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The two-pion low-energy contribution to the anomalous magnetic moment of the muon,
aμ ≡ ðg − 2Þμ=2, expressed as an integral over the modulus squared of the pion electromagnetic form
factor, brings a relatively large contribution to the theoretical error, since the low accuracy of experimental
measurements in this region is amplified by the drastic increase of the integration kernel. We derive
stringent constraints on the two-pion contribution by exploiting analyticity and unitarity of the pion
electromagnetic form factor. To avoid the poor knowledge of the modulus of this function, we use instead
its phase, known with high precision in the elastic region from Roy equations for pion-pion scattering via
the Fermi-Watson theorem. Above the inelastic threshold we adopt a conservative integral condition on the
modulus, determined from data and perturbative QCD. Additional high precision data on the modulus
in the range 0.65–0.71 GeV, obtained from eþe− annihilation and τ-decay experiments, are used to improve
the predictions on the modulus at lower energies by means of a parametrization-free analytic extrapolation.
The results are optimal for a given input and do not depend on the unknown phase of the form factor above
the inelastic threshold. The present work improves a previous analysis based on the same technique,
including more experimental data and employing better statistical tools for their treatment. We obtain for
the contribution to aμ from below 0.63 GeV the value ð133.258� 0.723Þ × 10−10, which amounts to a

reduction of the theoretical error by about 6 × 10−11.
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I. INTRODUCTION

The muon anomalous magnetic moment is one of the
most precisely measured observables in particle physics. It
can also be predicted by theory with a high accuracy, and is
therefore an ideal quantity for testing the standard model and
for finding possible deviations from it caused by new physics
[1,2]. The great interest in muon anomaly is motivated by the
present discrepancy of about 3 to 4σ between theory and
experiment. For recent reviews, see Refs. [3–6] (see also the
bibliography in e.g, [7]). New generation measurements of
muon g − 2 planned at Fermilab [8] and JPARC [9] are
expected to produce results with experimental errors at the
level of 16 × 10−11, a factor of 4 smaller compared to the
Brookhaven measurement [10]. This therefore requires a
precision at the same level also for the theoretical result.
The largest theoretical uncertainties are related to the

hadronic contribution to aμ, which comes mainly from
energies at which the confined quarks are strongly inter-
acting and the QCD perturbative treatment breaks down.
The evaluation of the nonperturbative effects is usually
done by means of dispersion relations in conjunction with

experimental data. Low energy effective theories and lattice
QCD are also used. Efforts are currently made to increase
the precision of these calculations, regarding both the
hadronic vacuum polarization and the hadronic light-by-
light scattering (a compilation of recent studies is presented
in [11]).
The hadronic vacuum polarization (VP), which is

numerically the most significant term, contributes with
about 43 × 10−11 units to the theoretical error. It is
dominated by the two-pion contribution, which brings
more than 70% of the leading-order hadronic contribution.
The two-pion contribution to the VP is expressed in

terms of the modulus squared of the pion electromagnetic
form factor. It has been measured in eþe−-annihilation
experiments by CMD2 [12–14], SND [15], BABAR
[16,17], KLOE [18–20] and BESIII [21], and from the
hadronic decays of the τ lepton by CLEO [22], ALEPH
[23,24], OPAL [25] and Belle [26]. Due to experimental
difficulties in the identification of low-energy pions, the
data below 0.6 GeV have very large uncertainties, except
for BABAR and KLOE. The recent data published by
BESIII [21] are restricted to energies above 0.6 GeV.
Two new detectors, CMD-3 and SND, now operating at
the VEPP-2000 eþe− collider in Novosibirsk, are expected*Deceased.
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to bring accurate data of greatest interest for the aμ
evaluation [27–29]. Preliminary results reported in
[30,31] indicate as goal an accuracy comparable to that
of BABAR and KLOE experiments.
The lack of data of sufficient precision at low energies,

combined with the fact that the integration kernel exhibits a
drastic increase in this region, leads to a relatively large
uncertainty of the corresponding contribution to the muon
anomaly [32–34]. The contribution to aμ from below
0.63 GeV, obtained using a fit of the pion form factor in
the region near threshold and the direct integration of a
compilation of data on eþe− → πþπ− cross section
between 0.30 and 0.63 GeV, is quoted in [32] with an
error of 13.1 × 10−11, while the direct integration in this
range of the BABAR data alone leads to an error
of 14.7 × 10−11.
The present large uncertainty of the two-pion contribu-

tion to aμ from energies below 0.63 GeV motivated us
recently [35] to investigate it theoretically in a framework
based on the analyticity and unitarity properties of the pion
form factor. The main idea was to use, instead of the poorly
known modulus, the phase of the form factor, which is
equal by the Fermi-Watson theorem [36,37] to the ππ
scattering P-wave phase shift, which has been calculated
with high precision from chiral perturbation theory (ChPT)
and Roy equations [38–40]. Above the inelastic threshold,
where the Fermi-Watson theorem is no longer valid and the
phase of the form factor is not known, we used an integral
condition on the form-factor modulus, derived using
measurements of the BABAR experiment [16,17] up to
3 GeV and the asymptotic behavior of the form factor
predicted by perturbative QCD [41–43] above that energy.
The knowledge of the phase on a part of the unitarity

cut and of the modulus on the other part of the cut is not
sufficient for uniquely predicting the form factor.
However, as shown first in [44], from this information
one can derive rigorous upper and lower bounds on the
modulus below the inelastic threshold, in particular in the
low energy region. To increase the strength of the bounds,
we used as input also several values of the modulus from
the region 0.65–0.71 GeV, measured with higher preci-
sion by the eþe− experiments CMD2 [12], SND [15]
BABAR [16,17] and KLOE 13 [20]. The method amounts
to a parametrization-free analytic extrapolation from
higher energies to the low energy region of interest for
the improved calculation of the muon anomaly. It led to a
two-pion contribution to aμ from the region below
0.63 GeV which agreed with other recent determinations
and had a smaller uncertainty [35].
In the present paper we present an update of the work

