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We study the localized direct CP violation in the hadronic decays B* — p°(w)z* — ztz~ 7%, including

the effect caused by an interesting mechanism involving the charge symmetry violating mixing between p°
and o in the QCD factorization approach. We find that p-@ mixing makes the localized integrated CP
asymmetry move toward the negative direction when the low invariant mass of "z~ [m(z"z7),,,,] is near
p°(770). The localized integrated direct CP violation obtained in the QCD factorization approach varies
from —0.0724 to —0.0389 in the ranges of parameters when 0.750 < m(z*z7),,,, < 0.800 GeV. This
result, especially the sign, agrees with the experimental data. We also calculate the localized integrated
direct CP violating asymmetries in the QCD factorization approach in the regions 0.470 < m(z*77),,,, <
0.770 GeV and 0.770 < m(z" 7" )4, < 0.920 GeV. We find that these results agree with the experimental
data and are more accurate than the results obtained through the naive factorization approach. It is more

clear that p-o mixing contributes to the sign change in these two regions.
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I. INTRODUCTION

CP violation is one of the most fundamental and
important properties of weak interactions. Even though it
has been known since 1964 [1], we still do not know
the source of CP violation completely. In the standard
model, CP violation is originated from the weak phase in
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2,3].
Besides the weak phase, a large strong phase is also needed
for direct CP violation to occur in decay processes. Usually,
this large phase is provided by QCD loop corrections and
some phenomenological mechanisms.

It was suggested long time ago that large CP violation
should be observed in the B meson systems [4,5]. In the
past few years, more attention has been focused on CP
violations in the B and D meson systems both theoretically
and experimentally. Recently, the LHCb Collaboration has
focused on three-body final states in the decays of B and D
mesons and a novel strategy to probe CP asymmetries in
their Dalitz plots [6—8]. The local asymmetries in specific
regions of the phase space of charmless three-body decays
of bottom mesons, such as BT —» 7777z~ and BT —
K*ntn~, were measured. It was shown that the local
asymmetry distributions in the Dalitz plots reveal rich
structures and are not uniform [6-8]. These intriguing
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discoveries offer opportunities to search for different
sources of CP violation through the study of the signatures
of these sources in certain phase spaces of the Dalitz
plots. It was claimed that the CP asymmetry in these
decays changes sign around the p°(770) peak in the
B* — nfnta~ decays [8]. The experimental values
of the localized integrated CP asymmetries in the
regions 0.470 < m(z*7n"),,, < 0.770 GeV and 0.770 <
m(zTn" ) < 0.920 GeV  are  0.0508 £0.0171 and
—0.0256 £ 0.0202, respectively, with opposite signs [8].
In our previous work, we noted that p-w mixing
contributes to the sign change around the p°(770) peak
[9]. p-® mixing is an interesting phenomenological mecha-
nism involving the charge symmetry violating mixing
between p° and . This mechanism was considered to
obtain a large strong phase and lead to a peak of CP
violation when the invariant mass of z "z~ is near w in B
and 7 decays [10-13]. The differential CP asymmetry was
studied in the decays B* — p°(w)z* — 2tz n* in the
naive factorization, QCD factorization and perturbative
QCD approaches, respectively [14—16]. We calculated
localized integrated direct CP violation involving p-@
mixing and discussed the sign change caused by such
mixing working in the naive factorization approach [9]. In
the calculations, the nonfactorizable contribution is effec-
tively absorbed into a color parameter which is extracted
from data of branching ratios. The B meson decay
amplitude involves the hadronic matrix element which
computation is nontrivial. For the two-body nonleptonic
decay process of the bottom hadron, the naive factorization
approach appears as the leading order result of the QCD
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factorization scheme with the 1/m,, and a,(m,) corrections
being neglected [17,18]. For the calculation of decay
branching ratios, the naive factorization approximation is
expected to be a good method. But for the much more
subtle calculation of direct CP violation, different
approaches may produce different strong phases [16-21].
The strong phase is usually difficult to control and depends
sensitively on the calculation method. In the naive factori-
zation approach, the strong phase is introduced phenom-
enologically via the effective Wilson coefficients [9,14]. In
the QCD factorization approach, the strong phase can be
generated dynamically, which is more reliable [17,18].
Therefore, in the present work we will calculate the
localized integrated CP asymmetry in the decays B* —
atatn involving p-w mixing in the QCD factorization
approach, which is a more modern method, and compare
the results with those from the naive factorization approach.

