A). In this paper, we
restrict our focus to a special case that may be treated in
greater detail. EveryM-digit binary number with exactly R
1’s is taken to represent a distinct template label; the set
cardinality then equals the number of (M − 1)-digit binary
numbers with exactly (R − 1) 1’s, while the intersection
cardinality of each pair of sets equals the number of
(M − 2)-digit binary numbers with exactly (R − 2) 1’s.
Hence for all distinct m;m0 ∈ M, we have

N ¼ MCR; C ¼ M−1CR−1; I ¼ M−2CR−2; ð36Þ
such that Eqs. (34) and (35) are satisfied. We refer to this as
the binomial coefficient scheme, for obvious reasons. The
usual ordering of the binary numbers gives a natural map

onto the original label collection N ¼ fn ∈ Zþjn ≤ Ng,
although the inverse map is analytically nontrivial (but
straightforward in practice).
As the binomial coefficient scheme shares many

similarities with the symmetric base scheme, we only
highlight its key features in this section. The compression
parameter is chosen as K ¼ R, such that maximal com-
pression is given by K ¼ cbc−1ðNÞ=2 [where cbcðMÞ ≔
ΓðM þ 1Þ=ΓðM=2þ 1Þ2 is the continuous extension of the
central binomial coefficient MCM=2]. Compression rates
again depend on the size of the template bank; at small
values of K, they are only slightly higher than those of the
symmetric base scheme.
From Eqs. (19) and (20), we have

EðXmÞ ¼ A
XR
r¼1

δrm; ð37Þ

covðXm; Xm0 Þ ¼ M−2CR−2

�
M − R
R − 1

δmm0 þ 1

�
; ð38Þ

where the sets have been relabeled such that 1 ∈ Ur for
1 ≤ r ≤ R without loss of generality. Considering the N
possible assignments of 1 ∈ N, the optimal detection
statistic follows from Eqs. (12) and (13) as

Xopt ¼
1

N
exp

�
−
βKA2

2
þ ðβ − αÞAtrðXÞ

�

×
XN
i¼1

exp

�
αA

X
r∈Ri

Xr

�
; ð39Þ

α ¼ 1
M−1CR−1

; β ¼ 1
M−2CR−1

; ð40Þ

where the sets Ri are the N distinct R-combinations of the
collection M.
All the conic statistics Xm are correlated symmetrically,

as seen in Eq. (38). Upon projection onto any three-
dimensional subspace, the optimal detection surfaces given
by Xopt ¼ λ resemble those in Fig. 3 at both low and high
SNR. It follows that the maximum-overlap detection
statistic is again an inadequate approximation to the
optimal statistic, and we are compelled to use Eq. (39)
itself (assuming an accurate estimate of the true SNR). We
do not include ROC curves for the binomial coefficient
scheme here, as they are very similar to those in Fig. 4.
A direct comparison of the base and binomial schemes is

difficult, since there are few suitable values of N that are
exactly valid for both schemes. Lack of tunability is also
more of an issue for the binomial scheme: the only values
of N that admit more than one nontrivial compression rate
might be the Singmaster numbers (which admit two as they
appear six times in Pascal’s triangle), and it is not known
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whether any number admits more than two (apart from
N ¼ 3003 ¼ 78C2 ¼ 15C5 ¼ 14C6) [26,27]. The problem
may be overcome by considering a more general com-
pression scheme satisfying the conditions (34) and (35).
This is beyond the scope of the current paper due to the
complexity of set construction (see Appendix A), but might
be investigated for specific template banks in the future.
The GW detection algorithm for the binomial coefficient

scheme is as given in Sec. II A, with some estimated
detection statistic XA¼ϵρ

opt in place of Xmax. Automatic
identification is available as well, with the label of the
identified template given uniquely by the R largest conic
statistic evaluations. For higher accurate-identification
rates, a possible alternative is to consider the Rþ i largest
Xm and perform an additional fine-grained search over the
RþiCR templates. The standard GW identification algo-
rithms Ii follow (after detection) as: (iii) evaluate the
original statistics (5) for all n ∈ Vi, where

Vi ¼ ⋃
RþiCR

k¼1

⋂
j∈Jk

UðjÞ; ð41Þ

with UðjÞ corresponding to the jth largest conic statistic
evaluation and the sets Jk given by the RþiCR distinct R-
combinations of fj ∈ Zþjj ≤ Rþ ig; (iv) identify
maxn∈Vi

fxng. Automatic identification is recovered for
i ¼ 0, where steps (iii) and (iv) become unnecessary
as cardðV0Þ ¼ 1.
We note that another possible scheme would be a “direct

sum” of the partition scheme and either the symmetric base
or binomial coefficient scheme. The collection of template

labels is first partitioned into subcollections, each of which
is further decomposed into smaller sets via one of the
correlated schemes; these sets may also be recombined
across the initial partition for increased compression. We do
not consider this further here, but such an approach would
overcome some of the difficulties associated with the
restricted values of N for the base and binomial schemes.

