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We study the Drell-Yan process at the Large Hadron Collider in the presence of the noncommutative
extension of the standard model. Using the Seiberg-Witten map, we calculate the production cross section
to first order in the noncommutative parameter Θμν. Although this idea has been evolving for a long time,
only a limited amount of phenomenological analysis has been completed, and this was mostly in the
context of the linear collider. An outstanding feature from this nonminimal noncommutative standard
model not only modifies the couplings over the SM production channel but also allows additional
nonstandard vertices which can play a significant role. Hence, in the Drell-Yan process, as studied in the
present analysis, one also needs to account for the gluon fusion process at the tree level. Some of the
characteristic signatures, such as oscillatory azimuthal distributions, are an outcome of the momentum-
dependent effective couplings. We explore the noncommutative scale ΛNC ≥ 0.4 TeV, considering
different machine energy ranging from 7 to 13 TeV.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has so far been
extremely successful in discovering and constraining the
properties of the last missing bit of the standard model
(SM) of particle physics, the Higgs boson [1,2]. Apart from
some isolated hints, it is broadly evasive, lacking any
clinching evidence yet from physics beyond the standard
model (BSM), exploration of which is one of the primary
motives for the post-Higgs LHC. On the other hand, it is
widely admitted that the SM can at least offer a very good
description for low-energy effective theory which, in fact,
falls short in explaining several outstanding issues in both
theoretical expectations and experimental observations.
The idea of field theories on the noncommutative (NC)

spacetime is rather primeval, yet fascinating by introducing
a fundamental length scale in the model consistent with the
symmetry [3]. These ideas are further revived after reali-
zation of their possible connection with the quantum
gravity, where noncommutativity is perceived as an out-
come of certain string theory embedded into a background
magnetic field [4]. Quantum field theory is described by the
fields and the local interaction in a continuous spacetime
point, where the canonical position and momentum vari-
ables xi, pj are replaced by the operators x̂i, p̂j which
satisfy the commutation relation

½x̂i; p̂j� ¼ iℏδij:

Just like the quantization in phase space, the space-
time coordinate in the noncommutative spacetime gets
replaced by an operator x̂μ which satisfies the commuta-
tion relation

½x̂μ; x̂ν� ¼ iΘμν ¼ i
cμν
Λ2
NC

; ð1Þ

where Θμν is an antisymmetric matrix tensor and of
dimension ½M�−2. Now one can take out the dimension
full part in terms of mass parameter ΛNC and describe it as
the fundamental NC scale at which one expects to see the
effect of spacetime noncommutativity. cμν is the antisym-
metric constant c-number matrix which gives a preferred
directionality and also a nonvanishing contribution results
in deviating from exact Lorentz invariance in some high
energy scale ΛNC. Theoretically, this scale is unknown,
but one can try to extract the lower bounds directly from
the collider experiments by looking at the characteristic
signals this framework can provide. LEP studied the
prediction of the process eþe− → γγ in the noncommu-
tative QED for several orientations of the OPAL detector
and provided the exclusion limit at around 141 GeV [5].
With this very moderate bound, we have the scope for
significant improvement at the future runs of the LHC.
The Drell-Yan process is arguably the best explored
process at the hadron collider. With an extremely clean
signal of dilepton, this process is relied upon for calibrat-
ing the parton distribution function in hadrons. Any
characteristic deviation can easily be a basis for the
BSM search. In our present work, we study this important
process in the context of the noncommutative framework.
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There are different approaches to study the effect of
spacetime noncommutativity in a field theory. One is the
Moyal-Weyl (MW) approach. In this approach, one repla-
ces the ordinary product between two functions ϕðxÞ and
ψðxÞ in terms of the ⋆ (Moyal-Weyl) product defined by a
formal power series expansion of [6–8]