[35], improving certain details of the analysis. The main
improvement is a proper treatment by Monte Carlo sim-
ulations of the statistical errors of the data used as input,
which will allow us to attach an uncertainty to the result
at a precise confidence level (C.L.). Also, better tools [45]

for combining different predictions accounting for their
possible correlations are used. In addition to the eþe− data
from the region 0.65–0.71 GeV used as input in [35], we
also consider the KLOE independent measurements
reported in [19] and the very recent data of BESIII [21].
We include also the data obtained in the same energy region
from τ-lepton decays by the CLEO [22], ALEPH [23,24],
OPAL [25] and Belle [26] collaborations.
The outline of this paper is as follows: in Sec. II we

formulate our aim and review the conditions used as input.
In Sec. III we give a detailed description of the exper-
imental information used as input and in Sec. IV we
describe the Monte Carlo simulation used for implementing
the statistical uncertainties of the input data and the
prescription of combining the predictions from different
experiments. Section V contains our results and Sec. VI a
summary and our conclusions. The paper has two
Appendices: in Appendix A we present the solution of
the functional extremal problem formulated in Sec. II,
which is the mathematical basis of our approach. In
Appendix B we discuss the extraction of the pion form
factor from the eþe− and τ-decay experiments, giving a
short overview of various corrections applied.

II. FORMALISM

We consider the leading order (LO) two-pion contribu-
tion to aμ, which does not contain the vacuum polarization
effects but includes one-photon final-state radiation (FSR).
We are interested in finding the two-pion contribution to aμ
from the interval of energies ranging from

ffiffiffiffiffiffiffi
tlow

p
to

ffiffiffiffiffiffi
tup

p
,

which is expressed in terms of the pion electromagnetic
form factor FðtÞ as

aππðγÞ;LOμ ½ ffiffiffiffiffiffiffi
tlow

p
;

ffiffiffiffiffiffi
tup

p �

¼ α2m2
μ

12π2

Z
tup

tlow

dt
t
KðtÞβ3πðtÞjFðtÞj2jFωðtÞj2

�
1þ α

π
ηπðtÞ

�
:

ð1Þ

In this relation, βπðtÞ ¼ ð1 − 4mπ=tÞ1=2 is the two-pion
phase space relevant for eþe− → πþπ− annihilation
(mπ being the charged pion mass), and

KðtÞ ¼
Z

1

0

duð1 − uÞu2ðt − uþm2
μu2Þ−1 ð2Þ

is the QED kernel function. This function is known to
exhibit a drastic increase at low t [1].
The integrand in (1) contains the pion electromagnetic

form factor FðtÞ in the isospin limit, defined by

hπþðp0ÞjJelmμ jπþðpÞi ¼ ðpþ p0ÞμFðtÞ; t ¼ ðp − p0Þ2;
ð3Þ
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which is a real analytic function in the t complex plane cut
along the real semiaxis t ≥ 4m2

π . The remaining factors in
(1) denote corrections not included in the form factor:
FωðtÞ accounts for the isospin violation due to ρ − ω
mixing and is parametrized as [46,47]:

FωðtÞ ¼ 1þ ϵ
t

ðmω − iΓω=2Þ2 − t
; ð4Þ

where ϵ ¼ 1.9 × 10−3. Finally, ηπðtÞ is the FSR correction,
calculated in scalar QED [48,49].
We are interested in the contribution to (1) of the energies

below 0.63 GeV. For convenience we shall use in what
follows the simplified notation

aμ ≡ aππðγÞ;LOμ ½2mπ; 0.63 GeV�: ð5Þ

We now formulate the conditions on the form factor FðtÞ
adopted as input for constraining the above quantity.
Following Ref. [35], we write these conditions as:
(1) Fermi-Watson theorem [36,37], which implies:

Arg½Fðtþ iϵÞ� ¼ δ11ðtÞ; 4m2
π ≤ t ≤ tin; ð6Þ

where δ11ðtÞ is the phase-shift of the P-wave of
ππ elastic scattering and tin is the first inelastic
threshold.

(2) Normalization at t ¼ 0 and the value of the charge
radius hr2πi, expressed by:

Fð0Þ ¼ 1;

�
dFðtÞ
dt

�
t¼0

¼ 1

6
hr2πi: ð7Þ

(3) An integral condition on the modulus squared above
the inelastic threshold, written in the form

1

π

Z
∞

tin

dtρðtÞjFðtÞj2 ≤ I; ð8Þ

where ρðtÞ is a suitable positive-definite weight, for
which the integral converges and an accurate evalu-
ation of I is possible.

(4) The value at one spacelike energy, known from
experiment:

FðtsÞ ¼ Fs � ϵs; ts < 0: ð9Þ

(5) The modulus at one energy in the elastic region of
the timelike axis, known from experiment:

jFðttÞj¼Ft�ϵt; 4m2
π<tt < tin: ð10Þ

As in Ref. [35], we consider the following functional
extremal problem: using as input the conditions 1–5, we
derive optimal upper and lower bounds on jFðtÞj at all
points on the elastic unitarity cut, 4m2

π < t < tin, in
particular at energies below 0.63 GeV of interest for the
calculation of the quantity (5). The solution of the extremal
problem and the algorithm for obtaining the bounds are
presented for completeness in Appendix A. In order to
operate this machinery, we need high quality phenomeno-
logical inputs, which are the subject of the following
section.

