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We investigate the isospin symmetry breaking effects within a recently derived Nambu-Jona-Lasinio
related model by fitting the measured pseudoscalar meson masses and weak decay couplings fπ , fK . Our
model contains the next to leading order terms in the 1=Nc expansion of the effective multiquark
Lagrangian, including the ones that break the chiral symmetry explicitly. We show the important
phenomenological role of these interactions: (1) They lead to an accurate fit of the low-lying pseudoscalar
nonet characteristics. (2) They account for a very good agreement of the current quark masses with the
present PDG values. (3) They reduce by 40% the ratio ϵ=ϵ0 of the π0 − η and π0 − η0 mixing angles, as
compared to the case that contemplates explicit breaking only in the leading order, bringing it in
consonance with the quoted values in the literature. The conventional NJL-type models fail in the joint
description of these parameters.
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I. INTRODUCTION

The strong isospin symmetry is considered to be a
very good approximation in the empirical description of a
large bulk of strong interaction processes. This is related
to the hierarchy in which breaking of the chiral symmetry
SUð3ÞL × SUð3ÞR by different current quark masses
occurs, down to SUð2ÞI ×Uð1ÞY flavor symmetry if
mu;md ≪ ms. In the case of the pseudoscalar mesons it
is accurate at the order of the ratio of the light and strange
current quark masses ðmu −mdÞ=ms [1,2] and explains
partly the small meson mass differences within charged
isospin multiplets. A further source of isospin breaking
is due to the electromagnetic interactions, which are
expected to be suppressed at the scale of strong
interactions.
A detailed quantitative analysis however requires isospin

breaking corrections to be taken into account in a series of
low energy phenomena, such as the description of mass
splittings of mesons and Dashen’s theorem [3]; sum rules
for quark condensates [2,4]; kaon decays [5]; π − π [6,7]
and π − K scattering [8,9] in relation to mesonic atoms;
[10,11], ρ and τ decays involving ηðη0Þ mesons [12]; and
a0 − f0 mixing [13] in the scalar meson sector.
Strong isospin breaking effects become particularly

relevant if a certain process depends crucially on the
differences of the light quark masses. If in addition the
electromagnetic interactions are a subleading effect, these
processes provide for ideal tools in a quantitative analysis
of quark mass ratios. In the latter category are the η; η0 →
3π decays and the π0 − η and π0 − η0 mixings, as well as the
ρ − ω mixing in the vector channels.

Isospin breaking associated with the π0 − η − η0 system
has long been known to play a role in the Standard Model
prediction of the CP violation related ratio ðϵ0ϵÞCP [14–17]
representing a substantial correction to the QCD penguin
contributions [16]. It affects the value of the K0 → π0π0

transition through the dominant QCDQ6 penguin operator,
which is one of the sources of uncertainties in the
determination of ðϵ0ϵÞCP [18], for a recent review see [19].
In chiral perturbation theory (ChPT)[2,20,21] the π0 − η

mixing angle occurs already at order p2 and was first
evaluated to order p4 in the context of Kl3 form factors
in [21].
In the analysis of η − η0 mixing of [22] the Uð1ÞA

anomaly is described by the gluon transition matrix element
h0j αs

4πG
~Gjηii, and the quark flavor basis has been used. As

shown in [23] this basis is favored, as one of the two mixing
angles is indeed small. The decay constants follow the
pattern of particle state mixing in that basis. It has been
shown that this approach leads to results consistent with
many observables related to η − η0 mixing [22]. In [24] and
[25] it has been extended to include the mixing to the
neutral pion.
In the present work we address the π0 − η − η0 mixings

resulting from a recently proposed Lagrangian [26,27],
which is reviewed below. In this effective Lagrangian
approach built from all spin 0 and nonderivative multiquark
interactions relevant at the scale of spontaneous chiral
symmetry breaking, the complete set of interactions which
break explicitly the chiral symmetry was included for the
first time. This Lagrangian represents a generalization of
the original Nambu-Jona-Lasinio [28,29] model extended
to the realistic three flavor and color case with Uð1ÞA
breaking six-quark ’t Hooft interactions [30–44] and an
appropriate set of eight-quark interactions [45]. The last
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ones complete the number of vertices which are important
in four dimensions for dynamical SUð3ÞL × SUð3ÞR chiral
symmetry breaking [46,47]. The Lagrangian considers all
interactions relevant at the same order in large Nc counting
as the Uð1ÞA anomaly term.
The role of the new interactions contained in the explicit

symmetry breaking (ESB) vertices has been analyzed at
meson tree level approximation and in the isospin limit in
connection with the low lying characteristics of the
pseudoscalar and scalar meson nonets [26,27] and in the
T − μ phase diagram associated with chiral transitions
[48]. An unprecedented accuracy for the description of
the spectra has been achieved. One should stress that the
present Lagrangian is able to account properly for the
SUð3Þ breaking effects in the description of the weak decay
constants fπ and fK , in addition to yield the correct
empirical η, η0, and K meson masses, as well as the
anomalous two photon decays of π; η; η0, in an unified
description, which was an open problem for model versions
without the ESB terms.
The paper is organized as follows. In the next section is

presented the effective multiquark Lagrangian and its
bosonized form, the associated Nc counting is reviewed.
In Sec. III we address the mixing in the π − η − η0 system,
the choices of representation of states, the decay parameters
in the flavor basis, and the compliance of the model in the
approximation considered with the decay parameters trans-
forming as the states. In Sec. IV we present and discuss the
numerical fits of the mass spectra and decay parameters.
We end with a summary of the main results.

II. SURVEY OF THE MODEL LAGRANGIAN

A. Multiquark picture

The Langrangian considered is built from all spin 0
chiral SUð3ÞL × SUð3ÞR symmetric and parity conserving
combinations relevant at the scale Λ of spontaneous
breaking of chiral symmetry. This means that in the
corresponding effective potential are kept all the inter-
actions which do not vanish in the Λ → ∞ limit. These
consist of vertices involving nonderivative quark-antiquark
fields, denoted by Σ, with Σ ¼ 1

2
ðsa − ipaÞλa and sa ¼

q̄λaq; pa ¼ q̄iγ5λaq, λa being the standard Gell-Mann
matrices for a ¼ 1.::8 and λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
× 1, as well as of

their interactions with the external sources χ which trans-
form as χ ¼ ð3; 3�Þ under SUð3ÞL × SUð3ÞR,

