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We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization and can
manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering,
where current experiments probe typical interaction strengths much smaller than the Fermi constant, the
scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new
light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar
or vector couplings to dark matter and to electrons. We then perform state-of-the-art numerical calculations
of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the
atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant) and to
scan the parameter space—the dark matter mass, the mediator mass, and the effective coupling strength—to
see if there is any part of the parameter space that could potentially explain the DAMA modulation signal.
While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be
quite significant, reaching ∼50%, the relevant parts of the parameter space are excluded by the XENON10
and XENON100 experiments.
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I. INTRODUCTION

The evidence for the existence of dark matter (DM) is
overwhelming, extending over many orders of distance
scales, from the Universe’s horizon down to the scale of
dwarf galaxies. This realization drives a comprehensive
scientific effort to uncover the nature of DM and its
connection to a relatively well-understood world of sub-
atomic particles. The most sustained effort to date is the
search for so-called weakly interacting massive particles
(WIMPs) through their possible nongravitational inter-
actions with matter fields of the Standard Model (SM)
[1]. Despite this, no conclusive terrestrial observation of
DM has yet been reported, and its identity remains one of
the most important outstanding problems facing physics
today.
One intriguing claim of potential DM detection was

made by the DAMACollaboration, which uses a NaI-based
scintillation detector to search for possible DM interactions
within the crystal in the underground laboratory at the Gran
Sasso National Laboratory, INFN, Italy [2] (see also [3–7],
and references therein). The data from the combined
DAMA/LIBRA and DAMA/NaI experiments (to which
we will collectively refer as DAMA for concision) indicates
an annual modulation in the event rate at around 3 keV

electron-equivalent energy deposition with a 9.3σ signifi-
cance (the low-energy threshold for DAMA is ∼2 keV)
[2,4]. The phase of this modulation agrees very well with
the assumption that the signal is due to the scattering of
DM particles (e.g., WIMPs) present in the DM galactic
halo. The annual modulation is one of the key expected
observables for WIMP dark matter detection and is
expected due to the motion of the earth around the sun
which results in an annual variation of the DM flux (and
incident energy) through a detector; see, e.g., Refs. [8,9].
The DAMA result stands as the only enduring DM direct-
detection claim to date.
There are, however, several reasons to doubt that the

signal observed by the DAMA Collaboration is due to
WIMPs. Null results from several other sources such as,
for example, the XENON100 [10], LUX [11], and
SuperCDMS [12] experiments, all but rule out the pos-
sibility that the DAMA signal is due to an elastic
WIMP–nucleus interaction (see also Refs. [8,13,14]). For
example, for the 10 GeV WIMP spin-independent scatter-
ing on nucleons, the LUX exclusion limits extend 4 orders
of magnitude below the parameter space favored by the
DAMA signal. A very limited possibility may remain for
inelastic DM scattering (scattering with an excitation of a
close in mass excited WIMP state) due to a magnetic
moment operator [15,16]. Upcoming new experiments may
close this remaining loophole soon.*benjaminroberts@unr.edu
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An alternative route, namely, the interaction of DM
with electrons, has been long entertained as a possible
cause of the DAMA modulation signal. While the
DAMA experiment is sensitive to scattering of DM
particles off both electrons and nuclei, most other DM
detection experiments reject pure electron events in order
to search for nuclear recoils with as little background as
possible. The suggestions that an absorption of few-keV
mass axion-like particles [17] as the origin of the
DAMA signal had been promoted by the collaboration
itself [4]. Unfortunately, this idea was based on erroneous
calculations, and subsequent work [18] has shown that
the absorption signal quite generally leads to σabsvDM ∝
const, and therefore is not modulated (see also Ref. [19]).
The remaining option, WIMP-electron scattering, could

potentially explain the DAMA modulation without being
ruled out by the other null results (see, e.g., Refs. [14,20]).
This possibility has been investigated previously in the
literature—see, e.g., Refs. [9,21–25]. It is also possible
(see, e.g., Refs. [26–29]) that leptonically-interacting
WIMP models may be behind other anomalies in indirect
detection, such as select results from AMS [30], ATIC [31],
Fermi [32], and PAMELA [33] experiments. Gradually, the
scattering of WIMPs on electrons became the topic of
increased interest, and it is viewed as a new opportunity for
extending the existing and future direct-detection experi-
ments and technologies to DM masses well below the GeV
scale [9,34–38].
The most common signature of elastic scattering of

WIMPs on electrons is atomic excitation or ionization. The
latter is basis for DM detection in many existing experi-
ments. One thing to keep in mind is that while massive DM
(mDM ≫ me) has enough energy to ionize the atom, its
velocity is quite low, leading to a rather insignificant
momentum exchange between DM and electrons. The
emergent ionization electron moves with velocities ve ∼
ð2ΔE=meÞ1=2 that can be quite high for energy deposition
ΔE of a few keV. Consequently, the scattering probes deep
inside the bound-state wave function, with the main
distances at play being much smaller than the characteristic
Bohr radius of an atom. In such a situation, the neglect of
relativistic effects can lead to large errors in the predicted
ionization cross sections [39].
Another important aspect of WIMP-electron scattering is

the need for new forces that mediate such an interaction.
Indeed, if the interaction between some DM state χ and
light SM fermion fields ψ (e.g., electron or quark) is
parametrized by a contact operator, e.g.,GχψðχγμχÞðψγμψÞ,
one can immediately discover that scattering of WIMPs on
quarks probes interaction strengths Gχq ≪ GF, while
scattering on electrons is less sensitive, Gχe ≫ GF.
Consequently, the scattering on electrons require some
additional new physics below the weak energy scale. At
these scales many additional particle physics probes of such
mediators exist [40], and it is highly desirable to put the

mediator force into the model explicitly (as it is done in
many recent works [9,34,38]), rather than staying at the
level of effective operators.
In this paper, we pursue two main goals. The first

goal is to consider DM-electron scattering with
Oð10 eV–10 keVÞ energy deposition and include relevant
atomic physics effects for calculating the ionization rate.
The second goal is to investigate in some detail the
DAMA modulation signal and compare it with constraints
on electron recoil imposed by other experiments. Going
away from a simple parametrization by a constant cross
section σχe or by a contact operator, we shall scan the
parameter space of the DM mass, mediator mass, and the
coupling constant to determine “the region of interest”
(ROI) that could be consistent with the DAMA signal. We
then calculate the ionization signal predicted for the same
ROI for other DM experiments that currently see null
results.
Reviewing the literature on WIMP-electron scattering,

we notice that one of the original papers, Ref. [22], employs
a contact operator approach to write down effective
interactions between DM particles and electrons, and deals
with simplified atomic physics. This work also makes a
connection between tree-level χ − e interactions and loop
induced χ − N interactions, which helps to set new con-
straints on some forms of interactions using nuclear
recoil type measurements [10–12]. Another notable series
of works have used the “ionization only” signal of
XENON10 to set constraints on DM scattering with
relatively low energy deposition ΔE, and as a consequence
record low DM masses [34,35]. These papers also use
nonrelativistic treatment of electrons. Finally, recent analy-
ses of data from the XENON100 experiment have also
investigated WIMP-induced electron-recoil events [41–43].
This experiment has also observed modest evidence for an
annual modulation (at the 2.8σ level). However, based on
their analysis of the average unmodulated event-rate, the
contact WIMP-electron interaction via an axial vector
coupling was excluded as an explanation for the DAMA
result at the 4.4σ level [42]. By assuming the DAMA result
was due to an axial vector coupling, and using the
theoretical analysis from Ref. [22], the corresponding
modulation amplitude that would be expected in the
XENON100 experiment was calculated in Ref. [43]. The
observed amplitude was smaller than this by a factor of a
few, and it was concluded that the XENON100 results were
inconsistent with the DAMA results at the 4.8σ level [43].
We note, however, that this analysis needs to be repeated
for other types of interactions, and a rigorous relativistic
analysis of atomic structure effects is desirable. We also
note that there is no a priori reason to believe that the
fraction of the modulated signal should be small or
proportional to the fractional annual change in the DM
velocity distribution. In fact, the scattering amplitude is
very highly dependent on the values of momentum transfer
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involved, which depend on the velocity of the DM particles.
As we shall show, electron relativistic effects must be taken
into account properly to recover the correct momentum-
transfer dependence of the cross section, which is a
significant point.
A rigorous ab initio relativistic treatment of the

atomic structure has not yet been implemented in the
existing literature, and—as was demonstrated in
Ref. [39] (and confirmed in this work)—is crucial.
Ref. [39] demonstrated that the ionization cross section
due to a WIMP–electron interaction when (several) keV
of energy is exchanged is actually dominated by
relativistic effects. This is due to the nonanalytic
cusplike behavior of the Coulomb-like wave functions
at very small radial distances, and the significant
difference in the small-distance radial dependence of
the Dirac wave functions compared to the Schrödinger
wave functions. The implication is that the suppression
from the electron matrix elements may not be as strong
as previously assumed, meaning the nonrelativistic
calculations may significantly underestimate the cross
section. Furthermore, as several new experiments
designed to test the DAMA results are currently under
way [7,44–48], it is crucial that the relevant theory
required for their interpretation is correct, and adjust-
able to the choice of mediator and interactions.
In this paper, we employ the relativistic Hartree-Fock

method to calculate model-independent cross sections and
event rates for the atomic and molecular ionization induced
by the interaction of atomic electrons with DM for several
systems of experimental interest. Atomic ionization has
been considered previously for the case of absorption of
light particles such as massive axions [49]. By performing
the atomic structure calculations in an ab initio manner
including all relativistic effects we are able to minimize

errors from the atomic structure to the point of their
irrelevance—as more important sources of errors are
now associated with other factors, such as the DM velocity
distribution. Our current analysis is performed for scalar
and vector interactions, but can be easily generalized to
other types of interactions. It is our hope that as well as
providing a direct analysis, our calculations may be useful
to others who can insert our calculations of the electron
structure part of the cross section (the “atomic kernel”) into
the cross section for various DM models including other
galactic density and velocity distributions. It is in this sense
that our calculations are model independent.
By assuming the DAMA modulation is due to electron-

interacting WIMPs, we calculate the event rates that
would be expected in the XENON100 [42,43] and
XENON10 [50] experiments, and compare the results
to the limits set by those experiments. (The XENON10
experiment places a limit on ionization with an arbitrary
energy deposition; XENON100 searches for electron
recoil with ΔE≳ 1 keV). The details of the calculations
are presented in the coming sections, but for convenience,
our results are summarized in Fig. 1. We conclude that
there is no region of the parameter space for which the
electron-interacting WIMP hypothesis remains a viable
explanation for the DAMA modulation.
In Sec. II, we derive the scattering cross sections and

other relevant quantities, and discuss how the approach
taken in this paper differs from the previous investigations
into this problem. In Sec. III, we outline the techniques we
utilize for the accurate relativistic atomic calculations, and
we go on in Sec. IV to present our results and to discuss the
implications of these for the interpretation of the DAMA
annual modulation in terms of DM interactions with atomic
electrons. Finally, in Sec. V we present our summary and
conclusions.