ðf⋆gÞðxÞ ¼ exp

�
1

2
Θμν∂xμ∂yν

�
fðxÞgðyÞjy¼x: ð2Þ

Here fðxÞ and gðxÞ are ordinary functions on Rn, and the
expansion in the star product can be seen intuitively as an
expansion of the product in its noncommutativity. To
describe some of the collider searches of spacetime non-
commutativity available in the literature, Hewett et al.
[9,10] have studied the processes eþe− → eþe− (Bhabha)
and e−e− → e−e− (Moller), and subsequent studies [11,12]
were done in the context of eγ → eγ (Compton) and
eþe− → γγ (pair annihilation), γγ → eþe− and γγ → γγ.
For a review on NC phenomenology, see [13]. In the
context of the LHC, the following investigations are in
order. The noncommutative contribution of neutral vector
boson (γ, z) pair production was studied [14] at the LHC
and the bound was obtained for the NC scale Λ ≥ 1 TeV
under some conservative assumptions. Further study on
the pair production of charged gauge bosons (W�) at the
LHC in the noncommutative extension of the standard
model found [15] significant deviation of the azimuthal
distribution(oscillation) from the SM one (which is a flat
distribution) for ΛNC ¼ 700 GeV. More recently, t-channel
single top quark production was calculated at the LHC, and
significant deviation in the cross section can be expected
from the standard model for ΛNC ≥ 980 GeV [16].
A second way of dealing with this calculation is the

Seiberg-Witten approach in which the spacetime noncom-
mutativity is treated perturbatively via the Seiberg-Witten
(SW) map expansion of the fields in terms of the non-
commutative parameter Θ [4]. Here the gauge parameter λ
and the gauge field Aμ are expanded as

λαðx;ΘÞ ¼ αðxÞ þ Θμνλð1Þμν ðx;αÞ þ ΘμνΘησλð2Þμνησðx; αÞ þ � � �
ð3Þ

Aρðx;ΘÞ ¼ AρðxÞ þ ΘμνAð1Þ
μνρðxÞ þ ΘμνΘησAð2Þ

μνησρðxÞ þ � � � :
ð4Þ

The advantage in the SW aprroach over the Weyl-Moyal
approach is that it can be applied to any gauge theory, and
matter can be in an arbitrary representation. Using this SW
map, Calmet et al. first constructed [17,18] the minimal
version of the noncommutative standard model (mNCSM
in brief) where they derived theOðΘÞ Feynman rules of the
standard model interactions and found several new inter-
actions which are not present in the standard model. All the

above analyses were limited to the leading order in Θ.
Phenomenological analysis was carried out for the process
eþe− → γ, Z → μþμ− at the order of Θ2 and predicted a
reach of around ΛNC ¼ 800 GeV for the NC scale [19,20].
Successive study [21] also focused on the top quark pair
production in the NCSM and predicted a similar reach of
the NCSM scale.
The noncommutative standard model is essentially the

standard model with the background spacetime being
noncommutative. Contrary to most other BSM models
where particle content and/or the gauge group is extended,
there is no new massive degree of freedom included here,
but the standard model interactions get modified due to
spacetime noncommutativity. This gives rise to the modi-
fied standard model interaction vertices extending with
additional NC contributions. Moreover, it also provides a
host of new vertices which are absent in the SM. It is
demonstrated [17,18,22] that the minimal version of
NCSM can only be realized in some definite choice of
representation for the traces in the gauge field kinetic term.
Freedom of this choice leads to a more natural extended
version. Melic et al. [23,24] formulated the nonminimal
version of NCSM (nmNCSM in brief), where the trilinear
neutral gauge Boson couplings arise automatically. Note
that such anomalous vertices were absent in the minimal
version, and the interactions in the fermion sector remain
unaffected by different choices of representation in gauge
action. Using this formalism, associated Higgs boson
production was recently studied associated with the Z
boson, taking into account the effect of the Earth’s rotation
in the nmNCSM. It was found that the azimuthal distri-
bution significantly differs from the standard model result if
the NC scale ΛNC ≥ 500 GeV [25].
Exotic new vertices can serve as the Occam’s Razor in

differentiating the NCSM from other new physics models.
In this paper, we discuss this possibility considering one of
the very simple but reliable signature at the hadron collider
which can portray its ability by distinguishing the effects of
spacetime noncommutativity from other new physics sce-
narios. Our analysis is based on the parton-level Drell-Yan
process in producing the lepton pair at the Large Hadron
Collider,

pp → lþl− þ X; ð5Þ

where light leptons (l≡ e, μ) of opposite sign are produced
at the final state. What is significant here, besides the
standard quark-initiated partonic subprocess for dilepton
production, is that gluon-initiated processes can also
contribute to this production cross section. In the second
process, new triple gauge boson vertices KZgg and Kγgg

contribute which arise naturally as an effective vertex in
noncommutativity although they are forbidden in the
standard model. A study of these vertices has been
performed by Behr et al. [22]. Using the experimental
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LEP upper bound from Γexp
Z→γγ < 1.3 × 10−4 GeV and