L ¼ q̄iγμ∂μqþ Lint þ Lχ : ð1Þ

The term

Lint ¼
Ḡ
Λ2

trðΣ†ΣÞ þ κ̄

Λ5
ðdetΣþ detΣ†Þ

þ ḡ1
Λ8

ðtrΣ†ΣÞ2 þ ḡ2
Λ8

trðΣ†ΣΣ†ΣÞ: ð2Þ

is well known. Here and elsewhere we use barred
quantities for any dimensionless coupling, these are
related to the dimensionful ones through powers of
the scale Λ, gi ¼ ḡi=Λγ . Also, Lint contains the leading
order (LO) in Nc four quark (q) NJL interactions with
coupling Ḡ, generalized to the 3 flavor case, the NLO
6q ’t Hooft Uð1ÞA breaking flavor determinant with
coupling κ̄, and the two possible 8q interactions ∼ḡ1; ḡ2,
which have the same Nc counting as the ’t Hooft term.
We refer to [26,27] for a detailed discussion of the large
Nc counting scheme which complies with the counting
rules based on powers of the scale Λ of spontaneous
breaking of chiral symmetry. Rephrasing it, means that
the terms which vanish as Λ → ∞ are the same that also
vanish on grounds of Nc → ∞. Applying these rules,
summarized after Eq. (4), the following set of terms
involving interactions with the sources χ emerge, which
act also up to the same order in Nc counting as the ’t
Hooft term

Lχ ¼
X10
i¼0

Li; ð3Þ

where

L0 ¼ −trðΣ†χ þ χ†ΣÞ
L1 ¼ −

κ̄1
Λ
eijkemnlΣimχjnχkl þ H:c:

L2 ¼
κ̄2
Λ3

eijkemnlχimΣjnΣkl þ H:c:

L3 ¼
ḡ3
Λ6

trðΣ†ΣΣ†χÞ þ H:c:

L4 ¼
ḡ4
Λ6

trðΣ†ΣÞtrðΣ†χÞ þ H:c:

L5 ¼
ḡ5
Λ4

trðΣ†χΣ†χÞ þ H:c:

L6 ¼
ḡ6
Λ4

trðΣΣ†χχ† þ Σ†Σχ†χÞ

L7 ¼
ḡ7
Λ4

ðtrΣ†χ þ H:c:Þ2

L8 ¼
ḡ8
Λ4

ðtrΣ†χ − H:c:Þ2

L9 ¼ −
ḡ9
Λ2

trðΣ†χχ†χÞ þ H:c:

L10 ¼ −
ḡ10
Λ2

trðχ†χÞtrðχ†ΣÞ þ H:c: ð4Þ

We recall that the Nc book keeping is as follows:

Σ ∼ Nc; Λ ∼ N0
c ¼ 1; G ∼ 1=Nc; κ ∼ 1=N3

c;

κ1; g9; g10 ∼ 1=Nc;

κ2; g5; g6; g7; g8 ∼ 1=N2
c; g3; g4 ∼ 1=N3

c: ð5Þ
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The scale Λ which gives the right dimensionality to the
multiquark vertices is related with the cutoff on the
divergent quark one-loop integrals; its Nc counting is
dictated by the gap equations in the phase of spontaneously
broken chiral symmetry, Eqs. (21), (22), and (23) below.
The terms L1…L10 of Lagrangian (4) have been intro-

duced recently in the model [26,27] and generalize to NLO
in Nc the explicit symmetry breaking (ESB) standard LO
mass term L0.
Since all the blocks L0…L10 conform with the symmetry

pattern of the model one is free to choose for the source the
constant valued matrix χ ¼ M=2,

M ¼ μaλa ¼ diagðμu; μd; μsÞ: ð6Þ

Whenever convenient we use in the following the equiv-
alent redefinition of flavor indices from a ¼ 0, 3, 8 to
i ¼ u, d, s for any observable A [49]

Aa ¼ eaiAi; eai ¼
1

2
ffiffiffi
3

p

0
B@

ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
ffiffiffi
3

p
−

ffiffiffi
3

p
0

1 1 −2

1
CA: ð7Þ

The terms L1, L9, L10 are related to the Kaplan-Manohar
ambiguity [50–53] in the definition of the quark mass. In
the present case this corresponds to the following freedom
in transforming the external source [26]

χðciÞ ¼ χ þ c1
Λ
ðdet χ†Þχðχ†χÞ−1 þ c2

Λ2
χχ†χ

þ c3
Λ2

trðχ†χÞχ ð8Þ

with three independent constants ci, which has the same
symmetry transformation property as χ. The description in
terms of χðciÞ in the place of χ is equivalent, leading to the
same Lagrangian, with some of the couplings redefined as

κ̄1 → κ̄1
0 ¼ κ̄1 þ

c1
2
; ḡ5 → ḡ05 ¼ ḡ5 − κ̄2c1;

ḡ7 → ḡ07 ¼ ḡ7 þ
κ̄2
2
c1; ḡ8 → ḡ08 ¼ ḡ8 þ

κ̄2
2
c1;

ḡ9 → ḡ09 ¼ ḡ9 þ c2 − 2κ̄1c1;

ḡ10 → ḡ010 ¼ ḡ10 þ c3 þ 2κ̄1c1: ð9Þ

Note that the redefinition of the χ fields (8) in the model
contains more terms than the one usually considered, in the
context of second order ChPT, which leads to the following
redefinition of the current quark mass [50]:

M → MðλÞ ¼ Mþ λMðM†MÞ−1 detM†: ð10Þ

It has been reported that the Kaplan-Manohar ambiguity
may be in conflict with the large Nc counting rules of

ChPT [54]. Following from a threefold chiral expansion in
the number of derivatives, powers of quark masses and
powers of 1=Nc, as well as the counting associated with the
θ angle related with the UAð1Þ sector, λ is found to be
suppressed to all orders in the large Nc limit [54].
Regarding our model Lagrangian, the new couplings, the

primed ones in (9), must not dominate over the Nc
dependence of the unprimed ones. This means that in their
leading contributions they scale at most as the unprimed
couplings, ci ∼ 1=Nc, see (5). Attributing this counting
to the ci suffices to warrant that one can use the
reparametrization freedom (9), in particular to obtain
κ̄01 ¼ ḡ09 ¼ ḡ010 ¼ 0. Indeed, remembering that our model
Lagrangian has been constructed to incorporate the classes
of multiquark interactions which do not vanish in the
effective potential as Nc → ∞ in the phase of spontane-
ously broken chiral symmetry, one gets for this case that
κ̄1 ¼ −c1=2, and that up to subleading corrections (not
considered at this order of the effective potential),
ḡ9 ¼ −c2, ḡ10 ¼ −c3, ḡ05 ¼ ḡ5, ḡ07 ¼ ḡ7, ḡ08 ¼ ḡ8.