FIG. 1. Summary of results: Ratio of the expected signal for XENON100 (search of electron recoil with ΔE > 1 keV following
Ref. [42,43], left) and XENON10 (limit on ionization with arbitrary energy deposit [50], right)—assuming DAMA to be a positive
WIMP detection—to the 90% confidence-level limits from those respective experiments, as a function of the DM mass, mχ , and the
mediator mass,mv. The contours denote the level of exclusion; for example, the line marked “2" contours the part of the parameter space
for which the expected signal in XENON100/10 is 2 times larger than the signal that has been ruled out (90% C.L.). By combining both
plots, it is seen that all regions of the parameter space are excluded.
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II. THEORY

A. Scattering cross section and event rate

We consider the case in which the scattering of an
incident DM particle from the galactic halo off the atomic
electrons leads to the ionization of the atom or molecule.
This situation is shown diagrammatically in Fig. 2.
Therefore, for most cases, such process would correspond
to the energy deposition ofOð1–10Þ eV or higher. Many of
the existing detectors have a substantially higher thresh-
olds, with typical energy depositions of interest being at the
level of OðkeVÞ.
First, we assume the well-motivated case that the DM

particle interacts with electrons via the exchange of a
vector-boson mediator with a mass mv. For Dirac-type
fermionic DM, the amplitude for such process can be
parametrized as

−χγμχ
ffiffiffiffiffiffiffiffiffiffi
4παχ

p
qρqρ −m2

v
eγμe ≈ χγμχ

ffiffiffiffiffiffiffiffiffiffi
4παχ

p
q2 þm2

v
eγμe; ð1Þ

where qμ is the momentum transfer, which for the most part
satisfies the jq0j ≪ jqj condition. The coupling constant of
electrons and DM fermions χ is denoted by αχ. In non-
relativistic approximation, this four-fermion amplitude
corresponds to an effective Yukawa-type potential,

ĥint ¼ αχ
e−mvr

r
; ð2Þ

where r is the distance between the electron and DM
particle. The same form of the nonrelativistic Hamiltonian
will result from the scalar exchange interaction.
We then apply the Born approximation to write down the

cross section on the whole atom [39]. In the limit that
mv → 0, the interaction (2) corresponds to a Coulomb-like
interaction, and in the opposite limit (mv → ∞) it corre-
sponds to a purely contact (delta-function–type) interac-
tion. Treating the DM nonrelativistically, the partial

differential cross section corresponding to the ejection of
a bound electron initially in the state a to a state in the
continuum is given by

dσa ¼
8πα2χ
v2χ

Z
qþ

q−

qdq
ðq2 þm2

vc2Þ2
jhεjeiq·rjaij2 p

2dpdΩp

ð2πÞ3 ;

ð3Þ

where q ¼ jqj, q� ¼ k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2mχΔE

q
, jεi is an atomic

state in the continuum with energy ε≃ p2=2me, the state
jai is a bound atomic state, andΩp denotes the momentum-
space angular variables for the outgoing electron. The total
energy deposition, ΔE≡ ε − Ea, is related to the change in
energy of the DM particle and to the energy of the ejected
electron:

ΔE ¼ k2 − k02

2mχ
¼ Ia þ ε; ð4Þ

where Ia is the ionization potential for the state jai. One
point to note is that even though we can drop the relativistic
corrections on top of the interaction (2), it is important to
keep the relativistic form for the initial and final electron
wave functions.
The event rate is proportional to the function σvχ , which

must be averaged over the distribution for the DM particle
velocity vχ :

hσvχi ¼
Z

∞

0

fχðvÞσvdv ð5Þ

(note that the cross section σ itself depends strongly on vχ ,
since this sets the incident energy of the DM particles).
We take the velocity distribution to be pseudo-Maxwellian
(see, e.g., Ref. [8]):

fχðvÞ ∝ v2
Z

1

−1
exp

�
−
3ðvþ veÞ2

2v2rms

�
dðcos γÞΘ; ð6Þ

where vrms is the root-mean-square (rms) velocity of the
DM particles in the galactic frame, γ is the angle between v
and ve, and ve is the velocity of the earth in the galactic
frame:

v2e ≃ v2⊙ þ v2⊕ þ 2v⊙v⊕ cos β cosðωtÞ; ð7Þ
where v⊙ is the speed of the sun in the galactic frame, v⊕ is
the orbital speed of the earth in the solar frame, and β ≈ 60°
is the inclination of the earth’s orbit relative to the galactic
plane. A more precise modeling of the earth’s motion
through the galactic halo can be used if needed. Time t ¼ 0
is when the velocities of the earth and sun add maximally in
the galactic frame (corresponding to around June 2), and
ω ¼ 2π

T with T ≃ 1 yr. The Heaviside-theta function Θ
could be a rather blunt approximation, but it enforces
the appropriate escape velocity (vesc) cutoff (the maximum

FIG. 2. Example diagram for interaction of a dark matter
particle (χ), with an electron via the exchange of mediator ϕ.
Double line denotes a bound atomic electron (Enκ < 0), and the
single electron line denotes a continuum state electron with
energy ε > 0.
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allowed velocity of the DM particles in the galactic frame).
The proportionality constant is determined from the nor-
malization condition:

R∞
0 fχðvÞdv ¼ 1. We take vrms ¼

0.73 × 10−3c, v⊙ ¼ 0.77 × 10−3c, vesc ¼ 2.2 × 10−3c,
and v⊕ ¼ 0.10 × 10−3c [8]. The particular distributions
of interest are shown in Fig. 3. We note, however, that the
above Maxwell distribution (6) is not the only candidate; in
fact non-Maxwellian distributions are also well-motivated,
and, in certain circumstances, may have a significant
impact on the modulation rate [51] (see also Ref. [52]
and references therein). Partly due to this reason, in
Appendix C we present detailed plots of the atomic
structure calculations showing the energy-deposition and
momentum-transfer dependence for several systems of
experimental interest. These calculations can then be used
to form a simple parametric model for the atomic structure
factor that can be inserted into a general formula for the
ionization cross section.
In a typical DM detection experiment, ε and Ia are

difficult to measure individually; instead it is the combi-
nation ΔE (4) that is important. The number of “single-hit”
events in certain energy intervals are recorded; only the
single-hit rate is recorded, since the likelihood that a
double-hit event would be caused by a DM interaction
is vanishingly small. Therefore, the quantity of interest is

hdσvχi ¼
4α2χ
π

Z
∞

0

dv
fχðvÞ
v

Z
qþ

q−

dq
q

ðq2 þm2
vc2Þ2

×
X
n;κ

me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðΔE − InκÞ

p
KnκdðΔEÞ; ð8Þ

where κ ¼ ðl − jÞð2jþ 1Þ is the Dirac quantum number1

with l and j the orbital and total (single-electron) angular

momentum quantum numbers, respectively, and the
“atomic kernel” is defined as

KnκðΔE; qÞ ¼
X
κ0

X
m;m0

jhεκ0m0jeiq·rjnκmij2: ð9Þ

Here, m is the projection of j onto the axis of quantization.
Full formulas for the evaluation of the atomic kernel,
including for the other Lorentz structures, are given in
Appendix B.
Then, the differential event rate per unit energy per

kilogram, is given by

Rmχ ;mv;αχ ðΔEÞ ¼
nAρχ
mχ

hdσvχi
dðΔEÞ ; ð10Þ

where ρ ≈ 0.4 GeVcm−3 is the assumed local DM energy
density, and nA is the number of target atoms per kilogram.
The total average event rate per kilogram in the energy
interval ΔE ∈ ½a; b� is given by

Ra→b ¼
1

ΔEb − ΔEa

nAρχ
mχ

Z
b

a
hdσvχi; ð11Þ

which is expressed in units of counts per day (cpd) per
kg=keV. Of course, the event rate that is actually observed
in the experiment depends on a number of other factors,
including the detector efficiencies and energy resolution.
These factors depend on the design of the apparatus, so we
save our discussion of these effects until we consider
specific experiments.

B. Comments on relativistic structure
of the cross section

In general, in the presence of multiple mediators
and/or broken descrete symmetries, the amplitude for the
DM-electron scattering can be expressed as a linear
combination of terms of the form

ðχΓμχχÞ × ðeΓμ
eeÞ; ð12Þ

where

ΓðμÞ ¼ gS; igPSγ5; gVγμ; gPVγμγ5;…: ð13Þ

A detailed study of the relevant Lorentz structure
combinations can be found in Ref. [22]. The number of
possible structures would shrink if χ is a scalar or a
Majorana fermion. The wave functions for the incident
and outgoing DM particles are taken as Born plane waves,
and the initial and final electron wave functions are the
bound and continuum atomic wave functions, respectively.
The (spin-independent) structure of the electron matrix
elements for the different Lorentz structures are given in
Appendix B.

FIG. 3. Normalized distributions for the DM velocity in the
earth frame [see Eq. (6)]. The solid black line (avg) corresponds
to the DM velocity distribution in the solar frame, and the dotted
blue (min) and dashed magenta (max) lines refer to the distri-
butions in the earth frame around December 2 and June 2,
respectively.

1κ ¼ −1 for s1=2, κ ¼ 1 for p1=2, κ ¼ −2 for p3=2, etc.
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The highest velocities the DM particles can reason-
ably be expected to have is vχ=c ∼ 10−3, which is small.
It can therefore reasonably be expected that relativistic
expansion in v=c for DM particles works very well, and
taking into account the leading terms usually suffices to
get a reliable answer. For the deep inner-shell atomic
electrons, however, we have ve=c ∼ Zα, which is not so
small. For iodine (Z ¼ 53) and xenon (Z ¼ 54)
Zα ≈ 0.4, suggesting that electron relativistic effects
may be important. In fact, as we shall demonstrate in
the next section, electron relativistic effects are crucial,
giving the dominant contribution to the amplitude in
some cases.
While the general analysis is perhaps also of interest, we

will concentrate on two cases, namely, ðχχÞðeeÞ and
ðχγμχÞðeγμeÞ proportional amplitudes, both of which lead
to the Yukawa potential (2).

III. CALCULATIONS

A. Importance of electron relativistic effects

In Ref. [39] it was demonstrated that relativistic
effects give the dominant contribution to the cross
section for atomic and molecular ionization by scatter-
ing of slow, heavy particles (such as WIMPs) off the
atomic electrons when the momentum transfer to the
electron is large in atomic units. This means that
nonrelativistic calculations may greatly underestimate
the amplitude.
Here, we remind briefly the reason for the relativistic

enhancement. Consider the ejection of an electron from an
atomic orbital nl to a final state (in the continuum) with
energy ε. Assuming the wave functions can be well-
described by nonrelativistic Schrödinger functions, the
contribution to the cross section coming from the final-
electron partial wave l0 is proportional to the square of the
radial integral,Z

∞

0

Rεl0 ðrÞRnlðrÞjLðqrÞr2dr;

where RnlðrÞ and Rεl0 ðrÞ are the radial wave functions of
the initial and final states, jLðxÞ is the spherical Bessel
function, the values of l, l0 and L must satisfy the triangle
inequality, and lþ l0 þ L must be even due to parity
selection (see Appendix B). The leading contribution to
this integral at large q comes from small r ∼ 1=q, where the
radial functions behave as RðrÞ ∼ rl. It therefore appears
that the leading contribution to the amplitude for large q is
proportional to Z

∞

0

rlþl0þ2jLðqrÞdr;

however, this (see Ref. [39]). The next lowest-order in r
correction for either RnlðrÞ or Rεl0 ðrÞ, is proportional to Z,
and leads to the integral

R∞
0 rlþl0þ3jLðqrÞdr, which is

nonzero. Therefore, at large q, the amplitude is dominated
by the following term:

Z
∞

0

Rεl0 ðrÞRnlðrÞjLðqrÞr2dr ∝
Z

qlþl0þ4
: ð14Þ

Conventional wisdom would suggest that the ionization
probability for such a process should be exponentially
small (see, e.g., the corresponding discussion in Ref. [53]).
The power, instead of the exponent, emerges due to the
Coulomb singularity of the electron wave function at the
nucleus. The singularity for the s-wave electrons is stronger
than in higher partial waves, which translates to the least
amount of suppression for the s-states.
The situation becomes different if instead we consider

the relativistic Dirac wave functions. At small distances, the
radial functions of the large Dirac component behave as
fðrÞ=r ∼ rγ−1, where γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ðZαÞ2

p
(see Ref. [54] and

Eq. (A4) in the Appendix). In the nonrelativistic limit, this
of course reduces to exactly the same situation as above.
However, the corrections in γ ¼ jκj − ðZαÞ2=2jκj þ � � �
actually change the power of r that appears in the low-r
expansion. As a result, the contribution to the scattering
amplitude from the lowest-order in r term, which vanished
in the nonrelativistic case, now becomes

Z
∞

0

rγþγ0jLðqrÞdr ¼
22γ−1

q2γþ1

ffiffiffi
π

p Γ½1
2
ðLþ γ þ γ0 þ 1Þ�

Γ½1
2
ðL − γ − γ0 þ 2Þ� ;

ð15Þ

which is different from zero. For example, taking initial and
final states as s-waves [κ ¼ −1, γ ¼ γ0 ≃ 1 − ðZαÞ2=2], we
have

Z
∞

0

r2γj0ðqrÞdr≃ πðZαÞ2
2q3−ðZαÞ2

: ð16Þ

If one considers the contribution from a p1=2 state (κ ¼ 1)
for either the bound or continuum electron (or both), the
power of the q dependence remains the same, but the
coefficient is further suppressed by a power of Zα (which,
for xenon and iodine, is not small). This is true for scalar,
pseudoscalar, vector, and pseudovector electron inter-
actions (see Appendix B). Thus we see that the electron
wave function suppression is significantly weaker than that
found in the nonrelativistic case. The cross section goes as
the square of the amplitude, meaning that the momentum-
transfer dependence of the leading atomic structure con-
tribution to the cross section is proportional to q−6þ2ðZαÞ2

(compared to q−8 in the nonrelativistic case).
A comparison of the relativistic and nonrelativistic

calculations of the atomic kernel of iodine is presented
in Fig. 4 for relatively high values of the momentum
transfer, q (only high values of q can contribute the cross

B. M. ROBERTS et al. PHYSICAL REVIEW D 93, 115037 (2016)

115037-6



section). For consistency, the relativistic and nonrelativistic
calculations are performed using the exact same methods
and computer codes (the relativistic Hartree-Fock method,
as described below); the nonrelativistic limit is achieved by
letting the speed of light approach infinity in the code
before the Dirac equation is solved. As q → 0, the differ-
ence between the relativistic and nonrelativistic approaches
diminishes, as expected. It is also instructive to discuss the
origin of slight numerical instabilities in the nonrelativistic
calculations visible in the plots in Fig. 4 (solid black line).
These instabilities are absent in the relativistic calculations.
This is because in the relativistic case the atomic kernel is
dominated by a single contribution coming from very low r,
while the nonrelativistic case has contributions from larger
r which cover several oscillations of the (very rapidly
oscillating) jL function. (Of course, the instabilities in the
nonrelativistic calculations can be removed by increasing
the parameters of the numerics, however, this is not
necessary for the current purpose).

B. Calculations of the atomic kernel

To perform the atomic structure calculations we use the
relativistic Hartree-Fock method, which is described briefly
in Appendix A. Calculations of the bound-state energies for

the core orbitals of atomic Na, Ge, I, Xe, and Tl are given in
Table I.
In Fig. 5, we plot the contributions of the different core

states to the atomic kernel (9) for iodine as a function of the
energy deposition for a fixed momentum transfer. It is seen
that the s-states dominate the amplitude, as expected. In
Fig. 6 we plot the 3s core contribution to the iodine atomic
kernel for different values of the maximum included
continuum-state angular momentum as a function of the
momentum transfer for fixed energy deposition. For very
low values of momentum transfer, only the j ¼ 1=2 states
give significant contributions. For intermediate values,
higher angular momentum states become important. For
the high-momentum transfer values, which are those
relevant to the ionization problem, the higher angular
momentum states contribute negligibly and only s-wave
continuum states are important. Note that this is a result of
the relativistic effects; in the nonrelativistic limit higher
angular momentum states contribute non-negligibly
because the s-state contribution is significantly underesti-
mated. The general result is that in the calculations, only
s-states need to be considered both for the bound states
and for the continuum states, as suggested above; p-states
contribute at the few-percent level. We have checked this in

FIG. 4. Comparison of the contribution of the 3s state to the
atomic kernel of iodine in the relativistic and nonrelativistic
approximations: (top) as a function of the energy deposition (ΔE)
for a value of the momentum transfer of q≃ 9 MeV, and
(bottom) as a function of q for ΔE ¼ 4 keV.

TABLE I. Relativistic Hartree-Fock ionization energies for the
core states of Na, Ge, I, Xe, and Tl in atomic unitsa.

Atom Na Ge I Xe Tl
Z 11 32 53 54 81

1s1=2 40.54 411.1 1226 1277 2851
2s1=2 2.805 53.46 193.0 202.5 484.5
2p1=2 1.522 47.33 180.6 189.7 465.7
2p3=2 1.515 46.15 169.6 177.7 465.7
3s1=2 0.182 7.410 40.53 43.01 117.1
3p1=2 5.325 35.34 37.66 108.2
3p3=2 5.157 32.21 35.33 108.2
3d3=2 1.616 24.19 26.02 91.71
3d5=2 1.592 23.75 25.54 91.71
4s1=2 0.569 7.759 8.430 26.88
4p1=2 0.282 5.869 6.453 22.92
4p3=2 0.273 5.450 5.983 22.92
4d3=2 2.342 2.711 15.65
4d5=2 2.274 2.634 15.65
5s1=2 0.876 1.010 4.617
5p1=2 0.434 0.493 3.230
5p3=2 0.390 0.440 3.230
4f5=2 5.784
4f7=2 5.784
5d3=2 0.967
5d5=2 0.967
6s1=2 0.360
6p1=2 0.201
6p3=2 0.201

aNote: 1 au ¼ 27.211 eV.
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the direct calculations of the cross section as well, and it
continues to hold true. Regardless, in our full atomic
structure calculations we keep all higher angular momen-
tum states until the cross section converges explicitly to the
∼0.1% level. For lower values of energy deposition
ðΔE≲ 1 keV) this condition becomes less strong.
Though not directly relevant to the DAMA experiment,
the ΔE≲ 1 keV range may be important for other types of
electron-recoil experiments, such as the XENON10 experi-
ment [50], and those suggested in Refs. [34,37].

IV. RESULTS

A. DAMA analysis

For our calculations of the atomic structure, we employ
the system of atomic units (ℏ ¼ aB ¼ e ¼ 1, c ¼ 1=α).

The conversion factor for the total cross section from
atomic units is a2B ≈ 2.8 × 10−17 cm2, and for the function
hdσ·vi
dΔE is a2Bcα=2Ry ≈ 0.019 cm3=keV=day. We present the
event rates in the standard units of counts per day (cpd)
per kg=keV.
Setting αχ ¼ 1 for a moment, in Fig. 7, we plot the

differential cross section (8) for Na, I, Xe, Ge, and Tl as a
function of the total energy deposition, ΔE, for a specific
set of DM parameters and assuming the standard halo
velocity distribution (6). Note that the NaI detector in the
DAMA experiment is doped with Tl. With a significantly
higher atomic number, the effect arising from thallium is
substantially larger than that from iodine; however, the
small amount present in the detector means that the DAMA
signal would still be dominated by the iodine contribution.
To a first approximation, the expected event-rate due to

scattering of WIMPs from the galactic halo can be
expressed as

RðtÞ ¼ R0 þ Rm cosðωtÞ; ð17Þ

where R0 is the constant or average part of the event-rate,
which comes from the velocity distribution of the WIMPs
in the solar frame, and Rm is the amplitude of the
modulations in the event rate, which come from the relative
motion of the earth around the sun; the factor ωt is defined
in Eq. (7). We do note, however, that due to the very strong
dependence of the scattering cross section on the incident
energy of the DM particles (and therefore on the DM
velocity), Rm itself depends on the phase of the earths orbit
and therefore the event rate is not purely sinusoidal. The
deviations from a sinusoidal shape, however, are modest for
most of the parameter space, and do not affect the analysis
substantially.

FIG. 5. Core-state contributions to the atomic kernel [defined in
Eq. (9)] for I as a function of the energy deposition, ΔE, at
momentum transfer q≃ 4 MeV. The s states dominate the
amplitude; this domination only increases further at larger q.
The contributions from the d states (not shown) are orders of
magnitude smaller again.

FIG. 6. Contribution of the 3s core state to the atomic kernel for
iodine as a function of the momentum transfer, q, atΔE≃ 2 keV.
Shown separately are the kernels with different values for the
high-l cutoff for the continuum-state electron orbital angular
momentum. The higher-l continuum states contribute signifi-
cantly at low values of q, however, at the values relevant to this
work (q≳MeV), they contribute negligibly.

FIG. 7. Plot of the differential cross section [defined in Eq. (8),
with mχ ¼ 10 GeV, mv ¼ 10 MeV, and for simplicity αχ ¼ 1]
for Na, I, Xe, Ge, and Tl as a function of the total energy
deposition, ΔE. The kinks in the curves correspond to the
opening of deeper atomic shells; see Table I. There is a clear
and significant Z dependence, which is due to the low-r scaling of
the wave functions and the relativistic effects.
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The so-called oscillation fraction, defined as Rm=R0, has
a strong dependence on the energy deposition, and on the
mass of the DM particles. Figure 8 shows the mχ depend-
ence of the differential cross section and the oscillation
fraction for iodine as a function of the deposited energy,
ΔE. The energy dependence of the oscillations increases
with decreasing mχ , since at small DM mass only the
velocity tail of the DM velocity distribution can give rise to
an effect.
A possibility of such a very large time-modulated

fraction in DM-induced atomic ionization is interesting
for the following reasons: In most models of the elastic DM
scattering off nuclei the modulated fraction is typically
much smaller, under ∼0.1. In recent papers [55], the DM-
nucleus scattering of DAMA results were questioned
because of a possibility of underestimated 40K background
events aroundΔE ¼ 3 keV. According to Ref. [55], if such
background is properly subtracted, the remaining DAMA
signal is modulated at 20% or higher, which is incompatible

with the most straightforward explanation based on elastic
DM–nucleus scattering. Thus, the large modulated fraction
of the DM-induced ionization could serve as an explanation
of the DAMA signal even with the presence of unaccounted
backgrounds in the unmodulated rate.
In order to calculate the number of events detected within

a particular energy range, the energy resolution of the
detectors must be taken into account. To do this, we
convolute the calculated rate with a Gaussian,

~RðΔEÞ ¼
Z

RðεÞgΔEðεÞdε; ð18Þ

where gΔEðεÞ is a Gaussian function centered at ΔE, with
standard deviation

σ ¼ 0.448
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE=keV

p
þ 0.0091ΔE=keV;

as measured by the DAMA Collaboration [3]. This has the
effect of “smearing out” the 2 keV low threshold, allowing
a small fraction of events that originate from lower energies
to be accepted. Note that since there is an almost-
exponential enhancement of the event rate at lower energies
(see Fig. 7) this has a significant impact on the results. We
also assume that the DAMA detectors are 100% efficient
and, importantly, that the efficiency is not a function of
the energy deposition. This is the most conservative
assumption for the purpose of deriving limits on the
DAMA signal interpretations from other experiments.
Figure 9 shows the dependence of the cross section for

the ionization of NaI by DM–electron scattering on the DM
particle mass and the mass of the (vector) exchange
particle. The plot is made arbitrarily with αχ ¼ α; the cross
section is linear in α2, so with αχ ¼ 10−2α, for example, the
value of the cross section would be smaller by a factor of
10−4. The unmodulated event rate in the energy interval
2–6 keV, relevant to the DAMA experiment, is shown in

FIG. 8. Plots showing the mχ dependence of (top) the differ-
ential cross section, and (bottom) the oscillation fraction, for
ionization of iodine as a function of the deposited energy,ΔE. For
the plots we have taken mv ¼ 10 MeV, and αχ ¼ 1. Low values
of mχ lead to significantly lower cross sections, however, as mχ

increases the increase in the effect wanes. The energy dependence
of the oscillations increases with decreasing mχ , since in these
regions only part of the DM velocity distribution can give rise to
an effect, and the event rate deviates from Eq. (17).