III. PHENOMENOLOGICAL INPUT

In this section we briefly describe the input used in the
conditions 1–5, expressed in the Eqs. (6)–(10) given in the
previous section.
The first significant inelastic threshold tin for the pion

form factor is due to the opening of the ωπ channel, i.e.ffiffiffiffiffi
tin

p ¼ mω þmπ ¼ 0.917 GeV. Below this threshold, we
use in (6) the phase shift δ11ðtÞ from Refs. [38,39] and [40],
which we denote as Bern and Madrid phase, respectively.
For the charge radius entering (7) we use the constraint

hr2πi ∈ ð0.41; 0.45Þ fm2 derived in [50]. Since this range
was obtained basically from the same constraints as those
listed in the previous section, the knowledge of the charge
radius plays actually a weak role in further improving the
bounds on the modulus in the energy region of interest.
However, we keep this condition since we now use a
different treatment of the uncertainties compared to our
previous analyses.
We have calculated the integral (8) using the BABAR

data [16] from tin up to
ffiffi
t

p ¼ 3 GeV, smoothly continued
with a constant value for the modulus in the range
3 GeV ≤

ffiffi
t

p
≤ 20 GeV, and a 1=t decreasing modulus

at higher energies, as predicted by perturbative QCD
[41–43]. As discussed in detail in Refs. [35,51,52] this
evaluation is expected to overestimate the true value of the
integral. As in [35] we have adopted the weight ρðtÞ ¼ 1=t,
for which the contribution of the range above 3 GeV to the
integral (8) is only of 1%. The value of I obtained with this
weight is [35]

I ¼ 0.578� 0.022; ð11Þ

where the uncertainty is due to the BABAR experimental
errors. In the calculations we have used as input for I the
central value quoted in Eq. (11) increased by the error,
which leads to the most conservative bounds due to a
monotonicity property discussed in Appendix A.
For the spacelike input (9) we have used the most recent

experimental determinations [53,54]

Fð−1.60 GeV2Þ ¼ 0.243� 0.012þ0.019
−0.008 ;

Fð−2.45 GeV2Þ ¼ 0.167� 0.010þ0.013
−0.007 : ð12Þ
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As shown in [35], a major role in increasing the strength
of the bounds is played by condition (10), with
0.65 GeV ≤

ffiffiffi
tt

p
≤ 0.71 GeV. This energy region was

chosen since it is close to the region of interest and
therefore has a stronger effect on improving the bounds
than the input from higher energies. The eþe− data are
taken below 0.705 GeV and the τ-decay data below
0.710 GeV, with the exception of one datum from
CLEO that corresponds to an energy of 0.712 GeV.
Since this last datum is at an energy that is only marginally
higher than the upper limit of the aforementioned energy
range, it is included in the analysis. It is noteworthy that in
this region the modulus measured by various experiments
exhibits smaller variations than in other energy regions and
a higher degree of mutual consistency.
The numbers of experimental points in this range

for various experiments, considered in our analysis, are
summarized in Table I. We emphasize that in this region the
eþe−-annihilation and τ-decay experiments are fully con-
sistent, so it is reasonable to use all the experiments on an
equal footing. The extraction of the values of timelike
modulus jFðtÞj from the cross-section of the process
eþe− → πþπ− and the spectral function measured in

τ-decay experiments implies the application of several
corrections, which ensure that the extracted quantity is
indeed the form factor FðtÞ defined in (3) in the isospin
limit. Details are given in Appendix B. Note that, for OPAL
data we have used the rescaled values as presented in [55].
For completeness, we show in Fig. 1 the data on modulus
squared jFðtÞj2 from the eþe−-annihilation and τ-decay
used as input in our analysis. It may be observed that the
energies at which the form factor measurements are made
vary from experiment to experiment. Therefore, it is not
possible to combine the data and bring down the exper-
imental error into the input itself.

IV. CALCULATION OF aμ AND
ITS UNCERTAINTY

The algorithm presented in Appendix A allows us to
obtain rigorous bounds on jFðtÞj for t in the regionffiffi
t

p
≤ 0.63 GeV, in terms of the input specified in

Sec. II. We recall that the input consists of the phase of
the form factor for t ≤ tin, the charge radius, one spacelike
datum and one timelike modulus from the region 0.65–
0.71 GeV. The lower and upper bounds (A16) are given by
explicit expressions depending on definite values of the
input. In practice, the input values are affected by uncer-
tainties. In order to account for them, we have generated
pseudorandom numbers for each of the input quantities
with a priori given distributions. For the experimental
spacelike and timelike data we have assumed Gaussian
distributions with central value as the mean and the quoted
errors as the standard deviation. For the spacelike data,
symmetrized errors have been used in the Gaussian dis-
tributions, taking for symmetrization the biggest error [45].
The distributions of the phase and the charge radius, which
are calculated from theoretical constraints, were assumed to
be uniform.
For a timelike input in 0.65–0.71 GeV region, a specified

spacelike input and a selected phase (Bern or Madrid), a
large sample (∼105) of sets of inputs have been obtained by
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FIG. 1. Modulus squared jFðtÞj2 measured in the region 0.65–0.71 GeV by eþe−-annihilation (left) and τ-decay (right) experiments.