Γexp
Z→gg < 1.0 × 10−3 GeV, a correlated bound on these

vertices was obtained for NC scale ΛNC ¼ 1 TeV.1

The organization of the paper is as follows. In Sec. II,
we describe the modified vertices and the new set of
vertices (found to be absent in the SM) which may
potentially contribute to the Drell-Yan lepton pair pro-
duction at the hadron collider. We next obtain the matrix
element square for the partonic subprocess and obtain the
total cross section and differential cross section of Drell-
Yan lepton pair production. In Sec. III, we demonstrate
some of the characteristic distributions, such as lepton pair
invariant mass distribution, total cross section, and angu-
lar distribution. Arguing in favor of them carrying the
hallmark for the noncommutative effects, we probe the
sensitivity of the new vertices to the Drell-Yan lepton pair
production. Finally, in Sec. IV, we summarize our results
and conclude.

II. DRELL-YAN PRODUCTION IN THE
NONCOMMUTATIVE STANDARD MODEL

At the LHC, lepton pairs can be produced at the tree level
via the (quarklike) parton-initiated process (the only
partonic-level processes possible in the SM at the tree level)

qq̄ → γ; Z → lþl−. ð6Þ

In addition, in the NCSM, an additional three boson
vertices ensure that lepton pairs can also be produced at
the tree level through gluon fusion,

gg → γ; Z → lþl−: ð7Þ

Representative Feynman diagrams for these partonic sub-
process are shown in Fig. 1. For the quark mediated

process, the Feynman rules for the vertices ff̄γ and ff̄Z
(where f ¼ q, l) are shown in Appendix A. Note that the
vertices, besides the SM part, also contain an extra
OðΛNCÞ-dependent term for which, at the limit
ΛNC → ∞, the original SM vertices get recovered. The
second gluon mediated partonic-process comprises two
new vertices, γgg and Zgg, which are not present in the SM
and are depicted in Fig. 2. Corresponding leading- order
Feynman rules in these figures are given by

γgg∶ ð−2eÞ sinð2θwÞKγggθ
μνρ
3 ðk1; k2; k3Þδab ð8Þ

Zgg∶ ð−2eÞ sinð2θwÞKZggθ
μνρ
3 ðk1; k2; k3Þδab: ð9Þ

Here, θW is the Weinberg angle and the vertex factors Kγgg

and KZgg are given by

Kγgg ¼
−g2s
2gg0

ðg02 þ g2Þζ3; KZgg ¼ ð− tan θwÞKγgg;

where gs, g, g0 are being the SUð3ÞC, SUð2ÞL and
Uð1ÞY coupling strengths, respectively. The tensorial
quantity2 θ3 ≡ θμνρ3 ðk1; k2; k3Þ and the parameter ζ3 are
defined in Appendix A. Note that the triple gauge boson
vertices KZgg and Kγgg, absent in the standard model (once
again, one gets a vanishing θ3 at the limit ΛNC → ∞), arise
in this nonminimal version of NCSM. A direct test of these
vertices have been performed [22] by studying the SM
forbidden decays Z → γγ and Z → gg. Analyzing the 3-
dimensional simplex that bounds possible values for the
coupling constants Kγγγ , KZγγ and KZgg at the MZ scale,
allowed region for our necessary couplings ðKZgg; KZγγÞ
are obtained as ranging between ð−0.108;−0.340Þ
and ð0.217;−0.254Þ.

III. RESULT AND DISCUSSION

To estimate the noncommutative effects in our parton-
level calculation, we analytically formulate both subpro-
cesses initiated either by a quark-antiquark pair or by a
gluon pair at the leading order. Using the Feynman rules to

FIG. 1. Representative Feynman diagrams for the partonic subprocess for quark initiated (a) qq̄ → γ, Z → lþl−, and gluon initiated
(b) gg → γ, Z → lþl−. Both of them contributes in Drell-Yan type lepton pair production at the hadron collider considering the
noncommutative standard model.