FIG. 9. Total cross section (cm2) for the ionization of NaI in the
2–6 keV interval assuming αχ ¼ α for the average (i.e. spring/
fall) DM velocity distribution, including the Gaussian resolution
profile (18).
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Fig. 10. Shown separately are the event rates calculated
assuming a perfect detector resolution, and assuming the
Gaussian resolution as in Eq. (18). Note, in particular, that
the Gaussian profile allows events in this region to be
caused by significantly smaller DMmasses and also greatly
increases the observed event rate. This is entirely due to the
fact that events originating at smaller energies (which have
a much greater amplitude) are allowed to “leak” into the
detection interval. As is clear, the dependence on the
detector resolution is extreme. There is a clear favor of
low mχ, and the modulation fraction is large. The corre-
sponding modulated event rate (including the Gaussian
profile) is shown in Fig. 11.
The DAMA collaboration observes a significant modu-

lation in the event rate in this 2–6 keV interval, as described
above. The amplitude of the observed modulation is [2]

RDAMA
m ¼ 1.12ð12Þ × 10−2 cpd=kg=keV; ð19Þ

amongst a background signal of approximately 1 cpd=kg=
keV (which is due largely to the interactions of particles
from radioactivity in the detector materials and surrounds).
To perform our analysis, we assume this modulation signal
can be entirely attributed to ionization of NaI by the
scattering of WIMPs on the electrons. Figure 13 shows

the value that the effective DM–electron coupling constant
(αχ) must take in order to give the required modulation
amplitude.
In the WIMP–electron scattering scenario, the large

modulation fractions (as reported by the DAMA [2],
CoGeNT [56], and XENON100 [43] collaborations) are
reproduced naturally. The expected modulation fraction
Rm=R0 is plotted explicitly for DAMA in Fig. 12. The
fraction is very large, over 20% for large portions of the
parameter space, even reaching as high as 50% for
reasonable values. Note that this is assuming just the
standard Maxwellian halo model for the DM velocity
distribution (6). The large modulation is due to the fact
that the ionization cross section is highly velocity depen-
dent. This is in contrast to WIMP–nucleon scattering cross
section, where exotic DM velocity distributions must be
assumed in order to replicate the large modulation fraction
(see, e.g., Ref. [51]). Our findings in this regard are in
agreement with those of Ref. [9].
In order to avoid disproportionally large values of αχ the

mass mv of the mediating particle must be light, as seen

FIG. 10. Unmodulated event rate R0 for NaI in the 2–6 keV
interval assuming αχ ¼ α in units of cpd=kg=keV: (top) assuming
perfect detector resolution; (bottom) including a Gaussian res-
olution profile (18).

FIG. 11. Modulation amplitude Rm for NaI in the 2–6 keV
interval assuming αχ ¼ α in units of cpd=kg=keV (including the
Gaussian resolution profile).

FIG. 12. The calculated modulation fraction (Rm=R0) expected
for the scintillation signal in the 2–6 keV interval for NaI
(including the Gaussian resolution profile).
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from the contour plot in Fig. 13. However, even with sub-
MeV masses, the required value of αχ may not be small
enough for the existing constraints. Note that, from con-
straints on the energy loss in stars, the mass of the mediator
cannot be smaller than ∼200 keV [57]. Taking mv close to
this boundary, and DM mass close to 1 GeV, we conclude
on the basis of our DAMA signal analysis that coupling
constant can be as small as αχ ∼ 10−3α. While this is
definitely a rather small value, it is perhaps not sufficiently
small to escape current constraints, as we discuss below.
There are several potential constraints to be considered,

some of which are model dependent. We write the fine
structure constant in terms of its coupling to electrons and
DM in the following way,

αχ ¼ α × ðgχ
e
Þ ×

�
ge
e

�
; ð20Þ

where gχ and ge aremediator couplings toDMand electrons.
There are separate constraints on both ge and gχ . From the
fact that the visible sector is more tightly constrained, one
would have to assume a hierarchy ge ≪ gχ.
From the consistency of the electron g − 2 with the QED

calculations and independent measurement of electromag-
netic α one can derive strong constraints on the value of

ge [58,59]. While the constraint would slightly vary
depending on whether mediator is a scalar of vector, from
the general consistency of electron g − 2 for mv ∼ 1 MeV
one expects jge=ej < 10−4. This is difficult to combine with
the αχ ∼ 10−3α requirement. Therefore, additional fine-
tuning of the g − 2 may be required by other unspecified
new physics. Direct constraints on ge vary depending on
how the mediator decays (to photons, electron-positron
pairs, or to invisible particles such as neutrinos). The range
of the mediator masses just below 2me may represent a
“blind spot” for the searches, and couplings jge=ej ∼ 10−3

may not be excluded [60].
The large values of gχ are constrained as well, primarily

through the DM self-interaction, which is known to affect
the radial profiles of the DM halos. Despite the significant
uncertainties involved, it is unlikely that the self-scattering
cross section per unit mass is allowed to exceed
∼10−23 cm2=GeV. For mχ ¼ 1 GeV, and the mediator
mass in the MeV range, this would imply jgχ=ej < 0.01
(see, e.g., Ref. [61]), which is also a stringent constraint. To
avoid this constraint, one would have to introduce yet an
additional interaction that is fine tuned to interfere destruc-
tively with the WIMP-WIMP scattering amplitude. Thus,
we see that the values of αχ required to match the level of
the DAMA modulation signal generally require very light
mediators and fine tuning, both in gχ and ge.

FIG. 13. The value that αχ must take in order to reproduce the
DAMA modulation signal of 0.0112 cpd=kg=keV in the 2–6 keV
interval: (top) assuming perfect detector resolution; (bottom)
including the Gaussian resolution profile (18).

FIG. 14. Calculated modulated event rate spectrum Rm for
DAMA for a few specific choices of DM parameters which are
able to replicate the amplitude of the observed modulation.
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Finally, note that in performing the DAMA signal
analysis, we have paid no attention to the shape of the
recoil spectrum, just choosing the parameters to reproduce
the total number of counts in the given interval. This
procedure represents the most conservative case; if the
detectors were any less efficient, the acceptable values of αχ
would be forced to be larger. Taking these factors into
account can therefore only strengthen our conclusions. In
Fig. 14, the calculated spectrum is compared to the results
of the DAMA experiment for a few specific sets of DM
parameters that can reproduce the observed modulation
amplitude averaged over the 2–6 keV interval. As to the
energy shape of the modulation spectrum, the predictions
for the electron recoil are more peaked near the threshold
than data would suggest, and have very few events above
3 keV. This is consistent with findings of previous
studies [22].

B. XENON100 analysis

A recent analysis of data from the XENON100 experi-
ment has also investigated WIMP-induced electron-recoil
events [42,43]. These experiments also observed modest
evidence for an annual modulation (at the 2.8σ level)—
though the phase does not match perfectly with that
observed by DAMA [43]. By assuming their result was
a positive measurement of an annual modulation, the
XENON Collaboration [43] (see also Ref. [42]) determined
the best fit for their data to indicate an unmodulated event
rate of

RXe100
0 ¼ 5.5ð6Þ × 10−3 cpd=kg=keV; ð21Þ

with a modulation amplitude of

RXe100
m ¼ 2.7ð8Þ × 10−3 cpd=kg=keV; ð22Þ

with a quoted a background of 5.3 × 10−3 cpd=kg=keV
[42]. Note that the background (or unmodulated signal) is
smaller than the DAMA modulation amplitude by a factor
of 2.
The XENON100 Collaboration has performed a detailed

analysis of the electron recoil acceptance and efficiency;
see, e.g., Refs. [41,62,63], and references therein. In order
to compare the calculated event rate with that observed in
XENON100 it first is necessary to convert the calculated
event rate as a function of the deposited energy to the rate as
a function of the generated photoelectrons (PE), n. The
relation between the deposited energy (electron recoil
energy), and the produced number of photoelectrons is
given in Fig. 2 of Ref. [41]. We model this as a power law:
NðΔEÞ ¼ ΔEx, and take x ¼ 1.58, which gives the best fit
at n ¼ 3 PE (ΔE≃ 2 keV), noting that the signal is
dominated by lower energies. Then, the generated event
rate for n photoelectrons is obtained by applying “Poisson
smearing” to the calculated differential rate,

Rn ¼
Z

∞

0

RðεÞPnðεÞdε; ð23Þ

where the Poisson distribution is

PnðεÞ ¼ e−NðεÞNðεÞn
n!

