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We study the localized direct CP violation in the hadronic decays B� → ρ0ðωÞπ� → πþπ−π�, including
the effect caused by an interesting mechanism involving the charge symmetry violating mixing between ρ0

and ω in the QCD factorization approach. We find that ρ-ω mixing makes the localized integrated CP
asymmetry move toward the negative direction when the low invariant mass of πþπ− [mðπþπ−Þlow] is near
ρ0ð770Þ. The localized integrated direct CP violation obtained in the QCD factorization approach varies
from −0.0724 to −0.0389 in the ranges of parameters when 0.750 < mðπþπ−Þlow < 0.800 GeV. This
result, especially the sign, agrees with the experimental data. We also calculate the localized integrated
direct CP violating asymmetries in the QCD factorization approach in the regions 0.470 < mðπþπ−Þlow <
0.770 GeV and 0.770 < mðπþπ−Þlow < 0.920 GeV. We find that these results agree with the experimental
data and are more accurate than the results obtained through the naive factorization approach. It is more
clear that ρ-ω mixing contributes to the sign change in these two regions.
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I. INTRODUCTION

CP violation is one of the most fundamental and
important properties of weak interactions. Even though it
has been known since 1964 [1], we still do not know
the source of CP violation completely. In the standard
model, CP violation is originated from the weak phase in
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2,3].
Besides the weak phase, a large strong phase is also needed
for direct CP violation to occur in decay processes. Usually,
this large phase is provided by QCD loop corrections and
some phenomenological mechanisms.
It was suggested long time ago that large CP violation

should be observed in the B meson systems [4,5]. In the
past few years, more attention has been focused on CP
violations in the B and D meson systems both theoretically
and experimentally. Recently, the LHCb Collaboration has
focused on three-body final states in the decays of B and D
mesons and a novel strategy to probe CP asymmetries in
their Dalitz plots [6–8]. The local asymmetries in specific
regions of the phase space of charmless three-body decays
of bottom mesons, such as B� → π�πþπ− and B� →
K�πþπ−, were measured. It was shown that the local
asymmetry distributions in the Dalitz plots reveal rich
structures and are not uniform [6–8]. These intriguing

discoveries offer opportunities to search for different
sources of CP violation through the study of the signatures
of these sources in certain phase spaces of the Dalitz
plots. It was claimed that the CP asymmetry in these
decays changes sign around the ρ0ð770Þ peak in the
B� → π�πþπ− decays [8]. The experimental values
of the localized integrated CP asymmetries in the
regions 0.470 < mðπþπ−Þlow < 0.770 GeV and 0.770 <
mðπþπ−Þlow < 0.920 GeV are 0.0508� 0.0171 and
−0.0256� 0.0202, respectively, with opposite signs [8].
In our previous work, we noted that ρ-ω mixing

contributes to the sign change around the ρ0ð770Þ peak
[9]. ρ-ω mixing is an interesting phenomenological mecha-
nism involving the charge symmetry violating mixing
between ρ0 and ω. This mechanism was considered to
obtain a large strong phase and lead to a peak of CP
violation when the invariant mass of πþπ− is near ω in B
and τ decays [10–13]. The differential CP asymmetry was
studied in the decays B� → ρ0ðωÞπ� → πþπ−π� in the
naive factorization, QCD factorization and perturbative
QCD approaches, respectively [14–16]. We calculated
localized integrated direct CP violation involving ρ-ω
mixing and discussed the sign change caused by such
mixing working in the naive factorization approach [9]. In
the calculations, the nonfactorizable contribution is effec-
tively absorbed into a color parameter which is extracted
from data of branching ratios. The B meson decay
amplitude involves the hadronic matrix element which
computation is nontrivial. For the two-body nonleptonic
decay process of the bottom hadron, the naive factorization
approach appears as the leading order result of the QCD
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factorization scheme with the 1=mb and αsðmbÞ corrections
being neglected [17,18]. For the calculation of decay
branching ratios, the naive factorization approximation is
expected to be a good method. But for the much more
subtle calculation of direct CP violation, different
approaches may produce different strong phases [16–21].
The strong phase is usually difficult to control and depends
sensitively on the calculation method. In the naive factori-
zation approach, the strong phase is introduced phenom-
enologically via the effective Wilson coefficients [9,14]. In
the QCD factorization approach, the strong phase can be
generated dynamically, which is more reliable [17,18].
Therefore, in the present work we will calculate the
localized integrated CP asymmetry in the decays B� →
π�πþπ− involving ρ-ω mixing in the QCD factorization
approach, which is a more modern method, and compare
the results with those from the naive factorization approach.
We will see that our result for the localized integrated CP

asymmetry varies from −0.0724 to −0.0389, which is more
accurate than those from the naive factorization approach
when 0.750 < mðπþπ−Þlow < 0.800 GeV. This result
still agrees with the experimental data. As for the
regions 0.470 < mðπþπ−Þlow < 0.770 GeV and 0.770 <
mðπþπ−Þlow < 0.920 GeV, the localized integrated CP
violations obtained in the QCD factorization approach also
agree with the experimental data and are more accurate
comparing with those obtained in the naive factorization
approach. We will see clearly that ρ-ω mixing makes the
localized integrated CP asymmetries move toward the
negative direction and therefore contributes to the sign

change between the regions 0.470 < mðπþπ−Þlow <
0.770 GeV and 0.770 < mðπþπ−Þlow < 0.920 GeV.
The remainder of this paper is organized as follows. In