B. Bosonized version

The low energy meson characteristics are obtained after
path integral bosonization of the quark Lagrangian (1).
Following [34] one may equivalently use the introduced sa,
pa as auxiliary fields, and a further set of physical scalar
and pseudoscalar fields σ ¼ σaλa, ϕ ¼ ϕaλa to obtain the
vacuum persistence amplitude of the theory as

Z ¼
Z

DqDq̄
Y
a

Dσa
Y
a

Dϕa exp

�
i
Z

d4xLqðq̄; q;σ;ϕÞ
�

×
Zþ∞

−∞

Y
a

Dsa
Y
a

Dpa exp

�
i
Z

d4xLauxðσ;ϕ;s;pÞ
�
:

ð11Þ

In these variables the Lagrangian reads

L ¼ Lq þ Laux

Lq ¼ q̄ðiγμ∂μ − ðσ þMÞ − iγ5ϕÞq
Laux ¼ saðσa þMa −maÞ þ paϕa þ Lintðs; pÞ

þ
X8
i¼2

L0
iðs; p;mÞ: ð12Þ

Here, L0
i contains the ESB terms and L0 appears as sama in

Laux. The external scalar fields σ have been shifted to
σ → σ þM, so that the expectation value of the shifted
fields in the vacuum corresponding to dynamically broken
chiral symmetry vanish. The expectation value of the
unshifted scalar field hσi ¼ Maλa ¼ diagðMu;Md;MsÞ
corresponds to the point where the effective potential of
the theory achieves its minimum, with M being the
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constituent quark masses. In (12) the bilinear form in the
quark fields Lq can be integrated out from the path integral,
and results in the fermion determinant (see (18) below),
which generates the kinetic terms of the σ;ϕ fields. The
remaining integrations are over a static non-Gaussian
system of s, p fields, and are done in the stationary phase
approximation (SPA). First, we present the results for the
SPA integration, obtained from the extremum conditions

∂L
∂sa ¼ 0;

∂L
∂pa

¼ 0; ð13Þ

which must be fulfilled in the neighborhood of the uniform
vacuum state of the theory. The solutions of Eq. (13) are
seeked in the form:

ssta ¼ ha þ hð1Þab σb þ hð1Þabcσbσc þ hð2Þabcϕbϕc þ � � �
pst
a ¼ hð2Þabϕb þ hð3Þabcϕbσc þ � � � ð14Þ

Equations (13) determine all coefficients of this expansion
giving rise to a system of cubic equations to obtain ha,
Eq. (16), and a full set of recurrence relations to find higher
order coefficients in (14). The result is cast in the form

Laux ¼ haσa þ
1

2
hð1Þab σaσb þ

1

2
hð2Þabϕaϕb

þ 1

3
σa½hð1Þabcσbσc þ ðhð2Þabc þ hð3ÞbcaÞϕbϕc� þ � � � ð15Þ

Here, ha are related to the quark condensates, hð1Þab , h
ð2Þ
ab

contribute to the masses of scalar and pseudoscalar states,
respectively, and higher indexed h’s are the couplings that
measure the strength of the meson-meson interactions.
From Eq. (13) and using (7) one obtains the following
system of cubic equations for the one index coefficients hi,
ði ¼ fu; d; sgÞ

Mi −mi þ
κ

4
tijkhjhk þ

hi
2
ð2Gþ g1h2 þ g4mhÞ þ g2

2
h3i

þmi

4
½3g3h2i þ g4h2 þ 2ðg5 þ g6Þmihi þ 4g7mh�

þ κ2tijkmjhk ¼ 0: ð16Þ

Here, tijk is a totally symmetric quantity, whose nonzero
components are tuds ¼ 1; there is no summation over
the open index i, but we sum over the dummy indices,
e.g. h2 ¼ h2u þ h2d þ h2s ; mh ¼ muhu þ mdhd þ mshs.
Regarding the h coefficients with more than one index,
we indicate explicitly only the expression needed for the
present study of the pseudoscalar masses (the complete
expressions up to 3 indices can be found in [26,27])

− 2ðhð2Þab Þ−1 ¼ ð2Gþ g1h2 þ g4mhÞδab
− 3Aabcðκhc þ 2κ2mcÞ þ g2hrhcðdabedcre þ 2farefbceÞ
þ g3mrhcðdabedcre þ farefbce þ facefbreÞ
− g5mrmcðdaredbce − farefbceÞ
þ g6mrmcdabedcre − 4g8mamb; ð17Þ

which can be readily inverted. These coefficients are totally
defined in terms of ha and the parameters of the model.
Now to the fermion determinant related to the integration

over the fermion fields: We expand it using a heat-kernel
technique that takes appropriately into account the quark
mass differences, being chiral covariant at each order of the
expansion [55–57],

W½Y� ¼ ln jdetDj ¼ −
1

2

Z
∞

0

dt
t
ρðtÞ exp ð−tD†

EDEÞ;

D†
EDE ¼ M2 − ∂2 þ Y;

Y ¼ iγμð∂μ þ iγ5∂μϕÞ þ σ2 þ fM; σg þ ϕ2

þ iγ5½σ þM;ϕ�; ð18Þ

or

W½Y� ¼ −
Z

d4xE
32π2

X∞
i¼0

Ii−1tr½bi�; ð19Þ

where DE stands for the Dirac operator in Euclidean space.
We consider the expansion up to the third modified Seeley-
DeWitt coefficient bi,

b0 ¼ 1; b1 ¼ −Y;

b2 ¼
Y2

2
þ λ3

2
ΔudY þ λ8

2
ffiffiffi
3

p ðΔus þ ΔdsÞY; ð20Þ

with Δij ¼ M2
i −M2

j . This order of the expansion takes
into account the dominant contributions of the quark one-
loop integrals Ii ði ¼ 0; 1;…Þ; these are the arithmetic
average values Ii ¼ 1

3
½JiðM2

uÞ þ JiðM2
dÞ þ JiðM2

sÞ� where

Jiðm2Þ ¼
Z

∞

0

dt
t2−i

ρðtΛ2Þe−tm2

; ð21Þ

with the Pauli-Villars regularization kernel [58,59],

ρðtΛ2Þ ¼ 1 − ð1þ tΛ2Þ expð−tΛ2Þ; ð22Þ

which is equivalent to the sharp 4D cutoff regularization for
the scalar integrals considered. Both terms proportional to
b1 and b2 have contributions to the gap equations and
meson masses, but only b2 contributes to the kinetic and
meson interaction terms. By excluding the σ tadpole from
the total Lagrangian, one obtains the gap equations
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hi þ
Nc

6π2
Mi½3I0 − ð3M2

i −M2ÞI1� ¼ 0; ð23Þ

where M2 ¼ M2
u þM2

d þM2
s . We now see that (23)

must be solved self-consistently with the SPA
equations (16).