D. Performance comparison

In this section, we compare the performance of the
uncorrelated partition scheme and its two correlated alter-
natives across three areas: template bank compression, GW
detection and GW identification (i.e. localization to a single
template). The detection and identification plots here (and
throughout the rest of the paper) were obtained using
105-trial Monte Carlo simulations, and so the errors on each
plot point are ∼10−3 for a one-sigma binomial confidence
interval.
Log-log plots of M against N for various conic com-

pression schemes are shown in Fig. 5, where the maximum
lossless compression provided by the binary scheme [19]
has also been included for reference. As alluded to in
Secs. II A–II C, the partition scheme has the largest range of
compression rates, both in terms of compression bounds
(plot area) and admitted rates (discrete density, not shown).
The two correlated schemes cover similar areas at lower
densities in Fig. 5, with the binomial coefficient scheme
offering slightly greater compression.
Detection performance for each compression setting of a

given scheme may be measured by detection sensitivity at a
fixed false alarm rate (which is simply read off the

FIG. 5. Log-log plots of M against N for various compression schemes. For each tunable scheme, the corresponding shaded region
indicates the range of possible compression rates (with the trivial compression setting K ¼ 1 excluded). Not every point in this region is
realizable in practice, as discussed in the text.
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corresponding ROC curve), or by a summary statistic that
captures most of the information contained in an ROC
curve (e.g. the area AROC under the curve). Since an ROC
curve always lies above the no-discrimination line
PD ¼ PF, we define the discrimination

D ≔ 2AROC − 1; ð42Þ

which serves as a measure of how well the detection
statistic discriminates between true and false positives.
Figure 6(a) shows plots of discrimination against com-

pression for the three proposed schemes at different values
of the true SNR, with N ≈ 256. We use the maximum-
overlap detection statistic in lieu of the optimal statistic for
the partition scheme, and are compelled to chooseN ¼ 210
for the binomial coefficient scheme. The three schemes
have comparable performance at lower SNRs, but the
partition scheme begins to outpace its correlated alterna-
tives as the SNR increases.
To compare identification performance (after a true

detection), we consider plots of the accurate-identification
rate PI against compression, but only for the fastest
standard algorithms of each scheme (i.e. I1 for the partition
scheme, and automatic identification I0 for the correlated
schemes). The rate PI for each plot point is calculated using
all and only the trials with the injected signal present, and
therefore assumes perfect detection throughout (PD ¼ 1
and PF ¼ 0). This decouples identification from detection:
it allows standardized comparison of the schemes at a fixed
false alarm rate, and does not penalize the identification

performance of any method for having inferior detection
performance.
As seen in Fig. 6(b), the usefulness of lossless com-

pression and automatic identification is limited in the
presence of noise; the addition of a simple fine-grained
search to the partition scheme is enough to yield signifi-
cantly higher identification accuracy even at marginally
lower compression. The turnaround in accurate-identifica-
tion rates for the partition scheme at larger values of P is
due to the additional statistic evaluations used in the fine-
grained search, which for I1 gives Neval ¼ M þ P in
Eq. (21). Since M ¼ N=P, κðPÞ has one turning point.
For this example, P ¼ 8 and P ¼ 64 provide the same level
of compression; identification accuracy is higher for the
former at ρ ¼ 10, similar for both at ρ ¼ 4, and higher for
the latter at ρ ¼ 2.
In summary, the partition scheme offers better overall

performance than its correlated alternatives at the same
level of compression. For GW detection, the introduced
correlations among the conic statistics lead to slightly
reduced detection sensitivity and discriminatory power at
high SNR; furthermore, the potential benefits of lossless
compression for GW identification turn out to be nullified
by the effects of noise. Hence there appears to be little
reason for using correlated schemes over the partition
scheme, which is more promising as it is easy to implement
and admits a relatively populated sliding scale of com-
pression rates. We further investigate and implement the
partition scheme as the representative conic compression
scheme in Secs. III and IV.

FIG. 6. Plots of (a) discriminationD and (b) accurate-identification rate PI against compression rate κ for the partition, symmetric base
and binomial coefficient schemes, at different values of the true SNR ρ for a ≈256-template bank.
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III. ORTHOGONALITY AND SUBSPACES

The conic compression schemes proposed in Sec. II are
fully general, in the sense that no prior assumptions about
the template bank are made apart from Eqs. (8) and (9).
These orthogonal and 1D restrictions are neither realistic
nor optimal, as template banks typically feature highly
correlated neighboring templates and are unlikely to con-
tain a template exactly proportional to the GW signal itself.
In this section, we discuss the (separate) lifting of each
assumption for the partition scheme, and the resultant
effects on detection sensitivity and localization accuracy.
Each approach may be viewed as a simplified limiting case
of an actual template bank, which can always be made
dense enough to include a signal-proportional template
(assuming model accuracy), or orthogonalized. A more
realistic example with both assumptions lifted is considered
in Sec. IV.