Sec. II, we present the form of the effective Hamiltonian
and review the QCD factorization formalism briefly. Then,
we show the formalism for the CP violating asymmetry in
B� → ρ0ðωÞπ� → πþπ−π� in Sec. III. In Sec. IV we give
the input parameters and show numerical results. We also
compare the results obtained in the QCD factorization and
naive factorization approaches in this section. In the last
section, we give some discussions and summarize our
results.

II. QCD FACTORIZATION

The effective Hamiltonian in bottom hadron decays
based on the operator product expansion is [17]

H ¼ GFffiffiffi
2

p
�X
p¼u;c

X
D¼d;s

λðDÞ
p

�
c1O

p
1 þ c2O

p
2 þ

X10
i¼3

ciOi

��

þ H:c:; ð1Þ

where λðDÞ
p ¼ VpbV�

pD, ci (i ¼ 1;…:; 10; 7γ; 8g) are the
Wilson coefficients, which are calculable in the renormal-
ization group improved perturbation theory and are scale
dependent, Vpb and Vpq are the CKM matrix elements. In
the present work, we use the values of the Wilson
coefficients at the renormalization scale μ ≈mb [17,18].
The operators Oi have the following forms:

Op
1 ¼ p̄γμð1 − γ5ÞbD̄γμð1 − γ5Þp; Op

2 ¼ p̄αγμð1 − γ5ÞbβD̄βγ
μð1 − γ5Þpα;

O3 ¼ D̄γμð1 − γ5Þb
P
q0
q̄0 γμð1 − γ5Þq0; O4 ¼ D̄αγμð1 − γ5Þbβ

P
q0
q̄0βγμð1 − γ5Þq0α;

O5 ¼ D̄γμð1 − γ5Þb
P
q0
q̄0 γμð1þ γ5Þq0; O6 ¼ D̄αγμð1 − γ5Þbβ

P
q0
q̄0βγμð1þ γ5Þq0α;

O7 ¼ 3
2
D̄γμð1 − γ5Þb

P
q0
eq0 q̄0γμð1þ γ5Þq0; O8 ¼ 3

2
D̄αγμð1 − γ5Þbβ

P
q0
eq0 q̄0βγμð1þ γ5Þq0α;

O9 ¼ 3
2
D̄γμð1 − γ5Þb

P
q0
eq0 q̄0γμð1 − γ5Þq0; O10 ¼ 3

2
D̄αγμð1 − γ5Þbβ

P
q0
eq0 q̄0βγμð1 − γ5Þq0α;

O7γ ¼ −e
8π2

mbs̄σμνð1þ γ5ÞFμνb; O8g ¼ −gs
8π2

mbs̄σμνð1þ γ5ÞGμνb;

ð2Þ

where α and β are color indices, q0 ¼ u, d, s, c or b quarks. In Eq. (2), Op
1 and Op

2 are the tree level operators, O3 −O6 are
QCD penguin operators, O7 −O10 arise from electroweak penguin diagrams, and O7γ and O8g are the electromagnetic and
chromomagnetic dipole operators, respectively.
In QCD factorization, we consider the weak decay B → M1M2 (Mi refers to ρ0, ω or π− in our calculations) in the heavy-

quark limit. In this limit, the transition matrix element of an operator Oi in the weak effective Hamiltonian is given by [17]

hM1M2jOijBi ¼
X
j

FB→M1

j ðm2
2Þ
Z

1

0

duTI
ijðuÞΦM2

ðuÞ þ ðM1↔M2Þ

þ
Z

1

0

dξdudvTII
i ðξ; u; vÞΦBðξÞΦM1

ðvÞΦM2
ðuÞ; ð3Þ
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where FB→M1;2
j ðm2

2;1Þ denotes a B → M1;2 form factor with m1;2 being the mass of the light meson M1ð2Þ, ΦM1ð2Þ ðxÞ and
Φm1ð2Þ ðxÞ are the leading-twist and twist-3 light cone distribution amplitudes (LCDA), respectively, with x being the light-

cone momentum fraction of the quark inside the meson, and TI
ijðuÞ and TII

i ðξ; u; vÞ are hard scattering kernels, which are
calculated order by order in perturbation theory. The vertex and penguin corrections are included at the order of αs in TI

ij.
The hard interactions [at order OðαsÞ] between the spectator quark and the emitted meson, at large gluon momentum, are
taken into account by TII

i .
The matrix element is given by [17]

hM1M2jHjBi ¼
X
p¼u;c

λðDÞ
p hM1M2jT p

A þ T p
BjBi; ð4Þ

where the two terms account for the flavor topologies of the form factor and hard scattering terms in Eq. (3), respectively.
The expression of T p