1Note that, in principle, KZgg (and Kγgg) can be zero, in
combination with two other couplings, Kγγγ and KZγγ . But all
three cannot be zero [22] simultaneously, and these other two
couplings can be tested at the linear collider with a high degree of
precision. We discuss this allowed range in the next section and
also demonstrate our results considering different values within
this range. 2We follow the couplings in similar notation as in [22].
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OðΘÞ as described above and in Appendix A, the squared
amplitude (spin-averaged) can be expressed as

jM2
NCSMjab→lþl− ¼ jMγ þMZj2 for; a; b ¼ q; q̄ or g; g:

ð10Þ
Detailed analytic expression for each nmNCSM ampli-
tude-square is presented in Appendix B. The NC
antisymmetric tensor Θμν, analogous to the electromag-
netic field(photon) strength tensor, has six independent
components: three are of the electric type, while three
are of the magnetic type. We have chosen Ei ¼ 1ffiffi

3
p and

Bi ¼ 1ffiffi
3

p in our analysis (for more, see Appendix C). We

have not considered here the effect of Earth’s rotation.
The impact of the Earth’s rotation on Θμν in the DY
process can be interesting and will be investigated in a
future work. [26]. Also note that in the DY lepton
distribution, besides the Lorentz invariant momentum
dot product (e.g. p1:p2 etc), the Θ-wieghted dot product
(e.g. p3Θp4 as one follows from Appendix C) also
appears. These terms give rise to nontrivial azimuthal
distribution in the Drell-Yan lepton pair production as
discussed at the end of our results.

We estimate the parton-level total cross section and
differential distributions for the LHC operated at the
energy

ffiffiffi
S

p
,

dσpp→lþl− ¼
X
ab

Z
dx1

Z
dx2faðx1; μ2fÞfbðx2; μ2fÞ

× dσ̂ab→lþl−ðx1x2SÞ: ð11Þ

We employ the CTEQ6L1 parton distribution function
(PDF) throughout the analysis, setting the factorization
scale μf at the dilepton invariant mass Mll. After formulat-
ing the setup, we are now in a position to describe the
numerical results for the Drell-Yan lepton pair production
in the presence of spacetime noncommutativity. In Fig. 3
we have shown the normalized dilepton invariant mass
distribution 1

σ
dσ
dMll

(GeV−1) against the invariant mass Mll

(GeV) corresponding to the LHC machine energy
ffiffiffi
s

p
at

(left plot) 7 TeVand (right plot) 13 TeV. The peak atMll ¼
91.18 GeV corresponds to the Z boson resonance produc-
tion. Different continuous curves in both plots correspond
to the theoretical (SM and nmNCSM) predictions. Note
that the additional positive contributions in nmNCSM
curves are realized from two sources: the first being the
Θ-dependent NC parts supplemented with the SM vertex,
and the second being the complete new tree-level process
that enhances significantly. In the 7 TeV (left) plot, the
dotted curves correspond to the experimental binwise data
provided by the CMS Collaboration [27] for the integrated
luminosity 4.5 fb−1 and 35.9 pb−1 which is presented
along with the error bar.
The lowermost curve in each plot (see Fig. 3) is the SM

contribution estimated at the leading order. In this figure,
we present different NC contributions based on the two
relevant parameters ΛNC and KZgg varying between
(0.4 TeV–1 TeV) and (−0.108, þ0.217), respectively.

FIG. 2. Feynman diagrams for additional vertices: (a) corre-
sponds to g − g − γ vertex, while (b) corresponds to g − g − Z
vertex, in the noncommutative standard model which can
contribute in Drell-Yan production process at the LHC.