A. Nonorthogonal templates

We first consider a sufficiently dense bank of correlated
(nonorthogonal) templates, such that the GW signal still
lies in the 1D subspace spanned by a single template in
Hilbert space. From the first equalities in Eqs. (10), (11),
(19) and (20), it follows in the presence of a GW signal that

EðXmÞ ¼ A
X
n∈Um

hh1jhni; ð43Þ

covðXm; Xm0 Þ ¼
X
n∈Um

X
n0∈Um0

hhnjhn0 i: ð44Þ

Any partition of N as in Sec. II A defines a splitting of the
(sorted) original mean vector and covariance matrix into
P × 1 blocks and P × P blocks respectively; each entry in
the conic mean vector and covariance matrix is then simply
the sum of entries in the corresponding block, which
reflects the coarse-graining of the compression.
As a toy model for investigating nonorthogonal tem-

plates, we use a frequency-parametrized bank of sinusoidal
waveforms h ¼ sin ð2πftÞ with finite observation time T.
Assuming white noise for simplicity, the inner product (2)
may be written as

hX jF i ∝
Z

T

0

XðtÞF ðtÞdt: ð45Þ

For an N-template bank with fmin ≤ f ≤ fmax and
δf ≔ ðfmax − fminÞ=ðN − 1Þ ≪ fmin, the overlaps are
given by

hhnjhnþΔni

≈ 2

Z
1

0

sin ð2πfmintÞ sin ð2πðfmin þ jΔnjδfÞtÞdt; ð46Þ

where we have normalized to T ¼ 1 such that f is given in
waveform cycles per observation time. This sinc-like
function of Δn ∈ Z yields a band covariance matrix for
xn; we set N ¼ 256, and choose the frequency bounds such
that covðxn; xn�1Þ ≈ 0.97 [22,28,29] (i.e. a maximal mis-
match [24] of around 0.03).
In contrast to the orthogonal case, the choice of partition

generally affects the performance of the partition scheme for
nonorthogonal templates. For the one-parameter template
bank with overlaps given by Eq. (46), we consider both a
randomized partition and a more optimized (but not neces-
sarily optimal) partition with Um ¼ fn ∈ Zþjðm − 1ÞP <
n ≤ mPg. We also include for comparison a uniformly
spacedM-template subset of the original bank (equivalently,
Um ¼ fn ∈ Zþjn ¼ mPg where ⋃m∈MUm ≠ N). This
“coarsened” template bank is not compressed; it is obtained
in a more straightforward way by simply reducing the
correlation (increasing the maximal mismatch) between
neighboring templates. The standard detection algorithm
outlined in Sec. II A is then applied for the two partition
schemes and the coarsening method.
Figure 7(a) shows plots of discrimination (using Xmax)

against compression for both choices of partition and the
coarsened template bank, where performance in the pres-
ence of a GW signal is averaged over the N possible
locations of the corresponding template in the bank. The
optimized partition (with highly correlated templates
grouped together) outperforms its randomized counterpart
at all considered values of true SNR. It also shows
significant improvement over the coarsening method at
higher compression rates, which is expected as it uses
information from the full N-template bank rather than just
an M-template subset.
The largest statistic evaluation for the coarsened template

bank identifies a best guess for the GW signal, but the
accuracy of this identification is zero if the signal does not
correspond to a template in the coarsened bank. Since the
spacing of the coarsened bank is P, we may consider the
best-guess template as representative of the P templates
nearest to it (or P − 1 if P is odd), and say that the largest
statistic evaluation localizes a best guess for the signal. We
then define the localization to be accurate if the correct
template h1 is one of those templates (equivalently, if the
identified best-guess template is h1 or one of the P
templates nearest to h1). The identification algorithms in
Sec. II A also identify a single best-guess template for the
partition scheme, which allows us to consider both accurate
identification (to a precision of 1) and accurate localization
(to a precision of P) in the same way. Figure 7(b) shows
plots of accurate-identification and localization rates [using
I1, which gives Neval ¼ M þ P in Eq. (21)] against com-
pression for the (optimized) partition scheme and the
coarsening method.
As in Sec. II D, the turnaround in accurate-identification

and localization rates for the partition scheme is due to the

TUNABLE COMPRESSION OF TEMPLATE BANKS FOR … PHYSICAL REVIEW D 93, 122001 (2016)