A is

T p
A ¼ δpuα

p
1 ðM1M2ÞAð½q̄su�½ūD�Þ þ δpuα

p
2 ðM1M2ÞAð½q̄sD�½ūu�Þ

þ αp3 ðM1M2Þ
X
q

Að½q̄sD�½q̄q�Þ þ αp4 ðM1M2Þ
X
q

Að½q̄sq�½q̄D�Þ

þ αp3;EWðM1M2Þ
X
q

3

2
eqAð½q̄sD�½q̄q�Þ þ αp4;EWðM1M2Þ

X
q

3

2
eqAð½q̄sq�½q̄D�Þ; ð5Þ

where the sums extend over q ¼ u, d, s, and q̄s (¼ u, d, or s) denotes the spectator antiquark. The symbol Að½� � ��½� � ��Þ
indicates that the matrix elements of the operators in T p

A are to be evaluated in the factorized form, such as
hM1M2jAð½q̄su�½ūD�ÞjBi ¼ hM1j½q̄su�j0ihM2j½ūD�jBi, where the quark flavors of the first (second) square bracket match
those ofM1 (M2). The coefficients α

p
i ðM1M2Þ and αpi;EWðM1M2Þ contain all dynamical information and can be expressed in

terms of the coefficients api defined in Ref. [17]. The general form of the coefficients api ðM1M2Þ at the next-to-leading order
in αs is [17]

api ðM1M2Þ ¼
�
ci þ

ci�1

Nc

�
NiðM2Þ þ

ci�1

Nc

CFαs
4π

�
ViðM2Þ þ

4π2

Nc
HiðM1M2Þ

�
þ Pp

i ðM2Þ; ð6Þ

where NiðM2Þ ¼ 0 if i ¼ 6, 8 with M2 ¼ V, and NiðM2Þ ¼ 1 for all other cases [VðPÞ denotes a vector (pseudoscalar)
meson]. The first two terms in Eq. (6) include the results of the naive factorization followed by the vertex, the
hard-spectator, and the penguin corrections, which formulas can be found in Refs. [17,18]. As stressed in Refs. [17,18], the
hard-spectator interactions and penguin corrections should be evaluated at the hard-collinear scale μh ¼

ffiffiffiffiffiffiffiffi
Λhμ

p
with Λh ¼ 0.5 GeV.
T p

B includes the power-suppressed annihilation parts and can be parametrized in its most general form as

T p
B ¼ δpub1ðM1M2Þ

X
q00

Bð½ūq00�½q̄00u�½D̄b�Þ þ δpub2ðM1M2Þ
X
q00

Bð½ūq00�½q̄00D�½ūb�ÞÞ

þ b3;EWðM1M2Þ
X
q;q00

3

2
eqBð½q̄q00�½q̄0D�½q̄b�Þ þ b4;EWðM1M2Þ

X
q;q00

3

2
eqBð½q̄q00�½q̄00q�½D̄b�Þ

þ b3ðM1M2Þ
X
q;q00

Bð½q̄q00�½q̄00D�½q̄b�Þ þ b4ðM1M2Þ
X
q;q00

Bð½q̄q00�½q̄00q�½D̄b�Þ; ð7Þ

where the sums extend over q, q00 ¼ u, d, s. The sum over q00 arises because a quark-antiquark pair must be created via
g → q̄00q00 after the spectator quark is annihilated. We define the matrix elements of a operator Bð½� � ��½� � ��½� � ��Þ as in
Refs. [17,18]

hM1M2jBð½� � ��½� � ��½� � ��ÞjBi≡ iGFfBfM1
fM2

; ð8Þ

where the quark flavors of the three brackets match those ofM1,M2 and B and fX (X ¼ B, ρ0, ω or π) is the decay constant
of X.
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The coefficients bi in Eq. (7) are expressed in the
following forms [17]:

b1 ¼
CF

N2
c
c1Ai

1; b2 ¼
CF

N2
c
c2Ai

1;

b3 ¼
CF

N2
c
fc3Ai

1 þ c5Ai
3 þ ½c5 þ Ncc6�Af

3g;

b3;EW ¼ CF

N2
c
fc9Ai

1 þ c7Ai
3 þ ½c7 þ Ncc8�Af

3g;

b4 ¼
CF

N2
c
fc4Ai

1 þ c6Ai
2g;

b4;EW ¼ CF

N2
c
fc10Ai

1 þ c8Ai
2g; ð9Þ

where AiðfÞ
k ðM1M2Þ (≡AiðfÞ

k for simplicity) are obtained in
terms of convolutions of hard scattering kernels with the
light cone expansions and the superscript i (f) refers to
gluon emission from the initial (final) state quarks. The

expressions of AiðfÞ
k ðM1M2Þ can be found in Ref. [17].