TABLE I. Number of points in the region 0.65 GeV ≤
ffiffi
t

p
≤

0.71 GeV where the modulus is measured by the eþe− anihila-
tion and τ-decay experiments considered in the analysis.

Experiment Number of points

CMD2 [12] 2
SND [15] 2
BABAR [16,17] 26
KLOE 2011 [19] 8
KLOE 2013 [20] 8
BESIII [21] 10
CLEO [22] 3
ALEPH [23,24] 3
OPAL [25] 3
Belle [26] 2
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randomly drawing one value each from the above distri-
butions. For each set of inputs in the sample, upper and
lower bounds on the modulus squared jFðtÞj2 have been
calculated using the algorithm of Appendix A, at each
energy

ffiffi
t

p
from threshold to 0.63 GeV. All values in

between the upper and lower bounds are equally probable.
Therefore, for a given set of input (which yields one set of
upper and lower bounds at each

ffiffi
t

p
), at each low energy

point
ffiffi
t

p
from threshold to 0.63 GeV, a random admissible

value between the bounds has been generated and used in
the integration (1), yielding one value of the quantity aμ.
The procedure is repeated 50 times for each set of inputs
that yields 50 values of the quantity aμ. With this procedure,
at each fixed timelike energy point, we obtain a large
sample (∼106) of the quantity aμ. The entire sample is
binned to obtain a mean value and 68.3% confidence level
upper and lower bounds at each timelike point.
The predictions obtained with input from different

timelike energies were then combined into an average
result for each experiment. The procedure of obtaining the
average of several measurements in principle requires the
knowledge of the correlations between the different values.
Since these are not known,1 we applied the averaging
prescription proposed in [45], where the effective size of
the correlations is estimated from the data themselves. As
discussed in [45], the most robust average of a set of n
measurements ai is the weighted average

ā ¼
Xn
i¼1

wiai; wi ¼
1=δa2iP
n
j¼1 1=δa

2
j
; ð13Þ

where δai is the error of ai.
For the best estimation of the error in the case of

unknown correlations, the prescription proposed in [45]
is to define a function χ2ðfÞ

χ2ðfÞ ¼
Xn
i;j¼1

ðai − āÞðCðfÞ−1Þijðaj − āÞ ð14Þ

in terms of the covariance matrix CðfÞ with elements

Cij ¼
�
δaiδai if i ¼ j;

fδaiδaj if i ≠ j:
ð15Þ

The parameter f denotes the fraction of the maximum
possible correlation: for f ¼ 0 the measurements are treated
as uncorrelated, for f ¼ 1 as fully (100%) correlated.
If χ2ð0Þ < n − 1, the data might indicate the existence of

a positive correlation. The prescription proposed in [45] is
to increase f until χ2ðfÞ ¼ n − 1. With the solution f of

this equation, the standard deviation σðāÞ of ā is deter-
mined from the variance [45]

σ2ðāÞ ¼
�Xn

i;j¼1

ðCðfÞ−1Þij
�−1

: ð16Þ

On the other hand, if one obtains χ2ð0Þ > n − 1, this is an
indication that the individual errors are underestimated. If
the ratio χ2ð0Þ=ðn − 1Þ is not very far from 1, the procedure
suggested in [6,45] is to rescale the variance σ2ðāÞ
calculated with (16) by the factor χ2ð0Þ=ðn − 1Þ. In our
work, this kind of procedure was applied first for combin-
ing the results obtained with different measurements by
each experiment. Then the predictions of various experi-
ments were combined leading to a global average.

V. RESULTS

It is instructive to first give the value obtained without
using as input the measurements of the timelike modulus.
In Fig. 2 we show the distribution of the aμ sample,
obtained using as input the Bern phase and the first
spacelike point from (9). It may be readily seen that the
distribution is not fully symmetrical, as it should be for a
Gaussian distribution. From this distribution, by applying
the 68.3% criterion we obtained for aμ the value
ð130.865þ4.124

−5.460Þ × 10−10, and Madrid phase gives a similar
result, ð131.933þ3.438

−5.922Þ × 10−10. Since these results are not
statistically independent, the most conservative procedure
is to take the simple average of the central values and of the
uncertainties. This gives

aππ;LOμ ½2mπ; 0.63 GeV� ¼ ð131.399þ3.780
−5.691Þ × 10−10: ð17Þ

The large error shows that the constraining power of the
phase and the spacelike data is rather low.
By including as input the modulus measured at one

energy from the region 0.65–0.71 GeV, the determination
(17) is considerably improved. In Fig. 3 we show for
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FIG. 2. Distribution of aμ values obtained from theMonte Carlo
sample of pseudodata, without input modulus. The vertical lines
delimitate the region of 68.3% C.L.

1One can use as a first indication the bin-to-bin correlations of
the input data on the modulus, which can be extracted in some
cases from the published covariance matrices.
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illustration the distribution of the aμ sample, obtained using
as input the Bern phase, the highest energy BABAR point
shown in Fig. 1 and the first spacelike point from (9). The
distribution is much narrower than that shown in Fig. 2 and
more symmetrical, allowing the extraction of a smaller
standard deviation by means of the 68.3% C.L. criterion.
Similar distributions of aμ have been obtained for all the

values of the input modulus measured in the region 0.65–
0.71 GeV, shown in Fig. 1. The procedure was applied for
each of the input phases, Bern and Madrid. The calculation
was performed using as input each of the two spacelike
values (9) and the best prediction was retained.
In Figs. 4 and 5 we show the 68.3% C.L. intervals of aμ