;

as in Ref. [41]. Then, to calculate the event rate as a
function of the detected photoelectrons, S1, both the
detector resolution and the electron-recoil acceptance must
be taken into account.
The electron recoil acceptance, as a function of the

observable scintillation photoelectrons S1, is given in Fig. 1
(bottom) of Ref. [41]. Roughly, the acceptance rate can be
given by the expression

AðS1Þ ≈ Ceffð1 − e−S1=3Þ; ð24Þ
where Ceff is an efficiency parameter with a best-fit value
around 0.9 [41]. To be conservative, we take Ceff ¼ 0.85.
To take the finite resolution of the detectors into account,
we convolute the rate with a Gaussian gnðS1Þ, centered at
S1 ¼ n, and with a standard deviation of

ffiffiffi
n

p
σPMT, where

σPMT ¼ 0.5 PE is the resolution of the XENON100 photo-
multiplier tube (PMT) detectors [62].
The final detected event rate as a function of observed

photoelectrons is, thus,

~RðS1Þ ¼ AðS1Þ
X∞
n¼1

gnðS1ÞRn: ð25Þ

In order to compare the results with those of the DAMA
experiment, we follow Ref. [42] and integrate between
S1 ¼ 3 and 14 PE, corresponding roughly to the 2–6 keV
interval. Again, to aid in the comparison with the DAMA
results, we divide the result by 4 keV to make the units
consistent. Note that the summation in Eq. (25) converges
very quickly, due to the huge enhancement coming from
lower energy events, as shown in Fig. 15; we also note that
the integration depends strongly on the lower S1 bound, but
is essentially independent of the upper bound (so long as
it’s above 5 or 6 PE).
Though the specifics of theway the Gaussian and Poisson

“smearing” are taken into account for the calculations of
the DAMA and XENON100 rates differ, the overall effect
is essentially the same. The details provided by the
XENON100 Collaboration (in, e.g., Refs. [41,42,62,63])
allow us to be rather precise.
In Fig. 16, we present our calculations for the unmodu-

lated event rate R0 (for a fixed coupling αχ ¼ α) and the
modulation fraction Rm=R0 for the XENON100 scintilla-
tion experiment, in the 3–14 PE range. The modulation
fraction observed in the XENON100 experiment (22) is
extremely large. We find, however, that this alone is not
enough to discount the WIMP hypothesis as a source for
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the modulations. The calculated modulation fraction is very
large, easily reaching 50% for very low values of
mχ < 1 GeV. Note that the oscillation fraction is indepen-
dent of the coupling constant.
By assuming the DAMA result is due to electron-

interacting WIMPs, we can calculate the expected
scintillation signal in xenon relevant to the XENON100
electron-recoil experiment. For each set of DM and
mediator masses, we calculate the coupling required to
reproduce the DAMA modulation signal in the 2–6 keV
interval, assuming it is due to WIMP–electron scattering on
the NaI crystal. These couplings, shown in Fig. 13 (bot-
tom), are used as inputs into the calculations for xenon.
Figure 17 shows the resulting calculated event rates that
would be generated in liquid xenon summed between 3 and
14 PE, as in the XENON100 electron recoil experiment
[42,43]. In Fig. 18, we also directly plot the ratio of the
calculated event rates for DAMA and XENON100 in the
relevant energy intervals.
It appears that there is a region below mχ ∼ 0.5 GeV in

which the DAMA result may be compatible with the
XENON100 limits. The unmodulated event rate comfort-
ably sits below the limit of ∼5 × 10−3 cpd=kg=keV, and
the modulation fraction is very large, between 25% and
50%. We remind, however, that this is very dependent on
the low-energy efficiency and cut-acceptance criteria of the

DAMA experiment, which is not detailed in the literature to
the same extent as it is for XENON100. In lieu of a more
thorough investigation of the detector efficiency, accep-
tance, and resolution by the DAMA Collaboration, we
employed a simple Gaussian resolution profile (based on
resolution measurements of the DAMA Collaboration [3]).
This amounts to a very generous assumption for the DAMA
modulation, while we take very conservative assumptions
for the XENON100 rate.
Nevertheless, tight constraints can be placed upon the

considered WIMP models as an explanation for the DAMA
modulation based on the XENON100 electron recoil
constraints [42]. Based on our calculations, for the region
above mχ ≳ 10 GeV and mv ≳ 2 MeV (corresponding to
the 5 × 10−2 cpd=kg=keV contour of Fig. 17 (top), the
exclusion is 7.5σ, taking into account both the DAMA
and XENON100 uncertainties. For the region above
mχ ≳ 1 GeV and mv ≳ 0.3 MeV (corresponding to the
2 × 10−2 cpd=kg=keV contour of Fig. 17 (top), the exclu-
sion is 5.2σ. The region below mv ≲ 0.2 MeV is ruled out
based on stellar bounds [57], and the region above mv ≳
2 MeV is ruled out based on the size of the coupling
strength.
In order to demonstrate the energy-dependence of the

event rate, in Fig. 19, we plot the modulated part of the

FIG. 15. Calculated scintillation event rate for Xe (top) for
2 PE, and (bottom) for 3 PE.

FIG. 16. The calculated (top) unmodulated event rate (for fixed
αχ ¼ α), and (bottom) modulation fraction (Rm=R0), for the
scintillation signal in the 3–14 PE interval (corresponding to
2–6 keV) for Xe.
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ionization event rate for xenon for a few specific choices of
DM parameters that are able to reproduce (the amplitude
of) the DAMA modulation signal. Note that here we plot
the bare event rate as in Eq. (10), not taking into account the

Poisson smearing or detector resolution. It is clear that a
detailed knowledge of the detector efficiency at very low
energies is crucial for interpreting observed scintillation
signal in terms of electron interacting DM. A discussion of
the low energy efficiency is presented in Ref. [41] (see also
Refs. [10,63–65] and Ref. [66]).

C. Massless mediator (mv = 0) case

For the case of the vector mediator, the constraints on its
couplings to normal matter are significantly weakened as
mv is taken to sub-eV values, as discussed in Ref. [57].
Therefore it will be useful to discuss the case of a purely
massless mediator, mv ¼ 0, and we consider this case
separately. Figure 20 shows calculations of the event rate
and modulation fraction expected in the relevant energy
interval for the DAMA experiment, as a function of the
effective coupling constant αχ , and the WIMP mass, mχ . In
this case, the large modulation is also present, and the event
rates are significantly larger than in the mv > 0 case, as
expected (see Fig. 10). The corresponding calculations
relevant to the XENON100 experiment are shown in
Fig. 21. Unsurprisingly, the expected event rate is very
similar to that for DAMA.

D. XENON10 “ionization only” analysis

The XENON10 Collaboration [50] (see also Refs. [67–
70]) has performed an analysis of the ionization-only signal
in their liquid xenon detector. This data has been analysed
in terms of low mass electron-interacting WIMPs [34], and
limits have been set [35]; see also Refs. [71,72].
In Fig. 22, we plot the event rate for the primary

ionizations generated in a xenon detector due to the
scattering of electron-interacting WIMPs. Note that this
is a lower-bound on the generated events, since the primary
ionizations (particularly from lower shells) will also induce

FIG. 17. (Top) The umodulated event rate, and (bottom) the
modulation amplitude, that would be expected in the XENON100
scintillation experiment in the 3–14 PE interval (corresponding to
2–6 keV) assuming the DAMA modulation signal is a positive
WIMP detection (the value of αχ for each point on the parameter
plot is shown in Fig. 13).

FIG. 18. Ratio of the calculated event rate for DAMA (in the
2–6 keV interval) to that expected for XENON100 (in the
3–14 PE interval). Note that the ratio is highly dependent on
the detector efficiency and resolution, but is essentially indepen-
dent of the DM velocity distribution.

FIG. 19. Calculation of the modulated ionization event rate
spectrum Rm for xenon (relevant to XENON100) for a few
specific choices of DM parameters which are able to replicate the
amplitude of the observed DAMA modulation. The correspond-
ing signals generated in NaI are plotted in thin solid lines (almost
indistinguishable from the xenon rates on this scale).
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secondary ionizations with some probability. The domi-
nating contribution at low DM masses comes from the
upper most shells; this is in agreement with previous
calculations [35]. For very large DM masses (and large
mediator masses) higher energy ranges play a significant
role also. The modulation fraction for the ionization-only
signal is substantially smaller than for the scintillation
signal; it is below 10% for most of the parameter space.
This is because the low-energy cutoff required for the
scintillation signal means the observed signal can only
originate from the high-energy (and high-momentum trans-
fer) tail of the cross section. In this region, the cross section
becomes highly velocity dependent, hence the large modu-
lation fraction; see Fig. 8. The spectrum of events for a few
selected values of the DM mass is given in Fig. 23.
Figure 24 shows calculations of the ionization rate for

xenon integrated over all energy depositions (relevant to the
ionization-only XENON10 experiment [50]), assuming the
DAMA modulation is due to electron-interacting WIMPs.
Note that presented here is the calculation of primary, or
“first-order” ionization events only. Some fraction of these
ionized electrons will recombine emitting photons which
may also ionize other atoms. Also, when it is not the
outermost electron which is ionized, the decay of the outer
electrons to fill the created vacancy will also release
photons which will ionize subsequent atoms with some

probability. For a discussion, see Ref. [35]. Therefore, we
have actually calculated a lower bound on the expected
XENON10 event rate. Note also that the mv ¼ 0 case is
already explicitly ruled out here (see Fig. 24), so we do not
need to consider it separately.
The XENON10 Collaboration [50] observes at most

30 cpd=kg; at the 90% confidence level, the authors of
Ref. [35] put a bound on the single-electron ionization rate
at 23.4 cpd=kg. The two-electron rate is substantially smaller
at < 4.23 cpd=kg. Here, it appears as though there may be
some part of the parameter space (for very large mv, and
mχ ≳ 5 GeV) for which the WIMP explanation for the
DAMA modulation may be consistent with the XENON10
constraints; note that this is the opposite side (for bothmv and
mχ) that was favored considering the XENON100 compari-
son. Still, we are able to place very tight constraints on the
DM parameter space. The region below mχ ≲ 25 GeV and
mv ≲ 10 MeV (corresponding to the 45 cpd=kg contour of
Fig. 24) is excluded at better than the 90% confidence level.
The region below mχ ≲ 2 GeV and mv ≲ 1.5 MeV (corre-
sponding to the 102 cpd=kg contour of Fig. 24) can be
excluded by many orders of magnitude.
We can also perform calculations to investigate

whether the XENON100 scintillation and XENON10

FIG. 20. Unmodulated event rate (top), and modulation fraction
(bottom), for DAMA in the 2–6 keV interval, for the massless
mediator case ðmv ¼ 0Þ.

FIG. 21. (Top) The unmodulated event rate for XENON100 in
the 3–14 PE interval (corresponding to 2–6 keV), for the massless
mediator case ðmv ¼ 0Þ. (Bottom) Ratio of the event rate for
XENON100 to that of DAMA (in the 2–6 keV=3–14 PE range)
for the mv ¼ 0 case.
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ionization experiments can be mutually consistent with
the electron-interacting WIMP assumption. Figure 25
shows calculations of the “ionization-only” event rate for
xenon (integrated over all energy depositions), assuming
the modulation observed in the XENON100 experiment
(22) is due to electron-interacting WIMPs. This shows
that for relatively large values of mχ and mv the

XENON100 modulation may be compatible with the
XENON10 limits (though note that the XENON100
Collaboration does not consider this modulation a pos-
itive WIMP detection).

FIG. 22. Calculation of (top) the unmodulated single primary-
electron ionization signal in xenon (relevant to the XENON10
experiment [50]) for a fixed coupling of αχ ¼ α, and (bottom) the
modulation fraction.

FIG. 23. Calculation of the spectral shape for the single
primary-electron ionization signal (unmodulated) in xenon for
a fixed coupling of αχ ¼ 10−2α and mv ¼ 0.3 MeV, for a few
DM masses.

FIG. 24. Calculation of the expected unmodulated ionization-
only signal in xenon (relevant to the XENON10 experiment [50])
assuming the DAMA modulation signal (19) is a positive WIMP
detection.

FIG. 25. Calculations for the expected ionization-only signal in
xenon (relevant to the XENON10 experiment [50]) assuming the
modulation signal observed in the XENON100 scintillation
experiment [43] is due to WIMP–electron scattering. (Top) Value
that αχ must take to explain the XENON100 modulation
(midpoint); (bottom) the resulting unmodulated event rate R0

for XENON10 (single-electron primary ionizations only).
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V. CONCLUSION

We have revisited the hypothesis that WIMP-type dark
matter scattering on electrons could be an explanation for
the anomalous DAMA/NaI and DAMA/LIBRA annual
modulation signals. By performing high-accuracy numeri-
cal calculations of atomic ionization, including electron
relativistic effects, we have calculated the event rates that
would be expected assuming this scenario for several
relevant experiments. Our calculations can be generalized
for other existing or planned experiments. We have scanned
the parameter space consisting of the dark matter particle
mass, the dark matter–electron interaction mediator mass,
and the effective coupling strength, searching for any
region of the parameter space that could potentially explain
the DAMA modulation signal. Below, we discuss the main
findings and features of our analysis:

(i) We find that the modulation fraction of all events
with energy deposition above 2 keV in NaI are quite
significant, reaching ∼50%, which could be useful
for linking the DAMA modulation signal to electron
recoil. This also allows one to tolerate higher levels
of background in the unmodulated DAMA rate
compared to the case of nuclear recoil.