The calculations of the hard-spectator interaction cor-
rections involve the twist-3 distribution amplitude. It
happens that these contributions involve endpoint diver-
gences because of the nonvanishing endpoint behavior of
Φmi

[17,18]. We extract this divergence by defining a

parameter XMi
H through [17,18]

Z
1

0

dx
x̄
Φmi

ðxÞ ¼ Φmi
ð1Þ

Z
1

0

dx
x̄
þ
Z

1

0

dx
x̄
½Φm1

ðxÞ − Φmi
ð1Þ�

≡ Φmi
ð1ÞXM1

H þ
Z

1

0

dx
½x̄�þ

Φmi
ðxÞ ð10Þ

with x̄≡ 1 − x. The remaining integral is finite (it vanishes
for pseudoscalar mesons), but XMi

H is an unknown param-
eter representing soft-gluon interaction with the spectator
quark. The annihilation corrections also exhibit endpoint
divergences which can be treated in the same manner as the
hard-spectator interactions and interpreted as [17,18]

Z
1

0

dx
x

→ XMi
A ;

Z
1

0

dx
ln x
x

→ −
1

2
ðXMi

A Þ2: ð11Þ

We assume that the divergence parameters for the hard-
spectator interaction and the annihilation correction are
universal [17,18]. However, for the B → VP and B → PV
decays, the divergence parameters (XPV and XVP) are not
necessarily the same [22]. In the calculations, we para-
metrize the divergence integrals by [17,18]:

XPVðVPÞ ¼ ð1þ ρPVðVPÞeiϕPVðVPÞ Þ lnmB

Λh
; ð12Þ

where ρPVðVPÞ and ϕPVðVPÞ are real parameters which will
be given in the following.

III. CP VIOLATION IN B� → ρ0ðωÞπ� → πþπ−π�

A. Formalism for CP violation

The amplitude for the decay B− → πþπ−π− through
the vector resonance (ρ0 and ω) can be expressed as
[9,14,23–25]:

A ¼ ðΣ − s0ÞM ¼ hπþπ−π−jHT jB−i þ hπþπ−π−jHPjB−i;
ð13Þ

where HT and HP are the Hamiltonians for the tree and
penguin operators, respectively,

ffiffiffiffi
s0

p
is the high invariance

mass of the πþπ− pair, Σ ¼ 1
2
ðs0max þ s0minÞ with s0max and

s0min being the maximum and minimum values of s0 for a
fixed s, respectively, and

ffiffiffi
s

p
is the low invariant mass of the

πþπ− pair [mðπþπ−Þlow]. In order to obtain a large signal
for direct CP violation, we need to appeal to some
phenomenological mechanisms. ρ-ω mixing has the dual
advantages that the strong phase difference is large (passes
through 90° at the ω resonance) and well known [11,12].
With this mechanism, to the first order in isospin violation,
the amplitude for B− → ρ0ðωÞπ− → πþπ−π− takes the
following form at a value of

ffiffiffi
s

p
close to the ω resonance

mass [14]:

hπþπ−π−jHT jB−i¼ðΣ−s0Þ
�

gρ
sρsω

~Πρωtωþ
gρ
sρ
tρ

�
; ð14Þ

hπþπ−π−jHPjB−i ¼ ðΣ − s0Þ
�

gρ
sρsω

~Πρωpω þ gρ
sρ

pρ

�
;

ð15Þ

where tV (V ¼ ρ0 or ω) is the tree amplitude and pV is the
penguin amplitude for producing an intermediate vector
meson V, gρ is the coupling for ρ0 → πþπ−, ~Πρω is the
effective ρ-ω mixing amplitude, and sV is from the inverse
propagator of the vector meson V, sV ¼ s −m2

V þ imVΓV .
From Eqs. (14) and (15), we note that ρ-ω mixing

provides an additional complex term for the tree and
penguin amplitudes (the first term in each equation),
respectively. These complex terms will enlarge the CP-
even phase, and lead to a peak of CP asymmetry as
mentioned before. We will show the difference between the
CP asymmetries with and without ρ-ω mixing later. Here,
we assume that the B� → πþπ−π� process is dominated by
the resonance ρ0 in a certain region of its Dalitz plot.
We stress that the direct coupling ω → πþπ− is

effectively absorbed into ~Πρω [26], leading to the

explicit s dependence of ~Πρω. Making the expansion
~ΠρωðsÞ ¼ ~Πρωðm2

ωÞ þ ðs −m2
ωÞ ~Π0

ρωðm2
ωÞ, the ρ-ω mixing

parameters were determined in the fit of Gardner and
O’Connell [27]: Re ~Πρωðm2

ωÞ ¼ −3500� 300 MeV2,
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Im ~Πρωðm2
ωÞ¼−300�300MeV2, ~Π0

ρωðm2
ωÞ¼0.03�0.04.

In practice, the effect of the derivative term is negligible.
In this work, we only consider ρ0 and ω resonances.