We will see that our result for the localized integrated CP
asymmetry varies from —0.0724 to —0.0389, which is more
accurate than those from the naive factorization approach
when 0.750 < m(z"z7),,, < 0.800 GeV. This result
still agrees with the experimental data. As for the
regions 0.470 < m(z*77),,,, < 0.770 GeV and 0.770 <
m(at w7 ) < 0.920 GeV, the localized integrated CP
violations obtained in the QCD factorization approach also
agree with the experimental data and are more accurate
comparing with those obtained in the naive factorization
approach. We will see clearly that p-w mixing makes the
localized integrated CP asymmetries move toward the
negative direction and therefore contributes to the sign

07 = py,.(1 —ys)bDy*(1 —ys)p.

05 = Dy, (1 - 7s)b§q (1 —rs)q,
Os = Dy,(1 - Ys)b%; q7"(1+7s)d
07 =3Dy,(1 - ys)bgeqlé’yﬂ(l +75)d,
09 =3 Dy, (1—75)1?%)64/63’7”(1—75)61’,
0,

y = 8‘—f§mb§aﬂy(l +y5)F*b,
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change between the regions 0.470 < m(z"77),, <
0.770 GeV and 0.770 < m(z"z7),,, < 0.920 GeV.

The remainder of this paper is organized as follows. In
Sec. II, we present the form of the effective Hamiltonian
and review the QCD factorization formalism briefly. Then,
we show the formalism for the CP violating asymmetry in
B* = p%(w)n* — ztx~x* in Sec. I1I. In Sec. IV we give
the input parameters and show numerical results. We also
compare the results obtained in the QCD factorization and
naive factorization approaches in this section. In the last
section, we give some discussions and summarize our

results.

low

II. QCD FACTORIZATION

The effective Hamiltonian in bottom hadron decays
based on the operator product expansion is [17]

10
_Gr [Z S (010f+c20§+26i0i>}

p=u,c D=d,s i=3

+ H.c., (1)
where /1 =VuVip, ¢ (i=1,....10,7y,8g) are the
Wilson coefficients, which are calculable in the renormal-
ization group improved perturbation theory and are scale
dependent, V,;, and V ,, are the CKM matrix elements. In
the present work, we use the values of the Wilson
coefficients at the renormalization scale p =~ m,; [17,18].
The operators O; have the following forms:

0% = Pay,(1 = v5)bgDyy* (1 = v5) Pas
0, = D (L= 75)Ds 30 57" (1 = 75) .
ql
O = D,y,(1 - Vs)bﬁzfilﬂﬂ(l +75) Q0
q/
37 1M / (2)
Os =3 Doy, (1 = 75)bpd_eqq sr" (1 +75)qas
q/
Oy = %Dah(l - Ys)bﬁzeq’é/ﬂV”(l - 75)%,
ql
089 = gjé mbggﬂu(l + 7/5>leb,
where a and 3 are color indices, ¢’ = u, d, s, ¢ or b quarks. In Eq. (2), O} and OY are the tree level operators, O3 — Oy are

QCD penguin operators, O —
chromomagnetic dipole operators, respectively.

0, arise from electroweak penguin diagrams, and O, and Oy, are the electromagnetic and

In QCD factorization, we consider the weak decay B — MM, (M, refers to p°, w or #~ in our calculations) in the heavy-
quark limit. In this limit, the transition matrix element of an operator O, in the weak effective Hamiltonian is given by [17]

(MiM[0,18) = S / QT () By, () + (M <> M)

0

+ / dédudvTH (&, u, v)Pp(E) Py, (v)Pay, (1),
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B—M, ,
where F; "
D, o (x) are the leading-twist and twist-3 light cone distribution amplitudes (LCDA), respectively, with x being the light-