(ii) The shape of the spectrum is necessarily very much
enhanced for small values of ΔE, and is a poor fit to
the DAMAmodulation spectrum. However, the over-
all modulated rate (averaged in the 2–6 keV interval)
can be achieved with very light (e.g., sub-MeV mass)
mediators, and theWIMP-electron coupling constants
as small as αχ ∼ ð10−4 − 10−3Þ × α.

(iii) The inferred strength of the coupling αχ is in strong
tension with known constraints on couplings of
light mediators both to electrons and to dark matter,
and generally requires extra fine tuning in several
observables.

(iv) Irrespective of this fine tuning, we were able to
exclude the DAMA modulation expalanation via the
electronic recoil using the results of the XENON10
and XENON100 experiments. It is important to note
that the XENON10 and XENON100 constraints are
complementary, in that they each “favor” opposite
ends of the parameter space (with XENON100 favor-
ing lowmχ and lowmv, andXENON10 favoring large
mχ and mv). Therefore, by combining the two sets of
constraints, we can exclude the entire parameter space
for electron-interacting WIMPs as the source of the
DAMA annual modulation; see Fig. 1.

(v) We also note that for larger values of αχ (that would
require even larger tunings of couplings ge and gχ)
the effects of the WIMP slow-down by the earth
material (not considered in this paper) may reduce
fluxes and energies of WIMPs at the location of
DAMA experiment, further shrinking the parameter
space for the explanation of the annual modulation
by the dark matter signal.

We consider that our limits are conservative. For example,
we made a number of generous assumptions relevant to the
DAMA experiment (e.g., that their detectors were perfectly
efficient), while making more conservative assumptions for
the XENON100 and XENON10 cases (e.g., we calculated
only lower bounds on the expected event rate for the
XENON10 experiment). Taking the DAMA spectrum into
account, and including the higher-order processes in the
XENON experiments would lead to significantly more
stringent limits. We also note, that our calculations are
relatively impervious to systematic uncertainties, since they
are based on ratios of calculations performed using the
same method and codes (this is particularly true for the
XENON100 case,which concerned the sameenergy range as
the DAMA case). Any DM parameters outside those
considered directly in our analysis either cannot account
for the DAMA modulation (as demonstrated in Fig. 13) or
have been previously excluded from stellar bounds [57].
We would like to conclude by noting that as the XENON

and LUX DM detection programs progress and scale up,
one should expect even greater sensitivity to the electron
recoil. For example, the anticipated background rates in
XENON1T [73] are up to two orders of magnitude lower
than in XENON100, which will provide sensitivity to even
smaller scattering cross sections, and eventually probe
regions of parameter space fmχ ; αχ ; mvg unconstrained
from other sources.
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APPENDIX A: METHODS FOR AB INITIO
RELATIVISTIC ATOMIC CALCULATIONS

The relativistic Dirac-Coulomb Hamiltonian is given

Ĥ ¼
X
i

�
cαi · pi þmec2ðγ0i − 1Þ − Vnuc

i þ
X
j<i

e2

rij

�
;

ðA1Þ
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where, α ¼ γ0γ and γ0 are Dirac matrices, Pi is the
relativistic (three-)momentum of the ith electron, e ¼ jej
is the elementary charge, rij ≡ jri − rjj, and for large
distances the nuclear potential is given by Vnuc

i ≃
Ze2=ri. Note that the Eigenvalues of the above
Hamiltonian, defined via the equation Ĥjni ¼ Enjni, do
not include the electron mass-energy (for ease of compari-
son with nonrelativistic calculations). The total relativistic
energy is given by ~En ¼ En þmec2.
In the calculations, we use the Relativistic Hartree-Fock

(HF) method, in which Eq. (A1) is replaced by the single-
electron HF Hamiltonian:

ĥHF ¼ cα · pþmec2ðγ0 − 1Þ − Vnuc þ UHF: ðA2Þ

We use a Fermi-type distribution for the nuclear potential,

ρZðrÞ ¼
Zρ0

1þ eðr−cÞ=a
; ðA3Þ

where t ¼ að4 ln 3Þ is the skin-thickness and c is the half-
density radius, see, e.g., Ref. [74], and ρ0 is found from the
normalization condition

R
ρðrÞd3r ¼ 1. This is important

since the effects considered here depend strongly on the
form of the wave functions at short distances. We express
the four-component single-electron orbitals (employing the
Dirac basis) in the form

ψnκmðrÞ ¼
1

r

�
fnκðrÞΩκmðnÞ

iαgnκðrÞΩ−κ;mðnÞ
�
; ðA4Þ

where fnκ and gnκ are the large and small components of the
Dirac wave function, respectively, Ωκm is a two-component
spherical spinor, n≡ r=r, and α ≈ 1=137 is the fine-
structure constant. The continuum-state wave functions,
ψεκm, take the same form and, for a state with energy ε, we
denote the large and small Dirac components as fεκ and gεκ,
respectively. The atomic wave functions are then made of
the orbitals ψnκm, which are found for each of the N states
in the core by solving the Dirac equation

ĤHFψnκ ¼ Enκψnκ; ðA5Þ

where Enκ is the single-electron Hartree-Fock energy
corresponding to the orbital ψnκ.
The Hartree-Fock potential is given by the sum of the

local (direct) and nonlocal (exchange) parts of the inter-
action, UHF ¼ Udir þ Uexch, with

UdirψaðrÞ ¼ e2
XN
n≠a

Z
ψ†
nðr0Þψnðr0Þ
jr − r0j d3r0ψaðrÞ

UexchψaðrÞ ¼ −e2
XN
n≠a

Z
ψ†
nðr0Þψaðr0Þ
jr − r0j d3r0ψnðrÞ; ðA6Þ

where the indices n and a denote core orbitals. The
equations (A5) and (A6) are solved iteratively until an
acceptable level of convergence has been reached. (To start
the iterative procedure, an initial approximation for the
potential is required; for this we use a Thomas-Fermi
potential or a simple parametric potential.) Then, the HF
potential is kept constant and the wave functions for the
continuum states are calculated for a specified energy in
this “frozen core” potential.
To calculate the matrix elements for the atomic kernel,

defined in Eq. (9), we expand the exponential operator in
terms of spherical harmonics and spherical Bessel functions,
and use the Wigner-Eckart theorem and orthogonality con-
ditions to perform the angular integrations and the summa-
tions over the magnetic quantum numbers analytically. The
full formulas for the atomic kernel are given in Appendix B.
The atomic kernel, dominated by s states for both the

continuum and bound electrons, is proportional to the radial
integral

R ¼
Z

ψnsðrÞψεsðrÞ
sinðqrÞ
qr

r2dr:

Note that, in general, qr is not small, and the integrand
oscillates rapidly (typical values of q are on the order of
103–104 au, with r ∼ 1 au). Therefore, in doing numerical
calculations on a grid, where the above integral becomes,

R →
X
i

ψnsðr½i�Þψεsðr½i�Þ
sinðqr½i�Þ
qr½i� r½i�2δr;

care is needed. At high q, where the atomic ionization can
occur, the integral is dominated by low r contributions. We
must ensure that the separations in the grid spacings, δr, are
significantly smaller than the width of the oscillations for
all relevant values of q: δr ≪ π=qmax. In other words, we
can safely integrate over q up to a value of qmax ≃ π=δr. We
use a nonuniform grid, which has exponentially more
points close to the nucleus than far away, to ensure
sufficient numerical accuracy for the important low-r part
of the wave functions. The nonuniform grid r½i� (for
i ¼ 1; 2;…N, where N is the number of grid points), is
written as a function of a uniformly spaced grid, s½i�, with
separations s½iþ 1� − s½i� ¼ h, then δr ¼ dr

ds h. There are
various ways to do this; we chose a simple parametrization
in which dr

ds ¼ r½i�=ðbþ r½i�Þ, and take b ¼ 4, which means
the grid is roughly exponential for r≲ 4 au, and linear
when r≳ 4 au. We have checked that in all cases of
interest, the q integral converges well within the region
of stability. There is also an integral over q (and ΔE) in
determining the cross section; these integrals are of
relatively smooth functions, and are much simpler.
Convergence and stability are easily checked by varying
the grid density and cutoffs, and we have checked that they
are attained in all cases.
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We note that the methods we use are accurate for deep
atomic shells, but not necessarily for the valence electrons.
This is because we are performing calculations for atoms,
whereas in the detectors these atoms form molecules or
crystals, which will affect the outer electron wave func-
tions. Ab initio relativistic solid state and molecular
calculations can also be done, but this is outside the scope
of the current work (though we note that for the lower
energy depositions involved in the ionization of the outer
shells, the relativistic effects are not so important). The
calculations for xenon, a noble gas, are accurate for all
shells. Note that we only consider low-energy ionization
signals (where the valence electrons are important) for
xenon, therefore we do not consider any case for which our
calculations are not accurate.

APPENDIX B: ANGULAR DECOMPOSITION AND
EVALUATION OF THE ATOMIC KERNEL

To evaluate the sum of matrix elements in Eq. (9), we
first write eiq·r ¼ P∞

L¼0

P
L
M¼−L TLM, where

TLM ¼ 4πðiÞLjLðqrÞYLMðθr;ϕrÞY�
LMðθq;ϕqÞ ðB1Þ

is an irreducible (spherical) tensor operator, with YLM the
spherical harmonics, and jL the spherical Bessel functions.
Then, using the standard angular momentum summation
rules (see, e.g., [75]), we express Eq. (9) as

KnκðΔE; qÞ ¼
X
κ0

X
m;m0

X
L;M

jhεκ0m0jTLMjnκmij2

¼
X
κ0

X
L

jhεκ0jjTLjjnκij2xðn; jÞ; ðB2Þ

where xðn; jÞ is the fractional occupation number for a
given shell (for the shells of interest here, x ¼ 1, however,

x < 1 for open shells). The factor hpκ0jjTLjjnκi is known as
the reduced matrix element, and is defined via the Wigner-
Eckart theorem:

hεκ0m0jTLMjnκmi

¼ ð−1Þj0−m0
�

j0 L j

−m0 M m

�
hεκ0jjTLjjnκi; ðB3Þ

where

�
j0 L j

−m0 M m

�

is a 3j symbol. Importantly, the reduced matrix elements
are independent of the quantum numbers m and m0, as well
as the index M.
Therefore, the atomic kernel is reduced to a summation

over reduced matrix elements, which are found from
Eq. (B3) with, e.g., M ¼ 0 and m ¼ m0 ¼ 1=2:

jhεκ0jjTLjjnκij2 ¼
�

j0 L j

− 1
2

0 1
2

�−2���Dεκ0 1
2
jTL0jnκ

1

2

E���2

¼ CL
κκ0 ðR2

f þ 2α2RfRg þ α4R2
gÞ; ðB4Þ

where Rf and Rg are the radial integrals,

Rf ¼
Z

fεκ0fnκjLðqrÞdr ðB5Þ

Rg ¼
Z

gεκ0gnκjLðqrÞdr; ðB6Þ

and the angular coefficient is

CL
κκ0 ¼

1

4
ð−1Þjþj0−l−l0 ð2Lþ 1Þ

�
l0 l L

0 0 0

�
2
�

j0 L j

− 1
2

0 1
2

�−2�
ð−1Þjþj0−l−l0 ð2jþ 1Þð2j0 þ 1Þ

�
l0 l L

0 0 0

�
2

þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0ðl0 þ 1Þlðlþ 1Þ

p �
l0 l L

0 0 0

��
l0 l L

−1 1 0

�
− 4ðκ0 þ 1Þðκ þ 1Þ

�
l0 l L

−1 1 0

�
2
�
: ðB7Þ

For s1=2 and p1=2 states, this reduces simply to C ¼ 2

(with L ¼ 0 for κ ¼ κ0 ¼ �1, and L ¼ 1 for
κ ¼ −κ0 ¼ �1). Note that, since the reduced matrix ele-
ments do not depend on M, m, or m0, we can choose any
values for these indices that leave the 3j symbol in (B3)
nonzero; however, the minimal values are typically the
simplest to compute.
Similarly, if instead we consider a scalar, pseudoscalar,

or (spin-independent) pseudovector electron coupling, the
relevant electron operator is replaced with TLMγ

