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The problem of nonlinear transport in a two-dimensional superconductor with an applied oscillating
electric field is solved by the holographic method. The complex conductivity can be computed from the
dynamics of the current for both the near- and nonequilibrium regimes. The limit of weak electric field
corresponds to the near-equilibrium superconducting regime, where the charge response is linear and the
conductivity develops a gap determined by the condensate. A larger electric field drives the system into a
superconducting nonequilibrium steady state, where the nonlinear conductivity is quadratic with respect to
the electric field. Increasing the amplitude of the applied electric field results in a far-from-equilibrium
nonsuperconducting steady state with a universal linear conductivity of one. In the lower temperature
regime we also find chaotic behavior of the superconducting gap, which results in a nonmonotonic field-
dependent nonlinear conductivity.
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I. INTRODUCTION

Charge transport of a system under a perturbative electric
field E cosðωtÞ can be well understood by the linear
response/Kubo formalism, since the properties of the
system will be hardly affected by a small E. Nonlinear
transport occurs naturally if we keep increasing the strength
of the applied electric field, and the properties of the system
depend in a singular way on E. However, understanding the
nonlinear transport calls for a theory beyond the linear
response theory, which is always a difficult task [1,2],
except for a system close to a quantum critical point where
the appropriate nonequilibrium Green function and induced
current can be calculated [3–8]. Therefore, new insights
and a general method are needed for studying a system with
an arbitrary strength of field and away from a critical point.
The AdS=CFT correspondence [9–12] states that the

dynamics of a quantum many-body system can be obtained
by solving the classical time evolution equation of its
gravity dual, no matter whether the system is near or even
far from equilibrium. For example, holography has been
applied successfully to get insights about the superconduct-
ing gap dynamics for a long time evolution and far from
equilibrium state in both a spatial homogeneous configu-
ration [13–19] and an inhomogeneous configuration
[20–23]. Many efforts have also been devoted to studying
the superconducting equilibrium state phase transitions and

charge transport properties in the linear response regime by
following Refs. [24,25]; for a review, see Ref. [26]. The
applications of holography to condensed matter are now
known as the AdS/CMT correspondence [27–30].
In condensed matter literature, previous works on

the nonlinear charge transport in two-dimensional super-
conductors mainly focused on the situation close to
zero-temperature quantum critical points between the
superconducting and insulating states when a constant
electric field is applied [1,3]. The holographic study of
nonlinear conductivity focused on a nonsuperconducting
steady current driven by a constant or oscillating electric
field [5,6,31] and an E- and ω-independent constant non-
linear conductivity was found. However, an investigation of
the nonlinear complex conductivity corresponding to an
oscillating electric field away from the equilibrium state is
still lacking. An electric field like E cosðωtÞ will induce a
time-dependent pair-breaking current in the superconduc-
tor. The linear response theory can only address the regime
of a very small E in a static superconducting background. A
large E can induce a larger current which will drive the
system out of equilibrium and suppress the superconduct-
ing gap, and eventually destroy superconductivity via a
nonequilibrium phase transition [17].
Since holography provides an applicable method to

easily compute the current induced by an external field,
we extend the framework of the holographic superconduc-
tor to study the real-time dynamics of current in both near-
equilibrium and far-from-equilibrium regimes. With this
method we are able to study nonlinear charge transport in
the nonequilibrium regime, which is beyond the capability
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of the linear response theory. A specific E-dependent
conductivity, σðω; EÞ ∼ E2, appears in the far-infrared
regime where the electric field can suppress the super-
conducting gap but is not strong enough to destroy it. By
increasing E, the superconductivity will be destroyed at a
critical value, and then the conductivity approaches a
universal value of one.