(m%l) denotes a B — M, form factor with m; , being the mass of the light meson M), Py, o (x) and

cone momentum fraction of the quark inside the meson, and T* (u) and T (&, u, v) are hard scattering kernels, which are
calculated order by order in perturbation theory. The vertex and penguin corrections are included at the order of o, in T 5+

The hard interactions [at order O(«a,)] between the spectator quark and the emitted meson, at large gluon momentum, are
taken into account by T,
The matrix element is given by [17]

(M Mo|H|B) = Y 47 (M M,| T + T4|B), (4)

p=u,c

where the two terms account for the flavor topologies of the form factor and hard scattering terms in Eq. (3), respectively.
The expression of 74 is

T} = 8puy (M M3)A([qsul[@D]) + 8,05 (M M3)A([g,D][itu])
+ab (MM>)Y A([3,D][gq)) + o (M1M3) ) A([3,4)(gD))

+ @y (MM ¢,A(1,D][34]) + i (M1M2) 3 3 e, Alg,alaD). 5

where the sums extend over ¢ = u, d, s, and g, (= u, d, or s) denotes the spectator antiquark. The symbol A([---][---])
indicates that the matrix elements of the operators in 7° ﬁ are to be evaluated in the factorized form, such as
(MM, |A([gsu][aD))|B) = (M,|[g,u]|0)(M,|[aD]|B), where the quark flavors of the first (second) square bracket match
those of M, (M,). The coefficients a (M M,) and o]z (M M,) contain all dynamical information and can be expressed in
terms of the coefficients a? defined in Ref. [17]. The general form of the coefficients a! (M M,) at the next-to-leading order
in a, is [17]

civ Crag 472
1 Vi(M2)+7” H(MM,)| + P} (M,), (6)
N, 4n N.

C;
al (M, My) = (ci + ;1>N,~(Mz> +
Cc

where N;(M,) =0 if i = 6, 8 with M, =V, and N;(M,) = 1 for all other cases [V(P) denotes a vector (pseudoscalar)
meson]. The first two terms in Eq. (6) include the results of the naive factorization followed by the vertex, the
hard-spectator, and the penguin corrections, which formulas can be found in Refs. [17,18]. As stressed in Refs. [17,18], the

hard-spectator interactions and penguin corrections should be evaluated at the hard-collinear scale uj, = /A,u
with A, = 0.5 GeV.
T4 includes the power-suppressed annihilation parts and can be parametrized in its most general form as

T = 6pubi (M1 M) B([iq"|[q"u][Db]) + 8,,b>(M M) _B([ag"][g"D)[ab]))

+ b (M,M2) Y3 B4 DIlab]) + buen(MiM2) Y3 ¢,B((aa"[a"a[Db)
+b3(MM5)> "B((gq"](3"D)[gb)) + bs(MM5)> B([3q"](3"q][Db)). (7)

q.9" q.9"

where the sums extend over ¢, ¢ = u, d, s. The sum over ¢” arises because a quark-antiquark pair must be created via

g— q"q" after the spectator quark is annihilated. We define the matrix elements of a operator B([---][---][--*]) as in

Refs. [17,18]

(M\Ma|B([- ][ ][ -“])|B) = iGFfoleM27 (8)

where the quark flavors of the three brackets match those of M, M, and B and fy (X = B, p°, w or r) is the decay constant
of X.
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The coefficients b;
following forms [17]:

in Eq. (7) are expressed in the

Cr
C2Al s

bl - N2

—ClAli, b, =
F i i ’
by = W{C3A1 + csAL + [o5 + NocglAL}

c ‘ 4
bypw = N—'; {coAl + ;AL + [c7 + N,ocg)AL},

by = N2 P {csAl + cAL},
bypw = N—g{cloAi + csAL}, )
c

where A;((f (M M) (EA;ff ) for simplicity) are obtained in
terms of convolutions of hard scattering kernels with the
light cone expansions and the superscript i (f) refers to
gluon emission from the initial (final) state quarks. The

expressions of A;{(f ) (M M,) can be found in Ref. [17].
The calculations of the hard-spectator interaction cor-
rections involve the twist-3 distribution amplitude. It
happens that these contributions involve endpoint diver-
gences because of the nonvanishing endpoint behavior of
@, [17,18]. We extract this divergence by defining a

parameter XZI" through [17,18]