III. MIXING IN THE π0; η; η0 SYSTEM

A. Choices of representations

Finally, one is ready to combine the terms of the total
Lagrangian L that contribute to the kinetic terms Lkin and
meson masses Lmass

Lkin þ Lmass ¼
NcI1
16π2

tr½ð∂μσÞ2 þ ð∂μϕÞ2� þ
NcI0
4π2

ðσ2a þ ϕ2
aÞ −

NcI1
12π2

n
½2ðMu þMdÞ2 −MuMd −M2

s �ðσ21 þ σ22Þ
þ ½2ðMu þMsÞ2 −MuMs −M2

d�ðσ24 þ σ25Þ þ ½2ðMd þMsÞ2 −MdMs −M2
u�ðσ26 þ σ27Þ

þ 1

2
½σ2uð8M2

u −M2
d −M2

sÞ þ σ2dð8M2
d −M2

u −M2
sÞ þ σ2sð8M2

s −M2
u −M2

dÞ�

þ 1

2
½ϕ2

uð2M2
u −M2

d −M2
sÞ þ ϕ2

dð2M2
d −M2

u −M2
sÞ þ ϕ2

sð2M2
s −M2

u −M2
dÞ�

þ ½2ðMu −MdÞ2 þMuMd −M2
s �ðϕ2

1 þ ϕ2
2Þ þ ½2ðMu −MsÞ2 þMuMs −M2

d�ðϕ2
4 þ ϕ2

5Þ

þ ½2ðMd −MsÞ2 þMdMs −M2
u�ðϕ2

6 þ ϕ2
7Þ
o
þ 1

2
hð1Þab σaσb þ

1

2
hð2Þabϕaϕb: ð24Þ

The kinetic term requires a redefinition of the meson fields,

σa ¼ gσRa ; ϕa ¼ gϕR
a ; g2 ¼ 4π2

NcI1
; ð25Þ

to obtain the standard factor 1=4. The flavor and charged
pseudoscalar fields are related through

λaffiffiffi
2

p ϕa ¼

0
BB@

ϕuffiffi
2

p πþ Kþ

π− ϕdffiffi
2

p K0

K− K̄0 ϕsffiffi
2

p

1
CCA ð26Þ

and similarly for the scalar fields. In the following we
concentrate on the diagonal components of (26), which
according to Eq. (7) induce mixing between the 0, 3, 8 field
components of (24), in general. Indicating also the result of
the transformations discussed below in (29) and (30), we
arrive at the following useful relations among fields

ϕu ¼ ϕ3 þ
ffiffiffi
2

p
ϕ0 þ ϕ8ffiffiffi

3
p ¼ ϕ3 þ ηns

ϕd ¼ −ϕ3 þ
ffiffiffi
2

p
ϕ0 þ ϕ8ffiffiffi

3
p ¼ −ϕ3 þ ηns

ϕs ¼
ffiffiffi
2

3

r
ϕ0 −

2ϕ8ffiffiffi
3

p ¼
ffiffiffi
2

p
ηs: ð27Þ

The neutral physical states π0; η; η0 are related to the
3 × 3 symmetric pseudoscalar meson mass matrix of
elements Bij emerging in the i; j ¼ f0; 3; 8g channels of
Lmass by a sequence of two transformations S ¼ UV that
diagonalize it

ðϕ3;ϕ0;ϕ8ÞS−1S

0
B@

B33 B03 B38

B03 B00 B08

B38 B08 B88

1
CAS−1S

0
B@

ϕ3

ϕ0

ϕ8

1
CA; ð28Þ

first a rotation to the strange-nonstrange basis through the
orthogonal involutory matrix V

0
B@

ϕ3

ηns

ηs

1
CA ¼ V

0
B@

ϕ3

ϕ0

ϕ8

1
CA ð29Þ

with

V ¼ 1ffiffiffi
3

p

0
B@

ffiffiffi
3

p
0 0

0
ffiffiffi
2

p
1

0 1 −
ffiffiffi
2

p

1
CA; ð30Þ

and then through the unitary transformation U to the
physical states [25]

0
B@

π0

η

η0

1
CA ¼ Uðϵ1; ϵ2;ψÞ

0
B@

ϕ3

ηns

ηs

1
CA; ð31Þ

where

U ¼

0
B@

1 ϵ1 þ ϵ2 cosψ −ϵ2 sinψ
−ϵ2 − ϵ1 cosψ cosψ − sinψ

−ϵ1 sinψ sinψ cosψ

1
CA: ð32Þ

The conventional definitions ϵ ¼ ϵ2 þ ϵ1 cosψ , ϵ0 ¼
ϵ1 sinψ for the mixing angles are used in the tables. The
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unitary matrix U has been linearized in the π0 − η and
π0 − η0 mixing angles ϵ1; ϵ2 ∼OðδÞ; δ ≪ 1. This can be
done because ϕ3 couples weakly to the ηns and ηs states,
decoupling in the isospin limit, while the mixing for the
η − η0 system is strong. Nevertheless, we have tested
numerically the linearization by obtaining also the exact
Euler angles associated with the transformation (31), [60],
the differences lying within the one to two percent level for
the cases studied.
In the isospin limit U in (32) leads to the 2 × 2

orthogonal tranformation Rψ

�
η

η0

�
¼ Rψ

�
ηns

ηs

�
; ð33Þ

with

Rψ ¼
�
cosψ −sinψ
sinψ cosψ

�
: ð34Þ

We remind that the angle ψ is related to the mixing angle θp

�
ϕ0
R

ϕ8
R

�
¼

�
cos θp −sin θp
sin θp cos θp

��
η0

η

�
; ð35Þ

of the physical states η; η0 in the singlet-octet renormalized
basis states ϕ0

R;ϕ
8
R as ψ ¼ θp þ arctan

ffiffiffi
2

p
, with the prin-

cipal value of the angle θp comprised in the interval
−ðπ=4Þ ≤ θp ≤ ðπ=4Þ, for details please see Appendix B
of [61] and [62].
We emphasize that one can freely choose among the

different orthogonal bases to address the mixing of
states. The reason it is convenient to adopt the
strange-nonstrange basis is that it allows to infer whether
the mixing-parameters are determined in a process
independent way; in the context of ChPT it has been
shown to be so if certain OZI-violating processes are
suppressed, [25,54,63], and with the exception of those
originating from topological effects due to the Uð1ÞA
anomaly. At this level of accuracy the decay constants
follow the pattern of particle state mixing in this basis
which is tantamount to having a single mixing angle
involved in the determination of the decay constants
associated with the η and η0 mesons. We show in the next
subsection that our model fulfills this condition at the
approximation considered.
At this point one should remind the reader how the

model’s mη0 contains a term related with the topological
vacuum susceptibility. The generalized NJL Lagrangian
which combines the UAð1Þ breaking by the ’t Hooft
(2Nf) determinantal Lagrangian with the 4q and 8q
interactions has been shown in [62] to be in correspon-
dence with the Witten-Veneziano formula [64] which
relates mη0 , in the large Nc limit of QCD with massive

quarks, to the topological susceptibility χYM of pure
Yang-Mills,

m2
η0 þm2

η − 2m2
K ¼ −

6

f2π
χYM: ð36Þ

In our model the topological susceptibility is obtained in
the large Nc limit as the following combination of model
parameters:

χYM ¼ κ

4

�
M
2G

�
3

: ð37Þ

The cutoff Λ, which is the approximate scale at which
dynamical chiral symmetry breaking sets in, does not
appear explicitly in the relation for χYM, only hidden in
the constituent quark mass M. This expression shows a
judicious interplay of the subleading in Nc counting
UAð1Þ breaking parameter κ and the LO in Nc 4q
coupling G, which combine in a relation that survives in
the large Nc limit. This shows that the roles of chiral
symmetry breaking and the breaking through the
Adler-Bell-Jackiw anomaly are intertwined to equip η0
with its large mass, which does not vanish in the
chiral limit.