Then, for a fixed s, the differential CP asymmetry
parameter can be defined as

ACP ¼ jMj2 − jM̄j2
jMj2 þ jM̄j2 : ð16Þ

By integrating the denominator and numerator of ACP,
respectively, in the region Ω (s1 < s < s2, s01 < s0 < s02),
we obtain the localized integrated CP asymmetry, which
can be measured by experiments and takes the following
form:

AΩ
CP ¼

R
s2
s1
ds

R s0
2

s0
1
ds0ðΣ − s0Þ2ðjMj2 − ¯jMj2ÞR

s2
s1
ds

R s0
2

s0
1
ds0ðΣ − s0Þ2ðjMj2 þ ¯jMj2Þ

: ð17Þ

According to kinematics of the three body decay, Σ½¼
1
2
ðs0max þ s0minÞ� is related to s. In our calculations, s varies

in a small region, and therefore Σ can be treated as a

constant approximately [8]. Then, the terms
R s0

2

s0
1
ds0ðΣ−s0Þ2

are canceled, and AΩ
CP becomes independent of the high

invariant mass of πþπ−. In practice, to be more precise, we
take into account the s-dependence of s0max and s0min in our
calculations. We choose s0min < s0 < s0max as the integration
interval of the high invariance mass of πþπ− and regardR s0max
s0min

ds0ðΣ − s0Þ2 as a factor which is dependent on s.

B. The tree and penguin amplitudes

With the Hamiltonian given in Eq. (1), we are ready to
evaluate the matrix elements for B− → ρ0ðωÞπ− in QCD
factorization. The matrix elements for B → P and B → V
can be decomposed as [28]

hPjJμjBi ¼
�
pB þ pP −

m2
B −m2

P

k2

�
μ

FBP
1 ðk2Þ

þm2
B −m2

P

k2
kμFBP

0 ðk2Þ; ð18Þ

hVjJμjBi ¼
2

mB þmV
εμνρσϵ

�νpρ
Bp

σ
VV

BVðk2Þ þ i

�
ϵ�μðmB þmVÞABV

1 ðk2Þ

−
ϵ� · k

mB þmV
ðpB þ pVÞμABV

2 ðk2Þ − ϵ� · k
k2

2mV · kμABV
3 ðk2Þ

�
þ i

ϵ� · k
k2

2mV · kμABV
0 ðk2Þ; ð19Þ

where Jμ is the weak current [Jμ ¼ ūγμð1 − γ5Þb or d̄γμð1 − γ5Þb], k is the difference of momentum between B and PðVÞ,
and ϵμ is the polarization vector of V, FBP

i ðk2Þ (i ¼ 0, 1) and ABV
i ðk2Þ (i ¼ 0, 1, 2, 3) are the weak form factors. The form

factors included in our calculations satisfy FBP
1 ð0Þ ¼ FBP

0 ð0Þ, ABV
3 ð0Þ ¼ ABV

0 ð0Þ, and ABV
3 ðk2Þ ¼ ½ðmB þmVÞ=

2mV �ABV
1 ðk2Þ − ½ðmB −mVÞ=2mV �ABV

2 ðk2Þ.
Then, from Eqs. (5) and (7), we have

tρ ¼ −iGFλ
ðDÞ
u fmρfρFBπ

1 ðm2
ρÞαu2ðπρÞ þmρfπA

Bρ
0 ðm2

πÞαu1ðρπÞ þ fBfπfρ½b2ðρπÞ − b2ðπρÞ�g; ð20Þ

tω ¼ −iGFλ
ðDÞ
u fmωfωFBπ

1 ðm2
ωÞαu2ðπωÞ þmωfπABω

0 ðm2
πÞαu1ðωπÞ� þ fBfπfω½b2ðωπÞ þ b2ðπωÞg; ð21Þ

where the expressions for all the αi and bi have been given before. In the same way, we obtain the penguin operator
contributions:

pρ ¼ −iGF

X
p¼u;c

λðDÞ
p

�
mρfπA

Bρ
0 ðm2

πÞ½αp4 ðρπÞ þ αp4;EWðρπÞ� þmρfρFBπ
1 ðm2

ρÞ
�
αp3;EWðπρÞ − αp4 ðπρÞ þ

1

2
αp4;EWðπρÞ

�

þ fBfπfρ½b3ðρπÞ þ b3;EWðρπÞ − b3ðπρÞ − b3;EWðπρÞ�
�
; ð22Þ

pω ¼ −iGF

X
p¼u;c

λðDÞ
p

�
mωfπABω

0 ðm2
πÞ½αp4;EWðπωÞ þ αp4;EWðωπÞ� þmωfωFBπ

1 ðm2
ωÞ
�
2αp3 ðπωÞ þ

1

2
αp3;EWðπωÞ þ αp4;EWðπωÞ

�

þ fBfπfω½b3ðωπÞ þ b3;EWðπωÞ þ b3ðωπÞ þ b3;EWðωπÞ�
�
: ð23Þ
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IV. NUMERICAL RESULTS

A. Input parameters

The predictions obtained in the QCD factorization
approach depend on many input parameters. In the QCD
factorization approach, since power corrections have been
considered, Nc is simply a color parameter and we use
Nc ¼ 3. The CKM matrix in the Wolfenstein parametriza-
tion can be determined from the experimental data. Since λ
and A are well determined and the uncertainties due to the
CKM matrix elements are mostly from ρ and η, we take
the central values of λ (¼ 0.225) and A (¼ 0.814). We use
the following values of ρ and η [29]:

ρ̄ ¼ 0.117� 0.021; η̄ ¼ 0.353� 0.013 ð24Þ

with

ρ̄ ¼ ρ

�
1 −

λ2

2

�
; η̄ ¼ η

�
1 −

λ2

2

�
: ð25Þ

The Wilson coefficients ci at the renormalization scale
μ ¼ mb can be found in Ref. [18].
The quark mass is taken at the scale μ ¼ mb in B decays

(in MeV) [17,18]:

mu¼md¼3.7; ms¼90; mc¼1300; mb¼4200:

ð26Þ

For meson masses, we shall use the following values (in
MeV) [29]:

mB� ¼5279; mπ� ¼139; mω¼782; mρ¼775:

The chiral enhancement factor rMi
χ for the pseudoscalar

meson Mi is parametrized by the term rMi
χ ðμÞ ¼

2m2
i

mbðμÞðmqþmsÞðμÞ [17,18] where mq denotes the average of

the up and down quark masses. For the vector meson Mi,

we have rMi
χ ðμÞ ¼ 2mi

mbðμÞ
f⊥Mi

ðμÞ
fMi

[17,18] where the scale-

dependent transverse decay constant f⊥M2
is defined as

hM2ðp; ε�Þjq̄σμνq0j0i ¼ f⊥M2
ðpμε

�
ν − pνε

�
μÞ. For the decay

constants we take (in MeV) [22]

fπ ¼ 131; fB¼ 210�20; fρ¼ 216�3;

fω¼ 187�5; f⊥ρ ¼ 165�9; f⊥ω ¼ 151�9; ð27Þ

where f⊥V is given for μ ¼ 1 GeV.
The LCDA ΦMi

is the leading-twist amplitude of Mi,
whereas Φmi

is the twist-3 amplitude. The leading-twist
LCDA for the pseudoscalar and vector mesons are [17,18]

ΦP;Vðx; μÞ ¼ 6xð1 − xÞ
�
1þ

X∞
n¼1

aP;Vn ðμÞC3=2
n ð2x − 1Þ

�
;

ð28Þ

and twist-3 ones are [17,18]

ΦpðxÞ ¼ 1; ΦσðxÞ ¼ 6xð1 − xÞ;

Φvðx; μÞ ¼ 3

�
2x − 1þ

X∞
n¼1

a⊥;V
n ðμÞPnþ1ð2x − 1Þ

�
; ð29Þ

where CnðxÞ and PnðxÞ are the Gegenbauer and Legendre
polynomials, respectively. anðμÞ are Gegenbauer moments
that depend on the scale μ (¼ 1 GeV), and the values of
Gegenbauer moments are taken from [22]

aρ1 ¼ 0; aρ2 ¼ 0.15� 0.07; a⊥ρ
1 ¼ 0;

a⊥ρ
2 ¼ 0.14� 0.06;

aω1 ¼ 0; aω2 ¼ 0.15� 0.07; a⊥ω
1 ¼ 0;

a⊥ω
2 ¼ 0.14� 0.06;

aπ1 ¼ 0; aπ2 ¼ 0.25� 0.15: ð30Þ

The heavy-to-light form factors obtained from QCD sum
rule calculations have the following values (at k2 ¼ 0) [22]:

ABρ
0 ð0Þ ¼ 0.303� 0.029;

ABω
0 ð0Þ ¼ 0.281� 0.030;

FBπ
1 ð0Þ ¼ 0.25� 0.03: ð31Þ

The study of hadronic B decays favors a smaller first
inverse moment λB [22], where λB is defined byR
1
0

dξ
ξ ΦBðξÞ≡ mB

λB
with ΦBðξÞ being the LCDA of the B

meson. We shall use λB ¼ 350� 150 MeV [17]. A fit to
the B → VP and B → PV decays yields ρPV ≈ 0.87,
ρVP ≈ 1.07, ϕPV ≈ −30° and ϕVP ≈ −70° [22]. For the
estimate of theoretical uncertainties, we shall assign an
error of �0.1 to ρPVðVPÞ and �20° to ϕPVðVPÞ [22]. We find
that the local integrated direct CP violation is more
sensitive to ϕPVðVPÞ in practice.

B. Numerical results for CP violation

It is found that there is a maximum value for the
differential CP violating parameter, when the low invariant
mass of the πþπ− pair is near the vicinity of the ω
resonance, 0.780–0.785 GeV. To be more specific, we
display the differential CP asymmetries in Figs. 1(a)
and (b) for some values of the CKM matrix elements
and the divergence parameters. This behavior has been
discussed in the naive factorization [14], QCD factorization
[15] and perturbative QCD approaches [16], respectively.
According to Eq. (17), we integrate ACP over the low
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invariant mass of πþπ− (
ffiffiffi
s

p
) and obtain the localized

integrated asymmetries AΩ
CP. Considering the significant

region of ρ-ω mixing, we choose the integration interval offfiffiffi
s

p
to be from 0.750 to 0.800 GeV. In order to compare

with the newest result of the LHCb experiments, we also
calculate AΩ

CP when
ffiffiffi
s

p
is in the low-mass region

(0.470 <
ffiffiffi
s

p
< 0.770 GeV) and the high-mass region

(0.770 <
ffiffiffi
s

p
< 0.920 GeV) near the ρ0 resonance [8].