FIG. 3. Normalized invariant mass distribution 1
σ

dσ
dMll

(GeV−1) as a function of the invariant massMll (GeV) is shown corresponding to
the machine energy (left plot)

ffiffiffi
s

p ¼ 7 TeV and (right plot) 13 TeV, respectively. Continuous curves of different colors in both plots are
shown for the choice of Λ and KZgg and they converge to the lowermost SM curve in the limit both of these parameters go to zero. In
7 TeV plot, experimental bin-wise data are also shown with central values and error bars.
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Justification for these choices has already been discussed.
Note that KZgg ¼ 0 corresponds to the vanishing coupling
of the gluon with Z and γ bosons, and the Drell-Yan process
in the NCSM arises only from the quark-mediated partonic
subprocess qq̄ → γ, Z → lþl− as in Fig. 1(a). The NC scale
ΛNC determines the energy when this BSM effects can be
perceived and this phenomena is evident following differ-
ent scales in the figure. At around a few hundred of dilepton
invariant mass, Fig. 3 exhibits, especially at the low ΛNC
and larger absolute value of KZgg, the NCSM effect in this
distribution deviating from the SM distribution, and it
increases with Mll.
In Fig. 4, we have plotted the total leading-order Drell-

Yan cross section σ (in pb) against the LHC collision
energy

ffiffiffi
s

p
. The lower curve corresponds to the SM cross

section. We find σ ¼ 635ð1283Þ pb at
ffiffiffi
s

p ¼ 7ð14Þ TeV,
respectively. To estimate the total cross section, we have
considered the dilepton invariant mass interval
60 GeV < Mll < 120 GeV. To visualize the effect we
once again consider a very optimistic values of ΛNC ¼
0.6 TeV and KZgg ¼ 0.217 for the upper curve corresponds
to the NCSM cross section. For reference we present the
corresponding Drell-Yan cross sections for different

machine energy in Table I. For different machine energy
between 7 TeV and 14 TeV, the leading order SM and the
nmNCSM (for the same reference parameters) cross
sections increases from 636(656) pb to 1283(1438) pb.
In Fig. 5, the nmNCSMDrell-Yan cross section is shown

as a function of the NC scale ΛNC at a fixed machine energyffiffiffi
s

p ¼ 7.0 TeV. Once again dominant production cross
section is estimated for the range of invariant mass
60 GeV < Mll < 120 GeV corresponding to different val-
ues of the parameter KZgg ¼ −0.108, 0.0, 0.0545 and
0.217. As expected, for a fixed KZgg coupling the cross
section σ decreases as the NC scale ΛNC increases and
finally merges to the SM value at the very high value of
ΛNC. Note that the NCSM contribution to DY process for
KZgg ¼ 0 almost equal to the SM value as it receives very
small contribution from the quark mediated partonic
process and the dominant gluon mediated subprocess is
absent due to KZgg ¼ 0 (and Kγgg ¼ 0). That causes this
curve as the lowest (almost) horizontal curve, which is
hence independent of the ΛNC scale. In Table II we present
the leading order cross sections estimated for different
ΛNC ¼ 0.4, 0.6 and 1.0 TeV corresponding to KZgg ¼ 0,
−0.108 and 0.217.

TABLE I. Drell-Yan cross section in the SM, nmNCSM are shown for 60 GeV < Mll < 120 GeV. The
experimental data for the same dilepton invariant mass interval are shown. Here we have set the parameters
ΛNC ¼ 0.6 TeV and KZgg ¼ 0.217 which is optimistic.

σSMðpbÞ σnmNCSMðpbÞffiffiffi
S

p
TeV LO, μf ¼ Mz LO, μf ¼ Mz σEXPðpbÞ

7.0 636 656 974� 0.7 (Stat) �0.7 (Syst)
8.0 731 760 1138� 8 (Stat)
13.0 1193 1325
14.0 1283 1438

FIG. 5. The total cross section for pp → ðγ; ZÞ → lþl− σ is
plotted as a function of the NC scale ΛNC (GeV) corresponding to
Z ¼ −0.108, 0.054 and 0.217 and fixed machine energyffiffiffi
s

p ¼ 7.0 TeV.