122001-11



additional statistic evaluations of the fine-grained search.
The localization rates increase up to some level of com-
pression, which is mainly because “accurate” localization is
defined up to a degree of precision that degrades with
compression; this effect is seen for the coarsening method
as well. Localization to within the spacing of the original
template bank (i.e. identification) decreases monotonically
in accuracy for the partition scheme, and will not be
achievable for the majority of signals with the coarsening
method. The partition scheme localizes the GW signal with
slightly greater accuracy than the coarsening method, and
in fact identifies it with virtually no falloff in accuracy at
significant compression levels.
Increasing the correlation between neighboring tem-

plates is known to improve the detection and localization
performance of a general template bank [22,24,28]. Results
in this section illustrate that the partition scheme retains
these benefits up to high levels of compression, and
provides a superior alternative to simply coarsening the
template bank for computational savings. The viability of
conic compression becomes even more evident in Sec. IV,
where we apply the partition scheme to a larger and more
broadly correlated two-parameter template bank.

B. 2D subspace

Throughout Secs. II and III A, we have assumed that the
GW signal is exactly proportional to a template in the bank.
To understand the impact on compression performance
when this is not the case, we consider a bank of N

uncorrelated templates obtained through some orthogon-
alization procedure (e.g. as in Refs. [16–18]) on a general
template bank, and a signal lying in the N-dimensional
Hilbert space spanned by the orthogonal set. If N is large,
the signal is typically restricted to a low-dimensional
subspace (this follows from the volume of an N-sphere).
For simplicity, we assume it lies exactly between two
templates in a two-dimensional (2D) subspace, i.e.

SðtÞ ¼ Aðh1ðtÞ þ h2ðtÞÞ; ð47Þ

where the templates have been relabeled without loss of
generality and A ¼ ρ=

ffiffiffi
2

p
from Eq. (4). Hence the expect-

ation values of the original and conic statistics become

EðxnÞ ¼ Aðδ1n þ δ2nÞ; ð48Þ

EðXmÞ ¼ A cardðf1; 2g ∩ UmÞ; ð49Þ

while their covariances remain as Eqs. (11) and (20)
respectively. The assumption (47) is the worst-case sce-
nario for a 2D subspace, since the signal is maximally far
from both templates in the subspace.
Although it is not possible to preoptimize the choice of

partition for orthogonal templates, the performance of the
partition scheme in the presence of a 2D GW signal (47)
falls into two partition-dependent cases. At small values of
P, it is more likely that the labels 1 ∈ Um and 2 ∈ Um0 are
assigned to different sets (m ≠ m0); as P increases, so does

FIG. 7. Plots of (a) discrimination D against compression rate κ for the randomised/optimized partition scheme and the coarsening
method, and (b) accurate-identification/localization rate PI against compression rate κ for the optimized partition scheme and the
coarsening method, at different values of the true SNR ρ for a nonorthogonal 256-template bank. Accurate localization here is defined as
the identification of the template h1 or one of the nearest P templates.
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the probability that they are assigned to the same set
(m ¼ m0), which improves performance (e.g. the effective
SNR for detection purposes is raised by a factor of

ffiffiffi
2

p
).

The standard detection algorithm in Sec. II A is appli-
cable for a 2D signal, while the standard identification
algorithms may be generalized at step (iv) by considering
the two largest original statistic evaluations instead.
Figure 8 shows plots of discrimination and accurate-
identification rate against compression for a 2D signal
S ∝ h1 þ h2, compared against a 1D signal S ∝ h1 with the
same true SNR ρ. The identification algorithm I2 is used,
since the accuracy rate of I1 falls to zero if m ≠ m0. This
gives Neval ¼ M þ 2P in Eq. (21).
For detection of a 2D GW signal, the effectiveness of the

partition scheme is reduced slightly at lower SNRs, but
mitigated by the case where m ¼ m0 (i.e. the higher dotted
curves in Fig. 8). Detection performance for this special
case actually improves up to some level of compression,
which is possible as the symmetry among all possible
signals is broken (by the partitioning process). A similar
effect is seen for the example in Sec. IV. The discrimination
for a 1D signal generally lies within the 2D discrimination
bounds; at higher compression rates, there is little to no
detection performance lost if the signal is not confined to a
1D subspace.
Accurate identification of a 2D GW signal (i.e. the

identification of both h1 and h2, in this toy model) is more
problematic than in the 1D case, since accuracy rates are
reduced to begin with and fall off rapidly even at high SNR.

Nevertheless, options such as lowering compression or
switching to Ii>2 are available for the partition scheme,
which should at least allow the template with maximal
signal overlap to be identified at acceptable accuracy rates.
If the true SNR is sufficiently high, the standard

algorithms Ii>j may also be used to identify a j-dimensional
GW signal described by an arbitrary linear combination of
templates, i.e.