The numerical results are displayed in the Table I. We
also display AΩ

CP with and without ρ-ω mixing when
0.750 <

ffiffiffi
s

p
< 0.800 GeV in Table I.

Table I shows that the values of AΩ
CP in our calculations

vary from −0.0724 to −0.0389 in the variation ranges
of the CKM matrix elements, ϕPV;VP and ρPV;VP when

0.750 <
ffiffiffi
s

p
< 0.800 GeV. The localized integrated CP

asymmetry obtained from experiments is −0.0294�
0.0285 when 0.750 < mðπþπ−Þlow < 0.800 GeV. The val-
ues in our calculations agree with this experimental data.
We stress that AΩ

CP with ρ-ω mixing in this calculation is
always negative and the sign of AΩ

CP without ρ-ω mixing is
always positive in this integration region. This indicates
that ρ-ωmixing is vital for AΩ

CP to be negative in this region.
According to the above discussions, we note that ρ-ω

mixing changes the sign of AΩ
CP from positive to negative in

its significant region. From the plot of the differential CP
violating parameter, we can see that the peak of the
differential asymmetry ACP involving ρ-ω mixing is on
the right of 0.770 GeV [14–16]. Therefore, comparing with

TABLE I. The localized integrated asymmetries AΩ
CP (in 10−2) for ρPV ¼ 0.97ð0.77Þ and ρVP ¼ 1.17ð0.97Þ. For each value of η̄ and ρ̄,

the first and second lines correspond to AΩ
CP with and without ρ-ω mixing, respectively, when 0.750 <

ffiffiffi
s

p
< 0.800 GeV, and the third

and fourth lines correspond to the low-mass region (0.470 <
ffiffiffi
s

p
< 0.770 GeV) and the high-mass region (0.770 <

ffiffiffi
s

p
< 0.920 GeV)

near the resonance mass, respectively. For other input parameters, we take their center values.

ϕVP ¼ −50° ϕPV ¼ −10° ϕVP ¼ −50° ϕPV ¼ −50° ϕVP ¼ −90° ϕPV ¼ −10° ϕVP ¼ −90° ϕPV ¼ −50°

η̄ ¼ 0.096, ρ̄ ¼ 0.344
0.750 <

ffiffiffi
s

p
< 0.800 GeV −7.24ð−7.09Þ −5.71ð−5.89Þ −5.70ð−5.86Þ −4.36ð−4.78Þ

4.33(4.57) 2.88(3.42) 3.34(3.73) 2.08(2.71)
0.470 <

ffiffiffi
s

p
< 0.770 GeV 5.06(5.31) 3.44(4.04) 3.86(4.30) 2.47(3.17)

0.770 <
ffiffiffi
s

p
< 0.920 GeV −5.22ð−5.21Þ −3.89ð−4.18Þ −4.13ð−4.33Þ −2.98ð−3.40Þ

η̄ ¼ 0.139, ρ̄ ¼ 0.366
0.750 <

ffiffiffi
s

p
< 0.800 GeV −6.46ð−6.33Þ −5.10ð−5.27Þ −5.09ð−5.23Þ −3.89ð−4.27Þ

3.87(4.08) 2.57(3.06) 2.98(3.33) 1.87(2.42)
0.470 <

ffiffiffi
s

p
< 0.770 GeV 4.52(4.75) 3.06(3.61) 3.45(3.84) 2.20(2.83)

0.770 <
ffiffiffi
s

p
< 0.920 GeV −4.66ð−4.66Þ −3.48ð−3.73Þ −3.69ð3.86Þ −2.67ð−3.03Þ

0.75 0.76 0.77 0.78 0.79 0.8
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.75 0.76 0.77 0.78 0.79 0.8
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

(a) (b)

FIG. 1. The differential asymmetry, ACP. (a) For ρPV ¼ 0.97 and ρVP ¼ 1.17: the solid (dot) line corresponds to ϕPV ¼ −10° (−50°)
and ϕVP ¼ −50° (−90°) with minimum CKM matrix elements; the dashed (dot-dashed) line corresponds to ϕPV ¼ −10° (−50°) and
ϕVP ¼ −50° (−90°) with maximum CKM matrix elements; (b) Same as (a) but for ρPV ¼ 0.77 and ρVP ¼ 0.97.
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AΩ
CP in the range 0.470 <

ffiffiffi
s

p
< 0.770 GeV, the localized

integrated CP asymmetries move toward the negative
direction when 0.770 <

ffiffiffi
s

p
< 0.920 GeV due to ρ-ω

mixing. This behavior contributes to the sign change
around the ρ resonance, as in the naive factorization
approach [9]. In the QCD factorization approach, AΩ