0, TLMγ
0γ5,

or TLMγ5, respectively. Then the atomic structure factors
can be expressed as

jhεκ0jjTLγ
0jjnκij2 ¼ CL

κκ0 ðR2
f − 2α2RfRg þ α4R2

gÞ; ðB8Þ
jhεκ0jjTLγ

0γ5jjnκij2 ¼ DL
κκ0α

2ðR2
fg þ 2RfgRgf þ R2

gfÞ;
ðB9Þ

jhεκ0jjTLγ5jjnκij2¼DL
κκ0α

2ðR2
fg−2RfgRgfþR2

gfÞ; ðB10Þ
where the radial integrals are
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Rfg ¼
Z

fεκ0gnκjLðqrÞdr ðB11Þ

Rgf ¼
Z

gεκ0fnκjLðqrÞdr: ðB12Þ

The angular coefficient D is related to C via the trans-
formation κ → ~κ ¼ −κ and l → ~l ¼ j~κ þ 1=2j − 1=2 (κ0 and

l0 remain unchanged). For s1=2 and p1=2 states we also have
D ¼ 2. The calculations for the pseudovector case should be
approached with particular care due to the possibility of
large cancellations in the radial integrals, see Eq. (B10).
Shown here is the temporal (spin independent, zero compo-
nent) contribution to the pseudovector coupling case only.
To lowest-order, the spin-dependent components for the

FIG. 26. Comparison of different Lorentz structures for the 3s core-state contribution to the atomic kernel for I as a function of the
energy deposition, ΔE (with q≃ 4 MeV), and of the momentum transfer, q (with ΔE≃ 2 keV). The pseudoscalar case gives a large
effect (at higher q), since in this case the radial integrals include a contribution from initial and final s-states with L ¼ 1 (L ¼ 0 for the
s − s contribution to the vector and scalar cases); the pseudovector case (temporal contribution) gives by far the smallest contribution
due to very large cancellations in the radial integrals, see Appendix B. The pseudovector case here includes only the temporal part of the
interaction; to lowest-order, the spatial components for the pseudovector case behave like the vector/scalar case.

FIG. 27. Plots of the atomic kernel (9) for several dominating core states of Na, Ge, I, and Xe, as a function of momentum transfer q,
for a fixed energy deposition ΔE ¼ 2.0 keV.
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pseudovector case behave like the scalar case or the temporal
component of the vector case.
In Fig. 26, we present calculations of the atomic structure

factors for the vector, scalar, pseudovector, and pseudo-
scalar electron interactions. It is evident here that the
electron pseudoscalar interaction gives the largest result
(for very high-momentum transfer), while the temporal part
of the pseudovector case gives by far the smallest. The
largeness of the pseudoscalar case can be understood as
follows. The Factor ðZαÞ2 in the numerator of Eq. (16)
comes from the expansion of the gamma function in the
denominator of Eq. (15), which approaches infinity as γ
approaches unity for L ¼ 0. For the case where L ¼ 1,
however, this denominator is nonzero even in the Zα → 0
limit. Considering an initial (bound) s-state, there appears a
contribution for the pseudoscalar and pseudovector cases
that comes from the final s1=2 continuum state with L ¼ 1.
In this case, the ðZαÞ2 suppression from Eq. (16) is
removed, instead it is replaced by just a ∼Zα suppression
which comes from the small Dirac component that appears
in the radial integral for the pseudoscalar case (B9). There
is another enhancement by a factor of ∼4 due to the few
roughly equal terms in Eq. (B9). In the pseudovector case,
on the other hand, this situation does not lead to an
enhancement. Instead there is huge suppression, which
comes from the very large cancellation of terms in
Eq. (B10). This means that calculations of the electron
structure for the pseudovector case are very susceptible to
numerical instabilities and must be treated with great care
(if high accuracy is to be achieved).

APPENDIX C: SCALING OF THE
ANALYTIC RESULTS

In Figs. 27 and 28 we plot the contribution of several
dominating core states to the atomic kernels (9) for Na,
Ge, I, and Xe. Several orders-of-magnitude enhance-
ment of the Xe/I atomic kernel compared to that of Na
is observed, which is expected from the high power of
the Z-scaling of the electron matrix element, and the

larger relativistic factor. Using the simple expression
given in Eq. (16) to formulate the momentum transfer
dependence of the atomic kernel for high values of q,
one may use simple Z-dependent scaling factors to
reproduce our full-scale calculations. For values below
q ¼ 1 MeV, the nonrelativistic calculations using
screened hydrogen-like wave functions are sufficient,
though it should be noted that the usual notion of the
effective nuclear charge ~Znl ¼ n

ffiffiffiffiffiffiffiffi
2Inl

p
is not valid. This

value is chosen to reproduce the correct energies, and
gives a reasonable approximation of the wave functions
at medium distances. The ionization cross section,
however, is dominated by the wave function at very
small distances. Instead, the correct value for ~Znl should
be chosen to reproduce the curves in Fig. 27, and will
be fairly close to the true Z.
Note that the cross section contains energy dependent

terms, meaning the atomic kernel cannot be summed (over
the bound atomic states) independently; see Eq. (8). Each
partial contribution must be calculated individually, and
then summed over (though, there is typically a single
dominating contribution).

[1] P. Cushman et al., arXiv:1310.8327.
[2] R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013).
[3] R. Bernabei et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 592, 297 (2008).
[4] R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008); 67, 39

(2010).
[5] R. Bernabei et al., Int. J. Mod. Phys. A 28, 1330022 (2013).
[6] R. Bernabei et al., Eur. Phys. J. C 74, 2827 (2014).
[7] R. Bernabei et al., Nucl. Part. Phys. Proc. 263–264, 87

(2015).

[8] K. Freese, M. Lisanti, and C. Savage, Rev. Mod. Phys. 85,
1561 (2013).

[9] S. K. Lee, M. Lisanti, S. Mishra-Sharma, and B. R. Safdi,
Phys. Rev. D 92, 083517 (2015).

[10] XENON100 Collaboration, Phys. Rev. Lett. 109, 181301
(2012).

[11] The LUX Collaboration, Phys. Rev. Lett. 112, 091303
(2014); Astropart. Phys. 62, 33 (2015).

[12] The SuperCDMS Collaboration, Phys. Rev. Lett. 112,
241302 (2014).

FIG. 28. Plots of the atomic kernel (9) for a few dominating
core states of Na, Ge, I, and Xe, as a function of energy deposition
ΔE, for a fixed momentum transfer q ¼ 3.73 MeV.

DARK MATTER SCATTERING ON ELECTRONS: ACCURATE … PHYSICAL REVIEW D 93, 115037 (2016)

115037-21

http://arXiv.org/abs/1310.8327
http://dx.doi.org/10.1140/epjc/s10052-013-2648-7
http://dx.doi.org/10.1016/j.nima.2008.04.082
http://dx.doi.org/10.1016/j.nima.2008.04.082
http://dx.doi.org/10.1140/epjc/s10052-008-0662-y
http://dx.doi.org/10.1140/epjc/s10052-010-1303-9
http://dx.doi.org/10.1140/epjc/s10052-010-1303-9
http://dx.doi.org/10.1142/S0217751X13300226
http://dx.doi.org/10.1140/epjc/s10052-014-2827-1
http://dx.doi.org/10.1016/j.nuclphysbps.2015.04.016
http://dx.doi.org/10.1016/j.nuclphysbps.2015.04.016
http://dx.doi.org/10.1103/RevModPhys.85.1561
http://dx.doi.org/10.1103/RevModPhys.85.1561
http://dx.doi.org/10.1103/PhysRevD.92.083517
http://dx.doi.org/10.1103/PhysRevLett.109.181301
http://dx.doi.org/10.1103/PhysRevLett.109.181301
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://dx.doi.org/10.1016/j.astropartphys.2014.07.009
http://dx.doi.org/10.1103/PhysRevLett.112.241302
http://dx.doi.org/10.1103/PhysRevLett.112.241302


[13] M. Farina, D. Pappadopulo, A. Strumia, and T. Volansky, J.
Cosmol. Astropart. Phys. 11 (2011) 010.

[14] C. Savage, G. B. Gelmini, P. Gondolo, and K. Freese, J.
Cosmol. Astropart. Phys. 04 (2009) 010.

[15] S. Chang, N. Weiner, and I. Yavin, Phys. Rev. D 82, 125011
(2010).

[16] G. Barello, S. Chang, and C. A. Newby, Phys. Rev. D 90,
094027 (2014).

[17] R. Bernabei et al., Int. J. Mod. Phys. A 21, 1445 (2006).
[18] M. Pospelov, A. Ritz, and M. Voloshin, Phys. Rev. D 78,

115012 (2008).
[19] H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Lett. B

747, 331 (2015).
[20] P. Gondolo and G. B. Gelmini, Phys. Rev. D 71, 123520

(2005).
[21] R. Bernabei et al., Phys. Rev. D 77, 023506 (2008).
[22] J. Kopp, V. Niro, T. Schwetz, and J. Zupan, Phys. Rev. D 80,

083502 (2009).
[23] B. Feldstein, P. W. Graham, and S. Rajendran, Phys. Rev. D

82, 075019 (2010).
[24] A. Dedes, I. Giomataris, K. Suxho, and J. D. Vergados,

Nucl. Phys. B826, 148 (2010).
[25] R. Foot, Phys. Rev. D 90, 121302 (2014).
[26] P. J. Fox and E. Poppitz, Phys. Rev. D 79, 083528

(2009).
[27] Q.-H. Cao, E. Ma, and G. Shaughnessy, Phys. Lett. B 673,

152 (2009).
[28] A. Ibarra, A. Ringwald, D. Tran, and C. Weniger, J. Cosmol.

Astropart. Phys. 08 (2009) 017.
[29] N. F. Bell, Y. Cai, R. K. Leane, and A. D. Medina, Phys.

Rev. D 90, 035027 (2014).
[30] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.

110, 141102 (2013).
[31] J. Chang et al., Nature (London) 456, 362 (2008).
[32] Fermi LAT Collaboration, Phys. Rev. Lett. 108, 011103

(2012).
[33] O. Adriani et al., Nature (London) 458, 607 (2009); Phys.