Idx Ldx 1 dx
/ T®m1 = ml l)/ / ml - (I)m,<1)]
0o X

=9, (1)XZI+/O m%,.(x) (10)

with ¥ = 1 — x. The remaining integral is finite (it vanishes
for pseudoscalar mesons), but XAH/I" is an unknown param-
eter representing soft-gluon interaction with the spectator
quark. The annihilation corrections also exhibit endpoint
divergences which can be treated in the same manner as the
hard-spectator interactions and interpreted as [17,18]

1 o] 1
/ %—)XA , / dxﬁﬁ—z(xf{i)z- (11)
0 0

X

We assume that the divergence parameters for the hard-
spectator interaction and the annihilation correction are
universal [17,18]. However, for the B — VP and B - PV
decays, the divergence parameters (X”V and X"7) are not
necessarily the same [22]. In the calculations, we para-
metrize the divergence integrals by [17,18]:

XPVOP) = (1 4 pPVIVP) oig™ ") )1 Mg (12)

Ah

where p"Y(VP) and ¢"V(VP) are real parameters which will
be given in the following.

PHYSICAL REVIEW D 93, 116008 (2016)
III. CP VIOLATION IN B* - p%(w)n* — ntn~n*

A. Formalism for CP violation

The amplitude for the decay B~ — n"zx~z~ through
the vector resonance (p° and w) can be expressed as
[9,14,23-25]:

A=E-\M={(atnz|H'|B™) + (" n~n"|H'|B),

(13)

where H” and ‘H? are the Hamiltonians for the tree and
penguin operators, respectively, Vs’ is the high invariance
mass of the 7"z~ pair, £ = 1 (shux + shy,) With S;nax and

s!:. being the maximum and minimum values of s for a
fixed s, respectively, and /s is the low invariant mass of the
't~ pair [m(z"77),,]. In order to obtain a large signal
for direct CP violation, we need to appeal to some
phenomenological mechanisms. p-w mixing has the dual
advantages that the strong phase difference is large (passes
through 90" at the w resonance) and well known [11,12].
With this mechanism, to the first order in isospin violation,
the amplitude for B~ — p’(w)x~ — nt2~ 7~ takes the
following form at a value of /s close to the @ resonance
mass [14]:

- _ 9 =
(mtaa |HT|B™)=(Z—+) <s g 1,1, +== p>, (14)
o p

_ _ 9 -~ g
<71'+7r b1 |HP|B >: (Z—s/) (s ;’ prpw—i—s—ppp),
pow P

where ¢, (V = p° or w) is the tree amplitude and py, is the
penguin amplitude for producing an intermediate vector
meson V, g, is the coupling for P’ =t I:I/,m is the
effective p-@w mixing amplitude, and sy, is from the inverse
propagator of the vector meson V, sy = s — m}, + imyLy.
From Egs. (14) and (15), we note that p-@ mixing
provides an additional complex term for the tree and
penguin amplitudes (the first term in each equation),
respectively. These complex terms will enlarge the CP-
even phase, and lead to a peak of CP asymmetry as
mentioned before. We will show the difference between the
CP asymmetries with and without p-@ mixing later. Here,
we assume that the B* — #+z~z* process is dominated by
the resonance p° in a certain region of its Dalitz plot.
We stress that the direct coupling @ — 7'z~ is
effectively absorbed into H,,w [26], leading to the
explicit s dependence of pr. Making the expansion
1,,(s) = I, (m2) + (s — m2)I,,(m2), the p-w mixing
parameters were determined in the fit of Gardner and
O’Connell  [27]: ERel'I,,w( m2) = —3500 £ 300 MeV?,
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\smH »(m2)=-300+300MeV?, H’pw(mz,)zo.03j:0.04.
In practice, the effect of the derivative term is negligible.