B. Decay parameters

At the order of the heat kernel considered, we obtain the
model’s axial-vector current as [62,65]

Aa
μ ¼

1

4
tr½ðfσR þMg−1;∂μϕ

Rg− f∂μσ
R;ϕRgÞλa� þOðb3Þ

ð38Þ

in terms of the anti-commutators involving the bosonized
and renormalized fields σR;ϕR (25) and the constituent
quark mass matrix M ¼ Maλa. From here it is straightfor-
ward to calculate the matrix elements in the singlet-octet
basis

h0jAa
μð0Þjϕb

Ri ¼ ifabpμ: ð39Þ

One has

f00 ¼ Mu þMd þMs

3g
; f11 ¼ f22 ¼ f33 ¼ Mu þMd

2g

f88 ¼ Mu þMd þ 4Ms

6g
; f08 ¼ Mu þMd − 2Ms

3
ffiffiffi
2

p
g

f03 ¼
ffiffiffi
2

p
f38 ¼ Mu −Mdffiffiffi

6
p

g
ð40Þ

f44 ¼ f55 ¼ Mu þMs

2g
; f66 ¼ f77 ¼ Md þMs

2g
: ð41Þ
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In particular one obtains h0jA1þi2
μ ð0ÞjπðpÞi ¼ i

ffiffiffi
2

p
fπpμ

and h0jA4þi5
μ ð0ÞjKðpÞi ¼ i

ffiffiffi
2

p
fKpμ with fπ ¼ MuþMd

2g and

fK ¼ MuþMs
2g , at the order of the heat-kernel expansion

considered.
The neutral axial vector currents can alternatively be

taken in the strange-nonstrange basis (27)

Ans
μ ¼

ffiffiffi
2

3

r
A0

μ þ
ffiffiffi
1

3

r
A8

μ;

As
μ ¼

ffiffiffi
1

3

r
A0

μ −
ffiffiffi
2

3

r
A8

μ; ð42Þ

for which one obtains the decay constants

h0jAσ
μð0Þjϕτ

Ri ¼ ifστpμ; fσ; τg ¼ 3; ns; s ð43Þ

fns ¼ f3 ¼ Mu þMd

2g
; fs ¼ Ms

g
;

f3;ns ¼ Mu −Md

2g
; f3;s ¼ fns;s ¼ 0; ð44Þ

where f3, fns, fs are short-hand notations for f3;3, fns;ns,
fs;s. The elements of (43) are collected in the following
matrix:

F ¼

0
B@

fπ zfπ 0

zfπ fπ 0

0 0 fs

1
CA; ð45Þ

with z ¼ Mu−Md
MuþMd

¼ f3;ns

fπ
marking the departure from isospin

symmetry. It is of the order of the ratio involving
fu−fd
fuþfd

∼OðδÞ, with ff ¼ Mf=g the decay constants
F f ¼ diagffu; fd; fsg.
According to the idea behind the strange-nonstrange

basis, the transformation to obtain the physical decay
constants,

FP ¼ UF ; P ¼ fπ0; η; η0g; ð46Þ

is the same that transforms the states, Eq. (31). In the
following we discuss how the observables obtained from
our model Lagrangian fulfill this condition. In order to do
so, it is convenient to express the meson mass Lagrangian
Ln of the neutral states in the flavor basis

Ln ¼
X

i¼u;d;s

�
1

2
½ð∂μσiRÞ2 þ ð∂μϕiRÞ2 þ Ciσ2iR þ Biϕ

2
iR�

þ
X

j¼u;d;s

ξijσiRσjR þ ζijϕiRϕjR

�
ð47Þ

with

Ci ¼
NcI0
2π2

g2 −
2

3
ξi; Bi ¼

NcI0
2π2

g2 −
2

3
ζi;

ξij ¼
g2

2
hð1Þab eaiebj ; ζij ¼

g2

2
hð2Þab eaiebj ; ð48Þ

where ξij, ζij are symmetric quantities. The quantities
ζi are

ζi ¼ 2M2
i −M2

j −M2
k; i ≠ j ≠ k: ð49Þ

Inserting them in Bi and using the gap equations (23), one
obtains

Bi ¼ g2
hi
Mi

: ð50Þ

Similar expressions can be obtained for the ξi, Ci, but they
are not needed in the following. The divergence of the axial
current (38) reads in this basis

∂μAi
μ ¼

�
σiR þMi

g

�
∂2ϕiR − ð∂2σiRÞϕiR: ð51Þ

Using now the equations of motion for the σiR, ϕiR
fields

0 ¼ ∂2σiR − CiσiR − ðξijσjR þ ξijσiRÞ
0 ¼ ∂2ϕiR − BiϕiR − ðζijϕjR þ ζijϕiRÞ ð52Þ

one obtains for the matrix elements

h0j∂μAi
μjϕjRi ¼

Mi

g
ðBiδij þ 2ζijÞ; ð53Þ

which encode all the chiral and UAð1Þ symmetry breaking
terms. The off-diagonal elements of the inverse matrix
pertinent to ζij are calculated to be

ζ−1ij ¼ 1

4
ðhkκ þ 2mkκ2 þ 2g8mimjÞ; i ≠ j ≠ k: ð54Þ

These contributions violate the OZI-rule, the ones propor-
tional to κ, κ2 have their origin in the UAð1Þ anomaly. The
term ∼g8 is a contribution of the order of the square of the
current quark masses.
For comparison the transition elements of the

divergence of the axial current in the strange-nonstrange
basis are

Qi
j ¼ h0j∂μAi

μjϕjRi; i; j ¼ f3; ns; sg ð55Þ
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Q3
3 ¼

fπ
2
ðbþ þ zðb− − 2ζudÞÞ

Q3
ns ¼

fπ
2
ðb− þ zðbþ þ 2ζudÞÞ

Q3
s ¼

fπffiffiffi
2

p ðζus − ζds þ zðζus þ ζdsÞÞ

Qns
3 ¼ fπ

2
ðb− þ zðbþ − 2ζudÞÞ

Qns
ns ¼

fπ
2
ðbþ þ zðb− þ 2ζudÞÞ

Qns
s ¼ fπffiffiffi

2
p ðζus þ ζds þ zðζus − ζdsÞÞ

Qs
3 ¼

fsffiffiffi
2

p ðζus − ζdsÞ; Qs
ns ¼

fsffiffiffi
2

p ðζus þ ζdsÞ

Qs
s ¼ fs

�
Bs

2
þ ζss

�
ð56Þ

with

b� ¼
�
Bu

2
þ ζuu

�
�
�
Bd

2
þ ζdd

�
: ð57Þ

Note that the elements Qi
j, i; j ¼ f3; ns; sg are not sym-

metric under exchange of fi; jg differing by terms ∼z and
∼y ¼ fs

fπ
. Obviously, in the isospin limit the elements Q3

ns,

Qns
3 , Q3

s , Qs
3 vanish. In this limit the Qs

ns ¼ yQns
s , y being a

measure for flavor breaking in the light vs strange sector.
Finally, using the relations (31), (32) and (56) we

calculate the vacuum to physical particle transitions
of the divergence of the axial current, h0j∂μAb