II. MODEL: CURRENT DYNAMICS AND
NONEQUILIBRIUM PHASE TRANSITION

The action of a s-wave holographic superconductor
includes a Uð1Þ gauge field and a charged scalar,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν − j∇Ψ − iAΨj2 −m2jΨj2

�
;

ð1Þ
where we choose the mass parameterm2 ¼ −2without loss
of generality. The background is assumed to be the neutral
AdS4 planar black hole and its metric, in the retarded
Eddington coordinates, reads

ds2 ¼ 1

z2
ð−fðzÞdt2 − 2dtdzþ dx2 þ dy2Þ; ð2Þ

where fðzÞ ¼ 1 − z3. The location of the horizon is at
z ¼ 1, while z ¼ 0 is the boundary where the field theory
lives. According to the holographic dictionary, the gauge
field in the bulk will source a conserved current J on the
boundary, while the scalar will source a scalar operator O
which breaks the Uð1Þ symmetry of the boundary field
theory. Specifically, the asymptotical behaviors of the bulk
fields on the boundary are

Ψ ¼ Ψð1ÞzþΨð2Þz2; Aμ ¼ aμ þ bμz: ð3Þ

In the alternative quantization, the source term Ψð1Þ is
switched off to guarantee the appearance of a spontaneous
symmetry-broken phase by a nonvanishing Ψð2Þ, and the
expectation values of O and J are obtained by holography
as the variation of the renormalized bulk on-shell action
with respect to the sources [17], i.e.,

hOi ¼ Ψð2Þ; Jμ ¼ −bμ þ ∂taμ: ð4Þ
The real-time dynamics of the superconductor is gov-

erned by the following time-dependent equations of motion
(EOMs):

∂t∂zΦ − iAt∂zΦ −
1

2
½f∂2

zΦþ f0∂zΦ

þ i∂zAtΦ − zΦ − A2
xΦ� ¼ 0; ð5Þ

∂t∂zAt þ 2AtjΦj2 − ifðΦ�∂zΦ − Φ∂zΦ�Þ
þ iðΦ�∂tΦ − Φ∂tΦ�Þ ¼ 0; ð6Þ

∂t∂zAx −
1

2
½∂zðf∂zAxÞ − 2AxjΦj2� ¼ 0; ð7Þ

combined with the ansatz of the nonvanishing fields
Φðt; zÞ ¼ Ψðt; zÞ=z; Atðt; zÞ; Axðt; zÞ. There is another con-
straint equation from the time component of the Maxwell
equations,

∂zð∂zAtÞ − iðΦ�∂zΦ − Φ∂zΦ�Þ ¼ 0: ð8Þ

An AC electric field along the x direction can be added
by imposing the boundary condition at z ¼ 0:

Axðt; z ¼ 0Þ ¼ E sinðωtÞ
ω

: ð9Þ

Then the electric field is ExðtÞ ¼ ∂tAx ¼ E cosðωtÞ. The
initial condition at t ¼ 0 is the static solution (time
independent) with a fixed chemical potential Atðz ¼ 0Þ ¼
μ (the dimensionless temperature is defined by T ¼ 3=4πμ
and the critical values are μc ¼ 4.07 and Tc ¼ 0.06 [25]),
which can be obtained by the spectral method. The EOMs
will be solved by the fourth-order Runge-Kutta method and
the constraint equation is used to monitor the error of the
solution, following Ref. [17].
Since the state density near the Fermi surface will

oscillate (driven by the oscillating current) and the positive
and negative currents cause the same effect, the super-
conducting gap will oscillate with a frequency twice that of
the applied electric field [17,32], as seen in Fig. 1(a). In
addition, a small E will hardly affect the superconducting
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FIG. 1. (a): Superconducting gap dynamics hOðtÞin ¼ hOðtÞi
hOð0Þi.