obtained from the Monte Carlo simulation described in the
previous section, for all the timelike points used as input
from the eþe− and τ experiments. The results have been
obtained using as input the Bern phase [38,39]. The Madrid

phase leads to similar results. The bounds obtained with
various values of the timelike modulus reflect the quality of
data shown in Figs. 1, ranging between the most accurate,
BABAR, and those with the largest errors, OPAL.
We have then applied the averaging procedure described

in the previous section, for combining the predictions
available from different measurements of each experiment.
The average was obtained using the robust prescription
(13). For estimating the error, we have computed χ2ðfÞ
defined in (14) and compared it with the number of degrees
of freedom, n − 1, where n is the number of points in each
panel of Figs. 4 and 5. It turned out that in all cases the ratio
χ2ð0Þ=ðn − 1Þ was less than 1 and increased for a positive
correlation, reaching unity for f in general in the range
0.40–0.70.
Some pathologies were encountered however in a few

cases. One type of pathology is illustrated in Fig. 6, where
we show the dependence on f of the ratio χ2ðfÞ=ðn − 1Þ
and of the standard deviation for the input from CMD2 and
Madrid phase. In this case, the ratio becomes 1 only for
values of f close to 1, where the variance σ2ðfÞ calculated
according to (16) starts to decrease.2 This happens because
the individual values are much closer than expected from
the ascribed errors. As discussed in [45], in such cases the
averaging cannot reduce the overall error, as the blind
application of the prescription would indicate. Therefore,
for this case we adopt the modified prescription of taking
the maximum variance for f in the range (0, 1). The value
of χ2 corresponding to this f is smaller than 1, which is due
to the fact that the individual values to be averaged are very
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FIG. 3. Distribution of a typical aμ sample obtained from the
Monte Carlo simulation of pseudodata, with an input modulus
measured by BABAR in the region 0.65–0.71 GeV. Details of the
input are given in the text. The vertical lines delimitate the region
of 68.3% C.L.
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FIG. 4. Allowed intervals at 68.3% C.L. for the quantity

aμ ≡ aππðγÞ;LOμ ½2mπ; 0.63 GeV� × 1010, as a function of the en-
ergy in the region (0.65–0.71) GeV where the timelike modulus
used as input was measured in eþe− experiments.
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FIG. 5. Allowed intervals at 68.3% C.L. for the quantity

aμ ≡ aππðγÞ;LOμ ½2mπ; 0.63 GeV� × 1010, as a function of the en-
ergy in the region 0.65–0.71 GeV where the timelike modulus
used as input was measured in τ experiments.

2One can show that in all cases when the individual errors are
different, σ exhibits a decrease above a certain f and vanishes for
f ¼ 1. In the particular case of equal errors, the variance grows
linearly with f, as discussed in [45].
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close. We encountered a similar situation with the data from
ALEPH and both phases. In these cases, the combined error
is not much less than the individual errors entering the
combination.
A different type of pathology was encountered with

KLOE 11 data: in this case, for both phases, the individual
values are rather different and their errors are rather small.
As a consequence, χ2ðfÞ=ðn − 1Þ becomes 1 for f close
to 0. However, the corresponding variance (16) turns out to
be much smaller than estimated from the spread of the
individual values. Since these values are based on mea-
surements of the modulus at different energies by the same
experiment, the differences among them indicate a problem
with the data and an error reduction by their combination is
not reliable. Therefore, as a conservative error, we adopted
in this case too the maximum variance for f in the range
(0, 1), whose magnitude is comparable with those of the
individual errors. We illustrate this case in Fig. 7, where we
show the dependence on f of the ratio χ2ðfÞ=ðn − 1Þ and of

the standard deviation for the input from KLOE 11 and
Madrid phase.
Except these special cases, the standard deviation was

calculated using (16), with the covariance matrix (15)
corresponding to the fraction f determined from the
equation χ2ðfÞ ¼ n − 1. A typical situation is shown in
Fig. 8, where we show the dependence on f of the ratio
χ2ðfÞ=ðn − 1Þ and of the standard deviation for the input
from BESIII and Madrid phase.
In Table II, we present the results of the average

procedure for all the eþe− and τ experiments. For com-
pleteness, we give the results obtained separately with the
Bern and the Madrid phase.
The last step is to combine the individual values obtained

with measurements by different experiments. The correla-
tion between these values is difficult to assess a priori.
There is of course a consistent common information going
as input into all these determinations. However, the most
important input, which has the crucial role in error
reduction, is the modulus of the form factor in the region
0.65–0.71 GeV measured by different experiments, which
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FIG. 6. Dependence on f of the ratio χ2ðfÞ=ðn − 1Þ and the
standard deviation, σ ≡ ffiffiffiffiffiffiffiffiffiffiffi

σ2ðfÞ
p

for the timelike data measured
by CMD2 and Madrid phase. The equality χ2ðfÞ=ðn − 1Þ ¼ 1
holds for large values of f.
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FIG. 7. Dependence on f of the ratio χ2ðfÞ=ðn − 1Þ and the
standard deviation, σ ≡ ffiffiffiffiffiffiffiffiffiffiffi

σ2ðfÞ
p

for the timelike data measured
by KLOE 11 and Madrid phase. The equality χ2ðfÞ=ðn − 1Þ ¼ 1
holds for small values of f.
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FIG. 8. Dependence on f of the ratio χ2ðfÞ=ðn − 1Þ and the
standard deviation, σ ≡ ffiffiffiffiffiffiffiffiffiffiffi

σ2ðfÞ
p

for the timelike data measured
by BESIII and Madrid phase. The error is obtained with f
determined from the equation χ2ðfÞ=ðn − 1Þ ¼ 1.