FIG. 4. The Drell-Yan cross section is shown as a function of
the LHCmachine energy. In the NCSM, we demonstrate with one
of the very optimistic choices like ΛNC ¼ 0.6 TeV and
KZgg ¼ 0.217.
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After exploring the additional NC contributions coming
towards the Drell-Yan production and how different NC
parameters can affect such processes, now we would like to
point out some of the very characteristic distributions
attributed to noncommutativity. Since spacetime noncom-
mutativity essentially breaks the Lorentz invariance, which
includes the rotational invariance around beam direction, it
can contribute to an anisotropic azimuthal distribution.
Angular distributions of the final lepton can thus carry this
signature on noncommutativity. Similar feature is noted in
many different process earlier related with the NC phe-
nomenology, nevertheless we would like to present this
distribution in our context. We show the azimuthal angular
distribution for the final lepton in Fig. 6. On the left plot this
distribution of the azimuthal angle is shown for Drell-Yan
events if the noncommutative effect is there. While the
anisotropic effect is not much visible here under the
considerably large cross section, it would be evident in
the right plot where normalized distribution is demon-
strated for that same azimuthal angle. This figure is
generated corresponding to different scales ΛNC ¼
0.6 TeV and 1 TeV. Also, for each ΛNC, we have selected
KZgg ¼ −0.108 and 0.217, respectively.
From the Fig. 6 right plot, we see that the azimuthal

distribution of leptons oscillates over ϕ, reaching at their
maxima at ϕ ¼ 2.342 rad and 5.489 rad. The two inter-
mediate minimas are located at ϕ ¼ 0.783 rad and
3.931 rad. Also note that the azimuthal distribution dσ

dϕ is
completely flat in the SM. A departure from the flat

behavior in the NCSM is due to the term p4Θp3ð∼ cos θ þ
sin θðcosϕþ sinϕÞÞ term in the azimuthal distribution
which brings ϕ dependence. There still be this feature of
azimuthal distribution, even if one deviate from taking the
simple form of Θμν, however the location of peak positions
shift. Such an azimuthal distribution irrespective of peak
positions clearly reflects the exclusive nature of spacetime
noncommutativity which is rarely to be found in other
classes of new physics models and can be tested at LHC.

IV. SUMMARY AND CONCLUSION

The idea that spacetime can become noncommutative at
high energy has drawn much attention following the recent
advance in string theory. In this paper, we have explored the
NC effect in the Drell-Yan lepton pair production pp →
ðγ; ZÞ → lþl− at the Large Hadron Collider. Two new
vertices, Zgg and γgg, (absent in the SM) are being found to
play a crucial role, giving rise to a new partonic subprocess

gg!γ;Z lþl− (absent in the SM). For
ffiffiffi
s

p ¼ 7 TeV, as the
coupling parameter KZgg (corresponding to the new verices
Zgg) changes from −0.108 to 0.217, the cross section σ
increases from 637(660) pb to 639(734) pb corresponding
to ΛNC ¼ 1ð0.4Þ TeV. The azimuthal distribution dσ

dϕ, com-
pletely ϕ independent in the SM, deviates substantially in
the NCSM. Thus the noncommutative geometry is quite
rich in terms of its phenomenological implications, which
are worthwhile to explore in the TeV scale Large Hadron
Collider.

FIG. 6. dσ
dϕ as a function of ϕ for pp → ðγ; ZÞ → lþl− (l ¼ e, μ) for ΛNC ¼ 0.6 TeV, 1.0 TeV and KZgg ¼ −0.108 and 0.217,

respectively.

TABLE II. Drell-Yan cross section σðpp → lþl−Þ in nmNCSM scenario for the fixed machine energy
ffiffiffi
s

p ¼ 7.0 TeV. For KZgg ¼ 0,
the partonic subprocess gg → γ, Z → lþl− is absent.

ΛNC (TeV) KZgg σNCSM (pb) ΛNC (TeV) KZgg σNCSM (pb) ΛNC (TeV) KZgg σNCSM (pb)

0.4 0.0 637 0.6 0.0 637 1.0 0.0 637
0.4 −0.108 661 0.6 −0.108 641 1.0 −0.108 637
0.4 0.217 734 0.6 0.217 656 1.0 0.217 639
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APPENDIX A: FEYNMAN RULES

The fermion f (quark q and lepton l) coupling to photon
and Z bosons, to order OðΘÞ, is given by