μjPi;
b ¼ f3; ns; sg; P ¼ fπ0; η; η0g, discarding terms ∼δ2,
and are able to show that it fulfills the following
relation [25]:

h0j∂μAb
μjPai ¼ M2

aa0Ua0b0F b0b; ð58Þ

with F given by (45) and Maa0 the physical meson
mass matrix, which on the requirement of being diago-
nal determines the mixing angles ψ , ϵ, ϵ0. Thus the
decay constants transform as the states (31) within our
model calculations, at the order of the heat kernel
considered. Higher order terms involve derivative inter-
actions, which are likely to change this behavior.
We obtain the following relations at OðδÞ∶

X
P¼π0;η;η0

f3Pf
3
P ¼ f2π;

X
P¼π0;η;η0

fnsP fnsP ¼ f2π

X
P¼π0;η;η0

fsPf
s
P ¼ f2s ; ð59Þ

for the diagonal elements, and

X
P¼π0;η;η0

fnsP fsP ¼
X

P¼π0;η;η0
f3Pf

s
P ¼ 0;

X
P¼π0;η;η0

f3Pf
ns
P ¼ zf2π ð60Þ

for the crossed terms. The last relation is a consequence of
(45). The vanishing of the other crossed terms indicates that
just one mixing angle is present for the η − η0 mixing in the
strange-nonstrange basis at this order of approximation.
This can be seen in a simple way in the isospin limit, and
the argument is the same in the general case. In the isospin
limit the physical states P ¼ η, η0 are now only mixtures of
the nonstrange and strange components, as follows from
(33). This case has been considered in [62] (where a
detailed discussion of the mixing scheme in connection
with the singlet octet basis in the isospin limit is also
presented),

h0jAi
μð0ÞjPðpÞi ¼ ifiPpμ; ði ¼ ns; sÞ: ð61Þ

The couplings can be represented in a way which is similar
to the one of Leutwyler-Kaiser [54,63], who introduce two
mixing angles ϑns, ϑs

ffiPg ¼
� fnsη fsη
fnsη0 fsη0

�
¼

�
fns cosϑns −fs sinϑs
fns sinϑns fs cosϑs

�
:

ð62Þ

Our calculations show that within our model, with
M̄ ¼ Mu ¼ Md,

fnsη ¼ M̄
g
cosψ ; fsη ¼ −

Ms

g
sinψ ;

fnsη0 ¼
M̄
g
sinψ ; fsη0 ¼

Ms

g
cosψ : ð63Þ

One thus obtains the relation for the mixing angles

X
P¼η;η0

fnsP fsP ¼ fnsfs sinðϑns − ϑsÞ ¼ 0: ð64Þ

This follows as the basic parameters fns, fs, ϑns, ϑs of the
matrix ffiPg, expressed in terms of model parameters (in
the approximation considered)

fns ¼
M̄
g
¼ fπ; fs ¼

Ms

g
; ψ ¼ ϑns ¼ ϑs: ð65Þ

There is a direct relation between the common mixing
angle ϑns ¼ ϑs and the OZI-rule which has been discussed
in [54,63]. The model predictions agree well with the
general requirements of chiral symmetry following from
chiral perturbation theory (ChPT), although the results
differ already at lowest order. For instance, we have
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f2s ¼ 2f̄2K − f̄2π þ
ðMs − M̄Þ2

2ḡ2
; ð66Þ

where barred quantities are a reminder that they are taken in
the isospin limit. The first two terms of this formula are a
well known low-energy relation which is valid in standard
ChPT. In the η0-extended version of ChPT there is a
OZI-rule violating term in the effective Lagrangian, which
contributes as f̄2πΛ1 to rhs of (66). We have instead the term
ðMs − M̄Þ2=ð2ḡ2Þ. Of course, in our case the origin of this
contribution is related with the SUð3Þ flavor symmetry
breaking effect and does not have impact on the deviation
from a single mixing angle in the strange-nonstrange
basis reported as consequence of the OZI-rule violating
parameter Λ1.
Away from the isospin limit one obtains

f2s ¼ 2f2K − f2πð1þ 2zÞ þ ðMs −MuÞ2
2g2

; ð67Þ

with a correction of order δ in the f2π term, as compared to
(66). The numerical values that we obtain are z ∼ 4 × 10−3,
which amounts to a small correction of ∼0.8% in the
f2π term.
For completeness we indicate the decay constants and

mixing angles in the singlet-octet basis in the isospin limit,
as they will be used in Table IV in the next section, for
details see please [62],

θ0 ¼ ψ − arctan

� ffiffiffi
2

p M̄
Ms

�
;

θ8 ¼ ψ − arctan

� ffiffiffi
2

p Ms

M̄

�

ψ ¼ θP þ arctan
ffiffiffi
2

p
ð68Þ

f20 ¼
2f̄K2 þ f̄π2

3
þ f̄π2

6

�
Ms

M̄
− 1

�
2

f28 ¼
4f̄K2 − f̄π2

3
þ ðMs − M̄Þ2

3ḡ2
ð69Þ

IV. RESULTS AND FURTHER DISCUSSION

The model has 15 parameters, 4 couplings G; κ; g1; g2
associated with Lint in (2), 7 nonvanishing couplings
κ2; g3…:g8 in the ESB sector (4), the cutoff Λ, and the 3
current quark masses. Before running a fit it is convenient
to understand to which parameters the difference of the
light quark masses ðmu −mdÞ is most sensitive. For that it
is instructive to look at the matrix components (17) in the
strange-nonstrange basis, which vanish in the isospin limit.
As mentioned before these elements belong to the SPA
contribution to the meson mass Lagrangian, see last line in
(24), which is the part that carries the full information on

the model couplings. Note that the heat-kernel contribution
to the meson masses, represented except for the kinetic
terms in the remaining of expression (24), only depends on
the cutoff Λ of the Ii quark integrals. The dependence on
the model couplings of the heat-kernel contribution only
enters implicitly through the constituent quark masses, via
the gap equations (23) which are solved self-consistently
with the lowest order SPA equations (16). Defining
mΔ ¼ 1