TABLE II. Central values and 68.3% C.L. standard deviations
for the quantity aππðγÞ;LOμ ½2mπ; 0.63 GeV� × 1010, obtained by
averaging the results shown in Figs. 4 and 5 for each experiment.

Bern phase Madrid phase

CMD2 06 131.804� 1.563 131.396� 1.585
SND 06 133.535� 1.371 133.102� 1.306
BABAR 09 134.338� 0.939 134.086� 0.862
KLOE 11 132.560� 1.220 132.017� 1.035
KLOE 13 132.864� 1.413 132.343� 1.224
BESIII 15 131.958� 1.725 132.753� 1.719
CLEO 00 134.478� 1.389 133.897� 1.183
ALEPH 05 133.114� 1.703 132.298� 1.783
Belle 05 134.588� 1.227 134.280� 1.136
OPAL 12 131.176� 2.803 129.910� 2.970
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makes the difference between the values given in Table II.
Some correlation might exist also between these measure-
ments, but there is no consensus in the views on their
treatment [33,34]. We therefore applied the same averaging
procedure [45] suitable for cases when the correlations are
not known.
The data from eþe−-annihilation and τ-decay experiments

are consistent in the region 0.65–0.71 GeV, so the results
from all the 10 experiments can be combined into a single
average. The ratio χ2ð0Þ=ðN − 1Þ, whereN ¼ 10, turned out
to be smaller than 1, which indicates a positive correlation
between the predictions of various experiments. By applying
the prescription given in [45], the correlation was found to be
f ¼ 0.4 for Bern phase and f ¼ 0.3 for Madrid phase,
leading to the values of aμ equal to ð133.425� 0.793Þ ×
10−10 and ð133.092� 0.653Þ × 10−10, respectively.3 Taking
the simple average of the central values and errors obtained
with the two phases, which are not statistically independent,
we obtain the conservative final estimate4

aππðγÞ;LOμ ½2mπ; 0.63 GeV� ¼ ð133.258� 0.723Þ × 10−10:

ð18Þ

This result is consistent with our previous result reported in
Ref. [35] and has a slightly smaller error. We emphasize that
in [35] the prediction based on the present formalism was
combined also with the direct integration of the cross section
measured by BABAR at energies below 0.63 GeV, while in
this work we do not use data from low energies.

VI. DISCUSSIONS AND CONCLUSION

In this work, we have studied the two-pion contribution
from energies below 0.63 GeV to the muon g − 2, by
exploiting analyticity and unitarity of the pion electromag-
netic form factor. The motivation of the work is the relatively
large error (of about 13.1 × 10−11, see Ref. [32]) of this
contribution obtained by direct data integration, explained by
experimental difficulties in identifying pion pairs at low
energies and the behavior of the QED kernel KðtÞ in the
integral (1) expressing aμ in terms of the pion form factor
modulus.
The main idea of our approach was to use, instead of the

modulus, the phase of the pion form factor in the elastic
region, equal by Fermi-Watson theorem to the phase shift
of the P-wave ππ amplitude, known with precision from the
solution of Roy equations [38–40]. We have also used a
conservative integral constraint on the modulus above the

inelastic threshold, derived from BABAR data [16] and
perturbative QCD [41–43], and two precise measurements
of the form factor at spacelike values of the momentum
transfer [53,54].
A significant contribution to the final precision is

brought by the inclusion in the input of several measure-
ments of the modulus of the form factor at higher energies,
from the eþe−-annihilation experiments CMD2, SND,
BABAR, KLOE 11, KLOE 13 and BESIII, and the τ-decay
experiments CLEO, ALEPH, OPAL and Belle. In practice
we considered the energy region 0.65–0.71 GeV, where the
modulus is measured with a better accuracy, and which is
close enough to the low-energy region of interest such as to
have a significant constraining power. From this input,
using techniques of functional optimization theory, we
derived rigorous constraints on the contribution to aμ of the
energies below 0.63 GeV, where the experimental data are
poor. We emphasize that the formalism exploits in an
optimal way the input information and requires no para-
metrization of the pion form factor. Furthermore, the results
do not depend on the unknown phase of the pion form
factor above the inelastic threshold.
The present analysis supersedes our previous work [35],

where the same mathematical formalism was applied with
data from only 4 eþe− experiments (CMD2, SND, BABAR
and KLOE 13). We included now as input data in the region
0.65–0.71 GeV from 2 additional eþe− experiments,
KLOE 2011 and BESIII 2016, and the measurements in
the same region reported by 4 τ-decays experiments. The
analysis has been also improved by a proper treatment with
statistical tools of the uncertainties and the correlations
between the input data. For each timelike input from the
region 0.65–0.71 GeV of a given experiment, we have
evaluated a range for aμ at a 68.3% confidence level. The
results obtained with a definite input from the region
0.65–0.71 GeV have been then combined using a statistical
prescription suitable for cases when the correlations among
the individual measurements are not precisely known
[6,45]. The combination of the values obtained with data
from various experiments was done using the same
prescription, which defines a robust central value and leads
to a conservative error. By this procedure we have increased
the reliability of our determination.
The final outcome of our analysis is expressed in

Eq. (18). Our result is consistent with and more precise
than the previous result reported in [35]. It has an
uncertainty smaller by about 6 × 10−11 than the direct
integration of the cross section below 0.63 GeV [32].
Our work demonstrates that very general methods of

unitarity and analyticity can be combined with high
precision data from one sector to obtain stringent con-
straints in another sector. Using in addition suitable
statistical methods to account for the uncertainties and
the correlations of the input data, we obtained a significant
improvement of the low-energy two-pion contribution to

3Assuming the values not correlated, one would obtain
considerably smaller errors, 0.437 and 0.402, respectively.