Rev. Lett. 111, 081102 (2013).
[34] R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85,

076007 (2012).
[35] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T.

Volansky, Phys. Rev. Lett. 109, 021301 (2012).
[36] P. W. Graham, D. E. Kaplan, S. Rajendran, and M. T.

Walters, Phys. Dark Univ. 1, 32 (2012).
[37] R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto,

T. Volansky, and T.-T. Yu, J. High Energy Phys. 05
(2016) 046.

[38] Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett.
116, 011301 (2016); Y. Hochberg, M. Pyle, Y. Zhao, and
K.M. Zurek, arXiv:1512.04533.

[39] B. M. Roberts, V. V. Flambaum, and G. F. Gribakin, Phys.
Rev. Lett. 116, 023201 (2016).

[40] R. Essig et al., arXiv:1311.0029.
[41] The XENON100 Collaboration, Phys. Rev. D 90, 062009

(2014).
[42] The XENON Collaboration, Science 349, 851 (2015).
[43] The XENON Collaboration, Phys. Rev. Lett. 115, 091302

(2015).
[44] J. Amaré et al., arXiv:1508.06152; arXiv:1508.07213;

arXiv:1508.07907.

[45] J. Xu, F. Calaprice, F. Froborg, E. Shields, and B. Suerfu,
AIP Conf. Proc. 1672, 040001 (2015); The SABRE
Collaboration, arXiv:1601.05307.

[46] The XMASS Collaboration, Phys. Lett. B 759, 272
(2016).

[47] G. Angloher et al., arXiv:1602.08884.
[48] The DM-Ice Collaboration, arXiv:1602.05939.
[49] A. Derevianko, V. A. Dzuba, V. V. Flambaum, and M.

Pospelov, Phys. Rev. D 82, 065006 (2010); V. A. Dzuba,
V. V. Flambaum, and M. Pospelov, Phys. Rev. D 81, 103520
(2010).

[50] The XENON10 Collaboration, Phys. Rev. Lett. 107, 051301
(2011).

[51] A. M. Green, Phys. Rev. D 63, 043005 (2001).
[52] A. M. Green, Mod. Phys. Lett. A 27, 1230004 (2012).
[53] L. D. Landau and E. M. Lifshitz, Quantum Mechanics:

Non-relativistic Theory (Pergamon, Oxford, 1977).
[54] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,

Quantum Electrodynamics (Pergamon, Oxford, 1982).
[55] J. Pradler, B. Singh, and I. Yavin, Phys. Lett. B 720, 399

(2013).
[56] The CoGeNT Collaboration, arXiv:1401.3295.
[57] H. An, M. Pospelov, and J. Pradler, Phys. Lett. B 725, 190

(2013).
[58] M. Pospelov, Phys. Rev. D 80, 095002 (2009).
[59] H. Davoudiasl, H.-S. Lee, and W. J. Marciano, Phys. Rev. D

89, 095006 (2014).
[60] E. Izaguirre, G. Krnjaic, and M. Pospelov, Phys. Lett. B 740,

61 (2015).
[61] S. Tulin, H.-B. Yu, and K. M. Zurek, Phys. Rev. D 87,

115007 (2013).
[62] The XENON100 Collaboration, Astropart. Phys. 54, 11

(2014).
[63] The XENON100 Collaboration, Phys. Rev. D 86, 112004

(2012).
[64] The XENON100 Collaboration, Phys. Rev. D 83, 082001

(2011).
[65] M. Szydagis, N. Barry, K. Kazkaz, J. Mock, D. Stolp, M.

Sweany, M. Tripathi, S. Uvarov, N. Walsh, and M.Woods, J.
Instrum. 6, P10002 (2011).

[66] J. I. Collar, arXiv:1106.0653.
[67] The XENON10 Collaboration, Phys. Rev. D 80, 115005

(2009).
[68] The XENON10 Collaboration, Phys. Rev. Lett. 100, 021303

(2008).
[69] The XENON10 Collaboration, Astropart. Phys. 34, 679

(2011).
[70] The XENON10 Collaboration, Nucl. Instrum. Methods

Phys. Res., Sect. A 601, 339 (2009).
[71] The EDELWEISS Collaboration, Phys. Rev. D 86, 051701

(R) (2012).
[72] The EDELWEISS Collaboration, J. Cosmol. Astropart.

Phys. 05 (2016) 019.
[73] The XENON Collaboration, arXiv:1512.07501.
[74] G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L.

Schellenberg, E. B. Shera, and C.W. Dejager, At. Data
Nucl. Data Tables 60, 177 (1995).

[75] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

B. M. ROBERTS et al. PHYSICAL REVIEW D 93, 115037 (2016)

115037-22

http://dx.doi.org/10.1088/1475-7516/2011/11/010
http://dx.doi.org/10.1088/1475-7516/2011/11/010
http://dx.doi.org/10.1088/1475-7516/2009/04/010
http://dx.doi.org/10.1088/1475-7516/2009/04/010
http://dx.doi.org/10.1103/PhysRevD.82.125011
http://dx.doi.org/10.1103/PhysRevD.82.125011
http://dx.doi.org/10.1103/PhysRevD.90.094027
http://dx.doi.org/10.1103/PhysRevD.90.094027
http://dx.doi.org/10.1142/S0217751X06030874
http://dx.doi.org/10.1103/PhysRevD.78.115012
http://dx.doi.org/10.1103/PhysRevD.78.115012
http://dx.doi.org/10.1016/j.physletb.2015.06.018
http://dx.doi.org/10.1016/j.physletb.2015.06.018
http://dx.doi.org/10.1103/PhysRevD.71.123520
http://dx.doi.org/10.1103/PhysRevD.71.123520
http://dx.doi.org/10.1103/PhysRevD.77.023506
http://dx.doi.org/10.1103/PhysRevD.80.083502
http://dx.doi.org/10.1103/PhysRevD.80.083502
http://dx.doi.org/10.1103/PhysRevD.82.075019
http://dx.doi.org/10.1103/PhysRevD.82.075019
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.032
http://dx.doi.org/10.1103/PhysRevD.90.121302
http://dx.doi.org/10.1103/PhysRevD.79.083528
http://dx.doi.org/10.1103/PhysRevD.79.083528
http://dx.doi.org/10.1016/j.physletb.2009.02.015
http://dx.doi.org/10.1016/j.physletb.2009.02.015
http://dx.doi.org/10.1088/1475-7516/2009/08/017
http://dx.doi.org/10.1088/1475-7516/2009/08/017
http://dx.doi.org/10.1103/PhysRevD.90.035027
http://dx.doi.org/10.1103/PhysRevD.90.035027
http://dx.doi.org/10.1103/PhysRevLett.110.141102
http://dx.doi.org/10.1103/PhysRevLett.110.141102
http://dx.doi.org/10.1038/nature07477
http://dx.doi.org/10.1103/PhysRevLett.108.011103
http://dx.doi.org/10.1103/PhysRevLett.108.011103
http://dx.doi.org/10.1038/nature07942
http://dx.doi.org/10.1103/PhysRevLett.111.081102
http://dx.doi.org/10.1103/PhysRevLett.111.081102
http://dx.doi.org/10.1103/PhysRevD.85.076007
http://dx.doi.org/10.1103/PhysRevD.85.076007
http://dx.doi.org/10.1103/PhysRevLett.109.021301
http://dx.doi.org/10.1016/j.dark.2012.09.001
http://dx.doi.org/10.1007/JHEP05(2016)046
http://dx.doi.org/10.1007/JHEP05(2016)046
http://dx.doi.org/10.1103/PhysRevLett.116.011301
http://dx.doi.org/10.1103/PhysRevLett.116.011301
http://arXiv.org/abs/1512.04533
http://dx.doi.org/10.1103/PhysRevLett.116.023201
http://dx.doi.org/10.1103/PhysRevLett.116.023201
http://arXiv.org/abs/1311.0029
http://dx.doi.org/10.1103/PhysRevD.90.062009
http://dx.doi.org/10.1103/PhysRevD.90.062009
http://dx.doi.org/10.1126/science.aab2069
http://dx.doi.org/10.1103/PhysRevLett.115.091302
http://dx.doi.org/10.1103/PhysRevLett.115.091302
http://arXiv.org/abs/1508.06152
http://arXiv.org/abs/1508.07213
http://arXiv.org/abs/1508.07907
http://dx.doi.org/10.1063/1.4927983
http://arXiv.org/abs/1601.05307
http://dx.doi.org/10.1016/j.physletb.2016.05.081
http://dx.doi.org/10.1016/j.physletb.2016.05.081
http://arXiv.org/abs/1602.08884
http://arXiv.org/abs/1602.05939
http://dx.doi.org/10.1103/PhysRevD.82.065006
http://dx.doi.org/10.1103/PhysRevD.81.103520
http://dx.doi.org/10.1103/PhysRevD.81.103520
http://dx.doi.org/10.1103/PhysRevLett.107.051301
http://dx.doi.org/10.1103/PhysRevLett.107.051301
http://dx.doi.org/10.1103/PhysRevD.63.043005
http://dx.doi.org/10.1142/S0217732312300042
http://dx.doi.org/10.1016/j.physletb.2013.02.033
http://dx.doi.org/10.1016/j.physletb.2013.02.033
http://arXiv.org/abs/1401.3295
http://dx.doi.org/10.1016/j.physletb.2013.07.008
http://dx.doi.org/10.1016/j.physletb.2013.07.008
http://dx.doi.org/10.1103/PhysRevD.80.095002
http://dx.doi.org/10.1103/PhysRevD.89.095006
http://dx.doi.org/10.1103/PhysRevD.89.095006
http://dx.doi.org/10.1016/j.physletb.2014.11.037
http://dx.doi.org/10.1016/j.physletb.2014.11.037
http://dx.doi.org/10.1103/PhysRevD.87.115007
http://dx.doi.org/10.1103/PhysRevD.87.115007
http://dx.doi.org/10.1016/j.astropartphys.2013.10.002
http://dx.doi.org/10.1016/j.astropartphys.2013.10.002
http://dx.doi.org/10.1103/PhysRevD.86.112004
http://dx.doi.org/10.1103/PhysRevD.86.112004
http://dx.doi.org/10.1103/PhysRevD.83.082001
http://dx.doi.org/10.1103/PhysRevD.83.082001
http://dx.doi.org/10.1088/1748-0221/6/10/P10002
http://dx.doi.org/10.1088/1748-0221/6/10/P10002
http://arXiv.org/abs/1106.0653
http://dx.doi.org/10.1103/PhysRevD.80.115005
http://dx.doi.org/10.1103/PhysRevD.80.115005
http://dx.doi.org/10.1103/PhysRevLett.100.021303
http://dx.doi.org/10.1103/PhysRevLett.100.021303
http://dx.doi.org/10.1016/j.astropartphys.2011.01.006
http://dx.doi.org/10.1016/j.astropartphys.2011.01.006
http://dx.doi.org/10.1016/j.nima.2008.12.197
http://dx.doi.org/10.1016/j.nima.2008.12.197
http://dx.doi.org/10.1103/PhysRevD.86.051701
http://dx.doi.org/10.1103/PhysRevD.86.051701
http://dx.doi.org/10.1088/1475-7516/2016/05/019
http://dx.doi.org/10.1088/1475-7516/2016/05/019
http://arXiv.org/abs/1512.07501
http://dx.doi.org/10.1006/adnd.1995.1007
http://dx.doi.org/10.1006/adnd.1995.1007