CP in
regions 0.470 < mðπþπ−Þlow < 0.770 GeV and 0.770 <
mðπþπ−Þlow < 0.920 GeV are from 0.0220 to 0.0531 and
from −0.0522 to −0.0303, respectively. The experimental
data in the regions 0.470 < mðπþπ−Þlow < 0.770 GeV and
0.770 < mðπþπ−Þlow < 0.920 GeV are 0.0508� 0.0171
and −0.0256� 0.0202, respectively. We can see our results
agree with experiments and it is clear that ρ-ω mixing does
contribute to the sign change in those two regions.
In Table II, we compare the localized integrated direct CP

violation involving ρ-ω mixing in the naive factorization [9]
and QCD factorization approaches. The localized integrated
direct CP violations in the naive factorization are
(−0.0724, −0.0389), (0.0220, 0.0531), and (−0.0522,
−0.0303) corresponding to 0.750 <

ffiffiffi
s

p
< 0.800 GeV,

0.470<
ffiffiffi
s

p
<0.770GeV, and 0.770 <

ffiffiffi
s

p
< 0.920 GeV,

respectively. One can see the results in the QCD factorization
approach agree with the experimental data and the ranges of
their values are smaller. In both the naive and the QCD
factorization approaches ρ-ω mixing contributes to the sign
change of CP asymmetry between the regions 0.470 <
mðπþπ−Þlow < 0.770 GeV and 0.770 < mðπþπ−Þlow <
0.920 GeV.

V. CONCLUSION AND DISCUSSION

In this work, we have studied the localized integrated CP
asymmetry for the decays B� → ρ0ðωÞπ� → πþπ−π� with
the inclusion of ρ-ω mixing and the sign change caused by
ρ-ω mixing in the QCD factorization approach which is
expected to be a reliable approach in the heavy-quark limit.
The results are consistent with the experimental data and
are more accurate than those in the naive factorization
approach which were obtained in our previous work.
The value of AΩ

CP in the region 0.750 < mðπþπ−Þlow <
0.800 GeV varies from −0.0724 to −0.0389. This result,
especially the sign, agrees with the experimental data. We
cannot obtain the right CP asymmetry parameter without
ρ-ω mixing. In the regions 0.470 < mðπþπ−Þlow <
0.770 GeV and 0.770 < mðπþπ−Þlow < 0.920 GeV, AΩ

CP
are from 0.0220 to 0.0531 and from −0.0522 to −0.0303,
respectively, and agree with the experimental data. This

explains the sign change of CP asymmetry between
the regions 0.470 < mðπþπ−Þlow < 0.770 GeV and
0.770 < mðπþπ−Þlow < 0.920 GeV. We conclude that
ρ-ω mixing contributes to the sign change of the CP
violating asymmetry around the ρ0ð770Þ peak of
mðπþπ−Þlow and should be taken into account in the
calculations of CP violation.
In the calculations of CP asymmetry for the decays

B� → ρ0ðωÞπ� → πþπ−π�, the large strong phase mainly
comes from ρ-ωmixing in the naive factorization approach.
On the other hand, in the QCD factorization scheme,
αsðmbÞ corrections at the leading order of 1=mb are
included and the strong phase can also be generated
dynamically. Since the way to introduce the strong phase
is different in these two approaches, studying the direct CP
violation, especially the localized direct CP violation,
could be a good way to check their validities. As we
expected, the QCD factorization approach is more reliable
and the results in this approach are more accurate. In the
QCD factorization framework, there is cancellation of
the scale and renormalization scheme dependence between
the Wilson coefficients and the hadronic matrix elements.
However, there still remain some uncertainties in this
calculations. The QCD factorization suffers from endpoint
singularities which cause the main uncertainties. The CP
violating asymmetry depends on the unknown parameters
(ρPVðVPÞ and ϕPVðVPÞ) which are associated with such
singularities [17,18]. These uncertainties can be reduced
if we select the divergence parameters appropriately [22].
One requires more accurate experimental data to determine
these divergence parameters. The further calculation of the
amplitude for B� → ρ0ðωÞπ� at next-to-next-to leading
order in the QCD factorization approach introduces new
rescattering phases that modify the leading-order result and
the direct CP asymmetry could be calculated more accu-
rately [30–33]. Besides, it is now apparent that the CKM
matrix is the primary source of direct CP violation in flavor
changing processes in B decays and not well determined.
Therefore, the CKMmatrix parameters can also bring some
uncertainties.
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TABLE II. The localized integrated asymmetries AΩ
CP (in 10−2) obtained in the QCD factorization and naive factorization approaches

compared with the experimental data.
ffiffiffi
s

p
(GeV) 0.750 <

ffiffiffi
s

p
< 0.800 0.470 <

ffiffiffi
s

p
< 0.770 0.770 <

ffiffiffi
s

p
< 0.920

Experimental data ð−5.79;−0.09Þ (3.37, 6.79) ð−4.58;−0.54Þ
QCD factorizaion ð−7.24;−3.89Þ (2.20, 5.31) ð−5.22;−3.03Þ
Naive factorization ð−7.52;−2.90Þ ð−0.94; 3.53Þ (-4.08, 0.46)ð−4.08; 0.46Þ
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