In this work, we only consider p° and ® resonances.
Then, for a fixed s, the differential CP asymmetry
parameter can be defined as

2 iz

ep = MEZIME (16)
[M[* + [M]
By integrating the denominator and numerator of Acp,
respectively, in the region Q (s; < s < 55, 5| < 5" < s5),
we obtain the localized integrated CP asymmetry, which
can be measured by experiments and takes the following
form:

=5 (M = M)
PIMP + M)

f 52 ds f % ds'(Z
fssf ds f ds'(Z

According to kinematics of the three body decay, X[=

1 / / . . .
5 (Shax + Shyin)] is related to s. In our calculations, s varies

Q
Acp =

2
<V|J/4|B> = mgﬂl/pde poO-VBV(kz)

e -k

_ ABV k2 _
mB+mv(pB+pv),, 5" (k)

€ -k
5 2mv-kﬂA§V(k2)} +is

PHYSICAL REVIEW D 93, 116008 (2016)

in a small region, and therefore X can be treated as a
constant approximately [8]. Then, the terms | :,2 ds'(Z—s")?
Sl

are canceled, and A%P becomes independent of the high
invariant mass of zz~. In practice, to be more precise, we
take into account the s- dependence of st.x and s/, in our
calculations. We choose s/, < 5" < sp.x as the integration
interval of the high invariance mass of z*z~ and regard

S ds' (2~

Stmin

s")? as a factor which is dependent on s.

B. The tree and penguin amplitudes

With the Hamiltonian given in Eq. (1), we are ready to
evaluate the matrix elements for B~ — p°(w)z~ in QCD
factorization. The matrix elements for B — P and B —» V
can be decomposed as [28]

m2 - m2
R e S
u
2 —
B R (), (18)

+ i< €5 (mp + my)ABY (k?)

* .

7 k2mv k, ABY (k?), (19)

where J,, is the weak current [J, = ity, (1 — y5)b or dy,(1 — ys)b], k is the difference of momentum between B and P(V),
and ¢, is the polarization vector of V, FEP(k?) (i = 0, 1) and A8V (k?) (i = 0, 1, 2, 3) are the weak form factors. The form

factors included in our calculations satisfy F27(0)
2my]ATY (k?) = [(mg — my) /2my]ASY (k).
Then, from Egs. (5) and (7), we have

t, = —iGF/l,gD){mpprf”(m/%)ag(n’p) +m,fLA

t, = _iGF’?'ElD){mwfw

Fi7(mg,)as (nw) + my,f A

= F§P(0), A%V(0) =AgY(0), and A§Y(k*) = [(mg +my)/
o (m2)at (pr) + fpfaf,[ba(pm) — by(7p)]}, (20)
Bo(m2)ay(on)] + fpfafwlbr(0n) + by(zw)}, (21)

where the expressions for all the @; and b; have been given before. In the same way, we obtain the penguin operator

contributions:

b= =G SO A A 2 m) + )]+, FE3) 1) = )+ )

p=u.c

 Faf ol by(pm) + s (o) — bs(p) — b (p)] }

(22)

1 D w a 1
Po = _IGF Z ig’ ){ wferB ( )[04 EW(”w) + a4 EW(w”)] + mwfa)FB ( 3)) |:2a§ (77.'0)) + zaé’,EW(ﬂw) + aiEW(”w)]

p=u.c

+ ff 2f w|b3(@7) + b3 pw (7w) + b3 (w7) + b3,EW<wﬂ>]}' (23)
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IV. NUMERICAL RESULTS

A. Input parameters

The predictions obtained in the QCD factorization
approach depend on many input parameters. In the QCD
factorization approach, since power corrections have been
considered, N, is simply a color parameter and we use
N, = 3. The CKM matrix in the Wolfenstein parametriza-
tion can be determined from the experimental data. Since A
and A are well determined and the uncertainties due to the
CKM matrix elements are mostly from p and 7, we take
the central values of 1 (= 0.225) and A (= 0.814). We use
the following values of p and 7 [29]:

p=0.117£0.021,

ﬁ=p<1—'122), 7‘1=f7<1—/122>- (25)

The Wilson coefficients ¢; at the renormalization scale
u = my can be found in Ref. [18].

The quark mass is taken at the scale 4 = m,, in B decays
(in MeV) [17,18]:

=0353+0013 (24)

with

m,=90, m,=1300, m,="4200.