4The separate combination of the results obtained with data
from eþe− and τ-decay experiments leads to the values
ð133.018� 0.766Þ × 10−10 and ð133.785� 0.993Þ × 10−10,
respectively.
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aμ. While the central value continues to remain stable,
which in itself is a remarkable result, the fact that it has
been possible to lower the uncertainty in this region by
nearly a factor of two makes the results in this paper to be of
significance. Until the accurate data expected from the
CMD-3 and SND experiments at the VEPP-2000 eþe−
collider in Novosibirsk become available, our result rep-
resents the most precise and robust determination of the
low-energy hadronic contribution to muon g − 2.
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APPENDIX A: SOLUTION OF THE EXTREMAL
PROBLEM FORMULATED IN SEC. II

We must find optimal upper and lower bounds on jFðtÞj
on the elastic unitarity cut, tþ < t < tin for FðtÞ ∈ C, where
C is the class of functions real analytic in the t-plane cut
along the real axis for t ≥ tþ, which satisfy the conditions
1–5 given in Sec. II. By means of a proof presented for the
first time in Ref. [44], this problem can be reduced to a
standard analytic interpolation problem [56] (also known as
a Meiman problem [57]).
The first step of the proof is to define the Omnès function

OðtÞ ¼ exp

�
t
π

Z
∞

4m2
π

dt0
δðt0Þ

t0ðt0 − tÞ
�
; ðA1Þ

where δðtÞ is equal to δ11ðtÞ at t ≤ tin and is an arbitrary
smooth (Lipschitz continuous) function above tin, which
approaches asymptotically π.
It follows that the function hðtÞ defined by

FðtÞ ¼ OðtÞhðtÞ ðA2Þ

is real on the real axis below tin, therefore it is analytic in the
t-plane cut only for t > tin. In terms of hðtÞ, the equality (8)
writes as

1

π

Z
∞

tin

dtρðtÞjOðtÞj2jhðtÞj2 ≤ I: ðA3Þ

This relation can be written in a canonical form if we
perform the conformal transformation

~zðtÞ ¼
ffiffiffiffiffi
tin

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
ffiffiffiffiffi
tin

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p ðA4Þ

and express the factors multiplying jhðtÞj2 in terms of an
outer function, i.e., a function analytic and without zeros in
the unit disk jzj < 1. In practice, it is convenient to
construct it as a product of two outer functions [44,58]:
the first one, denoted as wðzÞ, has the modulus equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtÞjdt=d~zðtÞjp

. For the choice ρðtÞ ¼ 1=t, it is given by
the simple expression

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − z
1þ z

r
: ðA5Þ

The second outer function, denoted as ωðzÞ, has the
modulus equal to jOðtÞj, and can be calculated by the
integral representation

ωðzÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − ~tðzÞ

p
π

Z
∞

tin

ln jOðt0Þjdt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − ~tðzÞÞ

�
:

ðA6Þ

If we define the function gðzÞ by

gðzÞ ¼ wðzÞωðzÞhð~tðzÞÞ; ðA7Þ

where ~tðzÞ is the inverse of z ¼ ~zðtÞ defined in Eq. (A4), the
condition (A3) can be written with no loss of information as

1

2π

Z
2π

0

dθjgðζÞj2 ≤ I; ζ ¼ eiθ: ðA8Þ

As shown in the analytic interpolation theory [56,57], this
condition leads to rigorous correlations among the values of
the analytic function gðzÞ and its derivatives at points inside
the holomorphy domain, jzj < 1. In particular, one can
show (for a proof and earlier references see Ref. [58]) that
(A8) implies the positivity condition

D ≥ 0 ðA9Þ

of the determinant D defined as

D ¼

����������������

Ī ξ̄1 ξ̄2 … ξ̄N

ξ̄1
z2K
1

1−z2
1

ðz1z2ÞK
1−z1z2

… ðz1zNÞK
1−z1zN

ξ̄2
ðz1z2ÞK
1−z1z2

ðz2Þ2K
1−z2

2

… ðz2zNÞK
1−z2zN

..

. ..
. ..

. ..
. ..

.

ξ̄N
ðz1zNÞK
1−z1zN

ðz2zNÞK
1−z2zN

…
z2KN
1−z2N

����������������

; ðA10Þ

in terms of the quantities
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Ī ¼ I −
XK−1
k¼0

g2k; ξ̄n ¼ ξn −
XK−1
k¼0

gkzkn; ðA11Þ

where:

gk ¼
�
1

k!
dkgðzÞ
dzk

�
z¼0

; 0 ≤ k ≤ K − 1;