(b): Current dynamics JnðtÞ ¼ JðtÞ
Jð0Þ. T ¼ 0.68Tc, ω ¼ 0.5π.
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gap leading the superconductor in a near-equilibrium state.
With increasing E, the system will be gradually driven out
of equilibrium but will still be in a superconducting steady
state. Eventually, for a sufficiently large E, a nonequili-
brium phase transition from a superconducting to a normal
state will be induced [17]. At the transition point, the order
parameter behaves as ðEc − EÞ1=2, where the critical value
Ec depends on μ and ω, and at a fixed μ, Ec ∝ ω for large
frequency.
The current JðtÞ is evaluated from Eq. (4), which

oscillates with the same frequency as the driving electric
field, as shown in Fig. 1(b). The amplitude of the oscillating
current Jmax reaches a constant value quickly and a time-
independent conductivity is well defined when the current
develops a stable form of JðtÞ ¼ Jmax sinðωtþ θÞ. For the
value of E ¼ 3π, which is above the critical value Ec, the
system enters the nonsuperconducting steady state, and
the current is in phase with the electric field (green line),
indicating that the conductivity is real. However, for
smaller electric fields E ¼ 0.01; 1.5π, where the system
is still in a near-equilibrium or out-of-equilibrium super-
conducting state, the current lags behind the electric field,
which indicates that the conductivity is complex.
If we have the real-time dynamics of the current, σðωÞ

can be read off from the “ratio” of JðtÞ to EðtÞ. This enables
us to study the regime which is beyond the capability of the
linear response theory. From JðtÞ ¼ ℜ½σðωÞEeiωt� and
EðtÞ ¼ ℜðEeiωtÞ ¼ E cosðωtÞ, we have

JðtÞ ¼ E½σℜðωÞ cosðωtÞ − σℑðωÞ sinðωtÞ�: ð10Þ
Therefore, the real and imaginary parts of the conductivity
can be obtained by fitting the data of JðtÞ and EðtÞ after a
steady state is achieved.

III. LINEAR AND NONLINEAR CONDUCTIVITY

In the weak-field limit E=ω ≪ hOi, the superconducting
gap hOi remains a constant in time [blue line in Fig. 1(a)],
and the gauge field Ax basically can be treated as a
perturbation with a negligible backreaction to At and Ψ
[25]. We use Eq. (10) to recompute σðωÞ in the weak-field
limit including such a backreaction. The results are shown
in Fig. 2, and they agree well with the linear response

results in Ref. [25]. The pole of σℑðωÞ at ω ¼ 0 indicates
that the DC conductivity is infinite due to the Kramers-
Kronig relation, which is a sign of a superconducting state.
The zero DC resistivity can also be observed by studying
the JðtÞ dynamics in a constant electric field by replacing
Eq. (9) with Axðt; z ¼ 0Þ ¼ Et. We find that in this case
JðtÞ increases linearly in time initially and eventually
approaches the critical value at which the superconductivity
will be destroyed no matter how small E is. The linear
increase of the current in time indicates a zero resistivity
according to London’s first equation ∂tJðtÞ ∼ EðtÞ. This
gives us a hint that there is a critical ω, below which the
current will pass its maximum value and then the super-
conductivity will be destroyed. The minimal frequency we
employ here is ω ¼ 0.1π, which is larger than the criti-
cal value.
The superfluid density ns can be taken as the coefficient

of the pole in the imaginary part of the complex conduc-
tivity according to

ns ∼ ωσℑðωÞ; ω → 0; ð11Þ

and the normal component is

nn ∼ σℜ; ω → 0: ð12Þ

Moreover, the superconducting gapΔ can be fitted from the
relation nn ∼ e−Δ=T , which gives Δ ¼ ffiffiffiffiffiffiffiffihOip