(26)

m,=my=23.7,

For meson masses, we shall use the following values (in
MeV) [29]:
Mmpg+ :5279, m,: = 139,

m,, =782, m,= 775.

The chiral enhancement factor rfy" for the pseudoscalar

meson M, is parametrized by the term rfy" () =

W_W [17,18] where m, denotes the average of

the up and down quark masses. For the vector meson M;,

rfb’?’;)f";‘—;w [17,18] where the scale-

dependent transverse decay constant f,t,z is defined as
(M5(p, €)|30,,q'|0) = fi1,(Pu€s — pue;). For the decay
constants we take (in MeV) [22]

we have )/ (u) =

f==131, fp=210=£20,
fo=187%5,  f;=165+9,

f,=216+3,
f5=15149, (27)

where fi is given for y = 1 GeV.

The LCDA @, is the leading-twist amplitude of M;,
whereas @, is the twist-3 amplitude. The leading-twist
LCDA for the pseudoscalar and vector mesons are [17,18]

PHYSICAL REVIEW D 93, 116008 (2016)

Dpy(x.p) = 6x(1 —x) [1 +> an (WGl (2x - 1)} ,
n=1
(28)
and twist-3 ones are [17,18]

®,(x) =1, D, (x) =6x(1 —x),
B =3[20= 14 0t G)Prs(26- 1), (29

n=1

where C,(x) and P, (x) are the Gegenbauer and Legendre
polynomials, respectively. a,(¢) are Gegenbauer moments
that depend on the scale y (= 1 GeV), and the values of
Gegenbauer moments are taken from [22]

a =0,  db=015+007, a;’ =0,
a,” = 0.14 + 0.06,
a?=0, a2 =015+007, ai” =0,
at® = 0.14 £ 0.06,
a* =0,  af=025+0.15. (30)

The heavy-to-light form factors obtained from QCD sum
rule calculations have the following values (at k> = 0) [22]:

AP (0) = 0.303 4 0.029,
AB»(0) = 0.281 4 0.030,
FB7(0) = 0.25 + 0.03. (31)

The study of hadronic B decays favors a smaller first
inverse moment Az [22], where Az is defined by
Jo EPp(&) =42 with @5(€) being the LCDA of the B
meson. We shall use Az = 350 + 150 MeV [17]. A fit to
the B— VP and B — PV decays yields p’V ~0.87,
pVP 2 1.07, ¢V ~-30° and ¢"" ~—70° [22]. For the
estimate of theoretical uncertainties, we shall assign an
error of +0.1 to pPV(V?) and +20° to ¢*V(VP) [22]. We find
that the local integrated direct CP violation is more

sensitive to ¢”V(V") in practice.

B. Numerical results for CP violation

It is found that there is a maximum value for the
differential CP violating parameter, when the low invariant
mass of the z"z~ pair is near the vicinity of the w
resonance, 0.780-0.785 GeV. To be more specific, we
display the differential CP asymmetries in Figs. 1(a)
and (b) for some values of the CKM matrix elements
and the divergence parameters. This behavior has been
discussed in the naive factorization [14], QCD factorization
[15] and perturbative QCD approaches [16], respectively.
According to Eq. (17), we integrate Ac-p over the low
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0.05;

_0-35 1 1 1
0.75 0.76 0.77 0.78 0.79 0.8

Vs GeV
(a)
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-0.35 - - : .
0.75 0.76 0.77 0.78 0.79 0.8

Vs GeV
(b)

FIG. 1. The differential asymmetry, A¢p. (a) For p¥ = 0.97 and p"? = 1.17: the solid (dot) line corresponds to ¢*V = —10° (—50°)
and ¢V* = —50° (=90°) with minimum CKM matrix elements; the dashed (dot-dashed) line corresponds to ¢V = —10° (=50°) and
@"" = =50° (=90°) with maximum CKM matrix elements; (b) Same as (a) but for p”¥ = 0.77 and p"* = 0.97.

invariant mass of z*z~ (y/s) and obtain the localized
integrated asymmetries A®,. Considering the significant
region of p-w mixing, we choose the integration interval of
/s to be from 0.750 to 0.800 GeV. In order to compare
with the newest result of the LHCb experiments, we also
calculate A%, when /s is in the low-mass region
(0.470 < /s < 0.770 GeV) and the high-mass region
(0.770 < /s < 0.920 GeV) near the p° resonance [8].
The numerical results are displayed in the Table I. We
also display A®, with and without p-@ mixing when
0.750 < /s < 0.800 GeV in Table I.