ξn ¼ gðznÞ; 1 ≤ n ≤ N: ðA12Þ

The inequality (A9) defines an allowed domain for the real
values gðznÞ of the function at N real points zn ∈ ð−1; 1Þ,
and the first K derivatives gk at z ¼ 0. In our application we
consider K ¼ 2, noting that the coefficients g0 and g1
entering (A12)) depend on the charge radius hr2πi defined in
(7). We further take N ¼ 3, choosing two points as input,
t1 ¼ ts and t2 ¼ tt from the conditions (9) and (10), while
t3 is an arbitrary point below tin. For t1 < 0 we have from
Eqs. (A2) and (A7)

gðz1Þ ¼ wðz1Þωðz1ÞFðt1Þ=Oðt1Þ;
z1 ¼ ~zðt1Þ; ðA13Þ

while for tn, n ¼ 2, 3 we have

gðznÞ ¼ wðznÞωðznÞjFðtnÞj=jOðtnÞj;
zn ¼ ~zðtnÞ; ðA14Þ

where the modulus jOðtÞj of the Omnès function is
obtained from (A1) by the principal value (PV) Cauchy
integral

jOðtÞj ¼ exp

�
t
π
PV

Z
∞

4m2
π

dt0
δðt0Þ

t0ðt0 − tÞ
�
: ðA15Þ

The condition (A9) provides the solution of the extremal
problem formulated above: indeed, it can be written as a
quadratic inequality for the unknown modulus jFðt3Þj.
Recalling that t3 is an arbitrary point in the elastic region,
we obtain from (A9) the rigorous condition

m ≤ jFðtÞj ≤ M; t < tin ðA16Þ

where the bounds m and M are calculable in terms of
known quantities.
One can prove [44,58], that the bounds are optimal and

their values do not depend on the unknown phase of the
form factor above the inelastic threshold tin. Furthermore,
for a fixed weight ρðtÞ in (8), the bounds become stronger/
weaker when the value of the r.h.s I is decreased/increased,
respectively. These properties make the formalism model
independent and robust against the uncertainties from the
high energy region.

In the procedure above we assumed only one input value
on the modulus at a timelike energy. Actually, the general
inequality (A9) allows the simultaneous inclusion of more
input values, which are expected to lead to stronger bounds
(A16) on the modulus below 0.63 GeV. However, it turns
out that when the number of input points is increased the
procedure becomes quickly difficult numerically. It is more
convenient to use as input only one modulus at a time and
combine then the results taking into account the possible
correlations between them.

APPENDIX B: FORM FACTOR
EXTRACTION FROM DATA

In this appendix, we briefly discuss the extraction of the
modulus of the form factor and the various corrections
which must be taken into account while extracting the form
factor from the data from eþe− annihilation and τ decay
experiments. There is a vast literature on this subject (see
[59–64] and references therein).
In the case of eþe− experiments, the values of timelike

form factor is extracted from the measured cross-section of
eþe− → πþπ−ðγÞ. Several experimental collaborations
(CMD2, SND, BABAR, KLOE) include the vacuum polari-
zation (VP) into the definition of the pion form factor.
Therefore, to obtain jFðtÞj we remove VP from the
modulus quoted in Refs. [12,15–17,19,20]. Equivalently,
we use

jFðtÞj2 ¼ 3t
α2πβπðtÞ3

σ0ππðγÞðtÞ
1þ α

π ηπðtÞ
; ðB1Þ

where σ0ππðγÞ is the undressed cross section obtained by

removing VP and the ρ − ω interference factor from the
measured cross section, and ηπðtÞ is the FSR factor
discussed below Eq. (1).
The usefulness of τ decays for the calculation of the

hadronic contribution to aμ is based on conserved vector
current (CVC) hypothesis, which implies the equality
F−ðtÞ ¼ FðtÞ of the charged form factor F−ðtÞ relevant
in τ− → π−π0ντ decay and the form factor defined in (3).
For a long time, τ hadronic decays offered the most precise
data for the calculation of the hadronic contribution to aμ.
The increasing precision of the eþe− experiments, in
particular based on radiative return method, now make
the two approaches comparable.
The τ-decay data are given in terms of invariant hadronic

mass squared distribution. The modulus of the pion form
factor is extracted from the ππ distribution using the relation

jF−ðtÞj2 ¼ 2m2
τ

jVudj2
1

SEW

�
1 −

t
m2

τ

�
−2
�
1þ 2t

m2
τ

�
−1

×
Bππ

B

�
1

Nππ

dNππ

dt

�
1

β3−ðtÞ
1

GEM
; ðB2Þ
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where Bππ is the branching fraction for the τ decay into a
dipion pair, B denotes the electron branching fraction, and
dNππ=Nππdt is the normalized invariant mass spectrum of
the two-pion final state.
The expression (B2) includes all the corrections which

ensure that F−ðtÞ is the proper quantity to be used in the
evaluation (1) of aμ. SEW is a short distance correction to
the effective four-fermion coupling τ− → ντðdūÞ− andGEM
is a long distance radiative correction involving real and
virtual photons, calculated in [60] for the energy region of
interest in our work. The isospin breaking due to the mass
difference between charged and neutral pions is introduced
through the phase-space

β−ðtÞ ¼
�
1 −

ðmπ− þmπ0Þ2
t

�
1=2

�
1 −

ðmπ− −mπ0Þ2
t

�
1=2

;

ðB3Þ

relevant in τ decay. We have used standard values [6] for the
masses and the CKM matrix element jVudj. For SEW we
used the values given by the experiments themselves.
Several other corrections considered in the literature

are small and can be neglected in the region of interest,
0.65–0.71 GeV. The contribution due to the charged and
neutral ρ mass difference is negligible. The up and down
quark mass difference accounting for charge-changing
hadronic current between u and d quarks, which in turn
leads to a breakdown of the CVC hypothesis, introduces a
correction of the order of ðmu −mdÞ2=m2

τ ≃ 10−5 [61] to
Bππ . Another correction suggested recently for τ data is
produced by the ρ − γ mixing [64]. The evaluation in a
field-theoretic approach in [64] shows that the effect is
important especially above the ρ peak. We have studied the
mixing thoroughly using the formulas given in [64] and did
not find an appreciable effect at the lower energies we are
interested in. We have therefore not included the effect.
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