SðtÞ ¼
Xj

k¼1

AkhkðtÞ; ð50Þ

where Ak > Akþ1 and the templates have been relabeled
without loss of generality. At step (iv) of the algorithms,
each ordered weight Ak may be approximated by the kth
largest original statistic evaluation xðkÞ, with the SNR of the
identified signal given by

ρI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXj

k¼1

x2ðkÞ

vuut : ð51Þ

While this method fully recovers the (relative) weights of a
GW signal’s j largest modes in the limit of infinite true
SNR, its accuracy might be limited for lower-SNR signals
and/or large values of P.

FIG. 8. Plots of (a) discriminationD and (b) accurate-identification rate PI against compression rate κ for the partition scheme with 1D
and 2D signals, at different values of true SNR ρ for a 256-template bank. The higher dotted curves for each value of ρ correspond to the
template labels 1 and 2 being assigned to the same set, while the lower curves correspond to them being assigned to different sets.
Accurate identification for the 2D case is defined as the identification of both templates h1 and h2.
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IV. EXAMPLE: TAYLOR-T2 TEMPLATE BANK

In this section, we implement the (optimized) partition
scheme described in Secs. II A and III A for a larger and
more realistic example: a two-parameter template bank of
mixed-order PN waveforms, which describe the gravita-
tional radiation emitted during the inspiral part of a
comparable-mass binary merger. An optimized partition
in this case (and in general) refers to a partition of the
template bank such that highly correlated templates are
grouped together as much as possible.
The waveform family we use is the Taylor-T2 approx-

imant [30,31] for a circular and noninclined binary
with comparable component masses m1 ≥ m2. These
waveforms are parametrized by their chirp mass M ¼
ðm1m2Þ3=5=ðm1 þm2Þ1=5 and symmetric mass ratio
η ¼ m1m2=ðm1 þm2Þ2, and are written as PN expansions
in the frequency-related variable x ¼ ðGMη−3=5 _ϕ=c3Þ2=3,
where _ϕ is the time derivative of the orbital phase ϕ. We
truncate the PN expansions at finite order, specifying the
phase, amplitude and mass monopole to 3.5PN, 2PN and
1PN respectively; the resultant mixed-order waveform may
be written compactly as [32]

hM;ηðtÞ ¼
2GMη2=5

c2R
AðtÞe2iψðtÞ; ð52Þ

where R is the source distance (which the true SNR ρ is
inversely proportional to), and expressions for the ampli-
tude function A and tail-distorted orbital phase ψ are given
in Appendix B.
Template bank compression is potentially more impor-

tant for analyzing data from the low-frequency eLISA
detector, since the long duration of sources in the eLISA
band results in a much larger number of templates required
to cover parameter space [20]. As mergers of massive
black-hole binaries are an anticipated source for eLISA [5],
we consider a Taylor-T2 GW signal with the parameters
θC ¼ ð1; 0.15Þ, where θ ≔ ðM=ð106M⊙Þ; ηÞ; this corre-
sponds to a binary black-hole inspiral with component
masses ðm1; m2Þ ¼ ð2.5M; 0.6MÞ. The duration of the
signal is set to tc ¼ 1 yr.
We also generate a bank of Taylor-T2 templates with the

same duration, each normalized with respect to the inner
product (2), where SN ðfÞ is given by a (two-sided) analytic
approximation to the eLISA noise power spectral density
[33]. These templates are gridded uniformly in the trans-
formed parameters θ0 ≔ θC þ Lðθ − θCÞ (128 points in
each parameter), with the signal lying in the middle of
the four central templates and the linear transformation L
chosen such that the template overlaps are isotropic with
respect to the grid (at least for the central region). The
maximal mismatch of each template with its four nearest
neighbors is around 0.01.

Since the N ¼ 16384 templates are presorted by the
(skewed) square grid, an optimized (but not necessarily
optimal) partition is obtained by the obvious grouping into
M blocks of

ffiffiffiffi
P

p
×

ffiffiffiffi
P

p
templates. This particular template

bank admits six nontrivial square partitions with
P ∈ f4; 16; 64; 256; 1024; 4096g; we do not consider the
case P ¼ 4096, as P ¼ 1024 already yields a compression
rate of 99.9%. A large number of rectangular partitions
(where P ¼ 2i with 0 < i < 14) are also possible, but we
omit these here for simplicity as they are degenerate with
the square partitions and among themselves. Square par-
titions are straightforward to generalize for various lattice
choices [34–36], and will be fairly optimal as long as the
templates are gridded uniformly in the parameter-space
metric.
The expectation values of the original and conic statistics