Table I shows that the values of A%, in our calculations
vary from —0.0724 to —0.0389 in the variation ranges
of the CKM matrix elements, ¢”V-V* and pV-Y? when

0.750 < /s < 0.800 GeV. The localized integrated CP
asymmetry obtained from experiments is —0.0294 +
0.0285 when 0.750 < m(z*z7),,,, < 0.800 GeV. The val-
ues in our calculations agree with this experimental data.
We stress that A%, with p-@ mixing in this calculation is
always negative and the sign of A2, without p-@ mixing is
always positive in this integration region. This indicates
that p- mixing is vital for A2, to be negative in this region.

According to the above discussions, we note that p-w
mixing changes the sign of AZ,, from positive to negative in
its significant region. From the plot of the differential CP
violating parameter, we can see that the peak of the
differential asymmetry Acp involving p-o mixing is on
the right of 0.770 GeV [14—16]. Therefore, comparing with

TABLEL The localized integrated asymmetries A2, (in 1072) for p*¥ = 0.97(0.77) and p"* = 1.17(0.97). For each value of ij and p,
the first and second lines correspond to A#, with and without p-w mixing, respectively, when 0.750 < /s < 0.800 GeV, and the third
and fourth lines correspond to the low-mass region (0.470 < /s < 0.770 GeV) and the high-mass region (0.770 < /s < 0.920 GeV)
near the resonance mass, respectively. For other input parameters, we take their center values.

PV = =50° gPV = —10° VP = ~50° PV = —50° ¢VF = —90° PV = —10° $"P = —90° ¢V = —50°

i = 0.096, p = 0.344

0.750 < /s < 0.800 GeV —7.24(~7.09) ~5.71(—5.89) —5.70(~5.86) —4.36(—4.78)
4.33(4.57) 2.88(3.42) 3.34(3.73) 2.08(2.71)
0.470 < /s < 0.770 GeV 5.06(5.31) 3.44(4.04) 3.86(4.30) 2.47(3.17)
0.770 < /5 < 0.920 GeV —5.22(=5.21) —3.89(—4.18) —4.13(~4.33) —2.98(~3.40)
i = 0.139, 5 = 0.366
0.750 < /s < 0.800 GeV —6.46(—6.33) ~5.10(=5.27) —5.09(=5.23) —3.89(=4.27)
3.87(4.08) 2.57(3.06) 2.98(3.33) 1.87(2.42)
0.470 < /s < 0.770 GeV 4.52(4.75) 3.06(3.61) 3.45(3.84) 2.20(2.83)
0.770 < /5 < 0.920 GeV —4.66(—4.66) —3.48(=3.73) —3.69(3.86) —2.67(=3.03)
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TABLE II. The localized integrated asymmetries A%P (in 1072) obtained in the QCD factorization and naive factorization approaches

compared with the experimental data.

Vs (GeV) 0.750 < /s < 0.800

0.470 < /s < 0.770 0.770 < /s < 0.920

Experimental data (=5.79,-0.09)
QCD factorizaion (—7.24,-3.89)
Naive factorization (=7.52,-2.90)

(3.37. 6.79) (—4.58,-0.54)
(2.20, 5.31) (-5.22,-3.03)
(~0.94,3.53) (-4.08, 0.46)(—4.08,0.46)

A%, in the range 0.470 < /s < 0.770 GeV, the localized
integrated CP asymmetries move toward the negative
direction when 0.770 < /s < 0.920 GeV due to p-w
mixing. This behavior contributes to the sign change
around the p resonance, as in the naive factorization
approach [9]. In the QCD factorization approach, A%, in
regions 0.470 < m(z*7"),,,, < 0.770 GeV and 0.770 <
m(zt 7)o < 0.920 GeV are from 0.0220 to 0.0531 and
from —0.0522 to —0.0303, respectively. The experimental
data in the regions 0.470 < m(z"7™),, < 0.770 GeV and
0.770 < m(z" 77 ),y < 0.920 GeV are 0.0508 £ 0.0171
and —0.0256 + 0.0202, respectively. We can see our results
agree with experiments and it is clear that p-@ mixing does
contribute to the sign change in those two regions.