2
ðmd −muÞ, mΣ ¼ 1

2
ðmd þmuÞ, hΔ ¼ 1

2
ðhd − huÞ

and hΣ ¼ 1
2
ðhd þ huÞ, one has for the inverse matrix

elements of the ζij matrix, i; j ¼ f3; ns; sg

ðζ3;nsÞð−1Þ ¼
1

4
½hΔð2g2hΣ þ g3mΣÞ

þmΔðg3hΣ − 2ðg5 − g6 þ 2g8ÞmΣÞ�

ðζ3;sÞð−1Þ ¼
1

2
ffiffiffi
2

p ðhΔκ þ 2mΔðκ2 − g8msÞÞ

ðζns;sÞð−1Þ ¼
1

2
ffiffiffi
2

p ðhΣκ þ 2ðκ2 þ g8msÞmΣÞ: ð70Þ

The first two elements vanish in the isospin symmetric
case. The third element relates to the mixing in η − η0 and is
nonzero in this limit. In this basis one sees that the mixing
in the 3; ns sector involves other couplings as in the
strangeness related sectors, in contrast to the off-diagonal
matrix elements in the u, d, s basis, (54). This sets new
constraints on these couplings, as compared to the isospin
symmetric case. It follows that the interplay of these
parameters (which is conditioned by the fits), not the actual
magnitude of each of the terms, is relevant to obtain the size
of isospin corrections. We remark that in ðζns;sÞð−1Þ isospin
breaking effects are absent, and that in the diagonal
elements (not shown) they are overshadowed by the
presence of ms;mΣ; hs; hΣ.
The current quark mass dependence in these expressions

enters together with the ESB couplings. In their absence the
effects of ESB come only through the difference in the light
condensates hΔ which do not vanish if the conventional
QCD mass term hasmu ≠ md values, and if the couplings κ
and g2 are not zero (if they also vanish, only the heat-kernel
contribution to the meson mass matrix carries the effects of
isospin breaking). The coupling κ is strongly correlated
with the η − η0 mass splitting and it enters in the corre-
sponding ðζns;sÞð−1Þ matrix element as factor of hΣ which
remains approximately constant. Thus, this parameter is not
expected to vary much in the fit of isospin breaking effects,
which has been also verified numerically.
Before showing the results for isospin breaking, we

display relevant model observables in the isospin limit, in
comparison to other approaches. We consider the cases in
which the ESB terms are present in the interaction
Lagrangian, sets (a,b) in the Tables I–IV, and compare
with the parameter set (c) in which explicit symmetry
breaking occurs only through the LO current quark mass
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term. Table I indicates the mass spectra of the low lying
pseudoscalar [and scalar meson nonets, see caption, for sets
(a,b)] used in the fit of parameters. Sets (a,b) have different
mixing angles for the pseudoscalars as well as for the
scalars, leaving however the mass spectra and weak decay
constants fπ , fK unchanged. This is possible because the fit
is done simultaneously in both sectors, leading to a
readjustment of parameters. A comment on the scalar mass
spectrum: we were able to obtain a reasonable simultaneous
fit for the σ mass and its large decay width, at tree level of
the mesonic Lagrangian. It is our understanding that this
results partly from the fact that already at mesonic tree level
there are signatures of quark-antiquark as well as of
admixtures of 2 quark-2 antiquark states present, from
the underlying multiquark Lagrangian, which contribute in
the long distance asymptotics to the internal structure of the
mesons as well as to the mesonic interaction terms. In many
other approaches the more complex quark structures enter
only through the explicit inclusion of meson loops,
tetraquark configurations, and so on [66–78].
Table II shows the current and constituent quark masses

in the isospin limit and the model parameters which do not
break explicitly the chiral symmetry, the 4-quark coupling
G, the 6-quark ‘t Hooft determinant coupling κ, and two
8-quark couplings g1, g2, of which g1 is OZI-violating. In
set (c) we put g1 ¼ 2500 without loss of generality, since a
change in g1 can be counterbalanced by a change in G
leaving all other parameters and observables unchanged,
except for the low lying σ-meson mass, see e.g. [62,79],
which does not affect the pseudoscalar characteristics
considered here. Table III displays the couplings related
with the ESB interactions.
In Table IV further properties of the η − η0 system are

presented, the angle θP in the singlet-octet basis and the
related angles θ0, θ8, as well as the weak decays f0, f8, see
Eqs. (68) and (69) obtained following the methods in

TABLE I. The pseudoscalar masses and weak decay constants
(all in MeV) in the isospin limit used as input (marked with *) for
different sets of the model. Parameter sets (a) and (b) contain
explicit symmetry breaking interactions (see Table III) and allow
for a fit of the scalar masses and strong decays as well,
mσ ¼ 550 MeV, mκ ¼ 850 MeV, ma0 ¼ mf0 ¼ 980 MeV
[27]; set (c) does not. Set (a) corresponds to an octet-singlet
mixing angle in the scalar sector of θS ¼ 27.5°, set (b) to
θS ¼ 25°.

Sets mπ mK mη mη0 fπ fK

a 138* 494* 547* 958* 92* 113*
b 138* 494* 547* 958* 92* 113*
c 138* 494* 475* 958* 92* 115.7

TABLE II. Parameter sets of the model:mu ¼ md ¼ m̂; ms, and
Λ are given in MeV. The couplings have the following units:
½G� ¼ GeV−2, ½κ� ¼ GeV−5, ½g1� ¼ ½g2� ¼ GeV−8. We also show
here the values of constituent quark masses Mu ¼ Md ¼ M̂ and
Ms in MeV. See also caption of Table I.

Sets m̂ ms M̂ Ms Λ G −κ g1 g2

a 4.0* 100* 373 544 828 10.48 122. 3284 173
b 4.0* 100* 372 542 829 9.83 118.5 3305 −158
c 6.1 190 375 569 836 9.79 138.2 2500* 100*

TABLE III. Explicit symmetry breaking interaction couplings.
The couplings have the following units: ½κ2� ¼ GeV−3,
½g3� ¼ ½g4� ¼ GeV−6, ½g5� ¼ ½g6� ¼ ½g7� ¼ ½g8� ¼ GeV−4. See
also caption of Table I.

Sets κ2 −g3 g4 g5 −g6 −g7 g8

a 6.17 6497 1235 213 1642 13.3 −64
b 5.61 6472 702 210 1668 100 −38
c 0 0 0 0 0 0 0

TABLE IV. The mixing angles in the η − η0 system in isospin limit, and related weak decay constants for the sets
discussed and in comparison with different approaches, see also main text (the systematic error estimates given in
[82,84] have been omitted here).