[the first equality in Eqs. (10) and (43) respectively] are
visualized in Fig. 9, where the coarse graining of the
compression is evident. Overlaps for the Taylor-T2 tem-
plate bank are much less localized than the toy model
overlaps in Sec. III A; this is due to their wider cycle widths
in both M and η, as well as a slight degeneracy in the two
parameters (overlaps at the boundary of the first plot in
Fig. 9 can be as high as 0.4ρ). As the templates are so
broadly correlated and the GW signal is injected right in the
center of the bank, the partition scheme is expected to
perform well up to a high level of compression.
For comparison purposes, we again consider the simple

coarsening method discussed in Sec. III A. The smaller
coarsened banks are formed by selecting individual tem-
plates near the center of each square block in the original
bank, rather than by summing the templates in each block
(as in the partition scheme). Detection and localization
performance for both the partition scheme and the coars-
ening method on the Taylor-T2 template bank with central
injection is summarized in Fig. 10. The semi-log plots in
this section use an abscissa of − lg ð1 − κÞ=3, as most of the
considered compression rates are >90%.
Instead of the discrimination (42), we quantify detection

performance using the detection rates at two fixed false
alarm rates PF ¼ 10−2 and PF ¼ 10−4 (the number of
Monte Carlo trials performed for each plot point is ∼105,
and so the errors are ∼10−3 for a one-sigma binomial
confidence interval). At all considered values of SNR and
fixed false alarm rate, there is no falloff in the partition
scheme’s detection performance up to κ ¼ 93.8% (and
even a slight increase, due to the special choice of central
injection). While this is also the case for the coarsening
method, detection rates for the partition scheme are dis-
tinctly higher at compression rates of>90%, with improve-
ments of over 0.1 at κ ¼ 99.9%.
The identification algorithm I1 is used to localize the GW

signal, which gives Neval ¼ M þ P in Eq. (21). Rates for
accurate localization to within two central squares of
12 × 12 templates (corresponding to <1% of the entire
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bank) and 4 × 4 templates (<0.1% of the bank) are
considered. Localization is typically improved by compres-
sion up to κ ¼ 93.7%, which is provided by two different
values of P (see discussion in Sec. II D). The two values are
P ¼ 16, beyond which the matrix/contour plot of EðXmÞ in

Fig. 9 loses scale similarity to that of EðxnÞ, and P ¼ 1024,
for which performance is regained as each conic template
incorporates more of the original templates and accuracy is
added by the fine-grained search. Localization is poorer at
κ ¼ 98.0%, which corresponds to both P ¼ 64 and
P ¼ 256. To reduce clutter in Fig. 10(b), only the higher
localization rates for κ ¼ 93.7% and κ ¼ 98.0% are plotted.
The partition scheme outperforms the coarsening method at
most levels of compression, especially in the case of accurate
localization to within the smaller square of 4 × 4 templates.
For the special case of a centrally injected GW signal, the

detection and localization performance of the partition
scheme is nondecreasing up to high levels of compression
and can even rise above that of the original template bank;
however, thismay also be said for the coarseningmethod. To
illustrate that the improvement of the partition scheme over
the coarseningmethod is not simply due to the special choice
of injection, we consider two other cases: a Taylor-T2 signal
injected with randomly drawn parameters θR ¼ ð1.0; 0.16Þ,
and another injected near the boundary of the bank with the
parameters θB ¼ ð0.98; 0.06Þ (i.e. in the middle of the four
corner templates with low chirp mass and symmetric mass
ratio). The expectation values of the original statistics for
these two injections are visualized in Fig. 11.
Figure 12 shows detection and accurate-localization rates

for both the partition scheme and the coarsening method on
the random and boundary injections. The random injection
is actually recovered with slightly better rates than the
central injection rates in Fig. 10, but with a similar
improvement of the partition scheme over the coarsening
method. A more marked difference between the two
methods is obtained for the boundary injection.
Detection rates for both methods are now nonincreasing,
with the partition scheme showing greater improvement
over the coarsening method; for the ρ ¼ 6 case, the
improvement is around 0.3 at κ ¼ 93.8%. Rates for
accurate localization of the boundary injection to within
the corner square of 12 × 12 templates follow a similar
trend, with a largest improvement of around 0.5 (again for
the ρ ¼ 6 case at κ ¼ 93.7%).
Detection and localization performance for this Taylor-T2

example is injection dependent, as it is for any realistic
template bank: there is clearly no symmetry among all
possibleGW signals, since the templates are asymmetrically
correlated and the signals may lie between templates. We
have not undertaken a full injection-averaged analysis
(similar to that performed in Sec. III A) due to the size of
the template bank, but overall detection rates for such an
analysis should decrease monotonically with compression
as per intuition, with the partition scheme outperforming the
coarsening method (as it does for the three injections
presented here, as well as several others we have examined).
The partition scheme is expected to remain robust for

searches in a (d > 2)-dimensional parameter space. As the
number of templates that are highly correlated with the GW