In Table II, we compare the localized integrated direct CP
violation involving p-w mixing in the naive factorization [9]
and QCD factorization approaches. The localized integrated
direct CP violations in the naive factorization are
(=0.0724, -0.0389), (0.0220, 0.0531), and (—0.0522,
—0.0303) corresponding to 0.750 < /s < 0.800 GeV,
0.470</s<0.770GeV, and 0.770 < /s < 0.920 GeV,
respectively. One can see the results in the QCD factorization
approach agree with the experimental data and the ranges of
their values are smaller. In both the naive and the QCD
factorization approaches p-@ mixing contributes to the sign
change of CP asymmetry between the regions 0.470 <
m(ztn" )y < 0.770 GeV  and  0.770 < m(z* 7)oy, <
0.920 GeV.

low

V. CONCLUSION AND DISCUSSION

In this work, we have studied the localized integrated CP
asymmetry for the decays B* — p*(w)n* — zt 7~ n* with
the inclusion of p-@ mixing and the sign change caused by
p-o mixing in the QCD factorization approach which is
expected to be a reliable approach in the heavy-quark limit.
The results are consistent with the experimental data and
are more accurate than those in the naive factorization
approach which were obtained in our previous work.

The value of A%, in the region 0.750 < m(z*77),0,, <
0.800 GeV varies from —0.0724 to —0.0389. This result,
especially the sign, agrees with the experimental data. We
cannot obtain the right CP asymmetry parameter without
p-o mixing. In the regions 0.470 < m(xt77 )y, <
0.770 GeV and 0.770 < m(z"77),y,, < 0.920 GeV, A%,
are from 0.0220 to 0.0531 and from —0.0522 to —0.0303,
respectively, and agree with the experimental data. This

explains the sign change of CP asymmetry between
the regions 0.470 < m(z"7"), <0.770 GeV  and
0.770 < m(z* 7™ ), < 0.920 GeV. We conclude that
p-@w mixing contributes to the sign change of the CP
violating asymmetry around the p°(770) peak of
m(ntn” ), and should be taken into account in the
calculations of CP violation.

In the calculations of CP asymmetry for the decays
B* = p¥(w)n* — ntn~n*, the large strong phase mainly
comes from p-@ mixing in the naive factorization approach.
On the other hand, in the QCD factorization scheme,
a,(my) corrections at the leading order of 1/m, are
included and the strong phase can also be generated
dynamically. Since the way to introduce the strong phase
is different in these two approaches, studying the direct CP
violation, especially the localized direct CP violation,
could be a good way to check their validities. As we
expected, the QCD factorization approach is more reliable
and the results in this approach are more accurate. In the
QCD factorization framework, there is cancellation of
the scale and renormalization scheme dependence between
the Wilson coefficients and the hadronic matrix elements.
However, there still remain some uncertainties in this
calculations. The QCD factorization suffers from endpoint
singularities which cause the main uncertainties. The CP
violating asymmetry depends on the unknown parameters
(VP and ¢PV(YP)) which are associated with such
singularities [17,18]. These uncertainties can be reduced
if we select the divergence parameters appropriately [22].
One requires more accurate experimental data to determine
these divergence parameters. The further calculation of the
amplitude for B* — p°(w)z* at next-to-next-to leading
order in the QCD factorization approach introduces new
rescattering phases that modify the leading-order result and
the direct CP asymmetry could be calculated more accu-
rately [30-33]. Besides, it is now apparent that the CKM
matrix is the primary source of direct CP violation in flavor
changing processes in B decays and not well determined.
Therefore, the CKM matrix parameters can also bring some
uncertainties.
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