Sets θ°P θ°0 θ°8
f0
fπ

f8
fπ

a −12* −1.42 −21.37 1.172 1.318
b −15* −4.42 −24.37 1.172 1.322
c −14.5 −2.82 −24.78 1.197 1.365
[22] phen. −13.3 −6.8 −19.4 1.10 1.19
[22] phen. −15.4 −9.2 −21.2 1.17 1.26
[80] CHPT −10.5 −1.5 −20.0 1.24 1.31
[54] CHPT … −4.0 −20.5 1.10 1.28
[81] sum rules … −15.6 −10.8 1.39 1.39
[82] Padé approximants ðηÞ −16.4 −11.3 −21.3 1.15 1.22
[82] Padé approximants ðη0Þ −13.3 −1.5 −24.2 1.28 1.46
[84] BABAR (from [82] ðηÞ) −21.7 −26.7 −16.5 1.04 0.98
[84] BABAR (from [82] ðη0Þ) −17.7 −15.6 −19.9 1.14 1.11
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sections 3.2 and 3.3 of [62], and compared with the results
of other approaches [22] and references therein, [54,80,81],
and of Padé approximant method to pseudoscalar transition
form factors [82,83], where in the Table IV, ðηÞ and ðη0Þ
refer to the asymptotes taken for the fits, and the results
obtained from BABAR data [84] by the same authors (see
discussion in [82] concerning the BABAR “puzzle”).
This comparison shows that set (a) yields results quite

close to the chiral perturbation analysis of [80] and follows
the general trend of the other references in the table, with
exception of the sum rules approach of [81], and the fits
from [84]. Our values for θ0, θ8 are smaller, respectively
larger than the ones presented in [22], which is probably
due to the different way in which the Uð1ÞA anomaly is
treated. One further notices that an increase in θP leads
mainly to an increase in the θ0 angle, comparing sets (a)
and (b), which have similar theoretical input.

Turning now to isospin breaking, in the numerical fit we
keep the cutoff Λ, which sets approximately the scale of
chiral symmetry breaking, close to the isospin limit value,
and take for the strange current quark mass the value
ms ¼ 95 MeV. We do not consider the scalar spectrum in
this case, the related isospin breaking effects will be
addressed in a future work. Then the general case, with
the ESB terms, involves solving self-consistently a system
of 13 equations, the three gap equations (23) subject to the
three SPA conditions (16), 6 equations for the meson mass
matrix elements, that is 3 for mπ0, mη, mη0 and the
remaining 3 for diagonalization, 1 equation for the kaon
mass, 2 equations for the weak decay constants fπ , fK , 1
equation which fixes the ratio r ¼ md−mu

muþmd
of current quark

masses. We vary externally the values of the mixing angles
ϵ, ϵ0, ψ and search for the parameters that lead to the best fit
of the mu, md current masses. The result is indicated in
Table VII, using empirical input and couplings shown in
Tables V and VI (the empirical splitting of the charged
multiplets cannot be reproduced, since electromagnetic
effects are not taken into account). In the presence of
ESB (sets A and B) with the ratio r kept equal and close to
its empirical value, the ratio ϵ

ϵ0 is well reproduced in
comparison with the literature shown in Table VIII. The
main observation is that this ratio is reduced by ∼40%
compared to the model variant without ESB interactions,
set C. In the latter case one does not obtain ϵ

ϵ0 nor mu, md

TABLE V. Empirical input used in the fits with isospin breaking, sets A and B with ESB interactions, set C without. Primes indicate
which masses of the pion and kaon multiplets have been used for the fit, the other being output. Masses in units of MeV, angle ψ in
degrees.

Sets m0
π m�

π mη m0
η m0

K m�
K fπ fK ψ

A,B 136’ 136.6 547 958 500 494’ 92 113 39.7
C 136’ 137.0 477 958 501 497’ 92 116 39.7

TABLE VI. Parameter sets with isospin breaking, sets A and B with ESB interactions, set C without. The couplings have the following
units: ½G� ¼ GeV−2, ½κ� ¼ GeV−5, ½g1� ¼ ½g2� ¼ GeV−8, ½κ2� ¼ GeV−3, ½g3� ¼ ½g4� ¼ GeV−6, ½g5� ¼ ½g6� ¼ ½g7� ¼ ½g8� ¼ GeV−4. Λ is
given in MeV. See also caption of Table I.

Sets G −κ g1 g2 Λ κ2 g3 g4 g5 g6 g7 g8

A 10.48 116.8 3284 1237 828.5 6.24 2365 1182 160 712 580 44
B 10.48 116.8 3284 1252 828.5 6.26 2481 1182 151 745 591 49
C 9.79 137.4 2500 117 835.7 0 0 0 0 0 0 0

TABLE VII. Isospin breaking parameter r ¼ md−mu
mdþmu

, current and constituent quark massesmu,md,ms Mu,Md,Ms in MeVand π0 − η,
π0 − η0 mixing angles ϵ and ϵ0.

Sets r mu md ms Mu Md Ms ϵ ϵ0 ϵ
ϵ0

A 0.372* 2.179 4.760 95* 372 375 544 0.014* 0.0037* 3.78
B 0.372* 2.166 4.733 95* 372 375 544 0.017* 0.0045* 3.95
C 0.372* 3.774 8.246 194 373 380 573 0.022 0.0025 8.78

TABLE VIII. ϵ and ϵ0 values in the literature.

ϵ ϵ0 ϵ
ϵ0

[63] phen. 0.014 0.0037 3.78
[25] phen. 0.017� 0.002 0.004� 0.001 4.25� 1.17
[80] ChPt NLO 0.014 ÷ 0.016 … …
[86] phen. 0.021 … …
[87] Exp. 0.030� 0.002 … …
[88] Exp. 0.026� 0.007 … …
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close to the empirical values. Neither this ratio nor the
light current quark masses get improved in set C by
reducing r down to 0.2, the main consequence being a
drastic change in the values for the mixing angles, which
get reduced to ϵ ¼ 0.0119, ϵ0 ¼ 0.00135. We note that it is
not possible to get a better fit for mη,mK and fK in absence
of ESB interactions as the one shown in set C in Table V.
Contrary to this, the individual values for ϵ and ϵ0 for sets A
and B are in good agreement with the ones indicated in
[25,63] and the corresponding current quark masses are
very close to the quoted values mu ¼ 2.15ð15Þ MeV,
md ¼ 4.70ð20Þ MeV, [85].
Regarding Table VIII that collects values obtained in the

literature, within different phenomenological approaches,
as well as in experiments, a comparison of the different
values has to be done with care, for a careful and detailed
discussion see [25]. We note in particular that in the
experimental value [88] the mixing π0 − η0 has not been
taken into account and that in the ChPT result [80] the η0 is
considered as a background field.

V. CONCLUDING REMARKS

We conclude that the explicit symmetry breaking inter-
actions of the generalized NJL Lagrangian considered are
crucial to obtain the phenomenological quoted value for the
ratio ϵ

ϵ0. We obtain values for the ϵ mixing angle which lie
within the results discussed in the literature. Unfortunately,
the value for ϵ0 is much less discussed. We obtain ϵ and ϵ0
reasonably close to the ones indicated in [63] and [25] for
current quark mass values in excellent agreement with the
presently quoted average values. The corresponding sets
(A,B) are the ones which also yield the best fits to other
empirical data within the model variants.
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