FIG. 9. Matrix/contour plots of the expectation values EðxnÞ
and EðXmÞ for the partition scheme, at different values of set
cardinality P (with compression rate κ in parentheses) for a
Taylor-T2 GW signal (red cross) injected between the four central
templates of a (128 × 128)-template Taylor-T2 bank. The signal
has chirp massM ¼ 106M⊙ and symmetric mass ratio η ¼ 0.15,
while the bank is gridded uniformly in linearly transformed
parametersM0 (increasing from top to bottom) and η0 (increasing
from left to right) with maximal mismatch ≈0.01. Overlap values
depend on the true SNR ρ (set to 1 in these plots), and range from
positive (orange) to negative (blue) in some subinterval of
ð−Pρ; PρÞ.
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signal increases exponentially with d, enlarging the span P
of each conic template at the same rate should maintain
detection sensitivity while increasing the relative computa-
tional savings (which scale as 1 − 1=P). Good scaling with
parameter-space dimensionality allows conic compression
to be competitive with other search techniques that reduce
computational cost. For example, the method of searching
over time offset (i.e. signal time-of-arrival) using fast
Fourier transforms yields a logarithmic reduction in the
number of search points for that parameter [34], but for
multidimensional searches an overall logarithmic reduction
is easily attained by the partition scheme with little impact
on performance. The two methods might even be combined

for greater savings, by constructing conic sums of templates
aligned at a fixed reference time and using Fourier trans-
forms of the conic templates to search over time offset.

V. CONCLUSION

In this paper, we have presented and compared three
tunable conic compression schemes (partition, symmetric
base and binomial coefficient) for a general template bank
in a grid-based GW search. The bank is compressed in the
preparatory offline stage, which yields faster detection and
localization of signals by reducing the number of inner
product evaluations performed online.
A recently proposed binary labeling method [19],

modified to ensure the equal treatment of templates, is
contained as a particular case of the symmetric base
scheme. Optimal detection statistics have been calculated
for all three schemes under simplified conditions, and the
standard maximum-overlap detection statistic (i.e. the
maximum overlap over all the compressed templates) is
shown to be significantly suboptimal for the base and
binomial schemes. While these two lossless schemes
provide automatic identification of the GW signal upon
detection, the benefits of this are negated in the presence of
noise; furthermore, the lossy partition scheme offers better
detection and identification performance than its counter-
parts at the same level of compression.
We have applied the partition scheme to toy models of

(i) a correlated template bank with a signal-proportional
template and (ii) a signal lying in the span of orthogonal
templates, to show that it remains feasible under such

FIG. 10. Plots of (a) detection rate PD (at fixed false alarm rate PF) and (b) accurate-localization rate PI (to nearest ν templates) against
compression rate κ for the optimized partition scheme and the coarsening method, at different values of true SNR ρ for a GW signal
injected with central parameters θC. Accurate localization here is defined as the identification of a template within the central squares of
ν templates.

FIG. 11. Matrix/contour plots of the expectation values EðxnÞ
for Taylor-T2 GW signals (red crosses) injected in a (128 × 128)-
template Taylor-T2 bank at random (left) and near the boundary
(right).
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conditions. These toy models are instructive as they
represent the two limiting cases of a general template
bank. Correlations among the original templates result in
partition-dependent performance, but this may be opti-
mized beforehand by grouping highly correlated templates
together; the optimized partition scheme is then superior to
a simple coarsening of the template bank. If the signal is
proportional to a linear combination of templates in an
orthogonal bank, the detection performance of the scheme
is not significantly reduced.
Conic compression performs well if the original template

bank is sufficiently correlated, as demonstrated by our
example implementation of the optimized partition scheme
for a bank of ∼104 PN waveforms. We considered a
centrally injected GW signal, a randomly injected one,
and one at the boundary of the bank; again, the scheme is
superior to the coarsening method across the board. The
partition scheme is shown to be viable for practical
applications, as it maintains good detection sensitivity
and localization accuracy up to high levels of compression
and at all considered values of SNR for this more realistic
template bank.
In summary, our tunable conic compression schemes—

specifically the optimized partition scheme—might provide
an effective method of improving the speed, detection
sensitivity and localization accuracy of GW template banks.
The schemes are potentially useful for any search involving
template banks, as they are fully general and may easily be
adapted to supplement existing algorithms in GW data
analysis pipelines. Conic compression is also particularly

promising in the context of eLISA data analysis, where
online grid searches are difficult as computational costs are
more prohibitive; for example, the method could be used as
an online tool to rapidly identify nearby sources before
merger and generate alerts for electromagnetic telescopes.
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APPENDIX A: COMBINATORIAL
DESIGN THEORY

The problem of constructing a family of sets Um under
the cardinality constraints (34) and (35) in Sec. II C may be
regarded geometrically as the problem of constructing a
collection of N distinct points (representing template
labels) and M distinct lines (representing sets) with the
following properties:

(i) each point lies on exactly R lines;
(ii) each line passes through exactly C points;
(iii) any two lines intersect at exactly I points;
(iv) any two points lie on at most R − 1 lines.