γff̄∶ ieQf

�
γμ þ

�
i
2
þ
�
PoΘPi

8

��
½ðPoΘÞμðΔPiÞ þ ðΘPiÞμðΔPoÞ − ðPoΘPiÞγμ�

�
ðA1Þ

Zff̄∶
ieQf

sinð2θWÞ
�
γμΓ−

AðfÞ þ
�
i
2
þ
�
PoΘPi

8

��

× ½ðPoΘÞμðΔPiÞΓ−
AðfÞ þ ðΘPiÞμðΔPoÞΓ−

AðfÞ − ðPoΘPiÞγμΓ−
AðfÞ�

�
: ðA2Þ

Here we follow the following notation: i∶in, o∶out and ΔPin;out ¼ Pin;out −m. Also Γ−
AðfÞ ¼ cfV − cfAγ

5; cfV ¼
If3 − 2Qfsin2ðθWÞ; cfA ¼ If3 . Qf is the e.m. charge, and If3 is the third component of the week isospin of the fermion
f [quark(q) or lepton(l)].
The factors θ3 and ζ3 arise in γ − g − g and Z − g − g and are given by [24],

θμνρ3 ðk1; k2; k3Þ ¼ θ3½ðμ; k1Þ; ðν; k2Þ; ðρ; k3Þ�
¼ −ðk1Θk2Þ½ðk1 − k2Þρημν þ ðk2 − k3Þμηνρ þ ðk3 − k1Þνηρμ�
− Θμν½kρ1ðk2 · k3Þ − kρ2ðk1 · k3Þ� − Θνρ½kμ2ðk3 · k1Þ − kμ3ðk2 · k1Þ�
− Θρμ½kν3ðk1 · k2Þ − kν1ðk3 · k2Þ� þ ðΘk2Þμ½ηνρk23 − kν3k

ρ
3�

þ ðΘk3Þμ½ηνρk22 − kν2k
ρ
2� þ ðΘk3Þν½ημρk21 − kμ1k

ρ
1� þ ðΘk1Þν½ημρk23 − kμ3k

ρ
3�

þ ðΘk1Þρ½ημνk22 − kμ2k
ν
2� þ ðΘk2Þρ½ημνk21 − kμ1k

ν
1�; ðA3Þ

and

ζ3 ¼
1

3g23
−

1

6g24
þ 1

6g25
; ðA4Þ

where g3, g4 and g5 are the moduli parameters defined in [22].

APPENDIX B: SQUARED-AMPLITUDE TERMS

The amplitude-squared terms for the quark-(anti)quark-initiated partonic subprocess qq̄ → ðγ; ZÞ → lþl− from the
Feynman diagram 1(a),

jMq;γj2 ¼
�
AF1

3

�
½ðp1:p3Þðp2:p4Þ þ ðp1:p4Þðp2:p3Þ� ðB1Þ

jMq;Zj2 ¼
�
BF1

3

�
ðcl2A þ cl

2

V Þðcq
2

A þ cq
2

V Þ½ðp1:p3Þðp2:p4Þ þ ðp1:p4Þðp2:p3Þ�

þ
�
BF1

3

�
clAc

l
Vc

q
Ac

q
V ½ðp1:p4Þðp2:p3Þ − ðp1:p3Þðp2:p4Þ� ðB2Þ

and
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2RejMq;γj†jMq;Zj ¼
�
2CF1

3

�
clAc

q
A½ðp1:p3Þðp2:p4Þ þ ðp1:p4Þðp2:p3Þ�

−
�
2CF1

3

�
clVc

q
V ½ðp1:p4Þðp2:p3Þ − ðp1:p3Þðp2:p4Þ�: ðB3Þ

Here A ¼ 128π2α2Q2
l Q

2
q

ŝ2 , B ¼ 128π2α2Q2
l Q

2
q

Sin42θW ½ðŝ−M2
zÞ2þðMZΓZÞ2�, C ¼ 128π2α2Q2

l Q
2
qðŝ−M2

zÞ
ŝ½ðŝ−M2

zÞ2þM2
zΓ2

z � , F1 ¼ ½1þ ðP2ΘP1Þ2
4

�½1þ ðP4ΘP3Þ2
4

�, and ŝ ¼ sx1x2.

Note that amplitude-squared terms go as Oð1; 1
Λ2
NC
; 1
Λ4
NC
Þ, respectively.