=2 [25]. When
ω ≥ 2Δ, the imaginary part falls to zero and the real part
approaches one [25]. The normal state without condensa-
tion is found to have a constant conductivity σðωÞ ¼ 1 even
for ω ¼ 0, which is a well-known result in AdS4
[25,33].
Increasing the electric field to greater than E ¼ 0.01 will

drive the system away from the initial equilibrium state to
another steady state [red and green lines in Fig. 1(a)], where
the linear response theory is not able to give the correct
conductivity. Fortunately, we can still analyze the real-time
current dynamics via the holographic duality. It turns out
that as the field exceeds a critical value, E > Ec, the
superconductor will finally be driven into the normal
conducting state. In this case, the nonequilibrium conduc-
tivity is σðωÞ ¼ 1, which can be clearly seen from the green
line in Fig. 1(b) and the large-E regime in Fig. 3. These
results agree with previous holographic studies of current
dynamics in steady states driven by an external electric field
[31], where the dynamical metric driven by a constant
electric field is included to accommodate the effect of
Joule heating related to the linear growth of the black
hole mass.
From Fig. 3(a), the behavior of σðEÞ with fixed ω by

increasingE can be seen as follows: the real part will finally
reach one, while the imaginary part will finally vanish. The
E → 0 results are the same as the equilibrium results in
Fig. 2, since we start with an equilibrium superconducting
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FIG. 2. Real part (a) and imaginary part (b) of the near-
equilibrium linear conductivity σðωÞ for different T by fixing
E ¼ 0.01 ≪ Δ. The results are consistent with those in Ref. [25].
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state when E is small. Actually, three different regimes can
be identified: (1) a weak-field regime with linear equilib-
rium conductivity, which corresponds to a very small range
of E near E ¼ 0; (2) an intermediate-field regime with
nonequilibrium nonlinear conductivity, where E is beyond
the perturbative limit but smaller than the critical value Ec;
and (3) a large-field regime with nonequilibrium but linear
conductivity approaching a constant σðωÞ ¼ 1.
The nonlinear behavior in the intermediate-field region is

rather complicated. The nonlinear conductivity at the low-
frequency limit ω → 0 can be explained by a decreased
superfluid density ns and an increase of the normal density
nn. According to Eq. (11) and Eq. (12), the decrease of ns
indicates that the imaginary-part pole broadens with
increasing E and eventually disappears, while the increase
of the normal part nn results in an increase of the real part of
the complex conductivity. For large frequency, since the
conductivity for small E is already about one, the conduc-
tivity basically does not vary as E increases to the nonlinear
region. Thus, the significant nonlinear effect is more
transparent for nonextremal frequency, and we choose ω ¼
0.5π for our analysis. Remarkably, at lower temperature
(T ¼ 0.45Tc) we have observed a nonsmooth regime where
both the superconducting gap and the induced current have
chaotic dynamics; see Fig. 3(b). Moreover, in the low-E
regime, both the real and imaginary parts of the conduc-
tivity with fixed ω for different temperatures, either close to
or far from Tc, can be fitted by a quadratic polynomial

σðEÞ ¼ aE2 þ b with two fitting parameters a and b
(straight line part of the dσ=dE curves in Fig. 4). The
parameter b is the value of the linear regime conductivity
corresponding to the weak-field limit of E. Beyond this
part, the system then has very diverse dynamics that
significantly depend on the control parameters.

IV. DISCUSSION

The E-dependent conductivity in the intermediate-field
superconducting regime clearly cannot be obtained within
the linear response theory. Interestingly, a similar E2

scaling of the conductivity has been found by
Dalidovich and Philips in Ref. [1], where a two-
dimensional superconductor/insulator phase transition
model with the same dynamic critical exponent z ¼ 2 as
the holographic superconductor [34,35] was studied.
However, they focused on the DC conductivity on the
insulating side, but not on the superconducting side. In fact,
the appearance of the nonlinear AC conductivity we have
found here can be explained as the suppression of the
superconductivity due to the applied electric field
E cosðωtÞ. The normal part nn increases while the super-
conducting part ns decreases with the same scaling of E2

with respect to the electric field.
In order to check if these are universal results in any

dimensions we should extend the discussion to a
dþ 1-dimensional holographic superconductor dual to
an AdSdþ2 gravity theory. One thing for sure is that in
AdS3 and AdS5 the nonlinear conductivity in the non-
superconducting steady state from a large E is not a
constant any more [31].
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