The final property is the automatic identification condition,
i.e. no two labels are assigned to exactly the same
subfamily of sets.

FIG. 12. Plots of (a) detection rate PD (at fixed false alarm rate PF ¼ 10−2) and (b) accurate-localization rate PI (to nearest 12 × 12
templates) against compression rate κ for the optimized partition scheme and the coarsening method, at different values of true SNR ρ for
a GW signal injected with random parameters θR and boundary parameters θB. Accurate localization here is defined as the identification
of a template within the square of 12 × 12 templates nearest to each injection.
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The feasibility of carrying out such a construction (or
finding additional conditions on N, M and R that ensure it
is possible) is a difficult and unsolved problem in combi-
natorics. One special case that has been studied in detail is
R ¼ C and I ¼ 1. This implies that N ¼ M ¼ R2 − Rþ 1,
and that any two points must lie on exactly one line. Under
these circumstances, the four geometrical properties define
a finite projective plane of order R − 1 [25]. It is known that
finite projective planes exist with prime orders [25], but
there is no finite projective plane of order 6 [37] or 10 [38],
while the existence (or otherwise) of an order-12 finite
projective plane remains an open question.
The special case of finite projective planes is uninterest-

ing from a compression-scheme point of view, as it has
N ¼ M and hence achieves no compression. However, it
strongly indicates that the conditions (34) and (35) are not
sufficient to ensure the existence of a set construction with
the four required properties. Nonetheless, valid set con-
structions have been found for small values of N,M and R;
for example, ðN;M;RÞ ¼ ð10; 6; 3Þ yields C ¼ 5, I ¼ 2,
and the set construction

U1 ¼ f1; 2; 3; 4; 5g;
U2 ¼ f1; 2; 6; 7; 8g;
U3 ¼ f1; 3; 6; 9; 10g;
U4 ¼ f2; 5; 8; 9; 10g;
U5 ¼ f3; 4; 7; 8; 10g;
U6 ¼ f4; 5; 6; 7; 9g: ðA1Þ

Additional solutions for ðN;M;RÞ ¼ ð12; 9; 3Þ and
ðN;M;RÞ ¼ ð14; 7; 3Þ also exist. No counterexamples
[i.e. values of ðN;M;RÞ satisfying Eqs. (34) and (35)
but admitting no set construction] have been found for
N > M, although we have not conducted an exhaustive
search.
A general compression scheme satisfying the conditions

(34) and (35) might potentially admit more compression
rates than the symmetric base scheme for each value of N.
Given the difficulties in actually constructing the sets,
however, we focus instead on the special case of “maximal
representation” for fixedM and R (i.e. everyM-digit binary
number with exactly R 1’s represents a distinct template
label); this gives the binomial coefficient scheme described
in Sec. II C.

APPENDIX B: TAYLOR-T2 PN EXPANSIONS

The Taylor-T2 PN waveform (52) used in Sec. IV
describes the inspiral part of a circular and noninclined
comparable-mass binary merger [30–32]. Its amplitude and
phase are written as expansions in the frequency-related
variable

xðtÞ ¼
�
GM
c3η3=5

d
dt

ϕðtÞ
�

2=3
; ðB1Þ

with the orbital phase ϕ given to 3.5PN accuracy by

ϕðtÞ ¼ −
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where γ is the Euler-Mascheroni constant. Here τ is a time-
related variable, written in terms of the binary coalescence
time tc as

τðtÞ ¼ c3η8=5

5GM
ðtc − tÞ; ðB3Þ

where we set tc ¼ 1 yr for a massive (∼106M⊙) black-hole
binary inspiral.
The GW amplitude is then proportional to the 2PN

amplitude function

A ¼ x

�
2þ 1

3
ð−13þ ηÞxþ 4πx3=2

þ 1

180
ð−837 − 635ηþ 15η2Þx2

�
; ðB4Þ

while the GW phase is twice the tail-distorted orbital phase

ψ ¼ ϕ − 3x3=2
�
1 −

η

2
x

�
ln

�
x

xð0Þ
�
; ðB5Þ
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with the 1PN factor of 1 − ðη=2Þx included to account
for the nonlinear interaction between the gravitational
field of the source and its emitted gravitational radiation

[39]. The constant frequency in xð0Þ is set to
_ϕð0Þ ¼ 10−4π, which corresponds to an approximate
entry frequency of 10−4 Hz for the eLISA detector [33].
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