For the gluon-initiated partonic subprocess gg → ðγ; ZÞ → lþl−, the squared-amplitude terms from the Feynman
diagram 1(b) are given by

jMg;γj2 ¼ 4DF2ðp3ρp4σ þ p3σp4ρ − ηρσp3 · p4Þ · ðηνβθ̄3αβσηαμθ̄3μνρÞ: ðB4Þ

Similarly,

jMg;Zj2 ¼ 4GF2ðcl2A þ cl
2

V Þðp3ρp4σ þ p3σp4ρ − ηρσp3 · p4Þðηνβθ̄3αβσηαμθ̄3μνρÞ; ðB5Þ

2RejMg;γM
†
g;zj ¼ 4HF2clVðp3ρp4σ þ p3σp4ρ − ηρσp3 · p4Þ · ðηνβθ̄3αβσηαμθ̄3μνρÞ; ðB6Þ

Here F2 ¼ ½1þ ðP4ΘP3Þ2
4

�, D ¼ 2ðπα sinð2θwÞKγgg

ŝ Þ2, G ¼ ½ 2π2α2k2zgg
½ðŝ−M2

zÞ2þM2
zΓ2

z ��, H ¼ sinð2θwÞKγggKzgg½4π2α2ŝ ð ŝ−M2
z

½ðŝ−M2
zÞ2þM2

zΓ2
z �Þ�. The

quantity θ̄3 appearing in several squared-amplitude terms is given by

θ̄μνρ3 ¼ −ðp1Θp2Þ½ðp1 − p2Þρημν þ 2ðpμ
2η

νρ − pν
1η

ρμÞ�
þ ðp1 · p2Þ½Θμνðp1 − p2Þρ − 2ððp2ΘÞμηνρ þ ðp1ΘÞνημρÞ� þ ½ðp2ΘÞμpν

1 þ ðp1ΘÞνpμ
2�ðp1 þ p2Þρ:

Note that amplitude-squared terms go as Oð 1
Λ4
NC
; 1
Λ8
NC
Þ,

respectively. In evaluating the matrix element squared,
we have used the following orthonormality condition,

X
λ;λ0

ϵ�a0μ0 ðp1; λ10Þϵaμðp1; λ1Þ ¼ −ημ0μδa0a ðB7Þ

X
λ;λ0

ϵbνðp2; λ2Þϵ�b0ν0 ðp2; λ20Þ ¼ −ην0νδb0b; ðB8Þ

and the color algebra
P

aa0bb0δbb0δaa0δ
abδa0b0 ¼P

abδ
abδab ¼

P
8
a¼1 δaa ¼ 8.

APPENDIX C: ANTISYMMETRIC TENSOR Θμν
AND Θ-WEIGHTED DOT PRODUCT

The antisymmetric tensor Θμν ¼ 1
Λ2
NC
cμν has six inde-

pendent components corresponding to cμν ¼ ðcoi; cijÞ with
i, j ¼ 1, 2, 3. Assuming them to be the nonvanishing
components, we can write them as follows:

coi ¼ ξi; cij ¼ ϵijkχ
k: ðC1Þ

The NC antisymmetric tensor Θμν is analogous to the
electromagnetic (e.m.) field strength tensor Fμν, and ξi

and χi are like the electric and magnetic field vectors.

Setting ξi ¼ ð~EÞi ¼ 1ffiffi
3

p and χi ¼ ð~BÞi ¼ 1ffiffi
3

p with i ¼ 1, 2, 3

and noting the fact that heξi ¼ −ξi, χi ¼ −χi, the normali-
zation condition ξiξ

j ¼ 1
3
δji and χiχ

j ¼ 1
3
δji , we may write

Θμν as

Θμν ¼
1ffiffiffi
3

p
Λ2
NC

0
BBB@

0 1 1 1

−1 0 −1 1

−1 1 0 −1
−1 −1 1 0

1
CCCA: ðC2Þ

Using these, we may write the Θ-weighted dot product as
follows:

p2Θp1 ¼
ŝ

2
ffiffiffi
3

p
Λ2
NC

ðC3Þ

p4Θp3 ¼
ŝ

2
ffiffiffi
3

p
Λ2
NC

½cos θ þ sin θðcosϕþ sinϕÞ�: ðC4Þ

Here we have not considered the effect of the Earth’s
rotation on the antisymmetric tensor Θμν in the DY process.
This will be reported elsewhere [26].
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